Remember to show all of your work.

Problem 1. Prove that $f(x)=x^{4}-x^{3}-x^{2}-x-1$ has at least one horizontal tangent line on $[-1,2]$ (no need to find the x value, just prove it has one).

Sample Solution: this is just a straight forward application of Rolle's Theorem. If all three conditions hold, then the statement is proved:
(i) $f(x)$ continuous on $[-1,2]: f(x)$ is a polynomial, and thus is continuous everywhere. So, of course it's continuous on $[-1,2]$.
(ii) $f(x)$ differentiable on $(-1,2)$: again, because $f(x)$ is a polynomial, it is differentiable everywhere. You can also check by taking the derivative: $f^{\prime}(x)=4 x^{3}-3 x^{2}-2 x-1$, and this is a polynomial, and hence is defined everywhere. Thus, $f(x)$ is differentiable on $(-1,2)$.
(iii) $f(a)=f(b)$: here we just have to check $f(-1)$ and $f(2)$:

$$
\begin{aligned}
f(-1) & =(-1)^{4}-(-1)^{3}-(-1)^{2}-(-1)-1 \\
& =1+1-1+1-1 \\
& =1 \\
f(2) & =(2)^{4}-(2)^{3}-(2)^{2}-(2)-1 \\
& =16-8-4-2-1 \\
& =1
\end{aligned}
$$

so $f(-1)=f(2)$
Now, we've proven that the three conditions for Rolle's Theorem hold. Therefore, $f(x)$ must have a horizontal tangent line somewhere on the interval $[-1,2]$ via Rolle's Theorem.

Problem 2. Let $f(x)=x^{2}+\frac{1}{x^{2}}$, and consider the interval $\left[-3,-\frac{1}{2}\right]$

- Find the absolute maximum (x and y value) if one exists.
- Find the absolute minimum (x and y value) if one exists.

Sample Solution: Note that $f(x)$ is continuous on $(-\infty, 0) \cup(0, \infty)$, and therefore is continuous on $[-3,-1 / 2]$. Thus, we can apply the Extreme Value Theorem. Now, we have to find any critical points of $f(x)$, and then find the values of $f(x)$ for these critical points, as well as the endpoints. The largest $f(x)$ value is the absolute max, the lowest is the absolute min. Start by finding the critical points:

$$
\begin{array}{r}
f(x)=x^{2}+\frac{1}{x^{2}} \\
f^{\prime}(x)=2 x-\frac{2}{x^{3}} \\
0=2 x-\frac{2}{x^{3}} \\
\frac{2}{x^{3}}=2 x \\
1=x^{4} \\
x= \pm 1
\end{array}
$$

(NOTE: 0 cannot be a critical point because it is not in the domain of $f(x)$!)
So, we have two critical points, but we're only concerned about -1 , because the problem gives us the interval $[-3,-1 / 2]$. So, we have to check $f(-3), f(-1)$, and $f(-1 / 2)$:

$$
\begin{aligned}
& f(-3)=(-3)^{2}+\frac{1}{(-3)^{2}}=9+\frac{1}{9}=\frac{82}{9} \approx 9.111 \\
& f(-1)=(-1)^{2}+\frac{1}{(-1)^{2}}=1+1=2 \\
& f\left(-\frac{1}{2}\right)=\left(-\frac{1}{2}\right)^{2}+\frac{1}{\left(-\frac{1}{2}\right)^{2}}=\frac{1}{4}+4=4.25
\end{aligned}
$$

so, $f(x)$ has an absolute max at $\left(-3, \frac{82}{9}\right)$ and an absolute min at $(-1,2)$.

