Remember to show all of your work.

Problem 1. Let $f(x)=\frac{1}{x^{2}-3 x-18}$.
(a) Find the critical point(s) of $f(x)$.

Sample Solution: Here, we have to find where $f^{\prime}(x)$ is either zero or undefined (but also, remember that critical points must be defined for the original function $f(x)$. This will be important here.) We have

$$
\begin{aligned}
f(x) & =\frac{1}{x^{2}-3 x-18} \\
f^{\prime}(x) & =\frac{\left(x^{2}-3 x-18\right)(0)-(1)(2 x-3)}{\left(x^{2}-3 x-18\right)^{2}} \\
& =\frac{-2 x+3}{\left(x^{2}-3 x-18\right)^{2}} \\
& =\frac{-2 x+3}{((x-6)(x+3))^{2}}
\end{aligned}
$$

Now, $x=6$ and $x=-3$ cannot be critical points, because the original function $f(x)$ is undefined there. Thus, the only critical point is $-2 x+3=0 \longrightarrow x=\frac{3}{2}$.
(b) Find the intervals on which $f(x)$ is increasing / decreasing.

Sample Solution: We've already done the tough work here. What we have to do is construct a number line with "important points" (here, this includes $x=6$ and $x=-3$, as well as $x=\frac{3}{2}$), and determine if $f^{\prime}(x)$ is positive or negative in each interval.

Let's use the points $-4,0,2$, and 7 . NOTE: the denominator of the derivative will never be negative, because it's a square. Thus, the sign of the derivative depends only on the numerator.

$$
\begin{array}{r}
f^{\prime}(-4) \rightarrow-2(-4)+3=8+3=11>0 \\
f^{\prime}(0) \rightarrow-2(0)+3=3>0 \\
f^{\prime}(2) \rightarrow-2(2)+3=-4+3=-1<0 \\
f^{\prime}(7) \rightarrow-2(7)+3=-14+3=-11<0
\end{array}
$$

Thus, we have the following:

So, $f(x)$ is increasing on $(-\infty,-3) \cup\left(-3, \frac{3}{2}\right)$ and decreasing on $\left(\frac{3}{2}, 6\right) \cup(6, \infty)$.

Problem 2. Evaluate one of following limits (you can choose which):

- $\lim _{x \rightarrow 0}\left(\cot x-\frac{1}{x}\right)$

Sample Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0}\left(\cot x-\frac{1}{x}\right) & =\lim _{x \rightarrow 0}\left(\frac{\cos x}{\sin x}-\frac{1}{x}\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{x \cos x}{x \sin x}-\frac{\sin x}{x \sin x}\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{x \cos x-\sin x}{x \sin x}\right)
\end{aligned}
$$

Now here, if we try direct substitution we get $\frac{0}{0}$, an indeterminate form. Thus, L'Hôpital's can be used:

$$
\begin{aligned}
\lim _{x \rightarrow 0}\left(\cot x-\frac{1}{x}\right) & =\lim _{x \rightarrow 0}\left(\frac{x \cos x-\sin x}{x \sin x}\right) \\
& \stackrel{L H}{=} \lim _{x \rightarrow 0}\left(\frac{\cos x-x \sin x-\cos x}{\sin x+x \cos x}\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{-x \sin x}{\sin x+x \cos x}\right)
\end{aligned}
$$

Direct substitution here still gives $\frac{0}{0}$, so we apply L'Hôpital's again:

$$
\begin{aligned}
\lim _{x \rightarrow 0}\left(\cot x-\frac{1}{x}\right) & =\lim _{x \rightarrow 0}\left(\frac{-x \sin x}{\sin x+x \cos x}\right) \\
& \stackrel{L H}{=} \lim _{x \rightarrow 0}\left(\frac{-\sin x-x \cos x}{\cos x+\cos x-x \sin x}\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{-\sin x-x \cos x}{2 \cos x-x \sin x}\right)
\end{aligned}
$$

Now using direct substitution gives

$$
\begin{aligned}
\lim _{x \rightarrow 0}\left(\cot x-\frac{1}{x}\right) & =\lim _{x \rightarrow 0}\left(\frac{-\sin x-x \cos x}{2 \cos x+\cos x}\right) \\
& =\left(\frac{-\sin (0)-(0) \cos (0)}{2 \cos (0)+(0) \sin (0)}\right) \\
& =\frac{0}{2}=0
\end{aligned}
$$

Alternate Sample Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0}\left(\cot x-\frac{1}{x}\right) & =\lim _{x \rightarrow 0}\left(\frac{1}{\tan x}-\frac{1}{x}\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{x}{x \tan x}-\frac{\tan x}{x \tan x}\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{x-\tan x}{x \tan x}\right) \\
& \stackrel{L H}{=} \lim _{x \rightarrow 0}\left(\frac{1-\sec ^{2} x}{\tan x+x \sec ^{2} x}\right) \\
& \stackrel{L H}{=} \lim _{x \rightarrow 0}\left(\frac{-2 \sec ^{2} x \tan x}{\sec ^{2} x+\sec ^{2} x+2 x \sec ^{2} x \tan x}\right) \\
& =\frac{-2 \sec ^{2}(0) \tan (0)}{2 \sec ^{2}(0)+2(0) \sec ^{2}(0) \tan (0)} \\
& =\frac{0}{2+0}=\frac{0}{2}=0
\end{aligned}
$$

- $\lim _{x \rightarrow 1^{+}}(x-1)^{x-1}$

Sample Solution:

Trying direct substitution here gives 0^{0}, an indeterminate form. Thus, we want to use L'Hôpital's, but we can't quite yet. We have to do a little bit of manipulating first:

$$
\begin{aligned}
\lim _{x \rightarrow 1^{+}}(x-1)^{x-1} & =\lim _{x \rightarrow 1^{+}}\left(e^{\ln (x-1)}\right)^{x-1} \\
& =\lim _{x \rightarrow 1^{+}} e^{(x-1) \ln (x-1)} \\
& =e^{\lim _{x \rightarrow 1^{+}}(x-1) \ln (x-1)} \\
& =e^{\lim _{x \rightarrow 1^{+}} \frac{\ln (x-1)}{\frac{1}{x-1}}}
\end{aligned}
$$

Now, trying direct substitution gives $-\frac{\infty}{\infty}$, so we can use L'Hôpital's. We have:

$$
\begin{aligned}
\lim _{x \rightarrow 1^{+}}(x-1)^{x-1} & =e^{\lim _{x \rightarrow 1^{+}} \frac{\ln (x-1)}{x-1}} \\
& \stackrel{L H}{=} e^{\lim _{x \rightarrow 1^{+}} \frac{\frac{1}{x-1}}{(x-1)^{2}}} \\
& =e^{\lim _{x \rightarrow 1^{+}} \frac{1}{x-1} * \frac{(x-1)^{2}}{-1}} \\
& =e^{\lim _{x \rightarrow 1^{+}} \frac{(x-1)}{-1}} \\
& =e^{\lim _{x \rightarrow 1^{+}}(-x+1)}
\end{aligned}
$$

Now, direct substitution gives

$$
\begin{aligned}
\lim _{x \rightarrow 1^{+}}(x-1)^{x-1} & =e^{\lim _{x \rightarrow 1^{+}}(-x+1)} \\
& =e^{-(1)+1} \\
& =e^{0}=1
\end{aligned}
$$

