# MAC1105 Week 9 Discussion 

Module 9: Limits

October 17, 2019

Given $f(x)=x^{2}-4$ and $g(x)=\frac{3}{x+1}$, answer the following questions:
(a)Determine the domain of the following:

$$
f(x), g(x), f(x)+g(x), f(x)-g(x), f(x) * g(x), \frac{f(x)}{g(x)}, \frac{g(x)}{f(x)}
$$

Answer $f(x):(-\infty, \infty)$
Answer $g(x):(-\infty,-1) \cup(-1, \infty)$
Answer $f(x)+g(x):(-\infty,-1) \cup(-1, \infty)$
Answer $f(x)-g(x):(-\infty,-1) \cup(-1, \infty)$
Answer $f(x) * g(x):(-\infty,-1) \cup(-1, \infty)$
Answer $\frac{f(x)}{g(x)}:(-\infty, \infty)$
Answer $\frac{g(x)}{f(x)}:(-\infty,-2) \cup(-2,-1) \cup(-1,2) \cup(2, \infty)$
(b) Determine the value of the following:

$$
\begin{aligned}
& (f \circ g)(3) \text { Answer: } f(g(3))=f\left(\frac{3}{4}\right)=-\frac{55}{16}=-3.4375 \\
& (g \circ f)(3) \text { Answer: } g(f(3))=g(5)=\frac{1}{2}=0.5
\end{aligned}
$$

In general, does $(f \circ g)(x)=(g \circ f)(x)$ ? Answer: In general, no.
(c) Is $f(x)=x^{2}-4$ a one-to-one function? If yes, find its inverse and determine the domain of $f^{-1}(x)$.

Answer: $f(x)$ is not one-to-one, so no need to find its inverse.
(d) Is $g(x)=\frac{3}{x+1}$ a one-to-one function? If yes, find its inverse and determine the domain of $g^{-1}(x)$.

Answer: $g(x)$ is one-to-one. $g^{-1}(x)=\frac{3}{x}-1$, domain of $g^{-1}(x):(\infty, 0) \cup(0, \infty)$

