Remember to show all of your work.

Problem 1. Let $f(x) = \frac{x^3 - 16}{x}$. Then $f'(x) = \frac{2x^3 + 16}{x^2}$ and $f''(x) = \frac{2x^3 - 32}{x^3}$.

(a) Determine the domain of f(x).

Sample Solution: Just glancing at the function, it's clear that f(x) is defined everywhere except at x = 0. Thus, the domain is $(-\infty, 0) \cup (0, \infty)$.

(b) Find any vertical / horizontal asymptotes of f(x), if they exist.

Sample Solution:

Vertical: setting the denominator equal to zero, we see there is a vertical asymptote at x = 0. Horizontal: These are found by taking the limit as $x \to \infty$, $x \to -\infty$. We have:

$$\lim_{x \to \infty} \frac{x^3 - 1}{x} \stackrel{LH}{=} \lim_{x \to \infty} 3x^2 = \infty$$
$$\lim_{x \to -\infty} \frac{x^3 - 1}{x} \stackrel{LH}{=} \lim_{x \to -\infty} 3x^2 = \infty$$

so there are no horizontal asymptotes.

(c) Identify any possible critical points.

Sample Solution: Possible critical points are found by setting f'(x) = 0 or undefined. Because x = 0 isn't in our domain, we only need f'(x) = 0:

$$0 = \frac{2x^3 + 16}{x^2} \longrightarrow 2x^3 + 16 = 0 \longrightarrow x^3 = -8 \longrightarrow x = -2$$

and $f(-2) = \frac{(-2)^3 - 16}{-2} = \frac{-24}{-2} = 12$, so the possible critical point is (-2, 12).

(d) Find the intervals on which f(x) is increasing / decreasing.

Sample Solution: Increasing on $(-\infty, 2)$, decreasing on $(-2, 0) \cup (0, \infty)$.

(e) Identify any possible inflection points.

Sample Solution: Possible inflection points are found by setting f''(x) = 0 or undefined. Because x = 0 isn't in our domain, we only need f''(x) = 0:

$$0 = \frac{2x^3 - 32}{x^3} \longrightarrow 2x^3 - 32 = 0 \longrightarrow x^3 = 16 \longrightarrow x = \sqrt[3]{16}$$

and $f(\sqrt[3]{16}) = \frac{(\sqrt[3]{16})^3 - 16}{\sqrt[3]{16}} = \frac{0}{\sqrt[3]{16}} = 0$, so the possible critical point is $(\sqrt[3]{16}, 0)$.

(f) Find the intervals on which f(x) is concave up / concave down.

Sample Solution: Concave up on $(-\infty, 0) \cup (\sqrt[3]{16}, \infty)$, concave down on $(0, \sqrt[3]{16})$.

(g) Graph f(x).

Hint for graphing: $\sqrt[3]{16} \approx 2.5$

Sample Solution: From our number lines of f'(x) and f''(x), we have

with important points (-2, 12) and $(\sim 2.5, 0)$, and a vertical asymptote at x = 0. Thus,

What did the shy pebble wish for? That she could be a little boulder!