Remember to show all of your work.

Problem 1. Let $f(x)=\frac{x^{3}-16}{x}$. Then $f^{\prime}(x)=\frac{2 x^{3}+16}{x^{2}}$ and $f^{\prime \prime}(x)=\frac{2 x^{3}-32}{x^{3}}$.
(a) Determine the domain of $f(x)$.

Sample Solution: Just glancing at the function, it's clear that $f(x)$ is defined everywhere except at $x=0$. Thus, the domain is $(-\infty, 0) \cup(0, \infty)$.
(b) Find any vertical / horizontal asymptotes of $f(x)$, if they exist.

Sample Solution:

Vertical: setting the denominator equal to zero, we see there is a vertical asymptote at $x=0$.
Horizontal: These are found by taking the limit as $x \rightarrow \infty, x \rightarrow-\infty$. We have:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{x^{3}-1}{x} \stackrel{L H}{=} \lim _{x \rightarrow \infty} 3 x^{2}=\infty \\
& \lim _{x \rightarrow-\infty} \frac{x^{3}-1}{x} \stackrel{L H}{=} \lim _{x \rightarrow-\infty} 3 x^{2}=\infty
\end{aligned}
$$

so there are no horizontal asymptotes.
(c) Identify any possible critical points.

Sample Solution: Possible critical points are found by setting $f^{\prime}(x)=0$ or undefined. Because $x=0$ isn't in our domain, we only need $f^{\prime}(x)=0$:

$$
0=\frac{2 x^{3}+16}{x^{2}} \longrightarrow 2 x^{3}+16=0 \longrightarrow x^{3}=-8 \longrightarrow x=-2
$$

and $f(-2)=\frac{(-2)^{3}-16}{-2}=\frac{-24}{-2}=12$, so the possible critical point is $(-2,12)$.
(d) Find the intervals on which $f(x)$ is increasing / decreasing.

Sample Solution: Increasing on $(-\infty, 2)$, decreasing on $(-2,0) \cup(0, \infty)$.

(e) Identify any possible inflection points.

Sample Solution: Possible inflection points are found by setting $f^{\prime \prime}(x)=0$ or undefined. Because $x=0$ isn't in our domain, we only need $f^{\prime \prime}(x)=0$:

$$
0=\frac{2 x^{3}-32}{x^{3}} \longrightarrow 2 x^{3}-32=0 \longrightarrow x^{3}=16 \longrightarrow x=\sqrt[3]{16}
$$

and $f(\sqrt[3]{16})=\frac{(\sqrt[3]{16})^{3}-16}{\sqrt[3]{16}}=\frac{0}{\sqrt[3]{16}}=0$, so the possible critical point is $(\sqrt[3]{16}, 0)$.
(f) Find the intervals on which $f(x)$ is concave up / concave down.

Sample Solution: Concave up on $(-\infty, 0) \cup(\sqrt[3]{16}, \infty)$, concave down on $(0, \sqrt[3]{16})$.

(g) Graph $f(x)$.

Hint for graphing: $\sqrt[3]{16} \approx 2.5$
Sample Solution: From our number lines of $f^{\prime}(x)$ and $f^{\prime \prime}(x)$, we have

with important points $(-2,12)$ and $(\sim 2.5,0)$, and a vertical asymptote at $x=0$. Thus,

Problem 2. (1 point) In honor of April Fool's Day on Thursday, what's your favorite joke / pun? Sample Solution One of my favorite jokes:

What did the shy pebble wish for? That she could be a little boulder!

