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Abstract—A combination of spin–orbit coupling and electron–electron interaction gives rise to a new type of
collective spin modes, which correspond to oscillations of magnetization even in the absence of the external
magnetic field. We review recent progress in theoretical understanding and experimental observation of such
modes, focusing on three examples of real-life systems: a two-dimensional electron gas with Rashba and/or
Dresselhaus spin–orbit coupling, graphene with proximity-induced spin–orbit coupling, and the Dirac state
on the surface of a three-dimensional topological insulator. This paper is dedicated to the 95th birthday of
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1. INTRODUCTION

Spin–orbit coupling (SOC) plays an important
and, sometimes decisive, role in many condensed
matter systems, including two-dimensional (2D) elec-
tron and hole gases in semiconductor heterostructures
[1, 2], noncentrosymmetric normal metals [3] and
superconductors [4, 5], bismuth tellurohalides [6], a
variety of iridates and vanadates [7], surface/edge
states of three-dimensional (3D)/2D topological
insulators [8–12], conducting states at oxide interfaces
[13], 2D transition metal dichalcogenides (TMD) [14,
15], graphene on TMD substrates [16], atomic Bose
[17, 18] and Fermi [19, 20] gases in simulated non-
Abelian magnetic fields, etc. Coupling between elec-
tron spins and momenta leads to a number of fascinat-
ing consequences, such as the electric-dipole spin res-
onance (EDSR) [21–23], current-induced spin polar-
ization [24–26], persistent spin helices [27–29],
quantum spin [30–32] and anomalous Hall effects
[33–35], to name just a few. An interesting and still
largely open question is the interplay between spin–
orbit and electron–electron interactions. Such inter-
play gives rise to new phases of matter, e.g., topologi-
cal Mott insulator [36, 37], gyrotropic and multipolar
orders in normal metals [38], helical Fermi liquid
(FL) [39], Gor’kov-Rashba superconductor with
mixed singlet-triplet order parameter [40], topological
Kondo insulators [41], etc. It also affects in a nontriv-
ial way many physical phenomena, e.g., optical con-

ductivity [42, 43], plasmon spectra [44–46], RKKY
interaction [47–49], nonanalytic behavior of the spin
susceptibility [50–52], etc., and gives rise to spin-
dependent electron–electron interaction [53].

In this paper, we review recent progress in theoret-
ical understanding and experimental observation of a
new type of collective spin modes in 2D FLs with
SOC. Such modes are perhaps the most direct mani-
festation of an interplay between spin–orbit and elec-
tron–electron interactions, as their existence hinges
on both components being present. Unlike the con-
ventional Silin mode in a partially spin-polarized FL
[54], these modes exist even in the absence of an exter-
nal magnetic field; in addition, they modify in a char-
acteristic way the Silin mode if both SOC and mag-
netic field are present. As long as SOC is weak, the
new modes correspond to oscillations of the magneti-
zation which are decoupled from the oscillations of
charge. The origin of the new modes can be traced to
the effective spin–orbit magnetic field, which depends
on the orientation and magnitude of the electron
momentum, and also on the position of electron valley
in the Brillouin zone (for multi-valley systems, such as
graphene with proximity-induced SOC). Some of
these modes have already been observed experimen-
tally in Cd1 – xMnxTe quantum wells (in the presence of
the magnetic field) [55–60] and in the surface state of
a three-dimensional (3D) topological insulator (TI)
Bi2Se3 (in zero magnetic field) [61]; however, many
more predictions are still awaiting their experimental
confirmation.
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The rest of the paper is organized as follows. In
Section 2.1, we introduce three systems considered in
the rest of the article: (1) a 2D electron gas (2DEG)
with Rashba and/or Dresselhaus SOC, (2) graphene
with proximity-induced SOC, and (3) a Dirac helical
state on the surface of a 3D TI. In Section 2.2, we
describe the single- and two-valley FL theories, which
will be applied to study the collective spin modes in
2DEGs and graphene, respectively, given that SOC
and/or magnetic field are weak. In Section 2.3, we
explain why a FL theory cannot be applied to the cases
of arbitrarily strong SOC and/or magnetic field. Sec-
tion 3 serves as a short reminder of collective modes in
a FL without SOC, in general, and of the Silin modes
in a partially spin-polarized FL, in particular. In Sec-
tion 4, we discuss collective spin modes in a 2DEG.
Section 4.1 describes the FL theory for the case of
Rashba SOC. In Section 4.2, we show that the FL
kinetic equation for a 2DEG with Rashba and/or
Dresselhaus SOC and in the presence of the magnetic
field can be mapped onto an effective tight-binding
model for an artificial one-dimensional (1D) lattice,
whose sites are labeled by the projections of the angu-
lar momentum. Within this mapping, the role of FL
interaction is to produce “defects”, both of the on-site
and bond types, and the collective modes arise as
bound states due to such defects. In Section 4.3, we
illustrate how this mapping works for the case of a
2DEG with Rashba SOC and in the presence of the
magnetic field using the s-wave approximation for the
Landau function. Section 5 deals with collective spin
modes in Dirac systems. In Section 5.1 we apply a
two-valley version of the FL theory to graphene with
proximity-induced SOC. In Section 5.2, we derive the
spectrum of inter-band spin excitations in a Dirac sur-
face state within the ladder approximation. In
Section 6, we discuss the spatial dispersion of collec-
tive spin modes. Section 7 is devoted to damping due
to both disorder and electron–electron interaction. In
Section 8, we discuss both the current and future
experiments. Section 8.1 summarizes the results of a
series of Raman experiments on Cd1 – xMnxTe. In Sec-
tion 8.2, we provide a summary of recent Raman spec-
troscopy of a collective spin mode on the surface of
Bi2Se3. Section 8.3 contains the theoretical predictions
for electron spin resonance (ESR) and EDSR experi-
ments on graphene with proximity-induced SOC,
both in zero and strong (compared to SOC) magnetic
field. Our conclusions are given in Section 9.

2. MODEL SINGLE-PARTICLE 
HAMILTONIANS AND ELECTRON–

ELECTRON INTERACTION

2.1. Model Single-Particle Hamiltonians
for Spin–Orbit Coupling

Despite the variety of real-life systems, the effects
of SOC on the electron spectrum can be described by
JOURNAL OF EXPERIMENTAL AN
just a few low-energy Hamiltonians, constructed by
using the symmetry arguments. In this paper, we will
consider three examples of two-dimensional electron
systems: a two-dimensional electron gas (2DEG)
sandwiched between two dissimilar semiconductors,
mono-layer graphene with substrate-induced SOC,
and the surface state of a three-dimensional (3D)
topological insulator (TI).

The effect of SOC on a 2DEG sandwiched
between two dissimilar centrosymmetric semiconduc-
tors is described by the venerable Rashba Hamiltonian
[62, 63]

(2.1)

where  = ( , , ) is a vector of Pauli matrices
which describe electron spin,  is a unit vector along
the normal to the 2DEG plane, and α is a phenome-
nological parameter (with units of velocity; we set

 throughout the paper). The simplest way to
arrive at this Hamiltonian is to notice that a combi-
nation (  × k) ⋅  is the only scalar which can be
formed out of an axial vector ( ) and two polar vec-
tors (k and ).

In a bulk noncentrosymmetric semiconductor,
e.g., of the A3B5 family (GaAs, CdTe, etc.), symme-
try allows for a cubic (Dresselhaus) coupling between
momentum and spin [64]. A quantum well on the sur-
face of such a semiconductor is described by a 2D
Dresselhaus Hamiltonian with linear coupling
between spin and momentum obtained by projecting
the bulk Dresselhaus term onto the quantum-well
plane [65, 66]. A particular form of the 2D Dressel-
haus Hamiltonian depends on the orientation of the
quantum-well plane with respect to crystallographic
axes. We will consider the most common case of a
quantum well grown along the (001) direction. With
the x-axis along the (100) direction and y-axis along
the (010) the direction, the Dresselhaus Hamiltonian
reads

(2.2)

In heterostructures made from noncentrosymmetric
semiconductors the Rashba and Dresselhaus types of
SOC usually occur simultaneously, and the total
spin–orbit part of the Hamiltonian is the sum of the
Rashba and Dresselhaus terms. Without loss of gener-
ality, we assume that α, β > 0.

Another popular system is graphene adsorbed on a
transition-metal-dichalcogenide (TMD) substrate,
such as WS2, WSe2, and MoS2 [67–80]. In this case,
the induced SOC is expected to be a mixture of two
types [68, 81, 82]: of Rashba SOC and valley-Zeeman
(VZ) or Ising SOC, which acts as an out-of-plane
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magnetic field whose direction alternates between the
K and K' valleys of graphene. We focus on the case of
monolayer graphene with proximity-induced SOC,
described by the following low-energy Hamiltonian:

(2.3)

where  is the Dirac velocity, k is the electron
momentum measured either from the K or K' point of
the graphene Brillouin zone, λR and λVZ are the cou-
pling constants of the Rashba and VZ spin–orbit
interactions, respectively, Δ is the gap due to substrate-
induced asymmetry between the A and B sites of the
honeycomb lattice,  (i = x, y) are the Pauli matrices
in the sublattice (pseudospin) subspace, and τz = ±1
labels the K and K' points. (An expression of the type

 is to be understood as a tensor product of two
matrices. A single matrix in one of the subspaces
implies that it is tensor product with a unity matrix in
the other subspace.) In Eq. (2.3), we neglected the
intrinsic, Kane–Mele type of SOC [83], which is
much weaker than the induced ones.1

Finally, the surface of a 3D TI, e.g., Bi2Se3, harbors
a Dirac helical state. If the hexagonal warping of the
energy contours due to underlying crystal lattice can
be neglected, this state is described by the Rashba-like
Hamiltonian without the parabolic term [84]

(2.4)

In all cases presented above, the effect of an in-
plane magnetic field of magnitude B and at angle γ to
the x-axis is accounted for by adding the usual Zeeman
term

(2.5)

to the corresponding Hamiltonian. Here, ΔZ = gμBB is
the Zeeman splitting, g is the effective Landé factor
(assumed to be isotropic) and μB is the Bohr magne-
ton.

The properties of Hamiltonians (2.1)–(2.4) are
well-understood by now and we will not reproduce the
known results here. It suffices to say that Rashba and
Dresselhaus types of SOC lead to spin textures in the
momentum space, which can be interpreted as the
effect of an effective magnetic field, while the VZ type
of SOC in (2.3) acts as an out-of-plane magnetic field
whose orientation alternates between the K and K' val-
leys.

1 Theoretical estimates place the Kane-Mele coupling in the range
from 1 μeV [143, 144] to 25–50 μeV [145, 146] while a recent ESR
experiment reports the value of 42.2 μeV [135].
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2.2. Models of Electron–Electron Interaction

Since the focus of this article is on the collective
modes, we need to invoke the electron–electron inter-
action as it is essential to induce collective behavior. In
all cases, we assume that our system is doped, such
that the Fermi energy (EF) is significantly larger than
the spin–orbit and/or Zeeman splitting of the electron
spectrum. An exception is the surface state of a TI,
where SOC forms the spectrum rather than modifies
the already existing one. With this exception, SOC can
be treated as a perturbation imposed on a single-valley
(2DEG) or two-valley (graphene) Fermi liquid. Mod-
ulo renormalizations by the interaction, the spin–
orbit and Zeeman energy scales determine the fre-
quencies of the corresponding collective modes.
Therefore, to leading order in these energy scales, one
can neglect the effect of SOC and magnetic field on
the Landau interaction function. For the single-valley
case, the latter is given by the usual form [85–87]

(2.6)

where  is the total (including the spin degeneracy),
renormalized density of states at the Fermi energy, ϑ is
the angle between the momenta k and k' of two quasi-
particles on the Fermi surface (|k| = |k'| = kF), functions
Fs and Fa describe the interaction in the symmetric
(direct) and asymmetric (exchange) channels, and un-
primed/primed σ-matrices refer to the spin state of the
first/second quasiparticle.

The valley degree of freedom in graphene allows for
more interaction channels. In addition to direct and
exchange interactions between electrons within a sin-
gle valley, one now also has an exchange interaction
between the valleys, and a mixed spin-valley exchange
interaction. If doping is low enough to neglect the
trigonal warping of the Fermi contours, the Landau
function of a two-valley FL can be written as [88]

(2.7)

where  is the total (including the spin and valley
degeneracies), renormalized density of states,  =
τx + τy and unprimed/primed τ-matrices refer to

the valley state of the first/second quasiparticle. Scat-
tering processes in a two-valley FL are depicted dia-
grammatically in Fig. 1, where the solid (dashed) lines
refer to electrons in the K (K') valley and ς1,2 (ς3,4) label
the spin indices of the initial (final) states. Diagrams a
and b describe intra-valley processes, while diagram c
describes an inter-valley process with small momen-
tum transfers, in which electrons stay in their respec-
tive valleys. Diagram d corresponds to an inter-valley
process with large (≈|K – K'|) momentum transfer, in
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Fig. 1. Interaction vertices for intra-valley (a, b) and inter-valley (c, d) scattering processes. The solid (dashed) lines refer to elec-
trons in the K (K') valley. Diagrams a and b also have exchange partners with outgoing states swapped (not shown). Diagram (d)
involves a large momentum transfer ≈|K – K'|. Reproduced with permission from [89]. Copyright 2021 of the American Physical
Society.

k, ζ1 k − q, ζ3
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(b) k, ζ1 k − q, ζ3

k' + q, ζ4 k', ζ2

(c) k, ζ1 k − q, ζ3

k' + q, ζ4 k', ζ2

(d)
which electrons are swapped between the valleys. For
Coulomb interaction, the corresponding matrix ele-
ment is smaller than the matrix elements in diagrams
a – c. If the inter-valley matrix element is neglected,
then the rotational symmetry in the valley space is
restored [88], i.e., Ga||(ϑ) = Ga⊥(ϑ) and Ha||(ϑ) =
Ha⊥(ϑ).

Collective modes of a FL in the presence of SOC
and/or Zeeman magnetic field (i.e., a field that affects
only electron spins but not their orbital motion) can be
found from the self-consistent FL kinetic equation for
the (matrix) occupation number (k, r, t)

(2.8)

where [ , ] =  – , { , } =  ⋅  +  ⋅ ,
and (k, r, t) is the functional of quasiparticle energy.
In the most general case, (k, r, t) can be written as

(2.9)

where  is the equilibrium quasiparticle energy in the
absence of SOC and Zeeman field,  are the
changes in the energy due to SOC/Zeeman field, and

(2.10)

accounts for the FL corrections due to interaction of a
given quasiparticle with the rest. The effect of oscilla-
tory magnetic and electric fields, applied in the ESR
and EDSR are accounted for by adding the corre-
sponding terms to the right-hand side (RHS) of
Eq. (2.9).

A number of comments are in order.
(i) In the case of graphene with broken A/B sym-

metry, the kinetic equation (2.8) needs to be modified
to include the effect of a non-Abelian Berry curvature,
which arises due to the combined effect of broken A/B
symmetry and Rashba SOC [90]. In this case, the term
∇k  is replaced by the covariant derivative  = ∇k  –
i[ , ], where  is the non-Abelian Berry connection
[91–93]. This leads to an effective orbital magnetic
field which, in its turn, gives rise to an EDSR peak in
the Hall conductivity, see Section 5.1.
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(ii) Equation (2.8) neglects scattering of quasipar-
ticles either by external sources (disorder, phonons) or
by other quasiparticles, which lead to damping of col-
lective modes. These effects will be discussed sepa-
rately in Section 7.

(iii) The FL theory cannot describe a collective
spin excitation that condenses out of the continuum of
spin-flip transitions between the lower and upper
cones of the Dirac surface state described by Eq. (2.4).
The reason is that the energy of such an excitation is
comparable to 2EF, while the FL theory can only
describe physics at energies much smaller than EF. In
this case, one has to use microscopic, rather than phe-
nomenological methods to describe the electron–
electron interaction, see Section 8.2.

(iv) If the reader is content with our assumption
that the effects of SOC and Zeeman field on a FL can
be treated perturbatively, they can skip the next section
and go directly to Section 3. A more demanding reader
is invited to read the next section, which explains why
the FL theory cannot deal with strong SOC and/or
strong Zeeman field.

2.3. Does the Fermi-Liquid Theory Work for Arbitrarily 
Strong Spin–Orbit Coupling and/or Magnetic Field?

At first glance, the answer to the question in the
title of this section is in the affirmative. All one needs
to do is to construct a new Landau interaction func-
tion, accounting for broken rotational invariance in
the spin space and, in the case of SOC, for coupling
between momentum and spin. A modification of the
Landau function in Eq. (2.6) for the case of a ferro-
magnetic metal was proposed long time ago in [94].
For the case of Rashba SOC, the modified Landau
function was composed in [95], but it is too long to be
displayed here. It suffices to say that it contains eight
instead of two components which, in contrast to
Eq. (2.6), depend not only on the angle between k and
k' but also on the magnitudes of these momenta. And
this is the first sign of a problem with the FL theory. To
make this problem more evident, we consider the case
D THEORETICAL PHYSICS  Vol. 135  No. 4  2022
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Fig. 2. (a) Spectrum of the Rashba Hamiltonian (2.1).

(b) The Fermi surface of the Rashba-split spectrum for
noninteracting electrons. (c) Diagrammatic representation
of the out-of-plane spin susceptibility, χzz. ± label the

Green’s functions of the Rashba subbands. (d) Same as in
(b) for interacting electrons. Red shaded regions denote
states away from the Fermi circles which cannot be

described by the Fermi-liquid theory.
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σZ σZ

Quasiparticles
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of noninteracting electrons with Rashba spectrum
(cf. Fig. 2a):

(2.11)

If both Rashba branches of the spectrum are occu-
pied, the Fermi surface consists of two concentric cir-

cles with radii  = α + , as shown
in Fig. 2b. Let us calculate the spin susceptibility. In
the diagrammatic language, the ij component of the
spin susceptibility is given by a polarization bubble
with the corresponding Pauli matrices at the vertices.
In the absence of SOC, the spin susceptibility comes
from the states in the immediate vicinity of the Fermi
surface. This is not so in the presence of SOC. The
simplest case is when the Zeeman magnetic field is
applied along the normal to the 2DEG plane, i.e., i =
j = z (see Fig. 2c). In this case the T = 0 static suscep-
tibility arises solely from transitions between the two
Rashba branches:

(2.12)

where nF(ε) is the Fermi function. We see that the

integral over k does not come from the vicinity of
either Fermi circle, but rather from the entire interval

between the Ferm circles of width ΔkF =  –  =

2mα.2 It is not a problem for a noninteracting case,

because the spectrum is known for arbitrary k.3 But it
does become a problem for the interacting system.
Indeed, the concept of quasiparticles is applicable
only to long-lived states in the vicinity of each of the
Fermi circle (see Fig. 2d). But states away from each of
the Fermi circles (shown by red shaded regions) are
just some complicated many-body states, which the
FL theory cannot describe.

Suppose that one ignores this warning and goes
ahead with calculating the renormalized g-factor,
using the Landau function modified by Rashba SOC
from [95]. The only modification which matters here
is that, because SOC breaks spin-rotational invari-

2 The in-plane components, χxx = χyy, consist of two parts: One is
the Ferm-surface contribution, as in the absence of SOC, and
another one is the contribution from the entire interval ΔkF.

3 Note that the integral in Eq. (2.12) can be also solved by rewrit-

ing it as χzz = (1/4πα) k[nF( ) – nF( )] and then integrat-

ing by parts. In this way, one obtains the same result as the sum
of two contributions from the Fermi circles. This means that
spin susceptibility is an anomalous quantity in the field-theoret-
ical sense, i.e., it can be viewed equivalently either as low-energy
or high energy contribution [147]. But this equivalence is lost in
the presence of interactions.
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ance, the  ⋅ 'Fa term in Eq. (2.6) is replaced by a

combination  ⋅ f a||(k, k') + f a⊥(k, k'), where

=  + . With this modification, one follows

the same procedure as for a usual FL [85, 86] and
arrives at the integral equation, for e.g., the out-of-
plane g-factor

(2.13)

where * indicates a renormalized quantity. (Note that
the Luttinger theorem guarantees only that the total
area of the Fermi surface is not renormalized, i.e., that

 +  =  + , which does exclude renor-

malizations of  individually.)

A brief inspection of Eq. (2.13) shows that, in gen-
eral, it does not make sense. Indeed, the integral on its
RHS involves energies of quasiparticles at an arbitrary
point between two Fermi circles. However, as we
explained before, quasiparticle states are not well-
defined away from either of the Fermi circles. There-
fore, the renormalization of the g-factor cannot be cal-
culated within the FL theory. Only if SOC is weak and

thus ΔkF ≪ kF, one can replace  by their quasiparti-

cle forms. But in this case the width of the integration
interval cancels out with the energy splitting due to
SOC, and we are back to the usual result for the renor-

malized g-factor: g* = g/(1 + ). (For weak SOC, the
difference between the in-plane and out-of-plane
components of the exchange interaction becomes neg-

ligible, and we replaced  by  at the last step.)
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Fig. 3. (a) Collective modes of an SU(2)-invariant Fermi
liquid. cZS and sZS denote acoustic zero-sound modes of
a neutral Fermi liquid in the charge and spin sectors,
respectively. P2D and P3D denote plasmons of a charged
Fermi liquid in 2D and 3D, respectively. (b) Dispersion of
the n = 0 Silin mode in the presence of the magnetic field.
(c) Collective modes of a single-valley 2D Fermi liquid
with Rashba and/or Dresselhaus spin–orbit coupling. Ω||,x
and Ω||,y denote the frequencies of two modes with in-
plane magnetizations, Ω⊥ is the frequency of the out-of-
plane mode.
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A similar conclusion had eventually been
reached in regard to a FL in the Zeeman magnetic
field: if the Zeeman splitting is comparable to the
Fermi energy, the FL theory does not work [96–99]
Interestingly, problems with applying the FL theory
to the cases of strong spin polarization, ferromag-
netism, and SOC had been foreseen by Conway
Herring as early as in 1966 [100]. The problem dis-
cussed above is a generic feature of systems with
broken SU(2) symmetry.
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What was said above does not imply that an inter-
acting system of electrons with strong SOC belong to
the category of non-Fermi liquids. Indeed, momen-
tum-resolved probes, such as angular-resolved photo-
emission, would find well-defined quasiparticles near
each of the Fermi circles. What it means is that the
thermodynamic quantities characterizing the spin sec-
tor of such a FL cannot be described by a (small) set of
Landau parameters, but must involve the information
about states away from the Fermi surfaces.

This is not such an unusual situation. For example,
renormalization of the effective mass of a Galilean-
invariant FL is described by a single Landau parame-
ter: m* = m(1 + ). However, if the system is not Gal-
ilean-invariant (but still isotropic), the last formula
changes to m* = mQ(1 + ), where Q involves inte-
grals of the interaction vertices over the entire momen-
tum space [87, 101] and thus the effective mass in this
case cannot be described by any finite number of Lan-
dau parameters.

3. PREAMBLE: SILIN MODES IN A PARTIALLY 
SPIN-POLARIZED FERMI LIQUID

Switching to the subject of collective modes, it is
instructive to begin with a short reminder about the
collective modes in a single-valley FL without SOC
[54, 86, 87]. A neutral FL, e.g., normal 3He, supports
long-lived collective excitation in the (charge) density
sector: zero-sound waves with acoustic spectrum (line
cZS in Fig. 3a). In a charged FL, the l = 0 branch of
zero-sound waves is replaced by plasmons, which are
gapped in 3D (curve P3D) and gapless in 2D (curve
P2D). The spin zero-sound mode does not fare that
well. There is no general theorem that such a mode
cannot be long-lived. However, as long as the interac-
tion between fermions is repulsive (which corresponds
to the attractive exchange interaction) and under rea-
sonable assumptions about the harmonics of the Lan-
dau function Fa(ϑ) in Eq. (2.6), i.e.,  <  < 0, etc.,
the mode is subsumed by the particle-hole continuum
and thus overdamped (line sZS in Fig. 3a).

The situation changes in the presence of the Zee-
man magnetic field, which gaps out the continuum of
particle-hole excitations accompanied by spin-flips
(see Fig. 3b). At q = 0 the gap in the continuum is
equal to the renormalized Zeeman energy  =
ΔZ/(1 + ), then it decreases as q increases, and van-
ishes eventually at q ≈ ΔZ/ , where  is the renor-
malized Fermi velocity. The region below the lower
boundary of the continuum is now free of particle-
hole excitations and can support long-lived collective
modes.

The frequencies of these modes at q = 0 are found
by writing the occupation number as (k, t) = nF +

1
sF

1
sF
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Fig. 4. Precession of spins in a Fermi gas (left) and Fermi
liquid (right). Although the frequencies of the n = 0 mode
are the same in both cases, the phases of precessing spins are
uncorrelated in a Fermi gas and locked in a Fermi liquid.

B B

Fermi gas Fermi liquid
[ /2 + u(k, t) ⋅ ] and the quasiparticle energy as
(k, t) = ε0 +  ⋅ /2 + (k, t), where  is the unit

vector in the direction of the magnetic field and  =
∂nF(ε)/∂ε, and using Eq. (2.8) without the gradient
term [86, 87]. This gives an equation of motion for the
vector u

(3.1)

where kF = kFk/k and  = kFk'/k', d  is the element
of the solid angle subtended by the vector , and 
is the full solid angle in D dimensions. Equation (3.1),
which describes precession of the vector u around the
magnetic field, is an eigenmode equation for the Silin
collective modes [54]. The frequencies of these modes
depend on the angular momentum, , in 3D or its pro-
jection onto the normal to the plane of motion, m, in
2D [87]

(3.2)

with n =  in 3D and n = m in 2D. Here,  are the
harmonics of the Landau function defined by

(3.3)

and

(3.4)

in 3D and 2D, respectively, and (ϑ) are the Legen-
dre polynomials. Although there is, in principle, an
infinite number of Silin modes, only the n = 0 mode
couples to an oscillatory magnetic field, applied in
an ESR or nuclear magnetic resonance (NMR) mea-
surements. Indeed, the magnetization is expressed
solely through the zeroth harmonic of the function

u(kF, t):  = – (1/2)g*μB u(kF, t)/  =

(1/2)g*μB u0(t).
As we see from Eq. (3.2), the frequency of the n =

0 mode is not renormalized by the interaction and
coincides with the Larmor frequency for free fermi-
ons. This is a general property of Hamiltonians with
interactions that conserve spin and do not depend on
velocities [102]. Diagrammatically, the result comes
about as a cancellation between the self-energy and
vertex corrections to the spin susceptibility [102].

The difference between spin precession of free fer-
mions and FL quasiparticles is illustrated in Fig. 4.
Although the spins of free fermions (on the left) and
FL quasiparticles (on the right) precess with the same
frequencies, the phases of the former are not cor-
related while the phases of the latter are locked.

F
'n ΔZ

* σ̂
ε̂ ΔZ

ˆ*b σ̂ εFLˆ b̂

F
'n

F Z F F
'*ˆ '( , ) ( , ) ( , ) ( ) ,a

t
D

di t t t Fu k b u k u k ∂ =Δ × + ϑ 
 

2

2

F'k 2'

F'k 2D

,

+Ω = Δ + = Δ
+Z Z

0

1*(1 ) ,
1

a
a n

n n a
FF
F

,
a

nF

ϑ = + ϑ , ,

,

, 3( ) (2 1) ( )a aF F

ϑϑ =( )a a im
m

m

F F e

,P

6 F
*N d 2 2D

F
*N
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
The n = 0 Silin mode disperses down with q, at first
quadratically, and then grazes the continuum of spin-
flip excitations, as shown in Fig. 3b. The downward
sign of the dispersion can be explained by attraction in
the exchange channel of the interaction [55]. Unlike
the frequency at q = 0, which is not renormalized by
the interaction, the functional form of the dispersion
encapsulates all harmonics of Fa. In particular, the
quadratic part contains harmonics  (which can be
also extracted from the spin susceptibility, if the effec-
tive mass is measured independently from the specific
heat) and  (which cannot). The dispersion of the
Silin mode in normal 3He was studied extensively by
NMR experiments in a spatially varying magnetic field
which produced confined waves, see [103] and refer-
ences therein. In solid-state systems, the Silin modes
were measured in the late 60s by ESR on alkali metals
[104, 105]. More recently, the dispersion of the Silin
mode was measured by high-precision, finite-q
Raman spectroscopy in a Cd1 – xMnxTe quantum wells
[55–60]. In this case, however, the Silin mode bears
clear fingerprints of both Rashba and Dresselhaus
SOCs, which are discussed in Section 8.1. A tantaliz-
ing proposal to observe Silin modes in a quantum spin
liquid with spinon Fermi surface has recently been put
forward in [148].

4. CHIRAL SPIN WAVES IN TWO-
DIMENSIONAL ELECTRON GASES

4.1. Chiral Spin Waves
with Rashba Spin–Orbit Coupling

We now proceed with discussing the main subject
of this paper-collective spin modes in the presence of
SOC–starting from the simplest case of a single-valley
2DEG with Rashba SOC, studied first in [106]. The
single-particle Hamiltonian is given by Eq. (2.1) and
the Landau function is given by Eq. (2.6). It is conve-

0
aF

1
aF
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Fig. 5. (a) An interpretation of collective modes in a Fermi

liquid with Rashba spin–orbit coupling in terms of a linear
spin chain, (b) the spectrum of the system consists of an
infinite number of discrete levels, converging towards the

continuum at . Reprinted with permission from [109].

Copyright 2017 by the American Physical Society.
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nient to introduce a set of rotated Pauli matrices which
depend on the electron momentum [106]

(4.1)

where φk is the azimuthal angle of k. When taken at the

same momentum, ’s obey the usual algebra [ (k),

(k)] = i (k), where  is the Levi-Civita ten-

sor, while [ (k), (k')] = i (k) cos(φk – ). In this

basis,

(4.2)

where ΔR = 2αkF. Treating  as a static perturbation,

we obtain the renormalized value of the Rashba split-
ting [106, 107]

(4.3)

This energy marks the end point of the continuum of
particle-hole excitations which involve spin-flip tran-
sitions between the branches of the Rashba spectrum
(see Fig. 3c). In a noninteracting system, the contin-
uum at q = 0 occupies a finite region of width ΔΩ =

4mα2. However, the FL theory is valid only to first
order in α, therefore, within this theory the continuum

shrinks to a single point at Ω = .

Now we consider a time-dependent perturbation of
the occupation number

(4.4)

Substituting this form into Eq. (2.8) (without the gra-
dient term) and linearizing with respect to u, we obtain
the following equations of motion for angular har-
monics of u:

(4.5a)

Σ = −σ Σ = φ σ + φ σ
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(4.5b)

(4.5c)

The last equation implies that  = const and can thus
be ignored. The eigenvalues of this system are the fre-
quencies of a new type of collective modes: chiral spin
resonances [106]. Their frequencies are

(4.6)

(Note that Ω–m = Ωm because  = .) As in the case

of the Silin mode, there is an infinite number of chi-
ral-spin resonances. Now, however, only two modes
with m = 0 and m = 1 couple to the external magnetic
field. This is because the magnetization

(4.7)

contains not only the 0th but also ±1st harmonics of u
due to the angular dependence of matrices (k). The
m = 0 mode with frequency

(4.8)

corresponds to oscillations of the z-component of ,
while the doubly-degenerate m = ±1 mode with fre-
quency

(4.9)

corresponds to oscillations of the in-plane compo-

nents of . Provided that  < , we have Ω⊥ < Ω||,

which is the case shown in Fig. 3c. Since spin is not a
conserved quantity anymore, the frequencies of all
modes are renormalized away from ΔR.

The chiral spin resonances are the q = 0 end points
of the dispersive modes: chiral spin waves (CSW) [46,
108]. Once the direction of q in the plane is chosen,
the degeneracy of the two in-plane mode is lifted and
there are now two modes with frequencies Ω||x(q) and

Ω||y(q), polarized along and perpendicular to q, respec-

tively. The dispersions of these modes are shown sche-
matically in Fig. 3c. The in-plane modes run into the
continuum at some values of q and disappear from the
spectrum. The out-of-plane mode behaves similarly to
the Silin mode: it disperses down with q and grazes the
continuum of particle-hole excitations. We will discuss
the spatial dispersion of CSW in more detail in Section 6.

The equations of motion (4.5a)–(4.5c) allow for a
simple physical interpretation [109]. Namely, one can

think of vector um(t) as a classical spin on site m of a
linear spin chain, aligned along the y-axis as in Fig. 5.
Spins do not interact with each other but are subject to
an effective magnetic field due to Rashba SOC,

directed along the z axis and of magnitude /2. The
effective Landé factor of these spins is anisotropic in

∂ = Δ +R
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the (x, y) plane with components  = 2 +  + 

and  = 2(1 + ). The spin chain is nonuniform

because  and  depend on the lattice site. Both

anisotropy and site-dependence of the g-factor arise

from the FL interaction. Because  = const, the spins
precess around the Rashba field. The effective-lattice
interpretation will be even more instructive in the case
of both Rashba SOC and Zeeman field being present,
which is discussed in the next section.

4.2. Effective Lattice Model

Now we add a Zeeman field along the x-axis. The total
Hamiltonian is the sum of Eqs. (2.1) and (2.5), and the
additional term in the quasiparticle energy in Eq. (2.9) is

(4.10)

Correspondingly, the equations of motion for vec-
tor u become

(4.11a)

(4.11b)

(4.11c)

Note that the angular dependence of the Zeeman
energy in the Σ-basis in Eq. (4.10) leads to a non-
locality in the m-space: the Zeeman terms in the equa-
tion of motion shift the angular momentum by ±1.
Now the equations of motion resemble those for the
tight-binding (TB) model with three orbitals per site,
in which the Rashba and Zeeman terms play the roles
of on-site and hopping energies, respectively. To make
this analogy more transparent, we eliminate compo-

nents  and  and introduce the “Bloch wavefunc-

tion”

(4.12)

Assuming the oscillatory time dependence with
frequency Ω, the equation for ψm is reduced to the TB

form [109]:
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(4.13)

In the absence of interaction, Eq. (4.13) is simplified to

(4.14)

The eigenvalue of this equation

(4.15)

is nothing but the difference between the energies of
the Rashba subbands at a given direction of k (modulo
a phase shift inflicted by the transformation (4.12)).
Ω(φk) disperses with φk ∈ (0, 2π), which is a conjugate
variable to m. Therefore, φk plays the role of “quasi-
momentum” confined to the first Brillouin zone
(0, 2π). The minimum and maximum values of Ω(φk),
Ωmax = ΔR + ΔZ and Ωmin = |ΔR – ΔZ|, mark the edges
of the “conduction band”, which is nothing but the
particle-hole continuum. At ΔZ = ΔR the gap in the
continuum collapses to zero. At this value of the mag-
netic field, the Fermi contours of the Rashba branches
touch at one point and thus a transition between the
two branches costs no energy.

We now come back to the full version of Eq. (4.13),
which allows for a simple physical interpretation.
Imagine a 1D lattice with sites labeled by index m = 0,
±1, …. The Bloch wavefunction ψm resides on these

sites. The first term on the RHS of Eq. (4.13) is the
energy on site m, the last two terms describe hopping
between site m and its nearest neighbors, m ± 1. If we

artificially remove all ’s from the equation but keep
the renormalized values of ΔR and ΔZ, we will obtain

the renormalized band (continuum) with boundaries

 =  +  and  = |  – |. The role of ’s
is to renormalize both on-site energies and hopping

matrix elements. Because  depends on m, both the
on-site energies and hopping matrix elements vary

along the lattice. In other words, ’s introduce both
on-site and bond defects.

In principle,  is nonzero for any m. Therefore,
each site of our lattice is different from the others, and
we can view our lattice as an ordered alloy composed
from an infinite variety of chemically distinct atoms.

But if we keep only a few first harmonics of Fa(ϑ) and
neglect the rest, the central region of the lattice will
contain defects, while the outer regions will be defect-

+ −

+
+ +

−
− −

Ω ψ
   +

= Δ + + +Δ + ψ   
   

 +−Δ Δ + + ψ 
 

  ++ + + ψ  
  

2

2 2 21 1

R Z

1
R Z 1 1

1
1 1

* *(1 ) 1 (1 )
2

* * 1 (1 )
2

1 (1 ) .
2

m
a a

a am m
m m m

a a
am m

m m

a a
am m

m m

F F
F F

F F F

F F F

+ −Ω ψ = Δ + Δ ψ − Δ Δ ψ + ψ2 2 2

R Z R Z 1 1( ) ( ).m m m m

Ω φ = Δ + Δ − Δ Δ φ2 2 1/2

R Z R Z( ) [ 2 cos ]k k

a
mF

Ωmax
* ΔR

* ΔZ
* Ωmin

* ΔR
* ΔZ

* a
mF

a
mF

a
mF

a
mF
YSICS  Vol. 135  No. 4  2022



558 MASLOV et al.

Table 1. Mapping of the Fermi-liquid kinetic equation onto an effective 1D tight-binding model

Fermi-liquid kinetic equation 1D tight-binding model

Angular momentum m Lattice site m

Azimuthal angle of momentum k (φk) Quasimomentum

mth harmonic of the spin part of the occupation number 
Bloch wavefunction on site m

Rashba spin–orbit coupling On-site energy

Zeeman splitting Nearest-neighbor hopping

Dresselhaus spin–orbit coupling Next-to-nearest neighbor hopping

Harmonics of the Landau function On-site and bond defects

Continuum of spin-flip particle-hole excitations Conduction band

Collective modes Bound states

m
xu
free. Lattice defects produce bound states which split
off the band. In this language, therefore, the collective
modes of a FL are the bound states of an effective 1D
lattice. Studying a much more transparent problem of
bound states, one can understand a more complicated
case of a FL with SOC and in the presence of the mag-
netic field.

The case of Dresselhaus SOC can be analyzed in a
similar way. According to Eq. (2.2), the corresponding
term in the quasiparticle energy reads

(4.16)

where  = ΔD/(1 + ). A double angle in this equa-

tion implies that the corresponding terms in the equa-
tions of motion shift the angular momentum by ±2. In
the lattice interpretation, this corresponds to hopping

Δε = φ σ − φ σ

= Δ φ Σ + φ Σ
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Fig. 6. (a) Effective lattice for the FL kinetic equation

(4.17) with Rashba spin–orbit coupling and in-plane mag-
netic field, and in the s-wave approximation for the Lan-
dau function. Filled circles represent sites of ideal lattice
with on-site energies W, connected by bonds with hopping
amplitudes J. The m = 0, ±1 sites are occupied by “impu-
rities” with on-site energies U0 and U±1, respectively, con-

nected by “defective” bonds with hopping amplitudes J ±
δJ. (b) A simplified version of the effective lattice with on-
site disorder only. Reprinted with permission from [109].

Copyright 2017 by the American Physical Society.
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between next-to-nearest neighbors. A complete dic-
tionary of mapping between the FL kinetic equation
and TB model is given in Table 1.

We note that the zero-sound modes of a 2D FL in
the absence of SOC and Zeeman field can also be
understood as bound states of a 1D lattice. In this case,
hopping between sites arises due to the gradient term
in the kinetic equation, which also shifts the harmonic
index by ±1. For example, the shear zero-sound waves
of a 2D FL were analyzed in this way in [110].

4.3. Effective Lattice Model for Rashba Spin–Orbit 
Coupling and Zeeman Magnetic Field

We now illustrate how the lattice model works for
the case when both Rashba SOC and Zeeman mag-
netic field are present. In addition, we assume that the
Landau function is isotropic and thus contains only

the zeroth harmonic:  = δm, 0  (the s-wave approx-

imation). In a dimensionless form and in the s-wave
approximation, Eq. (4.13) can be written as

(4.17)

where

(4.18a)

(4.18b)

(4.18c)

[Note that, according to Eq. (4.3), ΔR is not renormal-
ized in the s-wave approximation.] The corresponding
lattice is shown pictorially in Fig. 6a. The first two
terms on the RHS of Eq. (4.17) describe an ideal lattice
with “on-site energies” W and “hopping amplitudes”
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Fig. 7. Collective modes of a FL with Rashba SOC and in the presence of the in-plane magnetic field. The Landau function is

taken in the s-wave approximation: Fa(θ) =  = –0.3.  is the (renormalized) Zeeman energy and ΔR is the Rashba energy

splitting. Left:  < ΔR. Right:  > ΔR. Inset: Same as in main panel for a wider range of fields. Reprinted with permission from

[109]. Copyright 2017 by the American Physical Society.
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between the nearest neighbors J. The rest of the terms
represent “defects.” The third and fourth term corre-
spond to three “impurities” on sites m = 0 and m = ±1
with on-site energies U0 and U1, respectively. The last
two terms describe defective bonds between the 0th
and ±1st sites. The amplitudes are equal to J + δJ for
hopping from 0 to ±1 and J + δJ' for hopping in the
opposite direction, i.e., the bond defects are chiral.
This means that the effective TB Hamiltonian is non-
Hermitian. This does not present any difficulties,
however, because the eigenvalues of Eq. (4.17) are real.

To solve Eq. (4.17), we choose wavefunctions ψ0

and ψ±1 as independent variables, and assume that,

starting from sites m = ±2, the wavefunctions of the
bound states decreases exponentially with m:

(4.19)

with Reλ > 0. This yields a transcendental equation
for λ, whose solutions are presented in Fig. 7. The left
panel is for magnetic fields below the gap closing point

(  < ΔR). There are two collective modes in zero

field-these are the same modes as given by Eqs. (4.8)
and (4.9). An in-plane magnetic field lifts the double
degeneracy of the Ω|| mode (similar to the case of finite

q in Fig. 3c) and, at finite but small  there are three
modes. The in-plane modes run into the continuum at

some critical values of , but the out-of-plane mode
continues to graze the continuum down the gap-clos-

ing point. For  > ΔR, the single mode appears again

(see Fig. 7, right). Its frequency increases with the

magnetic field and, in the limit of  ≫ ΔR, the mode

evolves into the Silin mode with frequency ΔZ.
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A rather complex spectrum shown in Fig. 7 can be
understood in terms of simplified versions of the TB
model. Namely, the merging of the two in-plane
modes with the continuum can be understood qualita-
tively by ignoring bond defects, i.e., by setting δJ =
δJ ' = 0. In this case, we have a TB model with identi-
cal bonds between all sites and three impurities on sites
m = 0, ±1 (see Fig. 6b). For an even simpler case of a
single impurity in a ID lattice, it is well-known that
there always exists a bound state located either below
(for an attractive impurity) or above (for a repulsive
impurity) the conduction band. For realistic values

‒1 <  < 0, our “impurities” are attractive, and thus
the bound state is below the band. Given that a single
impurity has at least one bound state, it is natural to
expect that a complex of three impurities will have up
to three bound states, which is indeed confirmed by an
explicit solution of the TB model (see Appendix A.1b
in [109]). Qualitatively, this can be understood in the
continuum limit, in which a three-impurity complex is
replaced by a 1D potential well of finite width (a) and
depth (U). Such a well has at least one bound state but
may also have two, three, etc. states, if the product Ua
exceeds some critical values.

Our original problem corresponds to a TB model
with parameters given by Eqs. (4.18a)–(4.18c). In the

limit  ≪ ΔR and not too weak interaction | | ~ 1,

the potential energies of the impurity sites are of the
order of 1, which is much larger than the bandwidth

2J = 2 /ΔR < 1. Thus we have three strong impurities

with the maximum number of bound states, equal to

three. As  increases, the bandwidth increases lin-
early whereas the potential energies increase only as

0
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Fig. 8. Polarizations of chiral spin modes at different values
of the magnetic fields applied along the x-axis. Bc is the

gap-closing field, at which  = . Reprinted with per-
mission from [111]. Copyright 2016 by the American Phys-
ical Society.
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ΔZ* ΔR*
. Therefore, the impurities get relatively weaker
(compared to the bandwidth), and we lose first the
highest and then next-to-highest bound state. The
lowest bound state also disappears but only at the gap-
closing point. This seems to contradict the fact that
there is at least one bound state in a 1D problem
regardless to its parameters. However, this statement is
true only for the continuum Schroedinger equation,
which does not have the notion of bonds. In our full
problem, two bonds are defective and there is an inter-
esting competition between the on-site and bond
defects, which does allow the bound state to disappear
precisely at  = ΔR [109].

As the field increases beyond the gap-closing point
(  > ΔR), the m = 0 impurity becomes stronger while
the m = ±1 impurities remain the same. Therefore, we
are back to a single-impurity problem with only one
bound state or, equivalently, one collective mode.

From the solution of the kinetic equation one can
also deduce the polarization of the collective modes.
Figure 8 shows how the polarization of chiral spin

Δ 2
Z
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Fig. 9. Collective modes of a FL with Rashba SOC (left) and in

form of the Landau function:  = exp(–m2/ ) with  = 
right 2017 by the American Physical Society.
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modes changes with the magnetic field [111]. In zero
field, there are linearly polarized modes. At finite
B < Bc, where Bc is the field at which the gap in the
continuum closes, along the x-axis, the longitudinal
mode (with the magnetization along the field) remains
linearly polarized, while two transverse mode (with
the magnetizations perpendicular to the field) are
elliptically polarized (as long as they are located out-
side the continuum). When the single wave emerges on
the other side of the gap-closing point (B > Bc), it is
elliptically polarized, with the magnetization vector
precessing around the magnetic field. As the field
becomes much larger than Bc, the wave transforms
gradually into the Silin mode with circular polariza-
tion.

If the Landau function contains a large or infinite
numbers of harmonics, one has to resort to numerical
diagonalization of Eq. (4.13). Figure 9 shows the result
of such diagonalization for a model form of the Lan-
dau function, given by  = exp(–m2/ ). In this
case, the modes are very densely spaced and form a
quasi-continuum.

5. COLLECTIVE SPIN MODES IN DIRAC 
SYSTEMS

5.1. Graphene with Proximity-Induced 
Spin–Orbit Coupling

The case of graphene with proximity-induced SOC
differs from the one considered in the previous section
in two important aspects. First, at the single-particle
level, the Hamiltonian (2.3) contains the valley-Zee-
man (VZ) term, in addition to the Rashba term. Sec-
ond, at the many-body level, the Landau function con-
tains exchange interaction between the valleys. In this
section, we ignore the asymmetry gap as it has no inter-

a
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aF 2
0m
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esting consequences for the spectrum of the collective
mode. Furthermore, we will neglect the process in
which electrons are swapped between the valleys (see
Fig. 1d). Then the Landau function becomes isotropic
not only in the spin but also in valley subspaces:

(5.1)

Since we are interested in collective modes with
frequencies ≪ EF, the valence band can be projected
out by using Löwdin method [112], and the effective
single-particle Hamiltonian for the conduction band
becomes [89]

(5.2)

Accordingly, the change in the quasiparticle energy
due to SOC is now given by4

(5.3)

while the nonequilibrium part of the occupation num-
ber can be written as

(5.4)

where the rotated set of Pauli matrices is defined by
Eq. (4.1). Vector u and tensor Mαβ describe oscillations
of the uniform

(5.5)

and valley-staggered magnetization

(5.6)

respectively. The vector w describes valley polariza-
tion, which is decoupled from the spin sector and will
not be considered below.

Collective modes of our system correspond to cou-
pled oscillations of the uniform and valley-staggered
magnetizations. In the absence of VZ such oscillations
are decoupled. The spectrum of collective excitations
consists of a doublet of in-plane modes and a single
out-of plane mode in each of the sectors, to a total of
six modes. VZ SOC mixes the  and  sectors. Solv-
ing the coupled system of equations of motion, one
obtains the following expressions for the frequencies of
the in-plane modes [89]

4 Note that in τz is just ±1 in Eq. (5.2), but it is a matrix  in
Eq. (5.3).
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(5.7a)

where

(5.7b)

(5.8)

and  = λR/(1 + ) and  = λVZ/(1 + H0) are the
renormalized spin–orbit coupling constants. The fre-
quencies of the out-of-plane modes are given by

(5.9)

Finite q and/or Zeeman magnetic field lift the
degeneracy of the in-plane modes. The spectrum of
the collective modes in these cases is a subject of the
on-going study [113].

5.2. Dirac Surface State of a 3D Topological Insulator

The Dirac state on the surface of a 3D topological
insulator, described by the Hamiltonian (2.4), is char-
acterized by locking of the spin and charge degrees of
freedom. Indeed, Eq. (2.4) implies the charge current
and spin densities related by an operator identity [45]

(5.10)

Due to this coupling, the system supports a new
kind of collective modes: spin-plasmons [45].
Although the dispersion of spin-plasmons at small q is
similar to that of usual plasmons in 2DEGs (ω ∝ ),
the nature of the two modes is quite different because
a spin-plasmon corresponds to coupled oscillations of
spin and charge densities. For example, the weight of
the spin part at small q is much larger than that of the
charge part.

Low-energy excitations of a doped surface state can
be described by the effective theory of helical FL,
obtained by projecting out the occupied Dirac cone
[39]. While the charge sector of such a FL can be
described by a few Landau parameters, descriptions of
the spin sector runs into difficulties similar to those
discussed in Section 2.3. Namely, the total spin sus-
ceptibility contains contribution from high-energy
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Fig. 10. (a) Spectrum of the Dirac state on the surface of a
3D topological insulator. (b) Spectrum of the collective
modes of the surface state. ωp denotes the spin-plasmon
[45], ωs, || and ωs, ⊥ denote the out- and in-plane collective
spin modes, and ω– = 2EF is the lower boundary of the
continuum of spin-flip particle-hole excitations. (c) Lad-
der diagrams for the spin susceptibility χαβ (α, β = x, y, z).
Panel (b) is reprinted with permission from [61]. Copyright
2017 by the American Physical Society.
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states which cannot be accounted for within the FL
theory. Nevertheless, the FS contribution to the spin
susceptibility can be expressed through the Landau
parameters of a helical FL [39].

In what follows, we will be interested in a collective
mode of the spin-excitonic type observed in [61]; see
Section 8.2 for more details on the experiment. This
mode condenses out of the continuum of inter-band
particle-hole excitations. In a noninteracting system
with Dirac spectrum such a continuum starts at the
Pauli threshold ω = 2EF, see Fig. 10a, and disperses
with q as shown by the shaded region in Fig. 10b. The
blue shaded region depicts the continuum of gapless
intra-band particle-hole excitations. With interac-
tions, one expects to see the spin-plasmon mode (blue
curve) and inter-band collective spin modes (red
curves). By the same symmetry arguments as given in
Section 4.1, there are one out-of-plane mode and two
in-plane modes at finite q; the latter become degener-
ate at q = 0. Inter-band excitations with energies com-
parable to EF cannot be described within the FL the-
ory, and one has to treat electron–electron interaction
explicitly. The simplest method is the ladder approxi-
mation, shown diagrammatically in Fig. 10c. For a
Hubbard-like interaction and at q = 0, one obtains the
spin susceptibility as [46]

(5.11)
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2
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Π Ωμχ Ω = −δ
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where the components of the polarization bubble 
are obtained by analytic continuation of the corre-
sponding Matsubara expressions

(5.12)

with α, β = x, y, z and G0(k, i ) = (i  – )–1 is
the Green’s function of the Hamiltonian (2.4).

For Dirac spectrum, the momentum integrals for
Παα diverge in the ultraviolet and need to be cut off at
some momentum Λ, chosen from the condition that
the cubic term in the dispersion due to hexagonal
warping [84] becomes comparable to the linear one.
With such a cutoff, we obtain

(5.13)

The poles of Eq. (5.11) give the frequencies of the
collective modes. At weak coupling, the modes are
exponentially close to the boundary of the continuum:

(5.14)

where u = UEF/2π  is the dimensionless coupling
constant and V = 4EFexp(Λ/2kF).

A reader familiar with the semiconductor literature
of the 60s may notice that the derivation presented
above is very close to that of “Mahan excitons” in
degenerate semiconductors [114]. Indeed, because of
the relation (5.10) the in-plane components of the spin
susceptibility and conductivity are proportional to
each other [45]. The same analysis, therefore, would
predict that the optical conductivity of a helical state
should have a peak at Ω = Ω||. This is exactly what
Mahan obtained by (effectively) resumming the ladder
series for the optical conductivity of a degenerate
semiconductor; the only difference is that he consid-
ered Coulomb rather than Hubbard interaction, but
his method can be readily applied to the latter as well.
Subsequent analysis showed, however, that the ladder
approximation is not adequate for this problem [115,
116]: because electrons and holes interact not in vac-
uum (as it is the case for an undoped semiconductor)
but in the presence of the Fermi sea, the excitonic state
is overdamped due to Auger-like electron–hole inter-
actions processes, which start at the indirect threshold
of Ω = EF. Moreover, damping due to other processes,
including purely electron–electron interaction, starts
already at Ω ≪ EF, and is still operational at Ω ~ EF
[117, 118]. Given what was said above, the spin collec-
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tive modes should suffer the same fate as Mahan exci-
tons. Nevertheless, Eq. (5.11) describes very well a
spin-resolved excitation observed by Raman spectros-
copy in Bi2Se3 ([61] and Section 8.2). For that reason,
we are not ready to discard the results of the ladder
approximation, although the theoretical understand-
ing of why it works so well is still incomplete. We
believe that the reason is purely numerical: the analyt-
ical and numerical results show that the resonance
linewidth due to both electron–electron and elec-
tron–hole interactions is only around 5 × 10–3EF [115,
119]. Therefore, the ladder approximation works bet-
ter than it might have been expected to.

6. SPATIAL DISPERSION OF COLLECTIVE 
SPIN MODES

The dispersion of the transverse n = 0 Silin mode is

quadratic in q for q ≪ /  [54, 98, 102, 119]:

(6.1)

where a2({Fa}) depends on the angular harmonics of

the Landau function; explicitly, a2 = (1 + )2(1 +

)/(  – ). Note that a2 < 0 for –1 <  <  < 0
and thus dispersion is downward, as shown in Fig. 3. A
quadratic scaling of the dispersion q2 follows from the
invariance of the spin subspace with respect to rota-
tions about the magnetic field, which requires the dis-
persion to be isotropic, and from analyticity, which
requires that an expansion in q starts from the qua-
dratic term.

If only Rashba SOC is present, the group symmetry
of the system is , i.e., the system is invariant with
respect to rotations by an arbitrary angle about the
normal to the plane. Therefore, as in the Silin’s case,
the dispersion is isotropic and, by analyticity, starts
with a q2 term. For the lowest three modes [46, 108,
120, 121]:

(6.2)

where α ∈ {||x, ||y, ⊥}, the q = 0 frequencies are given
by Eqs. (4.8) and (4.9), and ({Fa}) some functions of

, , …. If only Dresselhaus SOC is present, the
Hamiltonian (2.2) can be transformed back to the
Rashba one (2.1) by reflecting the spatial coordinates
about a mirror plane that contains the (110) axis, upon
which kx → ky and ky → kx. Therefore, the spectrum of
the collective modes is the same as in Eq. (6.2) with ΔR
being replaced by ΔD.

If both Rashba and Dresselhaus SOCs are present,
the symmetry is lowered to D2d, which only allows
rotations by π and mirror reflections about the two
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diagonals. The linear term in the dispersion is absent

because by symmetry it can only be , which is
not allowed by analyticity, while a bilinear term is of
the c1(  + ) + c2qxqy form, where c1, 2 are constants.

An in-plane magnetic field breaks the rotational
symmetry. Now, linear-in-q terms in the dispersion
are allowed and, indeed, they have been observed
experimentally [55–60]. The structure of such terms
can be deduced just from the symmetries of  and
D2d groups [57, 58, 121]. In both cases, we need to
form a scalar out of a polar vector q and axial vector B.
In the  group, this is only possible by forming the
Rashba invariant Bxqy – Byqx = Bqsin(φq – φB), were φq
and φB are the azimuthal angles of q and B, respec-
tively. Likewise, the only scalar that can be con-
structed in the D2d group is the Dresselhaus invariant
Bxqx – Byqy = Bqcos(φq + φB).

In addition to linear-in-q terms, an in-plane mag-
netic field also gives rise to the dependence of the
mode frequency at q = 0 on the direction of the mag-
netic field. However, this effect needs both Rashba
and Dresselhaus SOCs to be present. Indeed, since
Rashba SOC has continuous rotational symmetry, the
direction of the magnetic field is irrelevant in this case,
while the case of pure Dresselhaus SOC is reduced
back to pure Rashba one. If both types of SOC are
present, the D2d symmetry implies that mode fre-
quency depends on the direction of B as Ωα(q = 0) ∝
sin2φB [59, 121].

To be specific, from this point onwards we will
focus on the case when ΔZ ≫ ΔR, ΔD ≠ 0, which is rel-
evant for Raman experiments on Cd1 – xMnxTe quan-
tum wells [55–59]. In this case, the mode frequency at
q = 0 is given primarily by the (bare) Zeeman energy.
The correction due to SOC must be quadratic in both
ΔR and ΔD and symmetric on ΔR ↔ ΔD, i.e., to be of

the form  + . The anisotropic term at the q = 0
exists only if both ΔR and ΔD are nonzero which, in the
limit considered, implies that the corresponding term
must be proportional to ΔRΔD. The linear-in-q terms
due to Rashba and Dresselhaus SOC must be propor-
tional to ΔR and ΔD, respectively. Finally, the bilinear-
in-q is almost the same as for the Silin mode modulo
an anisotropic correction, which arises again only due
to the combined effect of Rashba and Dresselhaus
SOCs, and thus is also proportional to ΔRΔD. Combin-
ing all the arguments given above, we arrive at the fol-
lowing form of the dispersion [58, 59, 121]

(6.3)
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Fig. 11. Damping of collective spin modes by nonmagnetic
disorder via D’yakonov–Perel’ mechanism. ΔSO and Δ are
the splittings of the energy spectrum due to SOC and mag-
netic field, respectively, τ is the transport mean free time
due to scattering by disorder. In the region outside the red
square the spin collective modes are underdamped. The
frequency of the collective mode (Ω) and spin relaxation
time (τs) are indicated for each region. Within the red
square, the modes are overdamped and thus cannot be
observed.
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Fig. 12. Diagrams contributing to damping of the collec-
tive modes by dynamically screened Coulomb interaction
(wavy line). The filled circles denote the corresponding
vertices. For the case of spin collective modes, the vertices
are the Pauli matrices.
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where

(6.4)

and the coefficient a2({Fa}) is the same as for a pure
Silin mode, Eq. (6.1). In the equation above we omit-
ted isotropic q2 terms proportional to  and . The
coefficients a0, , and a1 were calculated in [121] in
the s-wave approximation for the Landau function,
see Eq. (20) in there. It was argued in [58, 59] that, to
linear order in SOC, the dispersion can be obtained by
a canonical transformation of the Hamiltonian, which
amounts to replacing q in the dispersion of the Silin
mode, Eq. (6.1), by q + q0, where q0 is proportional to
ΔR and ΔD. This would imply that the coefficients of
the q and q2 terms in Eq. (6.4) are related as |a1| = 2|a2|.
However, a microscopic calculation [111] shows that
such relation is satisfied only in the weak-coupling
limit (| | ≪ 1).
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7. DAMPING OF COLLECTIVE SPIN MODES
Spin–orbit coupling is the reason for the collective

spin modes, described in this paper, to exist. At the
same time, however, it couples spin and momentum
and thus enables damping of spin excitations via
momentum relaxation due to scattering by nonmag-
netic degrees of freedom: nonmagnetic disorder, pho-
nons, etc.

Nonmagnetic disorder in combination with SOC
leads to spin relaxation via the Elliott–Yaffet and
D’yakonov–Perel’ (DP) mechanisms [66]. The for-
mer is present in both centro- and noncentrosymmet-
ric systems, while the latter is specific for noncen-
trosymmetric systems, considered in this article, and
in this case the DP mechanism is usually the dominant
one. If τ is a characteristic time of momentum relax-
ation by disorder (to be defined more precisely later)
and ΔSO is the energy splitting due to SOC, then the
spin dynamics is ballistic with the DP spin relaxation
time τs ~ τ for ΔSOτ ≫ 1, and diffusive with the DP spin

relaxation time τs ~ 1/ τ for ΔSOτ ≪ 1. On the other
hand, the frequency of the collective mode is set by the
largest of two energy scales: ΔSO and the Zeeman
energy ΔZ. The spin collective mode can be resolved
only when it is underdamped, which corresponds to
the region outside the red square in Fig. 11. This
requires clean samples and strong SOC/magnetic
fields.

One concrete example is a single-valley 2D FL
with disorder and Rashba SOC. In this case, the width
of the chiral spin resonance at q = 0 is controlled by
two relaxation times, renormalized by the FL interac-
tion. For τ ≫ 1, the width of the resonance is [106]

(7.1)

where xm = 1/(1 + ),

(7.2)
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ni is the number density of impurities, and u(Q) is the
Fourier transform of the single-impurity potential.
Note that τ1 is the transport time that enters the
mobility.

Another source of damping is electron–electron
interaction. Because the collective modes lie outside
the particle–hole continuum, they are not affected by
Landau damping, which involves excitation of a single
particle–hole pair. However, excitations involving
multiple pairs are possible due to the residual interac-
tion between FL quasiparticles, and such excitations
give finite width even to modes outside the contin-
uum. For example, plasmons [117, 122–126], Silin
mode in a partially spin-polarized FL [98, 102, 119]
and magnons in a ferromagnetic FL [99, 119, 127] are
all damped via this mechanism. Figure 12 shows dia-
grams that contribute to damping to lowest order in a
dynamically screened Coulomb interaction.5

Out of the examples listed above, the Silin mode is
the closest one to collective spin modes due to SOC.
However, there is an important difference. Namely,
conservation of the spin component along the field
ensures that the Silin mode is not damped at q → 0
[128]. On the contrary, spin is not a conserved quan-
tity in a FL with SOC. Therefore, collective modes in
this case are damped even at q = 0. Evaluation of dia-
grams in Fig. 12 leads to an intuitively clear result: at
T = 0, the width of the resonance is given by [129]

(7.3)

where λ = e2/  is the dimensionless coupling con-
stant of the Coulomb interaction. The quadratic
dependence on ΔSO is an expected scaling of a relax-
ation rate in a FL.6

Modes with finite q are damped by the electron–
electron interaction even in the absence of SOC. The
same arguments of rotational invariance and analyti-
city that we used in Section 6 to determine the q-depen-
dence of the dispersion, can be applied to the damping
rate. Namely, in the presence of rotational symmetry,
the damping rate is proportional to q2 [99, 102]. If both
types of SOC and an in-plane magnetic field are pres-
ent, the damping rate contains a linear-in-q term,
whose structure is the same as of the linear term in the
dispersion [59, 60].

5 Although the two last (Aslamazov-Larkin) diagrams appear to
be higher order in the Coulomb interaction than the first three,
they actually contribute to the same order in the dimensionless
coupling constant e2/ .

6 A single-particle relaxation rate in a 2D FL has an additional
logarithmic factor, but it is canceled out between the diagrams
for the spin relaxation rate, as guaranteed by the gauge invari-
ance.
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8. EXPERIMENT: OBSERVATIONS
AND PREDICTIONS

8.1. Collective Spin Waves
in Cd1 – xMnxTe Quantum Wells

The dispersion of collective spin waves in
Cd1 ‒ xMnxTe quantum wells was measured in a series
of detailed Raman experiments [55–59]. This system
has both Rashba and Dresselhaus SOCs and thus
should have chiral spin waves even in the zero mag-
netic field. However, the corresponding energy scales
are below the resolution of Raman spectroscopy, and
one has to apply an in-plane magnetic field to increase
the energies of spin-flip excitations. Even a moderate
field of 2 T leads to a significant spin polarization due
to the exchange interaction between magnetic
moments of Mn dopants and conduction electron
spins, and the effective Zeeman energy is larger than
the spin–orbit one. To get some sense of the numbers,
for the reported values of α* ≈ 1.8 meV Å and β* ≈
3.8 meV Å [58],7 the combined spin–orbit splitting is

 =  ≈ 0.1 meV at n = 2.7 × 1011 cm–2,
while the measured frequency or the collective mode
varies from ~0.4 meV at q = 0 in samples with lower
Mn fraction (x = 0.013, [58]) to ~3 meV in samples
with higher Mn fraction (x = 0.8, [55]). Therefore, the
effective Zeeman splitting is 4–30 times larger than
the spin–orbit one, and the experimental situation
corresponds to the right panel of Fig. 7 for  > 
(with  replaced by ), i.e., there is a single collec-
tive mode, which evolves into a pure Silin mode in the

limit of  → ∞. At lower Mn fractions, however, the
effects of SOC on the dispersion and damping of this
mode are quite pronounced.

Figures 13a–13d show experimental data for a
[001] Cd0.87Mn0.13Te quantum well, reproduced from
[57, 59]. In the experiment, the in-plane magnetic
field and vector q were kept at 90° to each other, while
the pair of vectors was rotated by angle ϕ measured
from the [100] direction, as shown in panel a. The
Raman signal in panel b exhibits a well-resolved peak
which disperses with q. Interestingly, the dispersion is
not purely quadratic but has a sizable linear term,
which is revealed by f lipping the direction of q, as
shown in panel c. Panels e–g, reproduced from [59],
show the angular dependence of the mode frequency
(E0), spin-wave velocity (E1), and spin-wave stiffness
(E2).

Now we compare the experimental results with the
theory presented in Section 6. Under the condition

7 We assigned stars to a and b because the experiment measures
only the renormalized values of the spin–orbit parameters.
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Fig. 13. Experimental results for collective spin waves in
Cd1 – xMnxTe quantum wells. (a) Geometry of the Raman
experiment. (b) Raman signal. (c) q-dependences of the
spin-wave frequency. (d) Angular dependence of the spin-
wave velocity [denoted by w(B) in the main text].
(e‒g) Angular dependence of the mode frequency at q = 0
[denoted by Ω0(B) in the main text], and spin-wave stiff-
ness [denoted by S(B) in the main text], respectively. Solid
and dashed lines represent the numerical and analytical
results of [59]. Panels a–d and e–f are reproduced with
permission from [57, 59]. Copyright 2015, 2017 of the
American Physical Society.
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φB – φq = ±π/2, parameters of the dispersion in
Eq. (6.4) are reduced to
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Figure 14 shows the theoretical results for Ω0(B)
(inset in panel a), w(B) (panel a), and the q-depen-
dence of the dispersion for two opposite orientations
of the magnetic field, at π/4 and –π/4 (panel b). The
value of ΔZ = 0.4 meV at B = 2 T was taken from the
experiment, while the Rashba and Dresselhaus cou-
pling constants, and  were used as fitting parameters.
The fitted values of α and β (1.9 and 3.8 meV Å) are very
close to that reported in [58] (1.83 ± 0.08 meV Å and
3.79 ± 0.11 meV Å, respectively), while the fitted value

 = –0.41 is quite close to the Hartree-Fock estimate
 = –0.3 for a CdTe quantum well with n = 2.7 ×

1011 cm–2 [121]. We see that the spin-wave velocity (w)
is indeed π-periodic and very close in magnitude to
the experimental result in panel f of Fig. 13. The
π-modulation of Ω0(B), shown in the inset of panel a,
is much smaller than that of w because the former
effect is second order in SOC [59, 121]. This is consis-
tent with panel e of Fig. 13. The linear term in the dis-
persion is evident from panel b of Fig. 14 and consis-
tent with panel c of Fig. 13. Finally, the experiment
also observes small π-modulation of the spin stiffness
(panel g), which is consistent with this effect being also
second order in SOC.

8.2. Collective Spin Mode on the Surface of Bi2Se3

Figure 15 summarizes the results of polarization-
resolved Raman spectroscopy of the surface state of a
topological insulator Bi2Se3 [61]. To enhance the sig-
nal from the surface states, the frequency of incident
light was tuned to the transition between two surface
Dirac points: near the Fermi energy (SS1) and about
ΔS = 1.8 eV above it (SS2), see panel I in Fig. 15. The
Raman response shows a well-resolved peak at
≈150 meV, while the Pauli threshold for this sample is
at 2EF ≈ 260 meV. The peak is most pronounced for
the incident frequency of 1.83 eV (panel IIc), which is
the closest to ΔS. This proves that the signal is indeed
due to the surface rather than the bulk states. (Broader
peaks at higher frequency, interpreted as the result of
excitonic photoluminescence [130], were eliminated
by subtracting the hatched areas from the data.) Fur-
thermore, cross-polarization experiments reveal a
magnetic nature of the 150 meV excitation. As shown
in panel IId, the signal is much stronger in the RR
channel, when right-polarized photons are scattered
into right-polarized ones, i.e., when the angular
momenta of the incident and outgoing photons differ
by , than in the RL channel, when right-polarized
photons are scattered into left-polarized ones, i.e.,
when there is no change in the angular momentum.
For linearly polarized light, the signal is the strongest
in the cross-polarization channel (XY), when the
polarization axis is rotated by π/2. Decomposing the
signal into components corresponding to irreducible
representations of the  group, one finds that the
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Fig. 14. Theoretical results for the parameters of the spin-wave dispersion presented in Eq. (8.1). Reprinted with permission from
[121]. Copyright 2017 by the American Physical Society.
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Fig. 15. (I) Band structure of Bi2Se3 around the Brillouin zone center. The two groups of Dirac States (SS1 and SS2, respectively)
are separated by ΔS ≈ 1.8 eV. The frequency of incident photons ΩL is tuned to a resonance transition between the SS1 and SS2
states. (II) Raman scattering data for different polarization geometries of the incoming and scattered photons, and different inci-
dent photon energies. The collective mode at the Raman shift of 150 meV is resonantly enhanced by the 1.83 eV photon.
(III) (a‒c) Raman scattering data decomposed into different channels, corresponding to E2, A1, and A2 irreducible representa-
tions of the  group, respectively. (III) (d) Theoretical results for the Raman response within the ladder approximation.
Reprinted with permission from [61]. Copyright 2017 by the American Physical Society.
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v6C
150 meV excitation belongs primarily to the A2 repre-
sentation, which is the pseudovector representation of

, see panels IIIa–c. Noticeably, the excitation is
very robust-it is observed up to 300 K, see panel IIIc.

Given the findings summarized above, one is
prompted to interpret the 150 meV excitation as the
q = 0 collective spin mode discussed in Section 5.2,

v6C
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namely, as the out-of-plane mode with frequency
Ω⊥, because in the experiment both the incident and
scattered beams were along the normal to the sur-
face. This interpretation is confirmed by the theoret-
ical analysis, which shows that the Raman intensity
is proportional to the zz-component of the spin sus-
ceptibility [61]
YSICS  Vol. 135  No. 4  2022
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(8.2)

where ΩL is the frequency of incident light and γr is the
linewidth of the resonance. χzz(ω, T) was calculated
within the ladder approximation for a realistic spec-
trum of the surface state and at finite temperature,
without using the weak-coupling assumption
employed in Section 5.2. Since the linewidth of the
observed peak was found to be almost independent of
temperature, the primary source of damping must be
due to disorder. To mimic the effect of damping, the
calculated χzz(ω, T) was artificially broadened to pro-
duce the observed linewidth of ≈8 meV. In addition to
the linewidth, the coupling constant of a Hubbard-like
interaction was treated as a fitting parameter. The the-
oretical results, presented in panel IIId, reproduce
very well not only the profile of the peak as a function
of frequency but also its temperature dependence. In
particular, the theory reproduces the pronounced
decrease of the resonance frequency with increasing
temperature. This happens because the continuum
broadens as T increases, which pushes the resonance
peak down to lower frequency. The inset of panel IIId
shows a zoom on the interval between the resonance
peak and continuum boundary, which is supposed to
be at 2EF ≈ 260 meV. We see, however, that the contin-
uum is barely discernible because most of its spectral
weight is transferred to the collective mode. The best
fit was obtained for the Hubbard coupling u ≈ 0.6. This
is consistent with the estimate for the screened Cou-
lomb interaction between electrons on the surface of
Bi2Se3.

The results discussed above, present strong evi-
dence for a new collective spin mode, arising from the
combined effect of SOC and Coulomb interaction.
Further experiments measuring the spatial dispersion
of this mode would be highly desirable.

8.3. Predictions for Future Experiments

8.3.1. ESR and EDSR in 2DEGs. The rate of
absorption of electromagnetic wave at normal inci-
dence by a 2DEG with Rashba and/or Dresselhaus
SOC can be written as

(8.3)

where Eem is the amplitude of the electric field of the
wave, σ(Ω) is the conductivity of a 2DEG and χ||(Ω) is
the in-plane component of its spin susceptibility. The
first term represents absorption due to ESR, which
can be observed even in the absence of SOC. However,
its magnitude is proportional to 1/c2 (in the Gaussian
unit system) and thus small. In 2D systems instead of
ESR one typically measures electrically-detected spin
resonance, observed as a peak in the longitudinal
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resistivity under microwave radiation in the regime of
integer Hall effect [131–135].

The second term in Eq. (8.3) represents absorption
due to EDSR [136–138]. Its origin is an effective mag-
netic field acting on electron spins due to SOC and
with magnitude proportional to k. The driving electric
field (either from a dc current or electromagnetic
wave) gives rise to a f low of electrons with a nonzero
drift velocity, and hence the electron system as a whole
experiences an effective magnetic field due to SOC.
This effect gives rise to a range of spectacular phenom-
ena, e.g., a strong enhancement of microwave absorp-
tion in a geometry when the driving electric field is in
the plane of a 2DEG [21] and a shift of the spin reso-
nance frequency by dc current [22, 23].

Collective spin modes described in the previous
parts of the paper correspond to oscillations of the
electron magnetization even in the absence of the
external magnetic field. Therefore, they should be
detectable both via ESR and EDSR which, in contrast
to the conventional setup, should be present even in
zero magnetic field. The structure of the signal can be
understood qualitatively from Fig. 7, where one just

has to replace ΔR →  to account for Dressel-

haus SOC. In the absence of the magnetic field (  = 0),
the signal consists of two peaks, at frequencies Ω⊥
and Ω||. At finite field, the peak at Ω|| splits into two.
Upon further increase of the field, the Ω|| peaks merge
with the continuum and die out, while the Ω⊥ peak
continues to be present all the way till the gap closing

point (  = ), and then emerges again at
fields above this point.

To estimate the relative strength of the ESR and
EDSR signals, we note that the conductivity in
Eq. (8.3) is the sum of the Drude and spin–orbit parts:
σ'(Ω) = (Ω) + (Ω). Since for the Hamiltoni-
ans (2.1) and (2.2) the electric current is proportional
to magnetization, the spin–orbit part of the conduc-
tivity and spin susceptibility are related by (Ω) ~
e2max{α2, β2}χ''(Ω)/Ω. Provided that the Drude part at
the resonance frequency Ωr can be neglected, the ratio of
the EDSR to ESR signals can be estimated as [106]

(8.4)

where λF = 2π/kF is the Fermi wavelength and λC =
2π/mc = 2.4 × 10–10 cm is the Compton wavelength.
For electron number densities in the interval n = 1011–
1012 cm–2, the factor (λF/λC)2 ~ 108–109, and the
EDSR signal is stronger than the ESR one by many
orders of magnitude, even if SOC is weak.
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Fig. 16. Theoretical predictions for the zero-field electron spin resonance (ESR) and electric-dipole spin resonance (EDSR) in
graphene with proximity-induced spin–orbit coupling (SOC). (a) ESR signal. Vertical axis: the imaginary part of the dynamical

spin susceptibility. The frequency on the horizontal axis is scaled with  = , where  and  are (renormal-
ized) couplings of the Rashba and valley-Zeeman (VZ) types of SOC, respectively. Ω± are the resonance frequencies, given by

Eqs. (5.7a) and (5.7b). Dashed line: noninteracting system. Red solid line: a two-valley Fermi liquid (FL) with parameters =

–0.5500,  = –0.2750,  = –0.1375, H0 = –0.5000, H1 = –0.2500, and H2 = –0.1250. The ratio /  = 0.5. The choice

of FL parameters is the same for all panels of the figure, (b) ESR signal in a FL for several values of / , as indicated in the
legend, (c) EDSR signal. Vertical axis: the real part of the optical conductivity. Dashed line: noninteracting system. Solid line:
FL. (d) EDSR signal in a FL for two values of / , as indicated in the legend. To account for smearing of the resonances by
disorder, we added a damping term, –δ (k, t)/τs, to the right-hand side of the kinetic Eq. (2.8). In all panels of Fig. 16, 1/τs =

0.04 , where  = . For  = 15.0 meV and  = 7.5 meV, the spin relaxation time is 1/τs = 1 ps. Reprinted
with permission from [89]. Copyright 2021 by the American Physical Society.
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However, there is a caveat in this estimate, namely,
it is valid provided that the Drude part of the conduc-
tivity is much smaller then the spin–orbit part, which
imposes rather stringent conditions on the strength
SOC and sample quality. Near the resonance, the
spin–orbit part of the conductivity can be estimated as
[106, 129]

(8.5)

Assuming that the linewidth of the resonance is
due to D’yakonov–Perel’ mechanism in the ballistic
regime (cf. Section 7), i.e., Γ ~ 1/τ, and that the
Drude conductivity is controlled by the same scatter-
ing mechanism, i.e., (Ωr) ~ (e2/h)EF/ τ, we
obtain for the ratio of the two parts of the conductivity
right at the resonance:

(8.6)
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Therefore, even if the resonance is underdamped, i.e.,
Ωrτ ≫ 1, it can be still masked by the Drude part if the
first factor on the RHS of Eq. (8.6) is sufficiently
small.

Estimates [129] show that the resonance in zero
magnetic field, when Ωr ~ max{ΔR, ΔD}, would be
completely masked in a GaAs/GaAlAs heterostructure
even with a record-high mobility of 107 cm2/(V s)
because, due to a relatively weak SOC in this system
(α ~ β ~ 1 meV Å), K is only ~0.1. The problem is fur-
ther exacerbated by the fact that, in the presence of
both Rashba and Dresselhaus SOCs, the lower edge of
the continuum is located at Ω– = |α – β|kF, which
pushes the energies of the collective modes further
down.

A better candidate is an InGaAs/InAlAs quantum
well, where SOC is much stronger, i.e., α ~ 100 meV Å
[139], which helps to compensate for smaller mobili-
ties typical for these structures; the highest mobilities
reported for InGaAs/InAlAs samples are in the range
μ = (2–5) × 105 cm2/V s [140, 141]. Also, SOC in these
YSICS  Vol. 135  No. 4  2022
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Fig. 17. Left: Electric-dipole spin resonance in graphene
with proximity-induced spin–orbit coupling in the pres-
ence of strong in-plane magnetic field. The regular, j0 ∝
Eem, and anomalous, ja ∝  × Eem, currents at the K
(orange) and K' (purple) points in the Brillouin zone,
induced by the electric field Eem of the incident electro-
magnetic wave. Here,  is the valley-staggered Berry cur-
vature. Right: Anomalous fields and torques. Spins are ini-
tially polarized along the static magnetic field B.
The anomalous current-induced effective Rashba fields,
BR, a ∝ λR(  × ja), produce valley-specific torques Ta ∝
B × BR, a, thus exciting the valley-staggered spin mode
with an intensity proportional to |Eem × B|. Reprinted with
permission from [90]. Copyright 2022 by the American
Physical Society.
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structures is predominantly of the Rashba type [139,
142], which alleviates the problem with a competition
between the Rashba and Dresselhaus mechanisms.
For a high-mobility InGaAs/InAlAs quantum well,
K ~ 1 and a detailed calculation confirms that the
zero-field EDSR peak should be visible against the
Drude background [129].

8.3.2. ESR and EDSR in graphene with proximity-
induced spin–orbit coupling. (a) Zero magnetic field.
The zero-field ESR and EDSR in graphene with prox-
imity-induced spin–orbit coupling are predicted to
have some interesting features [89]. In the presence of
electron–electron interactions and both types of SOC
(Rashba and valley-Zeeman), both ESR and EDSR
signals consist of two peaks, centered at the frequen-
cies of coupled oscillations of the uniform and valley-
staggered magnetizations, see panels a and c in Fig. 16.
Splitting of the resonance occurs as long as the Lan-
dau function in Eq. (2.7) has more than just the m = 0
harmonic in the spin-exchange and spin-valley-
exchange channels, which is always the case for
graphene. Next, even if the (interacting) system has
only one type of SOC, there are still two resonance
modes, Ω+ and Ω–, but one of them is both ESR- and
EDSR-silent, because the spectral weights of the corre-
sponding resonances vanish. This effect is illustrated in
panels b and d of Fig. 16. Another interesting feature is
that the two ESR (EDSR) peaks have different (compa-
rable) magnitudes. Therefore, EDSR is a better way to
probe the two-peak structure of the resonance.

It is worth pointing out that the relative strengths of
the Rashba and VZ components of SOC in graphene
JOURNAL OF EXPERIMENTAL AN
on TMD substrates is currently an open issue. While
weak antilocalization experiments on monolayer
graphene find VZ SOC to be much stronger than the
Rashba one [74, 75, 78], the opposite conclusion is
reached in, e.g., [68–70, 76]. On the other hand,
strong evidence for Rashba SOC being the dominant
type in bilayer graphene on WSe2 follows from the
dependence of the splitting of the ShdH frequencies
on the carrier number density [69]. Without getting
deeper into this discussion, we note that a combina-
tion of the ESR and EDSR experiments can be used as
an independent test for the dominant type of SOC.
Indeed, the coupling between the electric field and
electron spins is possible only due to Rashba SOC.
Therefore, if the experiment shows no EDSR signal,
while the ESR signal contains only a single peak, this
would be a clear indication that VZ SOC is the domi-
nant mechanism. On the contrary, if single peaks (at
the same frequency) are observed both by EDSR and
ESR, this would indicate that Rashba SOC is the
dominant mechanism. Finally if both ESR and EDSR
signals are split into two peaks, this would indicate that
the Rashba and VZ types of SOC are of comparable
strength. A quantitative analysis of the signal shape
would allow one not only to obtain the spin–orbit
coupling constants, but also to extract up to six FL
parameters in the m = 0, 1, 2 angular momentum
channels, which are hard, if at all possible, to be
deduced from other types of measurements.

(b) Strong magnetic field. The opposite case of a
strong (compared to SOC) in-plane magnetic field
was analyzed in [90]. If the effect of SOC on the spec-
trum of collective modes is neglected, the latter con-
sists of the Silin modes, corresponding to oscillations
of the uniform magnetization with frequencies as in
Eq. (3.2), and an additional set of modes, correspond-
ing to oscillations of the valley-staggered magnetiza-
tion with frequencies

(8.7)

where  is the mth harmonic of the function H⊥(ϑ)
in Eq. (2.7). In the absence of SOC, an external mag-
netic field couples only to the m = 0 Silin mode while
the electric field does not couple to either of the
modes. If both Rashba and valley-Zeeman types of
SOC are present and, in addition, the Dirac point is
gapped due to the breaking of the A–B symmetry of
the honeycomb lattice by the substrate, the external
electric field couples to the m = 0 and m = 2 Silin
modes, and to the m = 0 and m = 1 valley-staggered
modes. Therefore, the EDSR spectrum consists, in
general, of four peaks. In addition, the resonances
occur not only in the longitudinal conductivity but also
in the transverse (Hall) one, although the external mag-
netic field does not affect the electron orbits. This last
effect occurs due to the Berry curvature of the gapped
Dirac point, and its mechanism can be understood

⊥+Ω = Δ
+

�

Z
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1

m
m a

H
F
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already for noninteracting electrons as follows [90]. Ini-
tially, all particle spins are polarized along the external
magnetic field, which we take to be along the  axis.
Upon application of an external field Eem(t) the parti-
cle spins feel an effective Rashba magnetic field BR ∝

 × j, where j is the electric current density, and there-
fore experience a spin torque T ∝  × BR ∝ jx. The x
component of the current jx is composed of regular and
anomalous pieces, shown in the left of Fig. 17,

(8.8)

where n is the number density, m* = kF/  is the

effective mass, and (k) = Δ/2( k2 + Δ2)3/2  is
the Berry curvature of the gapped Dirac points in the
K (K') valleys. The first term in Eq. (8.8) creates iden-
tical torques in both valleys, while the second one,
being proportional to the Berry curvature, yields val-
ley-staggered torques depicted in the right panel of
Fig. 17. The component of Eem along B causes a valley-
uniform torque on the spin, exciting the Silin mode
spin, while the component of Eem transverse to B
causes a valley-staggered torque, and thus excites the
valley-staggered spin mode. Because the charge-to-
spin conversion in both cases is proportional to the
Rashba coupling, this leads to a term in the conductiv-
ity proportional to . Furthermore, the Silin mode
contributes to σxx, while the valley-staggered mode
contributes to σxy.

9. CONCLUSIONS
In this review, we summarized recent progress in

theoretical understanding and experimental observa-
tion of a new type of collective spin modes, arising
from an interplay between spin–orbit coupling (SOC)
and electron–electron interaction. We focused on
three types of real systems: (i) a two-dimensional (2D)
electron gas (2DEG) with Rashba and/or Dresselhaus
SOC, (ii) graphene with proximity-induced SOC, and
(iii) the Dirac state on the surface of a three-dimen-
sional topological insulator. Provided that SOC
and/or external magnetic field are weak, i.e., the cor-
responding energy scales are much smaller than the
Fermi energy, collective modes in systems (i) and (ii)
can be described within the single-valley or two-valley
versions of the Fermi-liquid (FL) theory, respectively.
A transparent physical picture of such collective
modes arises due to mapping of a kinetic equation for
a 2D FL onto an effective tight-binding model for an
artificial one-dimensional lattice, whose sites are
labeled by the projections of angular momentum on
the normal to the 2DEG plane (m). Rashba SOC plays
the role of on-site energies, while Zeeman and
Dresselhaus terms correspond to hopping between the
nearest and next-to-nearest neighbors, respectively,
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ω
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whereas the components of the Landau interaction
function create “defects” of both on-site and bond
types. Within this mapping, the continuum of parti-
cle-hole excitations plays a role of the conduction
band, while collective modes are the bound states pro-
duced by defects.

We discussed the results of recent Raman experi-
ments on Cd1– xMnxTe quantum wells [55–60] and the
Dirac state on the surface of Bi2Se3 [61], in which
some of the predicted collective modes have been
observed, and formulated predictions for future elec-
tron spin resonance (ESR) and electric-dipole spin
resonance (EDSR) experiments on graphene with
proximity-induced SOC.

The new type of collective modes, discussed in this
paper, may have potential applications in spintronics,
magnonics, optoelectronics, and quantum sensing.
Indeed, such modes can be thought of as massive
“particles,” with masses fixed by the FL interaction,
moving in a potential profile produced by SOC [108].
By modulating the strength of SOC along the plane of
motion, e.g., by gating, one can confine the modes to
waveguides and use them to transmit signals. Despite
inherent disorder and other sources of damping, the so
far observed modes of this type are quite sharp and
robust; for example, the collective mode on the sur-
face of Bi2Se3 is observed up to 300 K [61].
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