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Abstract

Some aspects of physics on interacting fermions in 1D apeidéed in a tutorial-
like manner. We begin by showing that the non-analytic aiwes to the Fermi-
liquid forms of thermodynamic quantities result from edidly 1D collisions em-
bedded into a higher-dimensional phase space. The roleesgthollisions in-
creases progressively as dimensionality is reduced dimd]ly, they lead to a
breakdown of the Fermi liquid in 1D. An exact solution of thefonaga-Luttinger
model, based on the Ward identities, is reviewed in the fe@niilanguage. Tunnel-
ing in a 1D interacting systems is discussed first in termb@&tattering theory for
interacting fermions and then via bosonization. Univétgalf conductance quan-
tization in disorder-free quantum wires is discussed alitg the breakdown of
this universality in the spin-incoherent case. A differebhetween charge (univer-
sal) and thermal (non-universal) conductances is exgdamterms of Fabry-Perrot
resonances of charge plasmons.
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1. Introduction

The theory of interacting fermions in one dimension (1D) kasvived several
metamorphoses. From what seemed to be a purely matheneraise up until
the 60s, it had evolved into a practical tool for predicting @escribing phenom-
ena in conducting polymers and organic compounds—whichilerlD systems
of the 70s. Beginning from the early 90s, when the progressirofabrication
led to creation of artificial 1D structures—quantum wired aarbon nanotubes,
the theory of 1D systems started its expansion into the dowfanesoscopics;
this trend promises to continue in the future. Given thatelg already quite a
few excellent reviews and books on the subject [1]-[10] ,dwdd probably be-
gin with an explanation as to what makes this review diffefeam the others.
First of all, it is not a review but—-being almost a verbatimnscript of the lec-
tures given at the 2004 Summer School in Les Houches—rathtaréal on some
(and definitely not all) aspects of 1D physics. A typical esvion the subject
starts with describing the Fermi Liquid (FL) in higher dinségans with an aim of
emphasizing the differences between the FL and its 1D coynate: —Luttinger
Liquid (LL). My goal-if defined only after the manuscript wastten—was rather
to highlight thesimilarities between higher-D and 1D systems. The progress in
understanding of 1D systems has been facilitated tremestland advanced to
a greater detail, as compared to higher dimensions, by #ikabhility of exact or
asymptotically exact methods (Bethe Ansatz, bosonizationformal field the-
ory), which typically do not work too well above 1D. The dovdes part of this
progress is that 1D effects, being studied by specificallyridhods, look some-
what special and not obviously related to higher dimensiohstually, this is
not true. Many effects that are viewed as hallmarks of 1D jalsys.g.,the sup-
pression of the tunneling conductance by the electrontreleénteraction and
the infrared catastrophe, do have higher-D counter-padsséem from essen-
tially the same physics. For example, scattering at Friedeillations caused by
tunneling barriers and impurities is responsible for zeias tunneling anoma-
lies in all dimensions [11, 16]. The difference is in the miagghe of the effect
but not in its qualitative nature. Following the traditidralso start with the FL
in Sec. 2, but the main message of this Section is that therdiite between
D = 1andD > 1is not all that dramatic. In particular, it is shown that the
well-known non-analytic corrections to the FL forms of timedynamic quan-
tities (such as a venerall’ In T-correction to the linear-iff* specific heat in
3D) stem from rare events of essentially 1D collisions endeeldnto a higher-
dimensional phase space. In this approach, the differesiwecenD = 1 and
D > 1 is quantitative rather than qualitative: as the dimendigngoes down,
the phase space has difficulties suppressing the smakk-angRk » —scattering
events, which are responsible for non-analyticities. Trex®l point when these
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events go out of control and start to dominate the physicpémapto be in 1D.
This theme is continued in Sec.5, where scattering from glesiimpurity em-
bedded into a 1D system is analyzed in the fermionic langutajjlewing the
work by Yue, Matveev, Glazman [11]. The drawback of this aggh-the per-
turbative treatment of the interaction—is compensatetiéglarity of underlying
physics. Another feature which makes these notes différent the rest of the
literature in the field is that the description goes in terrthe original fermions
for quite a while (Secs.2 through 5) , whereas the weapon oitelof all 1D
studies—bosonization- is invoked only at a later stage. (6@nd beyond). The
rationale—again, a post-factum one-is two-fold. First, shi3tems in a meso-
scopic environment—which are the main real-life applmatiiscussed here— are
invariably coupled to the outside world via leads, gates, & the outside world
is inhabited by real fermions, it is sometimes easier tokituif) e.g., both the
interior and exterior a quantum wire coupled to reservairkerms of the same
elementary quasi-particles. Second, after 40 years or dmsdnization, what
could have been studied within a model of fermions Milearizeddispersion
and not too strong interaction—and this is when bosonimatiorks—was proba-
bly studied. (As all statements of this kind, this is one &oadn exaggeration.)
The last couple of years are characterized by a growingdstén either the ef-
fects that do not occur in a model with linearized disperséng.,Coulomb drag
due to small-momentum transfers [17] and energy relaxatigituations when
strong Coulomb repulsion does not permit linearizationhaf $pectrum at any
energies [19, 20, 21]. Experiment seems to indicate thaCthdomb repulsion
is strong in most systems of interest, thus studies of a glyesoupled regime
are quite timely. Once the assumption of the linear spectsuatbandoned, the
beauty of a bosonized description is by and large lost, ardmight as well
come back to original fermions. Sec.6 is devoted to trartspauantum wires,
mostly in the absence of impurities. The universality of dectance quantiza-
tion is explained in some detail, and is followed by a brisftdission of the recent
result by Matveev [19], who showed that incoherence in the sgctor leads to
a breakdown of the universality at higher temperatures.(%49. Also, a differ-
ence in charge (universal) and thermal (non-universaispart—emphasized by
Fazio, Hekking, and Khmelnitskii [22]- in addressed in 3e&. What is missing
is a discussion of transport in a disordered (as opposedntgkesmpurity) case.
However, this canonically difficult subject, which invok/an interplay between
localization and interaction, is perhaps not ready for artal-like discussion at
the moment. (For a recent development on this subject, sed &€

Even a brief inspection of these notes shows that the cheitveden making
them comprehensive or self-contained was made for the laite a focus on a
relatively small number of topics. It is quite easy to see wWwhanissing: there
is no discussion of lattice effects, bosonization is introed without the Klein



Fundamental aspects of electron correlations and quantamsport 7

factors, the sine-Gordon model is not treated in depth athiattinger liquids
are not discussed at all, and the list goes on. The discuss$ithe experiment
is scarce and perfunctory. However, the few subjects tleatiscussed are pro-
vided with quite a detailed—perhaps somewhat excessiehildd— treatment,
so that a reader may not feel a need to consult the referesided often. For
the same reason, the notes also cover such canonical preseaithe pertur-
bative renormalization group in the fermionic languagec(S§ and elementary
bosonization (Sec. 6), which are discussed in many otheceswand a reader
already familiar with the subject is encouraged to skip them

Also, a relatively small number of references (about oneppge on average)
indicates once again that thisnst a review. The choice of cited papers is sub-
jective and the reference list in no way pretends to reptesamprehensive
bibliography to the field. My apologies in advance to thos@sehcontributions
to the field | have failed to acknowledge here.

h = kp = 1 through out the notes, unless specified otherwise.

2. Non-Fermi liquid featuresof Fermi liquids: 1D physicsin higher dimen-
sions

One often hears the statement that, by and large, a Fernid I{§l) is just a
Fermi gas of weakly interacting quasi-particles; the onffedence being the
renormalization of the essential parameters (effectivesyga- factor) by the in-
teractions. What is missing here is that the similarity egwthe FL and Fermi
gas holds only for leading terms in the expansion of the tleelynamic quan-
tities (specific heaC(T"), spin susceptibilityy,, etc.) in the energy (tempera-
ture) or spatial (momentum) scales. Next-to-leading teaitsough subleading,
are singular (non-analytic) and, upon a closer inspectieveal a rich physics
of essentially 1D scattering processes, embedded intohadiilgensional phase
space.

In this chapter, | will discuss the difference between “nafiprocesses which
lead to the leading, FL forms of thermodynamic quantitied ‘aare” 1D pro-
cesses which are responsible for the non-analytic behaerwill see that the
role of these rare processes increases as the dimensjosaéitiuced and, even-
tually, the rare processes become the norm in 1D, where theédks down.

In a Fermi gas, thermodynamic quantities form regular,yditaderies as func-
tion of either temperaturd, or the inverse spatial scale (bosonic momentgym
of an inhomogeneous magnetic field. FBbr< Er, where Er is the Fermi
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energy, and < kg, whereky is the Fermi momentum, we have

C(T)/T = ~+aT?+bT*+...; (2.1a)
xs(Tyg=0) = x%0)+cT?*+dT* +...; (2.1b)
Xs(T=0,9) = x30)+ed®+ fq' +..., (2.1¢)

wherey is the Sommerfeld constant? is the static, zero-temperature spin sus-
ceptibility (which is finite in the Fermi gas), ard . . f are some constants. Even
powers of T" occur because of the approximate particle-hole symmetthef
Fermi function around the Fermi energy and even poweisarise because of
the analyticity requiremenit

Our knowledge of the interacting systems comes from twocssur-or a sys-
tem with repulsive interactions, one can assume that asdstige strength of the
interaction does not exceed some critical value, none ofyhemnetries (transla-
tional invariance, time-reversal, spin-rotation, eterent to the original Fermi
gas, are broken. In this range, the FL theory is supposed th. itowever, the
FL theory is an asymptotically low-energy theory by constian, and it is really
suitable only for extracting the leading terms, correspogdo the first terms
in the Fermi-gas expressions (2.1a-2.1c). Indeed, thecineegy of a FL as an
ensemble of quasi-particles interacting in a pair-wise mearcan be written as
[25]

1
F—Fy= Z (ex — p) ong + B Z e dngdng + O (571%) , (2.2)

k Kk’

whereF} is the ground state energyn, is the deviation of the fermion occu-
pation number from its ground-state value, afid. is the Landau interaction
function. Asdny is of the order ofl'/ Er, the free energy is at most quadratic
in T, and therefore the correspondi@@T’) is at most linear irff". Consequently,
the FL theory—at least, in the conventional formulatioaik only that

cr(m))T = %
Xs (Tyq) = x5(0),

1The expressions presented above are valid in all dimenséowspt forD = 2 with quadratic
dispersion. There, because the density of states (DoS)yavelepend on energy, the leading correc-
tion to theyT— term inC(T) is exponential inEr /T andys does not depend apfor ¢ < 2kp.
However, this anomaly is removed as soon as we take into atedinite bandwidth of the electron
spectrum, upon which the univers&l{™ andq?™) behavior of the series is restored.
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symmetry breaking

Fermi-liquid theory

Microscopic models:
“non-ideal Fermi gas"
high—density Coulomb gas

F T,QH..

Fig. 1. Combined “diagram of knowledge". x-axis: energylsdgiven by temperaturé’, bosonic
momentum@, magnetic fieldH) in appropriate units. y-axis: interaction strength. Feliquid
works for not necessarily weak interactions (but smallantthe critical value for an instability of
the ground state denoted by the red dot) but at the lowesggrseales. Microscopic models work
for weak interactions but for arbitrary energies.

where~y* andx?* (0) differ from the corresponding Fermi-gas values, and does
not say anything about higher-order terfns
Higher-order terms iril” or ¢ can be obtained within microscopic models
which specify particular interaction and, if an exact siolnis impossible—which
is always the case in higher dimensions— employ some kingbeftarrbation the-
ory. Such an approach is complementary to the FL: the forrosrimally works
for weak interactions but at arbitrary temperatures, whereas FL works both
for weak and strong interactions, up to some critical valoesponding to an
instability of some kinde.g, a ferromagnetic transition, but only in the low-
temperature limit. In the temperature, interactigrplane, the validity regions
of these two approaches are two strips running along the kee &f. Fig. 1).
For weak interactions and at low temperatures, the regiomsld overlap.
Microscopic models (Fermi gas with weak repulsion, Coulogals in the
high-density limit, electron-phonon interaction, pargmen model, etc.) show
that the higher-order terms in the specific heat and spinegtibdlity are non-

2Strictly speaking, non-analytic terms @&(7) can be obtained from the free energy (2.2) by
taking into account the non-analytic terms in the quasiigarspectrum, see Ref. [29]b.

3Some results of the perturbation theory can be rigorousigneled to an infinite order in the
interaction, and most of them can be guaranteed to hold é#ea interactions are not weak.
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analytic functions ofl” andq [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38].
For example,

C(T))T = ~3—a3T*InT (3D); (2.3a)
C(T)/T = v — T (2D); (2.3b)
Xs (@) = xs(0)+ B3¢°Ing" (3D); (2.3¢)
Xs (@) = xs(0)+B21q| (2D), (2.3d)

where all coefficients are positive for the case of repulsieetron-electron in-
teraction’

As seen from Egs. (2.3a-2.3d), the non-analyticities bexetronger as the
dimensionality is reduced. The strongest non-analytiegyurs in 1D, where—
as far as single-particle properties are concerned—thaé&akb down:

C(T)/T = m+alnT (1D);
x(@) = xo+pfilnlgl (1D).

It turns out that the evolution of the non-analytic behavigth the dimen-
sionality reflects an increasing role of special, almost t&ttering processes in
higher dimensions. Thus non-analyticities in higher disiens can be viewed
as precursors of 1D physics far > 1.

It is easier to start with the non-analytic behavior of a Ergarticle prop-
erty, the self-energy, which can be related to the thermardya quantities via
standard means [23] (see also appendix A). Within the Feguid,

ReXf (e,k) = —Ae+B& +... (2.4a)
~ImX® (e, k) = CE*+7m°TH+... (2.4b)

Expressions (2.4a) and (2.4b) are equivalent to two statesmi quasi-particles
have a finite effective mass near the Fermi level

4Notice that not only the functional forms but also tign of the g— dependent term in the
spin susceptibility is different for free and interactingstems. “Wrong” sign of theg— dependent
corrections has far-reaching consequences for quantticatphenomena. For example, it precludes
a possibility of a second-order, homogeneous quantumnfergoetic phase transition in an itinerant
system [39]. What is possible is either a first-order trémsibr ordering at finiteg, e.g. helical
structure. In 1D, a homogeneous ferromagnetic state isdiden by the Lieb-Mattis theorem [46],
which states that the ground state of 1D fermions, intargctia spin-independent but otherwise
arbitrary forces, is non-magnetic. One could speculatettigenon-analyticities in higher dimensions
indicate the existence of a highér-version of the Lieb-Mattis theorem. Certainly, this doe$ no
mean that ferromagnetism does not exist in higher dimessjibris hard to deny the existence of,
e.g, iron). However, ferromagnetism may not exisnindels dealingonly with itinerant electrons in
continuum.
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qd,w
ST
—*<§> > >—

k,e k-d,s-w k,¢

Fig. 2. Self-energy to first order in the interaction with andgnic bosonic field.

A+1
B+1’

m* =mg

and ii) damping of quasiparticles is weak: the level widtimigch smaller than
the typical quasi-particle energy

I = —2Im%* (g, k) max{|€|2 ,T2} < lel,T.

Landau’s argument for the? (or 7%) behavior oflmX* relies on the Fermi
statistics of quasiparticles and on the assumption thagffleetive interaction is
screened at large distances [23]. It requires two conditi@me condition is ob-
vious: the temperature has to be much smaller than the desggrtemperature
Tr = krvj, Wherevy, is the renormalized Fermi velocity. The other condition
is less obvious: it requires inter-particle scatteringéalominated by processes
with large (generically, of orde») momentum transfers. Once these two con-
ditions are satisfied, the self-energy assumes a univensal £qgs. (2.4a) and (
2.4b),regardless of a specific type of the interaction (e-e, e-pld)dimensional-
ity. To see this, let's have a look X% (¢, k) due to the interaction with some
“boson” (Fig. 2).

The wavy line in Fig.2 can bee.g.,a dynamic Coulomb interaction, phonon
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propagator, etc. On the mass shelK &) atT = 0 and fore > 0, we have’®

Im¥* () = —@)LDH /E dw/dqumGR (e —w,k—q)ImVE(w,q).
T 0
(2.5)

The constraint on energy transfefs £ w < ¢) is a direct manifestation of
the Pauli principle which limits the number of accessiblergy levels. In real
space and timéy (r, t) is a propagator of some field which has a classical limit
(when the occupation numbers of all modes are large). Toegf (r,t) is a
real function, hence I¥ is an odd function ofu. | will make this fact explicit
writing ImV” as

ImV* (w,q) = wW (o], q) .

Now, suppose that we integrate oyeand the result does not dependwenThen
we immediately get

—Im%* (e) ~ C/ dww ~ Ce?,
0

where(C' is the result of the;— integration which contains all the information
about the interaction. Once we got th&form for ImXF (), the e- term in
ReXF (¢) follows immediately from the Kramers-Kronig transfornuatj and we
have a Fermi-liquid form of the self-energy regardless oésdipular interaction
and dimensionality. Thus a sufficient condition for the Feliquid is the sepa-
rability of the frequency and momentum integrations, which can oapyplen if
the energy and momentum transfers are decoupled.

Now, what is the condition for separability? As a functiongflV has at
least two characteristic scales. One is provided by thernatestructure of the
interaction (screening wavevector for the Coulomb poéénilebye wavevector
for electron-phonon interaction, etc.) or by, whichever is smaller. This scale
(let’s call it @) does not depend an. Moreover, ajw| is bounded from above
by ¢, and we are interested in the limit— 0, one can safely assume tt@t>
|w| /vr. The role of@ is just to guarantee the convergence of the momentum
integral in the ultraviolet, that is, to ensure that for>> @ the integrand falls
off rapidly enough. Any physical interaction will have thgsoperty as larger
momentum transfer will have smaller weight. The other sta|e| /vr. Now,

5To get Eq. (2.5), one can start with the Matsubara form ofrdiagFig. 2, convert the Matsubara
sums into the contour integrals, use the dispersion relatio

1 [o® ImDE (&’
DR(e) = _/ ger IMD7(€)
T ) o € —e—1i0F

which is valid for any retarded function, and take the liffiit— 0.
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let's summarize this by re-writing I# in the following scaling form

m Rw 7(.«)L (|W| 2)
I V ( 7q)_ U 'UFQ’Q 9

whereU is a dimensionless function and the faafpr” was singled out to keep
the units right.

In the perturbation theory, the Green'’s function in (2.5 fsee one. Assum-
ing the free-electron spectrugp = (k* — k%.)/2m,

ImGE (5—(.«),/5—@) = —7r5(€—w—§k+17k-(f—q2/2m).
On the mass shell,
ImG*? (s—ng—q") =g, = —76 (w — Ty - T+ ¢*/2m) .

The argument of the delta-function simply expresses theggrend momentum
conservation for a process— ¢ — w, k — k — ¢. The angular integral involves
only the delta-function. For ani, this integral gives

G(. o= ——Ap (%) ,

whereuv, was replaced byr because all the action takes place near the Fermi
surface. FoiD = 3 andD = 2,

Az (x) = 20(1 — [2]);

The constraint on the argument.4f, is purely geometric: the magnitude of the

cosine of the angle betweé'rand(jhas to be less then one. For power-counting
purposes, functioml p has a dimensionality of 1. Therefore, its only role is to
provide a lower cut-off for the momentum integral. Then, loyyer counting

[ - w| ¢
ImX% (g) ~ / dww/ dqqP2U <—, = . (2.6)
( ) UFQD 0 q>|w|/vp al’] Q

Now, if the integral over is dominated by ~ @ and is convergent in thia-
frared, one can puby = 0 in this integral. After this step, the integrals oweand
q decouple. Thev— integral gives:? regardless of the nature of the interaction
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p
a) b)
(J,Mbﬂgml
g .5
k k+q k k P ptq k+q k
c) d)

k+q
k
> >
d)
p A p-q Qv
q

Fig. 3. @) and b) Non-trivial second order diagrams for tHeesgergy. ¢) Same diagrams as in a)
and b) re-drawn as a single “sunrise" diagram. d) Diagrarevaet for non-analytic terms in the
self-energy. e) Kinematics of scattering in a polarizatimbble: the dynamic pafil x w/vrgq
comes from the processes in which the internal fermionic erdgom @) is almost perpendicular to
the external bosonic ong)(
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and dimensionality whereas the integral supplies a prefactor which entails all
the details of the interaction

62

vpQ’

For example, for a screened Coulomb interaction in the vwesaipling (high-
density) limitQ = «, wherex is the screening wavevector, we have in 3D

Im¥% () = Cp

7T21€€2

R

Im¥" () = 61r B
Now we can formulate a sufficient (but not necessary) comditbr the Fermi-
liquid behavior. It will occur whenever if kinematics of dtexing is such that
the typical momentum transfers are determined by somenaltemd, what is
crucial,w— independent scale, whereas the energy transfers are ofartie
quasi-particle energy (or temperature). Excluding spesitaations, such as
the high-density limit of the Coulomb interactio), is generically of order of
the ultraviolet range of the problem kr. In other words, isotropic scattering
guarantees aZ- behavior. Small-angle scattering with typical angles afes
e/vr < Q < kp gives this behavior as well.

Thee2— result seems to be quite general under the assumptions Mémbe
and why these assumptions are violated?

A long-range interaction, associated with small-anglétegag, is known to
destroy the FL. For example, transverse long-range (ctso@ment [44] or gauge
[45]) interactions, which—unlike the Coulomb one—are moéened by electrons,
lead to the breakdown of the Fermi liquid. However, the aur@irrent inter-
action is of the relativistic origin and hence does the tooky at relativistically
small energy scales, whereas the gauge interaction ocolyraider special cir-
cumstances, such as near half-filling or for composite fensi What about a
generic case when nothing of this kind happens? It turnshattdven if the
bare interaction is of the most benign foremg, a delta-function in real space,
there are deviations from a (perceived) FL behavior. Thes@tlons get ampli-
fied as the system dimensionality is lowered, and, eventualid to a complete
breakdown of the FL in 1D.

A formal reason for the deviation from the FL-behavior isttthee argument
which led us to the2-term is good only in the leading order in/qur. Recall
that the angular integration gives ¢is' factors in all dimensions, and, to arrive
at thee? result we putv = 0 in functionsAp andU. If we want to get a next
terming, then we need to expardid and A in w. Had such expansions generated
regular series, IB? would have also formed regular seriessft ImZf =
ag? + be* + % + . ... However, each factor ab comes withg~!, so that no
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matter how high the dimensionality is, at some ordep g g we are bound to
have an infrared divergence.

2.1. Long-range effective interaction

Let's look at the simplest case of a point-like interactighfrequency depen-
dence of the self-energy arises already at the second ofdehis order, two
diagrams in Fig. 3 are of interest to us. For a contact intemacdiagram b) is
just -1/2 of a) (which can be seen by integrating over the fena momentuny’
first), so we will lump them together. Two given fermions natet via polarizing
the medium consisting of other fermions. Hence, the effedtiteraction at the
second order is just proportional to the polarization babbl

ImVE(w,q) = —U?ImIT? (w, q).

Let’s focus on small angle-scattering firsf: < 2kp. It turns out that in all
three dimensions, the bubble has a similar form (see Appefygibendix A for
an explicit derivation of this result)

~ImI*(w,q) = vp—Bp | — ) , (2.7)
al) VFq

wherevp = apmkp 2 is the DoS inD dimensions §3 = (27)72, ax =
(27)~1, a1 = 1/27] and Bp, is a dimensionless function, whose main role is
to impose a constraint < vpq in 2D and 3D andv = vrq in 1D. EQ.(2.7)
entails the physics dfandau dampingThe constraint arises because collective
excitations—charge- and spin-density waves— decay inticjgahole pairs. De-
cay occurs only if bosonic momentum and frequengwaiidw) are within the
particle-hole continuum (cf. Fig. 4). Fdp» > 1, the boundary of the continuum
for smallw andq is w = vgrgq, hence the decay takes placevif< vpg. The
rest of Eq. (2.7) can be understood by dimensional analysieed II? is the
retarded density-density correlation function; henceth®/same argument we
applied to InVE | its imaginary part must be odd in. For ¢ < kg, the only
combination of units of frequency isrq, and the frequency enters agvgq.
Finally, a factorvp makes the overall units right. In 1D, the difference is that t
continuum shrinks to a single line = vrq, hence decay of collective excitations
is possible only on this line. In 3D, functidBs is simply ad— function

w
ImHR(MQ) =—v3—0(q — |w/vF|).
al)

Next-to-leading term in the expansion of iff in e comes from retaining the
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W =ViQ W =Veq

2ke q 2k q
@ (b)

Fig. 4. Particle-hole continua fdp > 1 (left) and D = 1 (right). For the 1D case, only half of the
continuum ¢ > 0) is shown.

a) a-Q
lolfvg
g~ llfvg la - 2k |Helfve
b) c)
N T

Fig. 5. Kinematics of scattering. a) “Any-angle” scatterirMomentum transfey is of order of the
intrinsic scale of the interaction @z, whichever is smaller, and is independent of the energgtean

w, which is of order of the initial energy. This process contributes regular terms to the self-energy
b) Dynamic forward scatteringg ~ |w|/vp. ¢) Dynamic backscatteringy — 2kp| ~ |w|/vF.
Processes b) and c) are responsible for the non-analytis tierthe self-energy.
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lower limit in the momentum integral of Eq. (2.6), upon whigk get

¢ Q~kr 1 w
—Im¥f ~ UkaF/ dw/ dqq* — —
0 w/vp VFqUFq

k S
~ U2"3F /‘dww kp - —
0

U ~~ VF
FL ~
beyond FL|

~ ag?—ble]’.

The first term in the square brackets is the FL contributicat tomes from
g ~ Q. The second term is a correction to the FL coming from- w/vp.
Thus, contrary to a naive expectation an expansierismon-analytic.The frac-
tion of phase space for small-angle scattering is smallt+mfothe self-energy
comes from large-angle scattering evegts-(Q); but we already start to see the
importance of the small-angle processes. Applying Krarkeosig transforma-
tion to the non-analytic parta(|3) in ImXf, we get a corresponding non-analytic
contribution to the real part as

(ReER)mm_am o e?ln|e].
Correspondingly, specific heat which, by power countingbigined from RE?
by replacing each by T', also acquires a non-analytic térm

C(T) = v3T + B3T3 InT.

This is the familiarTInT term, observed both in He[40] and metals [41]
(mostly, heavy-fermion material$)
In 2D, the situation is more dramatic. The integral diverges now logarith-

60ne has to be careful with the argument, as a general relagomeenC(T') and the single-
particle Green’s function [23] involves the self-energy the mass shell. In 3D, the contribution
to X from forward scattering, as defined in Fig. 6, vanishes onntlags shell; hence there is no
contribution toC(T") [50]. The non-analytic part of'(T") is related to the backscattering part of the
self-energy (scattering of fermions with small total mortuem), which remains finite on the mass
shell. That forward scattering does not contribute to noahdicities in thermodynamics is a general
property of all dimensions, which can be understood on tiséstef gauge-invariance [42].

"TheT*® In T-term in the specific heat coming from the electron-electrteractions is often re-
ferred to in the literature as to the “spin-fluctuation” oafpmagnon” contribution [27, 28]. Whereas
itis true that this term is enhanced in the vicinity of a fenagnetic (Stoner) instability, it exists even
far way from any critical point and arises already at the sdaarder in the interaction [29].
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mically in the infrared:

~kp
~Im2% (w) ~ / dww/
IUJ /UF q

~ —ma ln —
vp |€ |
Now, dynamic forward-scattering (with transfers~ w/vr) is not a perturba-
tion anymore: on the contrary, thedependence of 18" is dominated by for-
ward scattering (the? In |¢|-term is larger than the “any-angle®-contribution
). Correspondingly, the real part acquires a non-analgtimtRe: « ¢ ||, and
the specific heat behaves&s

C(T) = 7T — BoT7.

The non-analytid?-term in the specific heat has been observed in recent exper-
iments on monolayers of Hadsorbed on a solid substrate [23]

Finally, in 1D the same power-counting argument leads t&fmx |¢| and
Rex® o ¢ In || 1°Correspondingly, the “correction” to the specific heat belsa
asT'InT and is larger than the leading,— term. This is the ultimate case of
dynamic forward scattering, whose precursors we havedyjreaen in higher
dimensiong™.

8again, only processes with small total momentum contribute

°If a T2 term in C(T') does not fit your definition of non-analyticity, you have tcat that the
right quantity to look at is the rati@’(7") /T. Analytic behavior corresponds to seri€§T)/T =
~+8T% + oT* + ... whereas we haveB? In T andT terms as the leading order corrections to
the Sommerfeld constantfor D = 3 and D = 2, correspondingly.

10special care is required in 1D as in the perturbation theary gets a strong divergence in the
self-energy corresponding to interactions of fermionsefsame chirality (Fig. 8a,c). This point will
be discussed in more detail in Section 2.3 (along with a weblenonetheless singularity in 2D).
For now, let us focus on a regular part of the self-energyesmponding to the interaction of fermions
of opposite chirality (Fig. 8b).

11Bosonization predicts that (T") of a fermionic system is the same as that of 1D bosons, which
scales ag” for D = 1 [10]. This is true only for spinless fermions, in which casesbnisation
provides an asymptotically exact solution. For electroiith wpins, the bosonized theory is of the
sine-Gordon type with the non-Gaussian (pgerm coming from the backscattering of fermions of
opposite spins. Even if this term is marginally irrelevamd #ows down to zero at the lowest energies,
at intermediate energies it results in a multiplicativel” factor in C'(T") and aln max{q, T, H}
correction to the spin susceptibility (whefkgis the magnetic field, and units are such thdf’, and
H have the units of energy). The difference between the nalyticities inD > 1andD = 1is
that the former occurs already at the second order in theaittten, whereas the latter start only at
third order. Naive power-counting breaks down in 1D because tefficent in front of 7' In 7" term
in C(T') vanishes at the second order, and one has to go to third éimdbe sine-Gordon model, the
third order in the interaction is quite natural: indeed, bias to calculate the correlation function of
the co® term, which already contains two coupling constants; tirel hne occurs by expanding the
exponent to leading (first) order. For more details, see,[48],[49].
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Even if the bare interaction is point-like, the effectiveeorontains a long-
range part at finite frequencies. Indeed, the non-analgitspfX and C(T)
come from the region of smadl and hence large distances. Already to the sec-
ond order inU, the effective interactiod/ = UZII(w, ¢) is proportional to the
dynamic polarization bubble of the electron gds,(w,¢). In all dimensions,
ImIIZ is universal and singular ipfor |w| /vr < q¢ < kF

w

ImIT® (w, q) ~ vp——.
vrlgl

Although the effective interaction is indeed screened at- 0 —and this is
why the FL survives even if the bare interaction has a lomgeaail-it has a
slowly decaying tail in the intermediate rangeqofin real spacel/ () behaves
asw/rP~! atdistances ! < r < vp/|w|.

Thus, we have the same singular behavior of the bubble inraésions, and
the results for the self-energy differ only because the @vatumeg” is more
effective in suppressing the singularity in higher dimensithan in lower ones.

There is one more special interval@f g ~ 2kr , i.e, Kohn anomaly. Usu-
ally, the Kohn anomaly is associated with t¥e=- non-analyticity of thestatic
bubble, and its most familiar manifestation is the Friedslilkation in electron
density produced by a static impurity (discussed later bigre, the static Kohn
anomaly is of no interest for us as we are dealing with dyngmrocesses. How-
ever, the dynamic bubble is also singular n&ar. For example, in 2D,

ImIIE (g ~ 2kp,w) o ——— 0 (2kp — q) .
(¢ Fyw) hr ke = q) (2kr — q)

Because of the one-sided singularitylinII? nearq = 2kp, the effective in-
teraction oscillates and falls off as a powerrofBy power counting, if a static
Friedel oscillation falls off asin 2k /7", then the dynamic one behaves as

-~ wsin2kpr

Dynamic Kohn anomaly results in the same kind of non-angitytin the self-
energy (and thermodynamics) as the forward scattering.‘ddegerous” range
of ¢ now is|q — 2kr| ~ w/vr—"dynamic backscattering”. It is remarkable that
the non-analytic term in the self-energy is sensitive onltrictly forward or
backscattering events, whereas processes with interteed@mentum transfers
contribute only to analytic part of the self-energy. To dais,twe perform the
analysis of kinematics in the next section.
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b) c)

Fig. 6. Scattering processes responsible for divergentoamibn-analytic corrections to the self-
energy in 2D. a) “Forward scattering”-an analog of thig"™process in 1D. All four fermionic
momenta are close to each other. b) Backscattering—ancaofiihe “g>"-process in 1D. The net
momentum before and after collision is small. Initial monzeare close to final ones. Although the
momentum transfer in such a process is small, we still reféhis process as “backscattering” (see
the discussion in the main text). 2k » — scattering.

2.2. 1D kinematics in higher dimensions

The similarity between non-FL behavior in 1D and non-anafgatures in higher
dimensions occurs already at the level of kinematics. Ngnogle can make a
rather strong statementhe non-analytic terms in the self-energy in higher di-
mensions result from essentially 1D scattering processed’s come back to
self-energy diagram 3a. In general, integrations over ii@min momentuny and
bosonic7 are independent of each other: one can first integrate pyey, form-
ing a bubble, and then integrate ovgry). Genericallyp spans the entire Fermi
surface. However, the non-analytic feature&inome not from generic but very
specificpy’'which are close to either toor to —k.

Let's focus on the 2D case. Théln || term results from the product of two
¢~ ! -singularities: one is from the angular average ofirand the other one
from the dynamicw/vrq, part of the bubble. In Appendix Appendix A, it is
shown that they/vrq singularity in the bubble comes from the region whgie
almost perpendicular t@ Similarly, the angular averaging of I@also pins the
angle betweek andq'to almosto0°.

G (e —w k-7 = —m6(c—w—qupcosh)—
cos = 6_WNL<<1—>9'%7T/2.
Vrq VFrq

AsﬁandE are almost perpendicular to the same veciprtbey are either almost
parallel or anti-parallel to each other. In terms of a syntinetl (“sunrise”) self-
energy (cf. Fig. 3), it means that either all three internahmenta are parallel to
the external one or one of the internal one is parallel to ¥tereal whereas the
other two are anti-paralléf. Thus we have three almost 1D processes:

12In 3D, conditionsp L q”andl? 1 g mean only tha and’ lie in the same plane. However,
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¢ all four momenta (two initial and two final) are almost paghtb each other;

¢ the total momentum of the fermionic pair is near zero, whetka transferred
momentum is small;

¢ he total momentum of the fermionic pair is near zero, whettleasransferred
momentum is neak .

These are precisely the same 1D processes we are going twitleah the
next Section—the only difference is that in 2D, trajectede have some angular
spread, which is of ordédw| /Er. The first one is known asjy” (meaning: all
four momenta are in the same direction) and the other ong,agrheaning: two
out of four momenta are in the same direction). Both of thesegsses are of
the forward-scattering type as the transferred momentwsmal. In 1D, these
processes correspond to scattering of fermions of sam@( opposite chirality
(g2)- The last 2k ) process is knowng;” in 1D.

It turns out that of these two processes, theand 2k - ones, are directly
responsible for the? In e behavior. They,-process leads to a mass-shell singu-
larity in the self-energy both in 1D and 2D, discussed in e section, but does
not affect the thermodynamics, so we will leave it for now.

What abouRkr— scattering? Suppose electrbrscatters into-k emitting
an electron-hole pair of momentu2k. In generalzk ofthe e-h palr may consist
of any two fermionic momenta which differ bg/k :pandp + 2k. But since

’215‘ ~ 2kp, the components of the e-h pair will be on the Fermi surfacg inl

7~ —k andj+ 2k ~ k. Only in this case does the effective interaction (bubble)
have a non-analytic form at finite frequency. Ths-- scattering is also of the
1D nature forD > 1.

What we have said above, can be summarized in the followictgiial way.
Suppose we follow the trajectories of two fermions, as showig. 7. There
are several types of scattering processes. First, ther@nig-dngle” scattering
which, in our particular example, occurs at a third fermidrose trajectory is not
shown. This scattering contributes regular, FL terms botihé self-energy and
thermodynamics. Second, there are dynamic forward-stajtevents, when
q ~ |w|/vr. These arenot 1D processes, as fermionic trajectories enter the
interaction region at an arbitrary angle to each other. In &Bhird order in
such processes results in the non-analytic behaviar (@f)—this is the origin

it is still possible to show that for a closed diagraeng., thermodynamic potentialy’ and k are
either parallel or anti-parallel to each other. Hence, thie-analytic term inC'(T") also comes from
the 1D processes. In addition, there are dynamic forwartdestey events (marked with a star in
Fig. 7) which, although not being 1D in nature, do lead to a-apalyticity in 3D. Thus, thd3 InT
anomaly inC'(T") comes from both 1D and non-1D processes [50] . The differenttet the former
start already at the second order in the interaction wheheaktter occur only at the third order. In
2D, the entirel’— term inC(T") comes from the 1D processes.



Fundamental aspects of electron correlations and quantamsport 23

dynamic forward scattering
1D forward or backscattering

“any—angle" scattering ——> regular (FL) contribution

Fig. 7. Typical trajectories of two interacting fermionsxfosion: “any-angle” scattering at a third
fermion (not shown) which leads to a regular (FL) contribati Five-corner star: dynamic forward
scatteringg ~ |w|/vp. This process contributes to non-analyticity in 3D (todharder in the inter-
action) but not in 2D. Four-corner star: 1D dynamic forwand &ackscattering events, contributing
to non-analyticities both in 3D and 2D.

of the “paramagnon” anomaly i@ (7). In 2D, dynamic forward scattering does
not lead to non-analyticity. Finally, there are processeatked by4,”, “ ¢g2",
and “g4", when electrons conspire to align their initial momentdrsat they are
either parallel or antiparallel to each other. These praegsetermine the non-
analytic parts ot and thermodynamics in 2D (and also, formally, for< 2.)

A crossover betweefy > 1 andD = 1 occurs when all other processes but
g2, andg, are eliminated by a geometrical constraint.

We see that for non-analytic terms in the self-energy (aedntiodynamics),
large-angle scattering does not matter. Everything isrdeted by essentially
1D processes. As a result, if the bare interaction has spdependence, only
two Fourier components mattdy:(0) andU (2kr). For example, in 2D

ImE® (e) o [U?(0)+ U?(2kp) — U(0)U(2kp)] e Ine|;
Rex® (w) o [U?(0)+U? (2kp) — U(0)U(2kp)] € el;
CM)/T = 4 —alU?(0)+U?(2kr) — U(0)U(2kr)] T;
Xs(@Q.T) = x:(0)+0U? (2kp) max {vpQ,T};

wherea andb are coefficients. These perturbative results can be géreadbr
the Fermi-liquid case, when the interaction is not necédgsaeak. Then the
leading, analytic parts af'(T") andy are determined by the angular harmonics
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of the Landau interaction function
F@p)=F,(0)I+F, (057,

where# is the angle betweepiandy’. In particular,

¥ = 0 (14 {cosOF));
1+ (cos0F)
* 0 _ 0 ’
XS( ) XS 1+ <Fa>

wherey, andy? are the corresponding quantities for the Fermi gas. Beaafuse
the angular averaging, the FL part is rather insensitivdéodetails of the in-
teraction. As generically; and F, are regular functions dof, the whole Fermi
surface contributes to the FL renormalizations. Vertitgs) andU (2kr), oc-
curring in the perturbative expressions, are replacesidagtering amplitudeat
anglet =«

A@ ) =As (0) [+ 44 (0)F -7,

Beyond the perturbation theory [37],

C(T)/T = ~° —alA2(x) +342 (x)] T;
V(QT) = X5 (0) +BA2 () max {vrQ, T}

Non-analytic parts are not subject to angular averagingardsensitive to a
detailed behavior ofl, , near = 713,

2.3. Infrared catastrophe

2.3.1. 1D

By now, it is well-known that the FL breaks down in 1D and areaipt to ap-
ply the perturbation theory to 1D problem results in singtits. Let's see what
precisely goes wrong in 1D. | begin with considering theriattion of fermions
of opposite chirality, as in diagram Fig. 8b. Physicallyjght-moving fermion
emits (and then re-absorbs) left-moving quanta of densitjtaions (same for
left-moving fermion emitting/absorbing right-moving quta). Now, instead of
the order-of-magnitude estimate (2.7), which is good irdatiensions but only
for power-counting purposes, | am going to use an exact exjme for the bub-
ble, Eq. (B. 4), formed by left-moving fermions. On the Fesuiface { = kp,

13The renormalization of the scattering amplitudes by thep@oahannel of the interaction results
in additionalln T-dependences oA s ()



Fundamental aspects of electron correlations and quantamsport 25

+

a) b)

c)

C

f?’“%“i

Fig. 8. Self-energy in 1D+ refer to right (left)-moving fermions.

we have
€
~-ImXf_ () ~ Uy / dw / dgImGE (e — w, k — q) ImIT#
0

~ U2u1/ dw/dqd(a—w—i—qu) (w/vp)d (w+vrQ)
0

~ g*lel,

whereg = U/vp is the dimensionless coupling constant. The corresporrdig
part behaves asln |¢| . What we got is bad, anX7 scales witre in the same
way as the energy of a free excitation above the Fermi levitReX? increases
faster thare (which means that the effective mass dependsasin ||), but not
too bad because, as long@s< 1, the breakdown of the quasi-particle picture
occurs only at exponentially small energy scalesS Er exp(—1/g?%). Now,
let's look at scattering of fermions of the same chiralithis'time, | choose to
be away from the mass shell.

~Im¥f, / dw/dqé(e—w—vp (k—q))wd (w—vpq) (2.8)
0 ImGﬁ Ime

= %5 (e —vrk). (2.9)
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It is not difficult to see that the full (complex) self-enerigysimply

2

_— 2.10
e —vpk+i0t ( )

Zir X =
On the mass shelk(= vrk) we have a strong—delta-function—singularity. This
anomaly was discovered by Bychkov, Gor’'kov, and Dzyaloskiirback in the
60s [52], who called it the “infrared catastrophe”. Inde&ds similar to an
infrared catastrophe in QED, where an electron can emit famte number of
soft photons. Likewise, since we have linearized the spattia 1D fermion
can emit an infinite number of soft bosons: quanta of chargd-spin-density
excitations. The point is that in 1D there is a perfect magetwvieen momentum
and energy conservations for a process of emission (or piiso) of a boson
with energy and momentum related by= vrq :

E = k—gq

g = e—w=vpk—vpq=vp(k—q).

On the mass-shell, the energy and momentum conservatipgaivalent. Imag-
ine that you want to find a probability of certain scatterimgqess using a Fermi
Golden rule. Then you have a product of tée functions: one reflecting the
momentum and other energy conservation. But if the argusneinthe delta-
functions are the same, you have an essential singulargguare of the delta-
function. As a result, the corresponding probability djes.

A pole in the self-energy [Eq. (2.10)] indicates the nontpdrative and specif-
ically 1D effect: spin-charge separation. Indeed, sulitigg Eq. (2.10) we get
two poles corresponding to excitations propagating witlociges vy (1 + g)
(recall thaty < 1). This peculiar feature is confirmed by an exact solution (see
Section 3): already the,—interaction leads to a spin-charge separation (but not
to anomalous scaling). What we did not get quite right is thatvelocities of
both—spin- and charge-modes—are modified by the interectio fact,the exact
solution shows that the velocity of the spin-mode remainsaétp vr, whereas
the velocity of the charge mode is modified.

Obviously, there is no spin-charge separation for spirdéssrons. Indeed, in
this case diagram Fig. 8a does not have an additional fattenas compared to
Fig. 8c (but is still of opposite sign), so that the forwahi$ering parts of these
two diagrams cancel each other. As a result, there is norédreatastrophe for
spinless fermions.

23.2. 2D
What we considered in the previous section sounds like angally 1D effect.
However, a similar effect exists also in 2D (more generdlly,1 < D < 2).
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This emphasizes once again that the difference betdieenl andD > 1 is not
as dramatic as it seems.

In 2D, the self-energy also diverges on the mass shell, iflomarizes the
electron’s spectrum, albeit the divergence is weaker thdto second order,
it is logarithmic'4. The origin of the divergence can be traced back to the form
of the polarization bubble at small momentum transfer, Bqg.1). Integrating
over the angle in 2D, we get

ImIT? (w, q) = — (%) +9 (vpq — |wl). (2.11)
(vrq)” — w?

ImIT®(w, q) has a square-root singularity at the boundary of the partiole
continuum,i.e.,atw = wvgrq. (This is a threshold singularity of the van Hove
type: the band of soft electron-hole pairs is terminated at vrq, but the
spectral weight of the pairs is peaked at the band edge). ©mwttier hand,
expandingk 4 in G (e + w, k+q) aséx+q = & + vrgcosf and integrating
overf, we obtain another square-root singularity

01—1/2

/dGImGR =27 (qu)2 —(e+w—¢&) (2.12)

On the mass shell(= &), the arguments of the square roots in Egs. (2.11) and
(2.12) coincide, and the integral ovediverges logarithmically. The resulting
contribution to InE% diverges on the mass shefl £ &) [53, 54, 55],[34],[37]

u2 82 EF
n——

Im2E (e,k) = —— —
g (8 F) = —o 5 e — &

whereA = ¢ — &, andu = mU/2x. The process responsible for the log-
singularity is the §4” process in Fig. 6. On the other hand,andg; processes
give a contribution which is finite on the mass shell

u2 62 EF

TimEr et &l

Imsl, (e, k) =

(The divergence at = —¢;, is spurious and is removed by going beyond the log-
accuracy [34],[37].) We see therefore that the familianfaf the self-energy in
2D [21n |¢|, see Ref. [56]] is valid only on the Fermi surfagg = 0) . The loga-
rithmic singularity in Im=% on the mass shell is eliminated by retaining the finite
curvature of single-particle spectrum (which amounts tepkeg theg? /2m term

in §1€+@)- This brings in a new scale’/ E. The emerging singularity in (2.3.2)

141n 3D, there is no mass-shell singularity to any order of tegyrbation theory.
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is regularized ate — & | ~ ¢2/Er and the=? In || behavior is restored. How-
ever, higher orders diverge as power-laws and finite curgaloes not help to
regularize them. This means that—in contrast to 3D—theidgation theory must
be re-summed even for an infinitesimally weak interactionc&this is done, the
singularities are removed. Re-summation also helps torstatel the reason for
the problems in the perturbation theory. In fact, what weenteying to do was
to take into account a non-perturbative effect—an int@actith the zero-sound
mode—via a perturbation theory. Once all orders are re-seainthe zero-sound
mode splits off the continuum boundary—now it is a propamgpthode with ve-
locity ¢ > vp. This splitting is what regularizes the divergences. Theltes
state is essentially a FL: the leading term3inbehaves as?1In |¢|. However,
some non-perturbative features remain: for example, tleetsgd function ex-
hibits a second peak away from the mass shell corresponaliting temission of
the zero-sound waves by fermions. A two-peak structureespectral function
is reminiscent of the spin-charge separation, although evaat really have a
spin-charge separation here: in contrast to the 1D caseapihedensity collec-
tive mode lies within the continuum and is damped by the glartiole pairs.

3. Dzyaloshinskii-Larkin solution of the Tomonaga-L uttinger model

3.1. Hamiltonian, anomalous commutators, and consermdfios

In the Tomonaga-Luttinger model [57],[58] one considergstesm of 1D spin-
1/2 fermions with a linearized dispersion. Only forwardtss@ng of left- and
right-moving fermions is taken into accoung(and g4— processes), whereas
backscattering is neglected. This last assumption meansté interaction po-
tential is of sufficiently long-range, so th&t(2kr) < U (0). [We will come
back to this condition later.] Coupling between fermiongtef same chirality
(g94) is assumed to be different from coupling between fermidrdiféerent chi-
rality (g=). If the original Hamiltonian contains only density-densdityeraction,
theng, = g4. A difference betweery, andg, leads to an unphysical (within
this model) current-current interaction. We will kegp # ¢4, however, at the
intermediate steps of the calculations as it helps to eateidertain points. At
the end, one can makg equal tog, without any penalty. In addition, in some
physical situationsg, # g4 . > In what follows | will follow the original paper
by Dzyaloshinskii and Larkin (DL) [59] and a paper by Metziaad di Castro

15For example, Coulomb interaction between the electronkeattiges of a finite-width Hall bar
(in the Integer Quantum Hall Effect regime) has this featueectrons of the same chirality are
situated on the same edge, whereas electrons of differ@alitghare on opposite edges; hence the
matrix elements for thgs— andg4- interactions are different.
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[60], where the Ward identity used by Dzyaloshinskii andKirais derived in a
detailed way.
The Hamiltonian of the model is written as

H = Hy+ Hiy;
Hiyw = Ho+ Hy,
where

)

Hy =vp Z k (ai,a(k)aJr-,U(k) —al o(k)aﬂa(k))
k,o

is the Hamiltonian of free fermionsH denote right/left moving fermions and
is the spin projection) and

Hy = g_; Z Zp+,0 (Q) P—,o’ (_Q) 5

’
q 0,0

He = %ZZM— (@) pr.or (—Q) + P (@) p—o (=) ,

with
pio = al, (k+q) ac, (k).
k

To avoid additional complications, | assume that the irgtioa is spin-independent.
To simplify the notations and to emphasize the similaritgnen this model and
QED, I will setvg to unity in this section.

Introducing the chiral charge- and spin densities as

pL = pqt P
PL = P — Pt

and total charge density and current as

Pt = p5+ S
3 = 5 —r,
the interaction part of the Hamiltonian reduces to
1 . ¢ 1 c N e
Hie =) 5 (92 +90) 0 () p° (=0) + 5 (94 = 92) J* (@) 5 (=) . (B.1)

q

As we have already said, fgs = ¢4, the interaction is of a pure density-density
type. Notice also that the spin density and current drop btiteHamiltonian—
this is to be expected for a spin-invariant interaction. Takma link with QED,
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let us introduce Minkowski current* with ;. = 0, 1 so thatj® = p¢ (=jo) and
jt = j¢ (=-j1). Then the interaction can be written as a 4-product of Minkows
currents in a Lorentz-invariant form

Hiyy = Z guujujya
q

where
1
goo = B (92 + 94);
1
g1 = B (94 - 92);
g1 = g0 =0 (3.2)

In what follows, we will need the following anomalous comiatiorrs

[p+.0(q), Ho] = iqpi o (q);
[p+.0(q), Ha] = —qp:F o (9);
[pi,a (Q) 5H4] = _QPi o (Q)

The derivation of these commutation relations can be fonradnumber of stan-
dard sources [61, 10] and | will not present it here. Addinghgopcommutators,
we get

[pi,o'aH] = [pi,UaHO+H2+H4]

g2 94
= HqproE ﬂqpi + 2—qpi

Adding up equations for spin-up and -down fermions, we a@btai

g2 g4
[0S, H]| = +qps + —aps + —apk.

Finally, adding up thet components yields
i0ip° = [p°, H] = veqj©, (3.3)

where

vczl+g4_92
s

(recall thatvy = 1). Eq. (3.3) is a continuity equation reflecting charge conser-
vation. As if we did not have enough new notations, here ist@rmne

H=(w,q)
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+

bk
U
L.

Fig. 9. a) Three-leg correlatds. b) Vertex partA.

and
o = (w,vcq) -

In these notations and after a Fourier transform, the coityirequation can be
written as

Q;Lj“ =0.

The same relation for free particles reads
Qui"* =0.

3.2. Reducible and irreducible vertices

Now, construct a mixed (fermion-boson) correlator
K:lé,a (ka Q|t’ t1, tll) = _<TjM (q’ t) a+t,0 (kv tl) aT:i:.,a (k +4q, t1)>7 (34)

wherey = 0,1 and
i = i +0S
it = G-t
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uv

r A

Fig. 10. Relation between verticésandI".

K* is an analog of the three-leg vertex in QED , except that in @ED'boson”
is thep.— the component of the photon field

QED : K* = —(T A*aa).

A diagrammatic representation &f* is a three-particle (one boson and two
fermions) diagram (cf. Fig. 9a).

The diagrams with self-energy insertions to solid linesgymenormalize the
Green’s functions. Absorbing these renormalizations, iwgls out the vertex
part, re-writingK* as

KM = G2A", (3.5)

Notice that there are as many vertex parts as there are loadegiees of free-
dom. In (3+1) QEDA" is ascalarvertex andA#=12:3 are the components of
the vectorvertex. Diagrams representing’ are shown in Fig. 9b. These se-
ries can be re-arranged further by separatingothaton-irreduciblevertex part,
T'#. A photon-irreducible part is obtained by separating theemions to the
bosonic line, i.e., taking into account polarization. @t A* andI'* are re-
lated via a kind of Dyson equation, which is simpler than tiseal Dyson in

a sense that there is ng* on the right-hand-side. Diagrammatically, this rela-
tion is represented by Fig.10 where a shaded bubble is an gracrmalized)
current-current correlation function

i, )
A (g,1) = ~ (5" (0,6) 5 (~a. 0)).
Algebraically, equation in Fig.10 says
A, =Th , + A" g T2 ,. (3.6)

(We remind the reader that indices o simply specify the fermionic flavor which
is not mixed in our approximation of forward-scattering apin-independent
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forces, so all relations are applicable to each individualdi). The coupling
constantg*” relate currents to densities. According to Egs. (3.1) ar?)(8en-
sities couple to densities and currents to currents withrnescterms. Opening
the matrix product in Eg. (3.6), we obtain

Ait = Ff‘ —|— A“Ogoofo + A“lgllFl. (37)

3.3. Ward identities

A Ward identity for vertexA* is obtained by applyingd, to K* in Eq. (3.4)
and using the continuity equation (34)Performing this operations and Fourier
transforming in time, we obtain

where: denotes the branch

1==+,0.
Recalling Eqg. (3.5), we see that the Ward identity becomes
QuAY (K, Q) =G (K +Q) — G (K), (3.8)

which is identical to a corresponding identity in QED. Fapdk who like to see
things not masked by fancy notations, here is Eq. (3.8) inxalicit form

wA? (e, k;w, q) — chAl1 (e, k;w,q) = G;l (e+w,k+q)— G;l (e, k). (3.9)

Notice that Egs.(3.8,3.9) contaienormalizedvelocity v.. In what follows, we
will actually need a Ward identity not fak# but for the photon-irreducible ver-
tex I'*. This one is obtained by deriving the continuity equation 4ecurrent
correlation functiond#* . To this end, one applig®), to A°” and uses continuity
equation (3.3), which yield¥

P
QuA™ = =g, (3.11)

18When differentiating, recall that tH€— product can be represented by step-functions in time
which, upon differentiating, yield delta-functions
17To get this result, recall the form of the anomalous dendéfyisity commutator

5" @),3" (~a)] = ¥ 2L,

wheree?? = €1 = 0, 07 = —€¢19 = 1. Now open thel'— product inA% and applyid;

. v [ . o o )
A (a,t) = =32 (10 (0(1) 1 (0,6) 5" (=4,0) + 0 (=) 7 (=4,0) §° (¢,1))
1
= OO (0.0).5" (~0.0)] +vagd™ =225, 1 +vagA™. (3.10)
In 4-notations, (3.10) is equivalent to (3.11).
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Now, we form a scalar product betwe€), and Eq. (3.7), using continuity
equation forA#¥ (3.11). This brings us to

QMAQL = QNAH,

where
QA = Q, (T + AMggel] + A" gniT})
= QuI'M + QA" gooI') + QA" g1 T}
N—— N——
=0 =2q/m
S v qpl_i_%lwpl
(3 \2_/ (3 T 2 T (3
=1+(ga—g2)/m

= Wl — gl = Q,.I'".
Finally, the Ward identity for photon-irreducible vertex i
QI"=G 1" (K+Q)-G ' (K). (3.12)

It is remarkable that the left-hand-side of Eq. (3.12) corsdhe bare Fermi
velocity (= 1) instead of the renormalized one. This is true even if we albw
for spin-dependent interaction in the Hamiltonian.

It seems that we have not achieved much, as the conservationds simply
cast into a different form. However, in our 1D problem withireelkrized spec-
trum a further progress can be made because the current asitydgor given
chirality) are just the same quantity (up to an overall facfdhe Fermi velocity):

My, =4T4,

Therefore, we have a closed relation between just one vartéxGreen’s func-
tions. Suppressing the 4-vector indexwe get the Ward identity for the density
vertex

G:T:.,la' (K + Q) - G;,la (K)

3.13
wFq ( )

I, (K,Q) =

This is the identity that we need to proceed further with theydboshinskii-
Larkin solution of the Tomonaga-Luttinger problem. Notthat (3.13) contains
fully interacting Green'’s functions.
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Vi ooy
Vo=V
j%&; ﬂmw_+aww~ 'ﬁ&f AA{iJ’%%;

Fig. 11. Dyson equation for the effective interaction. 8dilne: Green’s function of a right-moving
fermion. Dashed line: Green'’s function of a left-movingnféon. Single wavy line: bare interaction
of fermions of the same chirality; spiral line: same for teenfions of opposite chirality. Double
wavy and spiral lines represent the renormalized interasti

3.4. Effective interaction

Effective interaction is obtained by collecting polaripatcorrections to the bare
one. Diagrammatically, this procedure is described by theoD equation, rep-
resented in Fig.11. The interaction and polarization beitase matrices with
components

5 Vie Voo ’ ga 92\ 7 I, 0
( Vi Vi )00 g2 94 )’ (U
where we used an obvious symmeiwty, = V__,V,_ = V_,. The Dyson
equation in the matrix form reads

V =V + VIV,
or, in components,

Vig ga + galli Viy + goll Vi
Vie = g+ @Il Vi, +gll V,_. (3.14)

The bubbles in these equations arly renormalizedones,i.e., they are built on
exact Green'’s functions and contain a vertex (hatched cprne

dkd
Hi(w,q)=—2i//(2 )iGi(erw,kﬂLq)Gi(E,k)Fi(E,k;w7q)-
™
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Now we use the Ward identity fd#,. (3.13) to get'8

I (w,q) = — w:Fq// dkds 5 (G (6,k) = Gi (e +w,k+q)]. (3.15)

Eq. (3.15) looks exactly the same a$ree bubble [cf. Eq. (B. 1)] except that
it contains exact rather than free Green’s functions. Bseame managed to
transform the product of two Green’s functions into a difece, frequency inte-
gration in Eg. (3.15) can be performed term by term yieldisgctmomentum
distribution functions: 1. (k) andny (k + ¢q) :

I (w,q Mq//‘”“ ne(k)—ne(k+q).  (316)

At the first glance, it seems that we have not achieved muchrsdrfdeed, we
traded one unknown quantityl(.) for another £1). Both of them include the
interaction to all orders and without any further simplifioa we are stuck. In
fact, we have already made an important simplification: whgecifying the
model, we assumed only forward scattering. This means Heainteraction
is sufficiently long-range in real space so that backsdatijeran be neglected.
Equivalently, in the momentum space it means that our intenaoperates only
in a narrow window of widthy, near the Fermi pointstkr. Thus the states far
away from the Fermi points are not affected by the interactithe momentum
integral in (3.16) comes from regions far away from the Fesmiface where
unknown functions:+ can be approximated by free Fermi steps. This approx-
imation is good as long ag < kr. The solution is going to be exact only in
a sense that there will be no constraints on the amplitudeeointeraction (pa-
rametergj, andg,) but not its rangé®Now we understand better why the title of
the paper by Dzyaloshinskii and Larkin [59] is “Correlatifomctions for a one-
dimensional Fermi system witbng-rangeinteraction (Tomonaga modefy"

18] skipped over a subtlety related to the infinitesimal imagjnpartsi0tin the denominator.
Works the same way. If you are unhappy with this, imaginewhetvork with Matsubara frequencies.
Then there are ni+s whatsoever.

19In higher dimensions, we have a familiar problem of the Codopotential. Because it's a
power-law potential, one cannot separate it into “ampétudnd “range”. There is in fact a sin-
gle dimensionless parametet,, which must be small for the perturbation theory—RandomsEha
Approximation—to work. Onces < 1, we have two things: the screened potential is simultargous
weakand long-ranged. The Tomonaga-Luttinger model unties thesettings: the interaction is
assumed to be long-ranged but not necessarily weak.

20What seemed to be just a matter of mathematical convenierite i70s, turns out to be quite a
realistic case these days. If a wire of widtlis located at distancéto the metallic gate, the Coulomb
potential between electrons in the wire is screened by iimgiges in the gate. Typicallg > a. A
simple exercise in electrostatics shows that in this ¢a&®) is larger thanU (2k ) by large factor
In (d/a) [62].
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With this simplification, the momentum integration procge@dthe same way
as for free fermions (see Appendix Appendix B) with the reghdt the fully
interacting bubbles are the same as free ones

1 q
II =11 =t 3.17
+(@,q) + (@.q) Tw—q+1i0Tsgnw (3.17)

This is a truly remarkable result which is a cornerstonelierbL solution??.
Because our bubbles were effectively “liberated” from thieiaction effects,

system (3.14) is equivalent to what we would have obtainethfthe Random

Phase Approximation (RPA). It turns out that RPAasymptoticallyexact in 1D

in the limit ¢o/kr — 0. Solving the 2 by 2 system, we obtain for the effective

interaction

gs(W+q)+ (95 —93) g/7
w2 _ U2q2 + ’LO+

Vit (w,q)=(w—0q)

)

where??

2 2 2
u:\/1+ﬁ+u_

s s

Forgs =92 =g,
2

2
wh—q
Vig(w,q) = QWQ

@ Tt "

3.5. Dyson equation for the Green'’s function

The Dyson equation for right-moving fermions reads

2
£ (P) =i/%c+ (P-Q)Viy @T(P.Q).

Diagrammatically, this equation is shown in Fig. 12. Foelndispersion,
Si(e,p)=eFp—Gi'(e,p)

Substituting this relation back into the Dyson equations obtain

(e—p)Gy(e,p) = 1+i//%0+ (e,p) Gy (e —w,p— @) Viy (w, @) TS (e, p3w,0) -

21In QED, this statement is known as Furry theorem (W. H. FUr®g7)
22Notice that as long ags # go, the left-right symmetry is broken, i.e., the potential is no
symmetric with respect to — —q.
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V.. V

G:

Fig. 12. Dyson equation for the self-energy.

Using the Ward identity (3.13) , we get

dwd,
(= p+50) Gy (e,p) = 1+ // GO

V++ (w,q)
Jerld) g

dwd
=1+i//w—gG+(8—w7p—q)M+G+(5,p)xconst,
(2m) w—q

where

e.p)— Gy (e —w,p—q)]

const —2// dwdq V++ ©,4)

w—q

. A constant term can always be absorbed Mtavhich simply results in a shift
of the chemical potential. We are free to choose this shituoh a way that
const=0, so that the Dyson equation reduces to

E-nGiEn=t+if [86 e wp-g D @19

Notice that Eq. (3.19) is an integral equation with a differe kernel, which
can be reduced to a differential equation arBefore we demonstrate how it is
done, let’s have a brief look at a case when there is no caypktween left- and
right-moving fermionsy, = 0. In this case,

(w—-1)(w—q)

V =
(W) =m w —wq+i0+

where
w=1+ g4/
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Eq. (3.19) takes the form

dwdq G4 (e —w,p—q)
— =1 -1) .
E-nGiep=1tiw-1 [ [HHEE Dl

This equation is satisfied by the following function

1

Gy (e,p) = .
+(&p) Ve—p+i0ty/e—wp+i0*

(3.20)

This is an example of a non-Fermi-liquid behavior: the pdle fireeG splits into
the product of two branch cuts, one peaked on the mass shiedeofermions
(e = p) and another one at the renormalized mass shel (p). As left- and
right movers are totally decoupled in this problem, the saesalt would have
been obtained for two separate subsystems of left- and mghers. For exam-
ple, Eqg. (3.20) predicts that an edge state ofraegerquantum Hall system is
not a Fermi liquid, if spins are not yet polarized by the magrfeeld [63]. The
same procedure for a spinless system would give us a p@é-liith a renor-
malized Fermi velocity. The non-Fermi-liquid behavior déised by Eq. (3.20)
is rather subtle: it exists only if bothandp are finite. In the limiting case of
p = 0 (tunneling DoS) we are back to a free-fermion behadide,0) = ¢~ 1.
Also, thee— integral of Eg. (3.19) gives a step-like distribution fupatin mo-
mentum space. The spectral function, however, is chaistitatly non-FL-like:
instead of delta-function peak we have a whole redjidr< || < w |p| in which
ImG is finite. At the edges of this interval Ihhas square-root singularities.

3.6. Solution for the cas@ = g4
Substituting the effective interaction (3.18) into Dysaqpuation (3.19), we obtain

. [ dwdq w+q
E-pGlen) =1+i [ G- wr-agl0) 57

w? —u?q

where
=+/1+2g/m.

Notice that the constant is replaced by a momentum-dependent interaction,
g (q) . The reason is that without such a replacement the integratgks at the
upper limit. Here, the assumption of a cut-off in the inté¢i@tbecomes impor-
tant again. Transforming back to real time and space

// dsdpG i(pa— Et)
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we obtain the Dyson equation in a differential form

0 0 ,
((% + %) G (z,t) = P(x,t) G (x,t) —id (x)d(t), (3.21)
where
(2, 1) / / dwdge @D g () —— L9 (3.22)
" 4n? w? —u2q? +i0t’

The integral forP diverges ifg is constant. To ensure convergence, we will
approximatey (q) = ge~!9/% . An actual form of the cut-off function is not
important as long as we are interested in such times andagpatrvals such
thatz,t > g, . The integral ovew is solved by closing the contour around the
poles of the denominatar = +u |g| (1 +:0"). Fort > 0, we need to choose
the one with In < 0. Doing so, we obtain

dw .sgng + u
PR it et S e

i(qz—ulqt|)
o 2u ¢ '

Solving the remaining— integral, we obtain foP (z, t)

P(m):i( utl  u-1 )

dru \xz —ut+1i/qp T+ ut+i/qo

Fort < 0, one needs to changge — —qo in the last formula.
The delta-function term can be viewed as a boundary comditio

G (z,04) — G (z,0—) = —id (z). (3.23)

Once the functiorP (z, t) is known, Eq. (3.21) is trivially solved in terms of new
variables: = = — t, s = x + t. For example, fot > 0

G+ (r,t > 0) = Go (x,t) f~ (r) exp [2 /S ds'P (r, s’)] , (3.24)

where functionfs () is determined by the analytic properties®fs a function
of . Substituting result foP (z, t) into Eq. (3.24), we get

1 r—t+1i/qo atl/2 r—t—1i/q \"
t = t ) (=0 Bl A/A L
G+(£C, >O) 27TG0(ZC,)f>(I )<(E—Ut+l/QQ> 9c+ut—2/q0

where
C(u—1)?
Su

(3.25)
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Formula fort < 0 is obtained by choosing another functign and replacing
go — —qo. Functionsf. . are determined from the analytic properties. First of

all, recall that
1

x —t +isgnt0t’
We see that althougy is not an analytic function of for anyt, it is analytic
for Ret > 0 in the right lower quadrant (Im< 0) and for Re < 0 in the upper

left quadrant (Imm > 0). The interaction cannot change analytic properties of a

Green'’s function hence we should expect the same propésthesd for full G.
23

Go (,T, t) =

From the boundary condition (3.23), it follows that

f> (@) = f<(2)
and f(0) = 0.

Analyzing different factors in the formula fofz, we see that only the term
(x —tFi/q)" does not satisfy the required analyticity property. Thisntés
eliminated by choosing functiofi(z) as

f@)=(g2®+1)""

Finally, the result foiG takes the form

G, (o.4) 1 1 z—t+iy \/?
x = —
T 2 x — t+isgnt0t \ x — ut + iy

1

B —ut+iv) @+ ut— i)

wherey = sgnt/qo. It seems somewhat redundant to keep two different damp-
ing terms {sgnt0* and~) in the same equation. However, these terms contain
different physical scales. Indeedgnt0™ enters a free Green'’s function afd
there has to be understood as the limit of the inverse sysitam ©n the other
hand,y contains a cut-off of the interaction. Obviously| > 1/L — 07 for

a realistic situation. The difference between the two datbécomes important

23Indeed, this property follows immediately from the Lehmaepresentation fofy

G (z,t) = —iz \M,Jo\2eip”zefi(E“7E°)t, for t > 0;
v
= ZZ |M,Jo|2 efiszei(E“fEU)t, fort < 0,
v

whereM o are the matrix elements between the ground state andusteth energyE, > Ey. The
required property simply follows from the condition for e@ngence of the sum.



42 Dmitrii L. Maslov

for the momentum distribution function and tunneling DoScdssed in the next
Section.

3.7. Physical properties

3.7.1. Momentum distribution
Having an exact form of the Green’s function, we can now datetthe momen-
tum distribution of e.g.,right-moving fermions:

ny (p) = —i/ dre PGy (z,t — 0T)
R N
- 2n ) w40t [gga? +1]°
) e , 1 1
= dxe™"P" |P— —ind —_—
e [ [
1 sin |p| 1
= - — =S @
2 7 grp/ r  [gdz? +1]

We are interested in the behaviorgat— 0 (which meangp| < ¢o). The final
result forn, (p) depends on whetheris larger or smaller thaih/2 [59, 64].

e Fora < 1/2 (“weak interaction”), one cannot expasiah px in 2 because the
resulting integral diverges at= oo. Instead, rescaler — y

1 1 [ s 1
n+(p):———/ dy>=Y =
0 Y [(qo/p)zy2 +1

and neglect in the denominator. This gives

ny (p) = 2+C ('5()') sgrp (3.26)

where )
SN T

Cl = I (—204) .

Notice thatn (p) is finite (= 1/2) atp = 0, although its derivative is singular.
We should be able to recover the Fermi-gas step at 0 by settinga = 0 in
(3.26). Indeed,

1 1
(1!1_)mOCl _a—2o¢ T2
and
1—sgmp
n(p)=——5—

2 )
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which is just the Fermi-gas result. Notice also that thereothing special about
the limit o« — 024, Indeed, constard, has a regular expansiondn

1
012_5—7044'---7

wherey = 0.577 ... and factor(|p| /qo)%‘ can be expanded for finiggand small
aas

(Ipl /90)** =1+ 2aIn |p| /qo.
To leading order inv, we obtain

1 1
ny (p) = 3 ~S9P5 [1+2aln|p| /qo] = no (p) — asgrpIn|p| /qo,

which is a perfectly regular i (but logarithmically divergent gt — 0) be-
havior. Once again, it is not surprising: despite the faat the results for a 1D
system differ dramatically from that for the Fermi gas, theg still perturbative,
i.e., analytic,n the coupling constant.

e Fora > 1/2 (“strong interaction”), it is safe to expanth pz and the result

is
1
ny (p) = 3~ Cap/qo,
where
o = 1 T(a—1/2)
Yo/ T(a)

In this case, no remains of a jump at the Fermi point is preisemt. (p) which
is a regular, linear function near= 0.

e Finally, « = 1/2 is a special case, where expansiorpinesults in a log-
divergentintegral. To log-accuracy

L )
2 mq |pl

In generalpn (p) is some hypergeometric functiongfq, which decays rapidly
for p > qo and approacheisfor p < —qq. A posteriori,this justifies the replace-
ment of exack: (p) by its free form in the Dyson equation.

3.7.2. Tunneling density of states
Now we turn to the tunneling DoS

N(e) = —%ImGR (e,2=0).

24contrary to some statements in the literature.
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Recalling that [23]

GR(e) = G(e),fore >0;
= G (e), fore <0,
we see that
ImG* (¢,0) = sgreImG (&, 0)
and
1 1 et —iet ryx
N(e) = ——sgrelmG(0,e) =——sgre | [ dte*'G(0,t) — [ dte”***G™ (0,1)
™ T
1 :
= ——sgre [/ dte™ {G (0,t) — G* (0, —t)}}
™
Fort — oo,
const
G(0,t) = ———=
( ) (_t)1+2a
and

G (0,t) — G* (—t)

is an odd function of. Thus

N (g)

—lsgrEImG (0,¢) = _lsgml_ U dte’**G (0,t) — /dte‘iEtG* (O,t)]
T T 21

> sinet

—lsgr}:/ dtsinet {G (0,t) — G* (0, —t)} o<sgn:/ dt——.
™ 0 0 t1+2a

The integral is obviously convergent far< 1/2. In this case,
2a
N (g) o< e[

which means that the local tunneling DoS is suppressed &dirai level. Actu-
ally, the exponent forr > 1/2 is the same, however, the prefactor is a different
function of« [65].

The DoS in Eqg. (3.7.2) with exponefty, wherea is given by Eq. (3.25)
corresponds to tunneling into the “bulk” of a 1D system, when the tunneling
contact (with a tip of an STM or another carbon nanotube angsbe first one)
is far away from its ends. In the next Section, we will analyeneling into an
edge of a 1D conductor, which is characterized by a diffeegpbnenty’.
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4. Renormalization group for interacting fermions

The Tomonaga-Luttinger model can be solved exactly as itdeasg in the previ-
ous Section—only in the absence of backscattering. Battksicey can be treated
via the Renormalization Group (RG) procedure. This treatne standard by
now and discussed in a number of sources [1, 2, 3, 4, 5, 6, 7,18]9For the
sake of completeness, | present here a short derivatioredR@ equations. A
reader familiar with the procedure can skip this Sectiongmdirectly to Sec. 5,
where these equations will be used in the context of a simgeity problem.

An exact solution of the previous Section is parameterizetiln coupling
constantsgs andg,, which are equal to their bare values. In the RG language,
it means that these couplings do not flow. Let’s see if thisdeed the case. In
what follows, | will neglect they,— processes, as their effect on the flow of other
couplings is trivial, and, for the sake of simplicity, cothsi a spin-independent
interaction. To second order, the renormalization of ghe coupling is ac-
counted for by two diagrams: diagrams a) and b) of Fig. 13.

Diagram a) is a correction tgj, in the particle-particle channel. The correc-
tion to g, is given by

(99)@ = (292)2

Without a loss of generality, one can choose all momenta torbthe Fermi
“surface” ky = ko = k3 = k4 = 0. Choosey > 0 (the other choicg < 0 will
simply double the result)

(), -

= / dq/dw
(e1+w)—qi(e2—w)—¢q

2mg /Mz 92 | iA
n
2m)? Jo q51+€2+w+2zq AT e 4 &9

dg | dwGy (ie1 + iw, k1 + q) G— (ieg —iw, k2 — q) .

dq

dwGy (ie1 + iw, ) G_ (ieg — iw, —q)

Adding the result up with the (identicaj)< 0 contribution, we find

2 .
(2)) _ 92, iA
(92 a 2T n&'l +€2.
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Diagram b) is a correction tg, in the particle-hole channel:

2
(952)) - % - /dq/de+ (ie1 +iw,q) G- (ie4 + iw, q)
b (2m)

A 1 1
= 5 dq | dw- —-
2m)* Jo i(e1+w)—qilea+w)+q
omi /’Wd 1 g2 i
= ——0 =—-—"=In .
(27‘1’)292 0 q€1—€4+w—|—2iq AT g1 — ey

As in the previous case, the final result is:

2 .
(2)) _ 9, iA
(92 b 2 n61 —64.

If we sum only the Cooper ladders, adding up more verticaradtion lines
to diagram a), the full vertex becomes

14+ g21n iA

e1tea

FPP

(To keep track of the signs, one needs to recall that in Matsufbpequencies each
interaction line comes with the minus sign from the expamsidheS— matrix).
The resulting vertex blows up for attractive interactigp € 0) ase; + 2 — 0,
which is nothing more than a Cooper instability.

Likewise, untwisting the crossed lines in diagram b) andragichore interac-
tion lines, we get the particle-hole vertex

g2
Cpn N

:1—ggln '

€1—¢€4

This vertex has an instability for repulsive interactign ¢ 0). In fact, none of
these instabilities occur. To see this, add up the resulitagirams a) and b)

2 i\ i A 2 _
( 52)) =%y ! B S
atdb 2T €1+ ¢e2 €1 — €4 2 1+ &9

In the RG, one changes the cut-off and follow the correspanevolution of the
couplings. As the cut-off dependence cancelled out in theltréor (952)) g
+

a

couplinggs remains invariant under the RG flow.
Backscattering generates additional diagrams: diagrf)srcFig.13.
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£
R - MWW
f1) f2)

Fig. 13. Second order diagrams for coupligggsolid wavy line) and;; (dashed wavy line). Straight
solid and dashed lines correspond to Green’s functionsgbt-riand left moving fermions, corre-

spondingly.
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Diagram c) describes repeated backscattering in the particle-padiannel,
which is equivalent to forward scattering. Therefore, thagram gives a correc-
tion to go— coupling. Using the relation betweéh. , i.e.,Gy = — (Gx)", we
find

2
(g§2>) - 9_12/dq/de_ (ie1 + iw, q) G (ie4 + iw, q)
e (2m)

2
(29—1)2 [/ dq/d(.uGJr (ie1 +iw, q) G (ieq +iw, q)
T

The last integral is the same as l(cyf)) . Thus,
2 * 2 ;
<2>) _ 9 {d <1>} _ 91y, —H
(92 c g% 92 2 n€1 -‘1-62.

The rest of the diagrams provide correctiongto
Diagram d1) is the same as diagram a) except for the prefactor being equal

t0 9192 :

( (2)) _ 9192, iA
1 ==—"In
d1 2 €1 +e2

Diagram d2) is a complex-conjugate of diagram d1). The sum of diagrams
d1) and d2) is equal to

) 0192 iA 9192 —iA
91 = In + In
dl+d2 2 €1+ &2 2T €1+ &2
9192 ] A
= Z=="In .
T €1+ é2

Diagramse) is a polarization correction to the baye—coupling:
2 2
(9; ))62 - 91H2/€F (WZEI_EQaQZO)‘
fermionic loop

Using Eq. (B. 8)we obtain

(2)) _Ns o A
(gl e 271'91 . |61 - <‘:‘2|7

whereN, is the degeneracy factor (=2 for spin 1/2 fermions, occupwiisingle
valley in the momentum space).
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Diagram f1) is the same as the bubble insertion, except for no minus s@n,
degeneracy factof\;) factor, and the overall coefficient ég .

(9(2)) = —i9192 In _A .
L) 2m ler — &2

Diagram f2) is equal to f1). Their sum

1
(g§2)) =—=g1921n
iy

fl+f2 le1 — e

Collecting all contributions together, we obtain

T2 = =g+ (o) + (o) +(4”) :

2 A 2 iA 2 —iA
Iy = 92—9—2111 ! —|—g—21n ! —g—lln ! ;
2m 1+ &9 2 e1—e4 2 E14 &9

cancel out in the RG sense

2 2 2
e G ) ),
A N A 1
I = g-2%n — g+ —giggln ————.
i €1+ €2 2 |61—€2| T |61—€2|

Second and fourth terms in; also cancel out in the RG sense. Changing the
cut-off from A to A 4+ d A, we obtain two differential equations

dl'y ry
T T o @y
dl'y r?
W = _Ns%7 (4.2)
wherel = In A. We see that a quantity
= 1
I'=0 — —T; =const=g (4.3)

N, 2N

is invariant under RG flow, therefore its value can be obthmesubstituting the
bare values of the coupling constangs &ndg; ) into (4.3). The RG-invariant

combination is then )
f = 92 — Egl (44)

For spinless electrons\; = 1),

[=Ty-T,=U(0)—U(2kp).
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This last result can be understood just in terms of the Pairciple. Indeed,
the anti-symmetrized vertex for spinless electrons isiobthby switching the
outgoing legs of the diagram{, p2 — ps, p4). To first order,

I (p1,p2;p3,pa) =U (p1 —p3) — U (p1 — pa) -

Choosingps = p1 — ¢ andps = p2 + ¢, we obtain [recall thal/ (¢) = U (—q)]

I (p1,p2lq) = U (¢) = U(p1 — p2 — q)-

One of the incoming fermions is a right mover (= pr) and the other one is a
left mover (o = —pr). Asq is small compared tpx, we obtain

r (pl,p2|q) =U (O) - U(Qkp)

In fact, for spinless electrong andg; processes are indistinguishalSlas we
do not know whether the right-moving electron in the finatesia a right-mover
of the initial state, which experienced forward scatterimghe left-mover of the
initial state, which experienced backscattering. A propay to treat the case of
spinless fermions is to include backscattering into Dzsfaileskii-Larkin scheme
from the very beginning, re-write the Hamiltonian in ternfisarward scattering
with invariant coupling”, and proceed with the solution. All the results will then
be expressed in terms bfrather than ofy,.

Solving the equation faf'{, gives on scale

1
r—— . (4.5)
(1) "+ XemA/e

At low energies'; renormalizes to zerd ¢ = I'; (I = c0) = 0), if the inter-
action is repulsive, and blows up at= Aexp (—1/]¢1]), if the interaction is
attractive. Couplind’s also flows to a new value which can be read off from
Eq. (4.4)

1
Fzzgz——N g1-
S

Roughly speakingg; is not important for repulsive interaction as the effective
low-energy theory will look like a theory with forward scating only. This does

25That does not mean that backscattering is unimportant! resowith a different scattering
amplitudeU (2kg) . In fact, it is only backscattering which guarantees thatRaeli principle is
satisfied, namely, for a contact interaction, wiiéri0) = U (2kr) , we must get back to a Fermi
gas as fermions are not allowed to occupy the same positispaoe and hence they cannot interact
via contact forced. Our invariant combinatibh(0) — U (2k ) obviously satisfies this criterion. We
will see that bosonization does have a problem with respgd¢tie Pauli principle, and it takes some
effort to recover it.
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not really mean, however, that one can consider a fixed psiatrgew problem
in which backscattering is absent, and apply our exactisoltb this problem.
Instead, one should calculate observables, derive the R&tiegs for flows, and
use current values of coupling constants in these RG eausatin example of
this procedure will be given in the next Section, where we s@k that the flow
of I'; provides additional renormalization of the transmissioefficient in an
interacting system.

Assigning different coupling constants to the interactdriermions of par-
allel (g1))) and anti-parallel4; ) spins, one could see that the coupling which
diverges for attractive interaction is in fagt, . This clarifies the nature of the
gap that RG hints at (in fact, a perturbative RG can at mosgjus a hint): it is a
spin gap. This becomes obvious in the bosonization tecen@agthe instability
occurs in the spin-sector of the theory. An exact solutio.bther and Emery
[66] for a special case of attractive interaction confirnis rediction.

5. Singleimpurity in a1D system: scatteringtheory for interacting fermions

A single impurity or tunneling barrier placed in a 1D Fermggaduces the con-
ductance from its universal valu€*/h per spin orientation—to

e,
G = st|t0| , (5.1)

wherety is the transmission amplitude. The interaction renormaalithe bare
transmission amplitude. As a result, the conductance dkpen the charac-
teristic energy scale (temperature or applied bias), wlidbserved as a zero-
bias anomaly in tunneling. This effect is not really a unigueperty of 1D

. in higher dimensions, zero-bias anomalies in both dirtg alean (ballistic)
regimes [67, 12, 13, 14] as well as the interaction correctinothe conductiv-
ity [67, 15], stem from the same physics, namely, scatteoihglectrons from
Friedel oscillations produced by tunneling barriers or imifies. 1D is special
in the magnitude of the effect: the conductance varies Bigmitly already on
the energy scale comparable to the Fermi energy, whereagtierdimensions
the effect of the interaction is either small at all energiebecomes significant
only at low energies (below some scale which is much smdien £ as long
as the parametéetri, wherel is the elastic mean free path, is large. The 1D
zero-bias anomaly is described quite simply in a bosonizeddage [68], which
does not require the interaction to be weak. We will use tagedption in Sec.6.
However, in this Section | will choose another descriptida-the scattering the-
ory for fermions rather than bosons—developed by Matvege, ¥nd Glazman
[11]. Although this approach is perturbative in the int¢i@t, it elucidates the
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underlying mechanism of the zero-bias anomaly and allowsuficextension to
higher-dimensional case (which was done for the case ofelinmnin Ref.[12]
and transport in Ref.[15]).

5.1. First-order interaction correction to the transmissicoefficient

In this section we consider a 1D systemspiinlessfermions with a tunneling
barrier located at = 0 [11]. For the sake of simplicity, | assume that the barrier
is symmetric, so that transmission and reflection amplifadthe waves coming
from the left and right are the same. Also, | assume that ¢eedation is present
only to the right of the barrier, whereas to the left we haveentt gas. Such
a situation models a setup when a tunneling contact segaaal® interacting
system (quantum wire or carbon nanotube) and a “good metakre one can
be neglect the interaction. We also assume that the intenagbtentiallU (x)
is sufficiently short-ranged, so th&t(0) is finite and one can neglect over-the-
barrier interaction. Howevet] (0) # U (2kr) (otherwise, spinless electrons do
not interact at aff).

The wave function of the free problem for a right-moving stat

1

P (z) = N7 (€™ +roe ™) [z < 0; (5.2)

1 _
= ﬁtoedﬂr, x > 0.
For a left-moving state:
0 1 —ikx ikx

() = ﬁ(e + roe ),:c>0;
—tge % 2 < 0. (5.3)
VL

Herek = v2mFE > 0. To begin with, we consider a high barriéts| < 1,79 ~
—1. Then the free wavefunction reduces to

P (x) = %sinkw,x < 0 (incoming from the left+reflected); (5.4)
%toei’”,x > 0 (transmitted left— right); (5.5)

26For a contact potential [which leads 6(0) = U (2kr)], the four-fermion interaction for the
spinless case reduces @1 (0)] 22 (0).. By Pauli principle, [wf (O)]2 = T2 (0) = 0, so that
the interaction is absent.
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a) b)

Fig. 14. Correction to the Green’s function: exact with expo the barrier and first order in the
interaction.

W0, (@) = %toe_“”, z <0 (transmitted right left); (5.6)
—% sinkz,z > 0 (incoming from the right+reflected)(5.7)

The barrier causes the Friedel oscillation in the electiemsiy on both sides of
the barrier. The interaction is treated perturbativelg,finding the corrections to
the transmission coefficient due to additional scatterirthepotential produced
by the Friedel oscillation. Diagrammatically, the corfens to the Green’s func-
tion are described by the diagrams in Fig.14, where a) reptseshe Hartree and
b) the exchange (Fock) contributions, correspondinglym@ared to the text-
book case, though, the solid lines in these diagrams are teenG functions
composed of the exact eigenstates in the presence of therl{@ut no interac-
tion). Because the barrier breaks translational invagathese Green'’s functions
are not translationally invariant as well. | emphasized tact by drawing the di-
agrams in real space, as opposed to the momentum -spaceamqateon. Notice
also that the Hartree diagram is usually discarded in teibbdecause the bub-
ble there corresponds to the total charge density (denkéleotrons minus that
of ions), which is equal to zero in a translationally invatiand neutral system.
However, what we have in our case is theal density of electrons at some dis-
tance from the barrier. Friedel oscillation is a relativelyrt-range phenomenon
(the period of the oscillation is comparable to the electmarrelength), and it is
possible to violate the charge neutrality locally on sucleaes As a result, the
Hartree correction is not zero.

To first-order in the interaction, an equivalent way of sofythe problem is
to find a correction to the wave-function, rather than thee@i® function, in
the Hartree-Fock method. The electron wave-function witickludes both the
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barrier potential and the electron-electron interactfon i

be(@) = )+ / 02’ G5 (x.2', E)

0

X / da" [V (2")6(x' — ") + Ve (2, x”)]wg ("), (5.8)
0

where Gy is the Green's function of free electrons on the right seéne;|E
is the full energy of an electroi/y andV,, are the Hartree and the exchange
potentials. The Hartree potential is

Vi (z) = /da:'U(x —2')on(x'), (5.9)

wheredn(z) = n(xz) — ng is the deviation of the electron density from its uni-
form value (in the absence of the potential) &h@:) is the interaction potential.
Hartree interaction is a direct interaction with the motiolaof the electron den-
sity by the Friedel oscillation. For a high barrier, whichessentially equivalent
to a hard-wall boundary condition, the electron density is

kedk sin 2kpx
n(x) = 4/0 o sin (kx) = ng <1 — m) — (5.10)
on(x) = —sin(2kpz) 27z, (5.11)

whereny = kr /7 is the density of electrons. Then,

oo

1
Vi (x) =5 ; dr'U(z — 2') -

sin 2kpa’
—_— (5.12)
Notice that although the bare interaction is short-rariye efffective interaction
has a slowly-decaying tail due to the Friedel oscillatiorh€ integral goes over
only for positive values of’ because electrons interact only there.)

The exchange potential is equal to

ke dk

Vo) = ~Ula=a)[ [ 5 W] vho)
ke dk o
+/0 o [w‘lk(w )] 1/’91@(55)] (5.13)

Since we assumed that electrons interact only if they ar@téakcto the right of
the barrier, the integral in (5.8) runs only overz’ > 0 and the Green'’s function
is a Green’s function on a semi-line. The wave-function ir8]5eeds to be
evaluated at — oo, which means that we will only need an asymptotic form of
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the Green'’s function far away from the barrier. This formasmstructed by the
method of images

G0>(I,ZZ?I,E):Go(CC,I/,E)—Go(I,—ZC/,E), (514)
where )
Go (z,2'E) = _—eik|m_m/|
1V

is the free Green’s function on a line with= v/2mFE andv;, = k/m. Coordi-
natez’ is confined to the barrier, whereas— oo, thusz > 2z’ and

) .
Gy (x,2', E) = ——sin(ka')e™®.
Vg,
5.1.1. Hartree interaction

Our goal is to present the correction to the wave-functianelectrons going
fromz < 0toz > 0in the form

1 :
— ¥ = —stethT, 5.15
’[Z)k ’[Z)k \/Z ( )
wheredt is the interaction correction to the transmission coeffici&ubstituting
(5.15) into (5.8), we obtain for the Hartree contributiort to

stH 2 [ ,

— = dz sin kze™ Vi (z),

to vr Jo
where one can replacg, — wvg in all non-oscillatory factors. For a delta-
function potential[/ (z) = U¢ ()

U sin2kpx

Vi (@) = 2T x

(5.16)
However, the)— function potential is not good enough for us, because thaétar
and exchange contributions cancel each other for this dasedel oscillation
arises due to backscattering. With a little more effort, ome show thalt/ in the
last formula is replaced by (2kr) :27

U (2kF) sin2kpx
Vi (z) = — (27TF) xF :

2"Notice that the sign of the Hartree interaction is attractiear the barrier (assuming the sign of
the e-e interaction is repulsive 2t ): for x — 0, Vi () — —U (2kp) kp /7. The reason is that
the depletion of electron density near the barrier meartstieapositive background is uncompen-
sated. As a result, electrons atractedto the barrier and transmissionéshancecby the Hartree
interaction.




56 Dmitrii L. Maslov

Substituting this intdt /¢ yields

Otu = U2kr) /OO dzsin (kx) e sin2kro
to TR 0 x
U2k < 1 - . in 2k
= (7F)/ dr— (ez“”” — 1 regular correction to In)tM
TUE  Jo 27 ~~ T

r—e€ =

U(Qkp) /ood 1 2ikxsin2kpx U(2I€F)
0 24 T 2mvp

TR

° \ sin 2k
X / dx (sin 2kx + i~ 1 cos 2ka; yet another regular correct@nSu
0 ~~ X

2k > sin 2k
= U2kr) / dz sin 2kx75m L
T

27TUF 0
_ U(2kp) . k+kp ~ao In kp
drvp - k—kp| T |k —kp|’

where
g1
47T’UF ’

/
a?kp -

andg: = U (2kr) . In deriving the final result, all terms regular in the limit
k — kpr were discarded.

5.1.2. Exchange

Now bothz andz’ > 0. We need to select the largest wave-functiom, such
that does not involve a small transmitted component. Olshouhis is only
possible fork < 0 (second termin (5.13)) ang’ , , given by (5.7). Substituting
the free wave-functions into the equation for the exchantgraction, we get

Vew(xaxl) =-U(z - x’)p(w,x’), (5.17)

where the 1D density-matrix is

b dk
plz,2') = 4/ o sin(kz) sin(kz") (5.18)
0
o dk,
- 2/ 5 [cosk(x — 2') — cosk(z + z')] (5.19)
0

sinkp(z + 2')

) (5.20)
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where. .. stand for the term which dependsor 2. This term does not lead to
the log-divergence int and will be dropped®. Forz = 2/, we get the correction
to the densityin (x) , as we should.
Correction to the transmission coefficient
o0 o0 : / 11
Stex[to = —i/ d:v'/ dx"U (2’ — 2"") sin kw'eimnw
TE Jo 0 ' 4z
(5.21)
After a little manipulation with trigonometric functionshich involves dropping
of the terms depending only an— z’, we arrive at

Otey 1 T dq > dxy
Tl AL (5.22)
x{sin2(k — kr + ¢Q)zy —sin2(k — kp — q)x+}, (5.23)
where o
. J;”T . (5.24)

Integral overr, provides a lower cut-off for the— integral

+oo
/ dm—+{51n 2(k —kp + q)zy —sin2(k —kp —q)z+}  (5.25)
0 T+

- gsgr(q +k—kp)+ gsgr(q —k+kp) (5.26)
= 70(q— |k —kp|). (5.27)
Now N
Otey 1 / < dq
ez “u(g). 5.28
™ T D 0 (9) (5.28)

As U (q) is regular ay — 0 2°, one can také/ (¢) out of the integral af = 0
(denotingU (0) = g2)

Oter 1 /qU dq ' do
R — 2 — = —ayln ————.
to drvp? lk—kp| 4 O |k — kp|

28Notice that the important part of the exchange potentigdfmilsivenear the barrier. This means
that electrons are repelled from the barrier and transaorissisuppressed.

29f U(q) has a strong dependencegfor ¢ — 0 (which is the case for a bare Coulomb potential
U (¢) x Ing), this dependence affects the resulting dependence of thentission coefficient on
energy|k — kr|, i.e.,on the temperature and/or bias. Instead of a familiar pdaerscaling of the
tunneling conductance for the short-range interaction,dbnductance falls off with energy faster
than any power law for the bare Coulomb potential.
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Combining the exchange and Hartree corrections togethdo{ng so, we choose
the smallest upper cut-off for the log which we assume to bertherse interac-
tion rangego)) we get

q0
0t = —tpa In ——— 5.29
oC 11 |k — kF' 3 ( )
where
o = o — aiy,, = 9279 ;asymmetric geometry. (5.30)

4WUF

It can be shown in a similar manner that if we had interactegjons onboth
sides of the barrier, the result faf would be double of that in Eq. (5.30).

I ;o _ 92— 01
[0 —aO_QQkF = 27TUF

; symmetric geometry. (5.31)

The sign of the correction todepends on the sign 9 — g1 = U (0)—U (2kF) .
Notice that transmission enhancedif U (2kr) > U(0). Usually, this behavior
is associated with attraction. We see, however, that evémeifinteraction is
repulsive at allg but U (2kp) > U(0), it works effectively as an attraction.
The casd (2kr) > U(0) is not a very realistic one, at least not in a situation
when electrons interact only among themselves. Other degrefreedome.g.,
phonons, must be involved to give a preferenceitp— scattering.

5.2. Renormalization group

Itis tempting to think that the first-order in interactiorrection tot, in Eq. (5.30)
is just an expansion of the scaling formx |k — kF|”/ . A poor-man RG indeed
shows that this is the case. Near the Fermi lekek kr = (F — Er) Jup =
/v so that the first-order correction tas

W,
tl :to (1—a'1n—0) N
le]

whereW, = qovr is the effective bandwidth. The meaning of this bandwidth
is that the states at W, from the Fermi level (=0) are not affected by the inter-
action. Forle| = Wy, t1 = to. Suppose that we want to reduce to bandwidth
Wy — W1 < Wy and findt at|e| = W,

tlzto (1—0/111%).

It is of crucial importance here that coefficiemt (which will become the tun-
neling exponent in the scaling form we are about to get) ip@ribonal to the
RG-invariantcombinationU (0) — U (2kp) = g2 — g1 for spinless electrons.
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This means that’ is to be treated as a constant under the RG flow. Repeating
this procedure using found at the previous stage instead of a bgre: times,

we get
W,
thi1=t, [1 =01 ™.
o ( aanH)

The renormalization process is to be stopped when the baltiladincides with
the physical energje|, at whicht is measured. In the continuum limit,(, —
tn, = dt; Wp1 = W,, — dW), this equation reduces to a differential one

dt ,dW
N el
t w
Integrating fromt (&) to to (and, correspondingly, frofl” = |e| to W = W),
we obtain )
t(e) = to(le] /Wo)* .

5.3. Electrons with spins

Now let's introduce the spin. The effect will be more intéieg than just mul-
tiplying the result for the tunneling conductance by a faabtwo (which is
all what happens for non-interacting electrons.) To keépgthgeneral, | will
assume an arbitrary “spin” (which may involve other degdfdseedom) degen-
eracyN, and putN, = 2 at the end. In this section we will exploit the result of
Sec.4 stating the backscattering amplitude flows under R@.flow affects the
renormalization of the transmission coefficient at low gies.

Repeating the steps for the first-order correctionfiar the case of electrons
with spin is straightforward: one just has to recall that tetree correction is
multiplied by N, (as the polarization bubble involves summation over alijio
components, it is simply multiplied by a factor 8f;). On the contrary, the ex-
change interaction is possible only between electronseo@ime spin, so there
are N, identical exchange potentials for every spin componenim Igaing to
discuss the strong barrier case first in the symmetric gagnten, taking into
account what we have just said about the factagfwe can replace the result
for spinless electrons (5.30) by

/

— N,
o — o = oy — Nsag,, = 92— T (5.32)

drop

(and similarly for the symmetric geometry of the tunnelixgeriment). Corre-
spondingly, the correction to the transmission coeffic{gmt a given spin pro-
jection) changes to

to =to (1 —a'InW/|e|).
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The tunneling conductance is found from the Landauer foamul

2

N,
g_ZZHU' )
o=1

where, as the barrier is spin-invariant, the sum simply ameto multiplying the
result for a given spin component By;. Now, the resultin Eq. (5.32) seems to be
interesting, as thekr contribution gets a boost. I¥,U (2kr) > U (0), we have

in increase of the barrier transparency. It does not seerhdabto satisfy this
condition. For example, it is satisfied already for the déltaction potentiaf®
andN, = 2. However, as opposed to the spinless casés notan RG-invariant
but flows under renormalizations. Let's spiit into an RG-invariant part (4.4)
and the rest

1 1 1 N2-1
f = U () - —U 2k — 5 U (2k
@ 4o [ (0) Ny ( F)} dmvp N (2kr)
, 1 N2—1
= - g1,
4dmvp Ny
where B
1 1 I
! = - — = . 5.33
%= Yrop (92 ngl) drvp (5-33)

The condition for the tunneling exponent to be negative isamestrictive that it
seemed to beg; > Ngo. It is not hard to see that the RG equation fgmow

changesto
dt 1 N2-1
—=—t|a — 8 Iy (! 5.34
dl (O‘S imor N, 1()>’ (5-34)
wherel'; (1) is given by
1

Fl = 1 N
(91) +%

Integrating (5.34), we find

N, W% o
ty = to (1+ g 1n—) (lel /W)™,

drvp  |e]

where ,
N2 -1
Bs - N2

30as now electrons have spins, they are allowed to be at the gaimtén space and interact.
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In particular, forNV, = 2, we get

3/4
g1 w o’
to =t |1 — W)%s .
(152 m ) (el/w)
and conductance
3/2
g1 W 2a
= 1 In — W)*“s 5.35
6 =0 (1452 i) (el (5.35)

whereg is the conductance for the free case. Thus the flow of the batties-
ing amplitude results in a multiplicative log-renormatipa of the transmission
coefficient. One can check the first-order result is repreditexpand the RG
result to the first log.

An interesting feature of this result is that it preditiisee possible types of
behavior of the conductance as function of energy.

1. weak backscattering:
o >0— g1 < ga/Ns.
In this regime already the first-order correction corresfso suppression of
the conductance, which decreases monotonically as thgyegees down.

2. intermediate backscattering:
o' > 0buta, < 0— ga/Ns < g1 < Nsga.

In this regime, the first-order correction enhances thesprarency, but the RG
result shows that the far — 0, the transmission goes to zero. It means that
at higher energies, when the RG has not set in yet, the comuteincreases
as the energy goes down, but at lower energies the condecthetreases.
The dependence @ (¢) on ¢ is non-monotonic—there is a maximum at the
intermediate energies.

3. strong backscattering:
al, <0 — g1 > Nsgo.

In this regime, tunneling exponent, is negative and the conductance in-
creases as the energy goes down.

5.4. Comparison of bulk and edge tunneling exponents

Tunneling into the bulk of a 1D system is described by the e states ob-
tained,e.g, in the DL solution of the Tomonaga-Luttinger model (no beoakt-
tering). The “bulk” tunneling exponent is equal to

(u—1)"

2:
@ 4oy
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where
u=+/142gs/mvF.

In this Section, we considered tunneling into the edge faakniateraction and
found that the conductance scales with expogeft(5.33). To compare the two
exponents, we need to expand the DL exponent for weak intienac

2
92
200 = .
@ Am2up
Forg, = 0, the edge exponentis
1
20, = .
% 2mUE 92

We see that for weak coupling tunneling into the edge is gieoaffected by the
interaction than tunneling into the bulk: the former effstrts at the first order
in the interaction whereas the latter starts at the secatet.of his difference has
a simple physical reason which is general for all dimensitma translationally

invariant system, the shape of the Green’s function is mexdiifn a non-trivial

way only starting at the second order. For example, the inzagipart of the

self-energy (decay of quasi-particles) occur only at trewsd order. The first-
order corrections lead only to a shift in the chemical paé¢and, if the potential

is of a finite-range, to a renormalization of the effectivessidf the translational
invariance is broken, non-trivial changes in the Greenfgcfion occur already
at the first order in the interaction. That tunneling into thek and edge are
characterized by different exponents is also true in trengttoupling case (cf.
Sec.6). As the relation between the bulk and edge exponetisown for an

arbitrary coupling, one can eliminate the unknown streraftinteraction and

express one exponent via the other. Knowing one exponenttfie experiment,
one can check if the observed value of the second exponesgsugiith the data.
This cross-check was cleverly used in the interpretatiothefexperiments on
single-wall carbon nanotubes [71, 72].

6. Bosonization solution

Bosonization procedure in described in a number of booksewidws [1]-[10].

Without repeating all standard manipulations, | will onimghasize the main
steps in this Section, focusing on a couple of subtle poiataisually discussed
in the literature. A reader familiar with bosonization maafedy skip the first
part of this Section, and go directly to Secs. 6.1.5 and 6\&hkre tunneling
exponents are calculated. Some technical details of thenmegion procedure
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are presented in Appendix Appendix C. As in Sead,= 1 in this Section,
unless specified otherwise.

6.1. Spinless fermions

6.1.1. Bosonized Hamiltonian
We start from a Hamiltonian of interacting fermions withepin

1 1
_ Il 1l T
H = T Z Epagar + 272 Z Vq%,qakﬂakap.
p,k,q p,k,q

The interacting part of the Hamiltonian can be re-writteimgghiral densities

P+ (Q) = Z a;_q/gaerq/Q

p20

as
Hint = 92% > pi(@)p- (=) + 9—24% > (@) p (—0) +p- (@) p- (—a) -

The interacting part is in the already bosonized form. Famealrized dispersion
&k = |k — kr,

itis also possible to express the free part via densitiegh@gk this, let's assume
that Hy can indeed be written as

Ho= 73" Aylps (0) o1 (<) +p- (@) p- (~0)],

whereA, is some unknown function. Commuting. with Hy, and making use
of the anomalous commutatpr, (q), p+ (—¢)] = ¢L /27, we obtain

[p+(q),Ho] = % Z Aglps+ (@), p+ (@) py (=)

q
= A+ (a)
On the other hand, the same commutator can be calculatestigiie a model
with the linearized spectrum, using only the fermionic emthmutation relations
[69]. This gives
[p+ (@), Ho] = qp+ (q) -
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Comparing the two results, we see that
Ay=m
and thus .
Ho =77 p+ (@) ps (=) +p- (@) p- (—0).
q
Combining the free and interacting parts of the Hamiltonva@ obtain

H= W% (1 + g—;) zq: {r+ (@) p+ (=9) + p— (@) p- (—q)}+7r%gz Zq:m (q) p- (—q)-

Notice that if only they,— interaction is present, the system remains free but the
Fermi velocity changes.
It is convenient to expand the density operators over thmabmodes

|q| iqx —iqT

oy () = Z\/ﬁ(bqeq —|—bge ),
q>0

|q| iqx —iqT

p—(x) = Kzowﬂ(bqeq —l—bge ).

One can readily make sure that density operators definedsinvty reproduce
the correct commutation relations, given tkiia;, b” = 04,4 - Interms of these
operators, the Hamiltonian reduces to

H = (1+52) 3 a{blbg +0l 0+ 792> a (b, + by ) -
q>0 q

Introducing new bosons via a Bogoliubov transformation

c]; = cosh6,b, + sinh quT_q;

ct, = coshfgbl +sinho,b,

and choosing, so that the Hamiltonian becomes diagomnal,

2
tanh 29,1 = %,

we obtain )
H=o ;wchcq,
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where
wq =u |q| 9

g1\2  (92)\2]"? 6.2
“_[(HE) ‘(%” - 6.2
For the spinless case, backscattering can be absorbedimtarfl scattering.

The resulting expression for the renormalized velocitytifiercaser, = g4 # 91
is (cf. Appendix Appendix C.3)

and3!

g2 — g1

=4/1
Y +27T

6.1.2. Bosonization of fermionic operators
The U — operators of right/left movers can be represented as

Uy ((E) _ ;e:tQTriffm P+ (m')dm” (63)

2ra

whereq is the ultraviolet cut-off in real space. Using the commiotatelations
for p1, one can show that the (anti) commutation relations

{\I/i (z), 0l (x’)} =§(x—2a)

are satisfied.
The argument of the exponential can be re-written as tworiodields

Uy (z) = —21 eivres(@), (6.4)
VaTa
px(r) = ¢(@) Fo(2).

31Let's now introduce backscattering. Since for spinlessnfens backscattering is just an ex-
change process to forward scattering of fermions of oppagiirality (think of a diagram where
you have right and left lines coming in and then interchartgart at the exit), the only effect of
backscattering is to replagg — g2 — g1. (cf. discussion in Sec. 4). Instead of (6.2), we then have

) 97 1/2
94 g2 — g1
1+=—) — . 6.1
( + 27r) < 2w ) } €1
Now, consider a delta-function interaction, when = g2 = g4. Pauli principle says that we
should get back to the Fermi gas in this case. Howewasiill differs from unity (Fermi velocity)

and thus our result violates the Pauli principle. See AppeAgpendix C.3 for a resolution of the
paradox.

u =
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Equating exponentsin (6.3) and (6.4), we obtain

Vilp@) —9@)] = 2 / d'py (') (6.5)
_ |q 7zqm .
= Z V 27rqu T )i
Vilp (@) + 0 (@) = 27r/ dr'p_ (z') (6.6)

_ |q T—lLE
B 22\/2771)2(] q)'

Solving fory (z) andd (z) gives

. 1 iqr —iqx
(2 (:C) = —1 Z ngm (bqe @ _ bge g ) 5 (6.7)
—oo<g<oo
1 . .
I(x) = i e'%p, — bie~1") (6.8)
_OO<Zq<OO /2 |q| L ( q q )

Using (6.7) and (6.8), one can prove thatz) and 9,9 (z) satisfy canonical
commutation relations between coordinate and momentumAppenidx Ap-
pendix C.2.1)

lp (), 009 (a')] = i (z — ') . (6.9)

Using Egs. (6.5) and (6.6), we obtain the density and cuasenie gradients of
the bosonic fields

ola) = f/ dr’ (py (') + p— ( f/ da'p (z

1
Do) = VA [ @) o) =—vE [ i
i) = —%M@:).

The continuity equation,

relates the Heisenberg fieldqz, t) and¥ («, t)
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The current can be also found as
j (@, ) _—1 (z,1)
z,t) = Orp (x,1) .

We will use this relation later. Expressitg) in the real space via.

H:w/d:c[pi%—pﬂ+%/dm[pi+p2,]+gg/d:cp+p,

and using the relations

1
= —— (O, 0z0) ,
pr=73 ﬁ( © F 0,0)
we obtain a canonical form df in terms of the bosonic fields
1 —
H - —/da: [(0.)* + (0.9’ +92+g4/da:(8znp)2+92 94/@:(3119)2
2 47 47
- 1 U 2 2
- 5/@: [E (9s0)® + ukK (8,9) } (6.10)

where32

G\ (92\ ==
/(1 —) —(—) DK = T 6.11
Y \/( ton o 14 2ie (6.11)

Forgs = g2 = g, we have

u=+/1+g/m K:\/ﬁ. (6.12)

Notice that in this case X' = 1. This is important: in the next Section, we will
see that this product renormalizes the Drude weight (angé¢hgistent current).
Neither of these quantities are supposed to be affecteddiptéractions, as the
Galilean invariance remains intact. We see that it is indeedase in our model.

If backscattering is present (byt = g4), the parameters change to (cf. Ap-
pendix Appendix C.3)

w o= f14 8279 (6.13)
s

1
= . (6.14)
V1i+(g2—g1)/m
32As we have already seen in Sec.3, a difference betweemd g4 leads to the current-current
interaction in the Hamiltonian. In the bosonized form, thigraction is thege — g4) (8:9)? term
in the first line of Eq. (6.10).
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Had we started with another microscopic modetj, with fermions on a lattice
but away from half-filling, the effective low-energy theampuld have also been
described by Hamiltonian (6.10) albeit with different—aimdgeneral, unknown—
parameters and K. The term “Luttinger liquid” (LL) [70] refers to a universal
Hamiltonian of type (6.10), which describes the low-engogyperties of many
seemingly different systems. In that sense, the LL is a 1Dognaf higher-
dimensional Fermi liquids, which describe the low-energyperties of a large
class of fermionic systems, while encoding the quantiatiifferences in their
high-energy properties by a relatively small set of paranset

6.1.3. Attractive interaction

What happens for the case of an attractive interactior; 07 Formally, for

g < —m (orgo — g1 < m), u? in EQs.(6.12,6.13) is negative, which seems to
suggest some kind of an instability. Actually, this is not tase [59], as a 1D
system of spinless fermions does not have any phase tarséiven af” = 0.

All it means that the interacting system is a liquid rathertta gasi.e., it does
not require external pressure to mantain its volume. Anléxjitim value of the
density is fixed by given ambient pressure. To see this, iegte Fermi velocity
vp = wn/m, wheren is the density

2
w? =3 (1 n i) - (ﬂ) + Y (6.15)
TUR m m
and recall the thermodynamic relation

u? =m~'oP/on, (6.16)

whereP is the pressure. Integrating (6.16) with the boundary dmdP (n = 0) =
0, we obtain the constituency relation

Forg < 0, there is a metastable region of negative pressure. Thissrbahif
the ambient pressure is equal to zero, the thermodynamitalble value of the
density is given by the non-zero root of the equatfd(m) = 0:

3
22
The square of the sound velocity at this density is positive:

3 2
el

*

lglm

(u*)?
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The Fermi velocity ab = n* is
3
* * .
vp =an’/m 3.2 lg]

and parametek’

V3

*
v

K= _Y*
u* ™

is a universal number, independent of the interaction.

6.1.4. Lagrangian formulation

In what follows, it will be more convenient to work in the Lagngian rather the
Hamiltonian formulation (and also in complex time). A swititom the Hamil-
tonian to Lagrangian formulation is done via the usual caraitransformation

5= [z [ at(ip -1 w0, (6.17)

whereH is the Hamiltonian density defined such that

H:/dxH

andq andp are the canonical coordinate and momentum, corresporydiAgt
cording to commutation relation (6.9),

qg=@p=0.0. (6.18)

Performing a Wick rotatiory, — —i7, we reduce the quantum-mechanical prob-
lem into a statistical-mechanics one with the partitionchion

Z:/Dga/Dﬁe*SE,

where the Euclidian action

_ li 2 l 2
Sg = /dT/d:c {2K (0z0)" + 2uK (0,1) 187.9089619} .

In a Fourier-transformed form

1u 1 .
Sp = /dgk {§Eq2%¥9@—7¥+ §uK19,;19_,3 +2qw<p,;z9_,;] ,
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wherek = (¢,w). If one needs only an average composed of fields of one type
(¢ or ), then the other field can be integrated out. This leads to twivelgnt
forms of the action

1 1
S, = ﬁ/d% {EwQ—i—qu} PrP_i (6.19a)
_ 1 2 2|
_ 2K/dx/d7' L(@Tcp) + () ] (6.19b)
Sy = g/d% [luﬂ—i—uqﬂ 0 % (6.19c¢)
u
= g/da:/dT [1 (3719)2+(azz9)2]. (6.19d)
u

In calculating certain correlation functiors.g, the fermionic Green'’s func-
tion, one also needs a cross-correlatod). This one is computed by keeping
bothy and® in the action.

It is convenient to re-write the action in the matrix form

1 it A a
Sp = i/kon;L,D Y,
where
. cp,;)
T]ﬂ_
F ( Oy

and the inverse matrix of propagators
~ 2uK  iqw
Do ( cuk g ) |
qw  ¢“x
Inverting the matrix, we obtain
H_ 1 uK  —iw/q
w4 w? \ —w/g '

The space-time propagators can be found by performing thedtdransforms
of D. For diagonal terms, one really does not need to do it, as t#oos from
(6.19a) and (6.19c) that these propagators just coincittetive Green’s function
of a 2D Laplace’s equations. Recalling that the potentiah dihe charge is a
log-function of the distance, we obtain

K a?
2() = (RO = O) = gl
1 a®

O(z) = (I(2)9(0)—9*(0))

= In
AmK a2 + (u | + a)’
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wherea is “lattice constant’z = (x,7), andz? + w272 > a2. *® These are
the two correlation functions we will need the most. In aiddit there is also an
off-diagonal propagator

(2) = (¢ (2)0(0) = ¢(0)9(0)) = (7 (2) ¢ (0) = ¥ (0) ¥ (0))
- /d2k (55— 1) (0 ) = —z’/ko (52 -1) 71;2;;/;3 —.

= (z) depends only on the ratio/ur and thus does not change the power-
counting. To see this, introduce polar coordinates k cos a/u, w = sina, z =
(z/u) cos B, andr = zsin 3. Then

2(x,7) = —i/ &k (ei(qw—wT)_l) w/q

(271')2 u2q2 + w2

1 [>dk [*" ik cos
—Zw/ ? / do (GZk cos(a+h) _ 1) tan a.
™ 0 0

The resulting integral is a function of only= tan=! (z/ur).

(1]

6.1.5. Correlation functions
Now we can calculate various correlation functions, inglgdhe Green’s func-
tion.

Non-time-ordered Green'’s function for right movers:

Gy (z,7) = —(TP¢y (x,7)¥] (0,0) (6.20)
= L B eivAe()=0(1) —ivR(e(0)—0(0)
o2ma T ’

where(1) = (z,7) and(0) = (z = 0,7 = 0), and wherel’? is a bosonic time-
ordering operato* | will use the well-known result, valid for an average of the
product of the exponentials of gaussian fields (see the bbpkssvelik [6] or
Giamarchi [10] for a derivation)

(T T4 E)) = 652 4o x ™ ks A AT (25)7(20)) =5 X AR (VP (20))
i 49
(6.21)

33A non-symmetric appearance of the cut-off with respectrtetand space coordinates reflect an
asymmetric way the sums over bosonic momenta and frequeeneiee cut. We adopted a standard
procedure in which the sum of overis regularized byxp (— |k| a) , whereas the frequency sum is
unlimited. Other choices of regularization are possible.

343urely, it is not a conventional definition of the Green’sdiion, but it is easier to work with this
one for now, and restore the fermioriié product at the end.
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[Eq. (6.21) is essentially a field-theoretical analog ofgthabability theory result
for the average of*4"7, wherey is a Gaussian random variable.] For example, in
the average

Av(z) = <Trei\/Fsa(Z)e—i\/Fsa(0)>

Alz\/E,Agz—\/Eand

) 1/4K
A (2) = ™ Trp(21(0-00)) _ a '
22 + (ur] +a)®
Similarly, with the help of (6.21), Eq. (6.20) reduces to
Gy (z,7) = Leww(l)ww)wz(omew(ﬁ(l)ﬂw)fﬁz(om672@(1)19(0)7@(0)19(0»7
’ 2wa
1 -
_ %€7T<I>(I,T)eﬂ@(z,7)672:(z,7) (622)

K+k—1

2 4
N ¢if(/ur).
2ma \ 22 + (ulr] + a)”

where(...), stands for a time-ordered product and where it was usedrthat i
translationally invariant and equilibrium systefm? (0)) = (»? (1)) (same for
9¥). Functionf (z/ur) is a phase factor which does not effect the power-counting.

Bulk tunneling DoS Forz = 0,

 K4KT1

GO0,7)oxT 2

By power-counting,

K+ —1

(K
vie)ocle| 2 =]

= (6.23)

This is an analog of the DL result for the spinless case.

Edge tunneling DoS In a tunneling experiment, one effectively measures the
local DoS at the sample’s surface. In a correlated electron systenboundary
condition affects the wavefunction over a long (exceedimg e¢lectron wave-
length) distance from the surface. Therefore, the surfag® Differs signifi-
cantly from the “bulk” one. If a tunneling barrier is higheth—to leading order

in transmission— the DoS can be found via imposing a hardeaindary con-
dition. The presence of the surface (boundary) can be takenaiccount by
imposing the boundary conditions on the number current

. 1
jx=0,7)= —maﬂp =0. (6.24)
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atz = 0. This means thap is pinnedat the boundary,e., it takes some time-
independent value. In the gradient-invariant theory, we @aays choose this
constant to be zero. Thus,

v (0,7) =0.
This suggests that the local correlafidf0, 7) = 0, and the long-time behavior
of the Green'’s function in Eq. (6.22) is determined only by torrelator of the
9 fields. Had the boundary not affected this correlator, weld/bave arrived at

1

Gl =/ =0,7) xexp (70 (2 = 0,7)) % e

(wrong)

But then we have a problem, as Eq. (wrong) does not reprotiedede-fermion

behavior forK = 1. Consequently, the DoS at the edg€dz) |5|i*1 would
have not reproduced the free behavior either. What wentgviothat we pinned
one field but forgot the other one is canonical conjugate &ofitst one. By
the uncertainty principle, fixing the “coordinatep) increases the uncertainty
in the “momentum” {)-and vice versa. Thus, fluctuations #ffields should
increase. A rigorous solution to this problem is to changeférmionic basis
from the plane waves to the solutions of the Schrodingertémuwith the hard-
wall boundary condition and to bosonize in this basis. Thas wone by Eggert
and Affleck [75] and Fabrizio and Gogolin [76] , [9]. Here | idive an heuristic
argument based on a simple image construction, which |estthie tsame result.
Eq. (6.24) translates into the boundary conditions for theolnic propagators:

Do (z,2',7) =0; 0p2Oc (z,2',w) =0, (6.25)

for z, 2’ = 0, where subindex denotes the correlators in a semi-infinite system.
Since®, and O, satisfy the Laplace’s equation, we can view these propagato
as potentials produced by some fictitious charges. T®emnd©, can be con-
structed from the propagators of an infinite sample by thénotkbf images:

S (x,2',7) = P(x—2a,7)—P(x+2a,7);
O¢ (z,2',7) = O -2, 7)+0O(z+2,7).
Forx = 2/,
®,(0,0,7) = 0; O, (0,0,7) =20 (0,7). (6.26)

Hence, pinning the field enhances the rms fluctuations of théeld by a factor
of two. This leads us to

G4 (0,0,7) o exp (7P, (0,0,7))exp (7O, (0,0,7))

2 _
= exp (270, (0,7)) x exp (ﬁ In %) o |7 VK.
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Consequently, the DOS becomes
ve (€) o e 1. (6.27)

This result by Kane and Fisher [68] initiated the new (anfl&intinuing) surge
of interest to 1D systems (in terms of the impurity scatigtime, this result was
obtained earlier in Refs. [73, 74]). For tunneling from a teah with energy-
independent DoS (“Fermi liquid”) into a 1D system, the tuimgeconductance
scales ag. (¢)

G(e) o vele) oc )X L.

Now we see that the free-fermion behavior is correctly rdpoed forkK = 1.

Expanding the tunneling exponelst-! — 1 with paramete from Eq. (6.14)
for the weak-coupling case gives

K1 1~ g2 — g1
2mvp

This is the same result as the weak-coupling tunneling esipiof®.30) obtained
in Sec.5 via the scattering theory for interacting fermions

Where do the “bulk" and “edge" forms of DoS match? Considepbject
G(xz = a',e). At the boundary, the DoS is of the “edge” form (6.27). Far
away from the boundary, the Green'’s function does not dependandv(c)
acquires a “bulk" form (6.23). As a function of G(x = 2/,¢) varies on the
scale~ u/|e| and the crossover between two limiting forms.obccurs on this
scale. Choosing the energy in a tunneling experimenttemperature or bias—
whichever is larger, determines how far from the boundagysitould go in order
to see a change in the scaling behavior.

6.2. Fermions with spin

For fermions with spin, each component of the fermionic apmris bosonized
separately

wi,a =

\/21% exp [+iV/T (¢o F Vo)) -

Indexo of the bosonic field does not mean that bosons acquired sgErsimply
have more bosonic fields. Charge and spin densities andntsiaiee related to
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the derivatives of the bosonic fields

1 ’ ’ 1, .
Pt,0 = 2ﬁ (900' + 190) Po = P+,0 + P—0 = \/E(paa
. 1
Jo = Pto—P-o = ﬁﬁé;

1 2
pe = pr+p=—= (P +¢)) =/
/ / 2 /
ps = pr—p=—= (91— ¢)) = v
. o ;o 2
Je = ]T+]l:ﬁ(§T+0l):\/;§c?
) | 2
Js = JT_Jl—ﬁ(ﬁ%_ﬁl)_\/;ﬁ;a

where’ denotes), and where the charge and spin bosons are defined as

_ ety Ut 9,

Pe,s \/5 y Ue,s = \/5
| assume that the interaction is spin-invariant, i.e., dogg of 1 T and? | fermions
are the same. Substituting the relations between chargesn-densities into
the Hamiltonian, one arrives at the familiar bosonized Hemian which con-
sists of totally independent charge and spin parts

-5l %

. (6.28)

H = H.+H,;
L[ gt 2 2,
He = 3 / Ao (0:6.)° + ueKe (0,6.)°
H = 2 a0l (9,60)? + u K, (9,0,)°
S - 2 'rK-S rY¥'s US S xrvs
201
e / da cos (\/8_779250). (6.29)

Parameters of the Gaussian parts are related to the migiogm@rameters of the
original Hamiltonian

(10 2)7 (14 2 Vo (rafem N
27 27 e 1+ (492 —g1) /27 7

w = (1-(2) Vo (Lrg/em\'?
* 27 T 1—g1/27 '

Uc
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Notice thatK. < 1for g; < 2¢2 (“repulsion”) andK. > 1for g; > 2g, (“attrac-
tion”). The boundaries for “repulsive” and “attractive” lgviors coincide with
those obtained when studying tunneling of interactingtetes. The velocity of
the charge part fog; = 0 coincides with that found in the DL solution (Sec. 3)

9 1/2
v — (Hﬂ) .
i

Scaling dimension of the backscattering term in the spimh gaw be read off
from the correlation function

2 4K,
i<ei\/§¢g(z)e—i\/§¢s> _ iexp (87TK3 | a_) 1 ( a ) M)

a* a* ir ) T g I2|

If we allowed for different coupling constants between #laas of different spin
orientations, then the coefficient in front of the cos ternuldchave beery; | .
For K > 1, the operator scales down to zeromas- 0, whereas fori; < 1, it
blows up signaling an instability: a spin-gap phase.

The RG-flow of the spin-partis described by the Berezinkkisterlitz-Thouless
phase diagram. The fixed-point valuegf = 0 for K} > 1. In the weak cou-
pling limit, the RG reduces to a single equation §er which we have derived in
the fermionic language in Sec.4

dgl 2 1
= = =, (6.30)
N

6.2.1. Tunneling density of states
The procedure of finding the scaling behavior for the DoS ceduo a simple
recipe.

e Take the free Green'’s function and split it formally into thgn and charge
parts

I | 1

€T — t - (.T _ t)1/2 (.T _ t)1/2'

¢ In an interacting system, the exponent@® in the charge part is replaced by
(K.+ K;') /4 and in the spin-part byK, + K ;') /4. If the spin-rotational
invariance is preserved, then the spin exponent remaired &mjuy/ 2.

e Forz =0,

G (z,t) =

1

G (#) o (Kot Kot)/a+1)2

and the DoS behaves as

— —1)2 e —1)2
v (e) o e (Fet B A1z Bt s
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Comparing this result foy; = 0 with that by DL (Sec. 3), we see that the
bosonization solution gives the same result as the fermimmé.

e For tunneling into the edge, remové., which comes from the correlator
() pinned by the boundary, and multiply*, which comes from{4), by a
factor of 2. This gives

1

Ge (1) o LKt /2+1/2

and o
G o ve (e) o |2 (K1)

ExpandingK back in the interaction

)

K, = ( 1+g1/2m )1/2N1__92_(1/2)gl
€ 1+ (492 —¢g1) /27 T

we obtain the weak-coupling limit for the tunneling exponhen

1) (17K, -1~ 220,

™

This coincides with the result obtained in the fermioniogaage (Sec.5). What
was missed in a bosonization solution is a multiplicativg-tenormalization,

present in Eq. (5.35). This is because we evaluétet the fixed point, where
g7 = 0, rather then derived an independent RG equation for the flothhe

conductance. This procedure should bring in the log-fadtch: Ref.[74] where

these factors were obtained for the impurity scattering}im

7. Transport in quantum wires

7.1. Conductivity and conductance

7.1.1. Galilean invariance

Interactions between electrons cannot change the respmaseelectric field in
a Galilean-invariant system—the electric field coupley ¢mlthe center-of-mass
whose motion is not affected by the inter-electron intéoact This property is
reproduced by the bosonized theory provided that the ptadiic= 1 (= v in
dimensional form.) To see this, combine the Heisenbergtemuaf motion for
densityp (spinless fermionswith the continuity equation:

atp = i[Hv P] = —0J. (71)
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Calculating the commutator in Eq. (7.1) with the help of E® 9], we identify
the current operator as

o uK 5 uk
. uK

The current is not affected by the interaction as long As= 1.

7.1.2. Kubo formula for conductivity
The Kubo formula relates the conductivity, a response fandb an electric field
at finitew andg, to the current-current correlation function

2
o (w,q) = — {—% + <JJ)fw} : (7.2)

1w

where it was used that = kr /7 andkr/m = vp = 1 in our units.
Electric current for electrong > 0)

J=—ej= 0,0.

S0

In complex time,

(TIN5, = (i>2 (=82) (00),.» —

N
R e 2
<JJ>q-,wm = ?q (00) g,
62 62 w2 62 ~ ~
- ________m  _ __ oo - 7.3
e =t U, (7.3)

The first term in (7.3) cancels the diamagnetic response.R).(7Continuing
analytically to real frequencies, we find

. ¢ 1 _u?

- (] w ) - _ 7.4

U(W7Q) iw< >q7 m— —iw+s T i — (w +26)3n +u2q2 (7.4)
62 w

T w? —u2g? + isgnud’
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Consequently, the dissipative conductivity is equal to

e? Im 1
——w
T w? — u2q¢? + isgrwé

Rer (w, q)

e2

= 3 [0 (w—uq) + 0 (w+ugq)]. (7.5)

7.1.3. Drude conductivity

In a macroscopic system, one is accustomed to take theglimitd first: this cor-
responds to applying a spatially uniform but time-depen@étactric field [61].
(For the lack of a better name, | will refer to the conductidbtained in this way

as to theDrude conductivity. The Drude conductivity in our case is the same as
for the Fermi gas as the charge velocity drops out from thaltres

Rev (w,0) = €26 (w)

or, restoring the units,
62’UF

h

Rer (w,0) = 0 (w).
All it means that when a static electric field is applied to atowious system of
either free or interacting electrons, the center-of-masgaswith an acceleration
and there is no linear response, as there is no “frictiont taam balance the
electric force.

For electrons with spins, the electrical current is relataty to the charge
component of the— field:

2
Je = —¢€j. = e\/jﬁzﬁc,
T

where again.. KX, = 1. Because of the/2 factor in the current, the conductivity
is by a factor of two different from that in the spinless case

2
Rer (w,0) = 2eth§ (w).

(Notice, however, that at fixed density is by a factor of 2 smaller for electrons
with spin, so that the conductivity is the same.)
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7.1.4. Landauer conductivity
Let's consider now the opposite order of limits, correspngdb a situation when
a static electric field is applied over a part of the infiniteavi(Again, for the lack
of a better name, | will refer to this conductivity as to thendauer conductivity
The electric field might as well be non-uniform; the only cimasit we are going
to use is that the integral

/d:cE (z),

equal to the applied voltage, is finite. The induced curneht¢h in 1D coincides
with the current density) is given by

J(t,x) = /da://dt’cr (t—thz,a)EW, )

dw
= /da://2—weﬂ“ta(w;x,x/)E(w,I/).
7T

Inlinear response, the conductivity is defined in the absefthe field. As such,
it is still a property of a translationally invariant systemd depends thus only on
2 — 2'. This allows one to switch to Fourier transforms

J (t, ) / / /dq ig(e=a') o=icty (4 ) B (w,2).  (7.6)

Now use the fact that the applied field is statit(z, w) = 276 (w) Ep (z) (upon
which thet-dependence of the current disappears, as it should be stehdy

state)
z) = /dx//g—ieiq(z*z’)a(o,q) Eo (z). (7.7)
From (7.5),
(0,9) = %625 (a) = Ke*3 (), (7.8)

whereu K = 1 was used again. Substituting (7.8) into (7.7), we see tleat th
dependence of the current also disappears

Ke? , , Ke?

Conductancg = J/V is given by

K2
G="2

o’
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or, restoring the units,
2

(&
=K—. 7.9
G =K (7.9
For electrons with spin, a similar consideration gives
2
G= Kf%. (7.10)

We see that the conductance is renormalized by the interacfiom it universal
value given by the Landauer formula for an ideal wire [68].

7.2. Dissipation in a contactless measurement

What kind of an experiment Egs. (7.9) and (7.10) correspofd t

Suppose that we connect a wire of lendtho an external resistor and place
the whole circuit into a resonator [79]. Now, we applyaarelectric fieldE (z, t)
of frequencyw, and parallel to a segment of the wire of lendth < L, and
measure the losses in the resonator. The external resates tare of energy
dissipation: as the wire is ballistic (also in a sense thettebns travel through
the wire without emitting phonons), the Joule heat can begead only outside
the wire. Dissipated energy, averaged over many periodeedigld, is given by

Q= —/dx(J (x,t) E(x,1)).

For a monochromatic fieldf (z,t) = Ey (z) coswpt and after averaging over
many periods of oscillations, we obtain

Q=— /dx/dx’ReU (wo; z,2") Eo (z) Eo (2').
Now, choose the frequency in such a way that
Lp< — <L, (7.11)
wo

whereu is the velocity of the charge mode in the wire. Because theeleagth

of the charge excitations at frequengy—acoustic plasmons— is much shorter
than the distance to contacts)( the conductivity is essentially the same as for
an infinite wire and depends only an- z’. Performing partial Fourier transform
in Eq. (7.5), we find

2 2
Rer (w,z) = ;r—u cos (wz/u) = ;—ﬂ_KCOS (wz/u), (7.12)
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so that

. 2
O = _%S—K/da:/d:c’ cos [wo (z — 2') Ju] Eq (z) Eo (z').
T
On the other hand, becausez’| < Lg < u/wy, the cosine can be replaced by
unity, and
. 62
Q=—-—KV?=-GV?
27

or
2

e
=—K.
g 27

Therefore, dissipation in a contactless measurements timeleonditions spec-
ified by Eq. (7.11) corresponds to a renormalized conduetaiio the best of
my knowledge, this experiment has not been performed. Acafgtwo-probe)
transport measurementis done by applying the current aadumiag the voltage
drop between the reservoirs. In this case, the measuredctamte doesotcor-
respond to Eqs.(7.9,7.10) but is rather given simplyhi/ per spin projection—
regardless of the interaction in the wif80],[81],[82]. This result is discussed in
the next Section.

7.3. Conductance of a wire attached to reservoirs

The reason why the two-terminal conductance is not rendézadhby the inter-
actions within the wire is very simple. For the Fermi-gasecalse conductance
of €2 /h per channel is actually not the conductance of wire itsedisarder-free
wire by itself does not provide any resistance to the curderda four-probe mea-
surement, when the voltage and current are applied to andureshin different
contacts, the conductance of a disorder-free wire is, ifj fiafinite. However, in
a two-probe measurement, the voltage and current contacth@same. Finite
resistance comes only from scattering of electrons frombtinendary regions,
connecting wide reservoirs to the narrow wire [83, 84], aswshin Fig.15a).
The universal value af? /h is approached in the limit of an adiabatic (smooth on
the scale of the electron wavelength) connection betweenebervoirs and the
wire [85] %°. As the resistance comes from the regiemterior to the wire, the
interactiorwithin the wire is not going to modify the? /h— result. Another way
to think about it is to notice that the renormalized condocés(7.9,7.10) can be

35Accidentally, the actual constraint on the adiabaticityhef connection is rather softit is enough
to require the radius of curvature of the transition regieijust comparable to, rather than much larger
than, the electron wavelength [85].
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(a) LL
FL FL

(b)
-

?ﬁf A{\

Fig. 15. a) A Luttinger-liquid (LL) wire attached to Ferméuid (FL) reservoirs. b) same for a single
impurity within the wire.

interpreted as a manifestation of tiiactional chargee* = K (v/K.), associ-
ated with the excitations in a 1D system. However, the ctideming frome.qg.,

the left reservoir is carried by integer charges, and amafié charges get even-
tually transmitted through the wire, the current colleciedhe right reservoir

is carried again by integer charges. Fractional chargesremaient phenomena
which, in principle, can be observed in aaconductance or noise measurements
but not in adc experiment. In the rest of this Section, these argumentdwil
substantiated with some simple calculations.

7.3.1. Inhomogeneous Luttinger-liquid model

An actual system consists of two Fermi-liquid reservoinsrercted via a Luttinger-
liquid (LL) wire and , due to the presence of the reservoiragt one-dimensional.
In theinhomogeneous Luttinger-liquid modtie actual system is replaced by an
effective 1D system, which is an infinite LL with a positioegkndent interac-
tion parameteds (x) (cf. Fig. 16). The actual reservoirs are highér & 2 or

3) systems, where the effect of the interaction can be disdegaiConsequently,
the reservoirs are modelled by one-dimensional free cdnduwvith K| = 1.

In between,K (x) goes through some variation. Similarly, the charge vejocit
is equal to the Fermi one in the reservoirs and varies withthe middle of the
system. The potential difference applied to the systemumresl some distribu-
tion of the electric field along the wire. The shape of thigriistion is irrelevant
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Fig. 16. Inhomogeneous Luttinger-liquid model.

in thedclinear response.

7.3.2. Elastic-string analogy
The (real-time) bosonic action for a spinless LL is

S = %/d%ﬁx) {u(:c)(amQ - ﬁ(aﬂpﬁ} : (7.13)

The density of the electrons (minus the background denaitg)the (number)
current are given by

p=0up/VT,  j=—0wp/VT. (7.14)
The interaction with an external electromagnetic fid|dis described by

e

Sint = 2ﬁ /d217 {Aoamﬁﬁ - Al&%ﬂ}a (7.15)

so that the equation of motion fgris

1 u e
o <m3ttp) -8, (Eaxw) = WE(x,t), (7.16)

whereFE = —0, Ay + 0; A1 is the electric field. We assume that the electric field
is switched on at = 0, so thatE(z,t) = 0fort < 0 andE(z,t) = E(x)
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4
L— a)
PCx,.1) v | 1l I v
N\ (b)
P(x,t)
vt
/\/\ ’\/\
><

Fig. 17. a) Solution of the wave equation in the homogeneass ort = 5L/u. b) Schematic
solution in the inhomogeneous case fap> L/u.

for t > 0. The problem reduces now to determining the profile of an iefin
elastic string under the external force. In this language, t) is the transverse
displacement of the string at poimtand at timet, while the number current
j = —0wp/+/7 is proportional to the transverse velocity of the string.

To develop some intuition into the solution of Eq. (7.16),fwst solve it in the
homogeneous case, wh&h=const,u =const, andZ(z) =constfor|z| < L/2,
and is equal to zero otherwise. In this case, the solutiomofE16) fort > L/u,
is

t— % for |x| < L/2;
KeV t—|z|/ufor L/2 < |z| <ut —L/2
p(x,t) = XY . 2| —L/212
2\/7 (¢ — E=22) for ut — L/2 < |2 < ut + L/2

0, for |z| > ut + L/2,

whereV = EL is the total voltage drop. This solution is depicted in Figal
The profile of the string consists of two segments (I and llin B7a) whose
widths, equal tdut — L), grow with time, and of three segments (lIl, IV and V in
Fig. 17a) whose widths are constant in time and equél tim segments | and I,
the profile of the string(z, t) is linear inx, and therefore, being the solution of
the wave equation, also in in segments llI-V, the profile is parabolic. Outside
segments IV and V, the string is not perturbed yet, afd,t) = 0. As time
goes on, the larger and larger part of the profile becomearlirféor late times,
the pulse produced by the force spreads outwards with wglacinvolving the
yet unperturbed parts of the string in motion; simultangguis all but narrow
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segments in the middle and at the leading edges of the phlsestting moves
upwards with the- andz-independent “velocityd,po = KeV/2y/x. In terms
of the original transport problem, it means that the chageentJ = —ej
is constant outside the wire (but not too close to the edgabkefegions of
where the electron density is not yet perturbed by the édefetd) and given by
J = Ke2V/h. Therefore, the conductance (per spin orientatiog) is Ke?/h.

We now turn to the inhomogeneous case. As in the previous tteserofile
consists of several characteristic segments (cf. Fig..lngegments llI-V, the
profile is affected by the inhomogeneitiesif(z), u(z), andE(z) and depends
on the particular choice of the-dependences in all these quantities. In segments
| and Il however, the profile, being the solution of the freevev@quation, is
again linear inz (and int). Requiring the slopes of the string be equal and
opposite in segments | and Il (which is consistent with thedition of the current
conservation), the solution in these regions can be writep(x,t) = A(t —
|z|/ur,). The constantd can be found by integrating Eq. (7.16) between two
symmetric pointsta , chosen outside the wire

+a

ta u e eV
—/_a dzd, (?amgo) == B = (7.17)
Outside the wireK (z) = K1, andu(z) = uy, thusA = KyeV/2,/mh. Calcu-
lating the current, we gef = Kpe?/h and, recalling thak;, = 1, we finally
arrive atg = e?/h. Thus, the conductance is not renormalized by the interastio
in the wire.

7.3.3. Kubo formula for a wire attached to reservoirs
The Kubo formula for a translationally non-invariant systean be written as

e2

o(wyz,2') = ——¥d(x—2a)

e2

P d -7 omT TTaT a‘r’ o W —w—+10
s a0 (01 00 () i
The diamagnetic contribution is cancelled by a delta-fismcterm, which is ob-

tained when integrating by parts in the time-ordered prof8®, 10]. Having

this in mind, | will re-write the conductivity via the Fourigransform of thepep-
correlator without th&"— product

2
e
g (W§xax/) =1 W?nq)wm (, 17/) |t — w6 -
W

For a translationally invariant case, this reduces backqo(E4). Now,K (z)
andu (z) depend on position. The propagator of thdields satisfy the wave
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equation (or a Laplace’s equation as we are dealing withntiagjinary time)

w2 u\xr
W%@) — Oy <%3I>} D, (z,2')=0(x—2a). (7.18)
In a model of step-like variation oK (z) andu (z) (K = Kw andu = uwy
within the wire andK = K; = 1 andu = uy = 1 outside the wire), Eq.
(7.18) is complemented by the following boundary condgiod) ®,,  (z,z’)

is continuous att = +L/2, 2) u (x) K (x) 0;P,,,, (z,2’) is continuous at: =
+L/2; but 3) undergoes a jump of unit heightiat 2. Solution of this problem
is totally equivalent to finding a potential of a point chatgeated somewhere
in a sandwich-like system, consisting of three insulatath different dielectric
constants. Two of these layers are semi-infinite and thd tirie (in the middle)
is of finite thickness. “Potentiakb,,  (x,2’) can be found in a general form for
arbitraryz, z’. In the expression for the current

J(t,:v):/dx'/;l—:a(w;x,x')E(w,x’),

z’ is within the wire; hence we need to kn@wy, . (z,z’) only for—L/2 < 2/ <
L/2. In a steady-state regime, one is free to measure the culmenigh any
cross-section; let's choosealso within the wire. As we are interested in the
limit w — 0, when the plasmon wavelength is larger than the wire lengétcan
putz = z’. In the interval-L/2 < z = 2/ < L/2 the solution of the Laplace’s
equation is

Kw Kw k%2e I/te 4k k_ cosh(2x/L,)

P, (2,7) = . (719
o (z, ) 2] + 2 Joom] eL/Lwﬂi e L/LugZ ( )

whereL,, = uw / |wm| , uw IS the charge velocity within the wire, and
ke =Ky — K7

Lettingw,, in (7.19) to zero (and thuk,, to co), we find that

_ k1

D, (z,x)

T 2w 20w’
as by our assumptiol ;, = 1. This result is true for any, =’ within the wire for
w—0 ]
D, Y= —, for —L/2 "< L/2.
(z,2') = 57—, /2<wma’ <L/
The Luttinger-liquid parameters of the wire drop out frore #nswer. Thelc
conductivity reduces to its free value

2

o(w—0;z,2') = ;—,
™
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and, consequently, the conductance

is not renormalized by the interaction. The same consiteré&ir electrons with
spins gives

G=" (7.20)

7.3.4. Experiment

Most of the experiments on quantum wires indeed show thatdhductance is
quantizated in units o2e?/h at relatively high temperatures® 37 At lower
temperatures, the conductance decreases beyond thesahivaue and also the
guantization plateaux exhibit some structure as a funaibthe gate voltage
[90]. This can be interpreted as the effect of residual disoras was discussed
in Secs. 5,6 transmission decreases at lower energy sdstesffect of single
impurity in a quantum wire will be largely insensitive to theesence of reser-
voirs: as long as the transmission coefficient for an imgisitnuch smaller than
one, the largest voltage drops occurs near the impuriterdkian at the contacts
to the wire. One can show that the scaling of the conductaitbeanergy is de-
termined by the interaction paramefgrinsidethe wire [91], in a contrast to the
disorder-free case when only outside the wire matters. Also, the mesoscopic
conductance fluctuations increase as the temperature gogs(the theory pre-
dicts that this effect is enhanced by the interaction [925.0one is dealing here
with a crossover regime from scattering at a single impuaoityat at many impu-
rities, a quantitative analysis of the temperature depecekeis difficult; another
complication arises from the finite length of the wire whichscoff scalings with
temperature and voltage. In addition, at higher tempeeatilne first quantization
plateau exhibits a well-defined step at abeatx 2¢2/h [93, 94, 95, 96, 97, 98].
This “0.7” feature is not likely to result from spurious imjity scattering but
rather reveals some interesting physics beyond what hasdiseussed so far in
this review. Although the “0.7” feature deserves a reviewitsown, | will come
back to this subject briefly in the next Section.

38However, it has been observed recently that the conductfraarbon nanotubes is quantized in
units ofe? /h —as opposed tde? /h, predicted by the non-interacting theory for this case.[87]

37A special case of a non-universal conductance quantizitioery long wires grown by cleaved-
edge overgrowth technique [88] can be attributed to a nigizkicoupling between the wire and 2D
reservoirs [89], characteristic for these systems.
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7.4. Spin component of the conductance

As we have shown in the previous sections, the Luttingerdignodels predicts
that conductance of a disorder-free wire is giverebyh per channel at any tem-
perature. Also, thanks to spin-charge separation, spiredsgf freedom do not
play an essential role in charge transport except for giaeingverall factor of
two to the conductance. These two results hold as long asutimger-liquid
model is a good description for interacting electrons inwfire. When does this
model break down? If the interaction is strong, electromsfalmost a periodic
1D structure: quasi-Wigner crystal. The exchange energgirabst localized
electrons is exponentially small and, correspondingly,gpin velocity is small
too: us < wu.. The Luttinger-liquid model should work for energies (tempe
atures) much smaller than the smallest of the two (spin aadge) bandwidth
T <« uskrp < u.kpr, when both spin- and charge degrees of freedom are coher-
ent. Thespin- incoherent regimea.e.,u.kr < T < u.kr, has attracted con-
siderable interest recently [19, 20, 21], and was shown ¢d #pe conductance
quantization in integer multiples &?/h [19] at temperatures larger than the
spin bandwidth4skr). In what follows, | present a short summary of Ref.[19].

In a quasi-Wigner-crystal regime, a reasonable startirigtfor describing
the spin sector is the Heisenberg model

H, = Jexz S-Sy,
l

where spins are localized at “lattice sites” correspontbmapsitions of electrons.
Because the Lieb-Mattis theorem [46] forbids ferromagnetdering in 1D, the
sign of the exchange interaction must be antiferromagnétic> 0. Assuming
that electrons are well localized at distanaes 1/n from each other/ex can be
estimated in the WKB approximatiotley ~ Er exp (—c/\/apn) , wherec ~ 1
anda is the Bohr radius. A spin-1/2 chain is then mapped onto a ldubhb/2-
filled model of spinless fermions via the Jordan-Wignersgfarmation

S. (1) = a}al —1/2;
1-1
Sy () +1iSy (1) = a exp (iw Z alxa]ex>
Je=1

with the result

J
H, = —% [C}L_Hcl + H.c.} + Jexz : C}Cl —1/2:: C}L+1Cl —-1/2:.
The spinless Hubbard model can be bosonized
_ 1 U 2 2 aJex
H, =5 [ dorz (9:0)° +uK (9.0)° + roy o (\/167@) . (7.20)
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A comparison to the Bethe Ansatz solution of the Hubbard rhadealf-filling
enables one to identify the parameters of the spinless Lh thi¢ microscopic
parameters of the spin-1/2 chain. In particular, for anrgg@t spin chain {, =
Jy =J2)

u= gJexa; K=1/2. (7.22)
Comparing the spin-part of the Hamiltonian of the originklmodel, Eq. (6.29)

with that of the spinless LL, Eq. (7.21), one notices thaytthee same upon the
following mapping

1 Ug U
¢ = %¢sv 0= \/5937 Z T 9K’ usKs = 2uK, (7.23)
or .
Ug = U = §Jexa; K,=2K =1. (7.24)

As Jox is exponentially small, so is the spin bandwidth. Thereftite Luttinger-
liquid description is valid only at very low temperatures.

A translationally invariant LL still possesses spin-clesgparation. However,
this is no longer true for a wire connected to non-interagidads. To understand
this point, let's come back to the inhomogeneous LL model @éc. 7.3.1),
where the electron density changes from a higher value itetids to a lower
value within the wire. Becauséy depends on the local density, it is modulated
along the wire, and its minimum value is at the middle of theewin the leads,
we have a non-interacting system, whége~ Er > T. However, in the middle
of the wire spins are incoherent, Jfii* < T. Thus a spin part of the electron
incoming from the lead at enerd@yabove the Fermilevel cannot propagate freely
through the wire because the spin band narrows down: it wask§there is a
barrier for spin excitations in the wire. Although chargagshons propagate
freely, backscattering of spin plasmons leads to additidissipation, and thus
to additional resistance. The total resistance of the warsists now of two parts

R=R.+ Rs.

The charge partk,, is due to propagation of charge plasmons. Since the charge
part is still described by the LL model, our previous resolt finiversal con-
ductance, Eq. (7.20), still holds aitl. = G=* = h/2¢% ForT < J&i only
athermal spin plasmons, with energies exceeding the widtrespin band, con-
tribute toR,. The number of such plasmons is exponentially small, hence

Ry ocexp (—Jy™/T),

and total conductana@ = (R. + R,)” ' is exponentially close tBe2/h. At high
temperatureiT > J;;’i“), almost all spin plasmons are reflected by the wire.
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ThenR, ~ R. ~ h/e?, and the conductance differ substantially from its univer-
sal value. This qualitative picture can be confirmed in aipaler simple case of
the XY — model for the spin-chain. In this casi, can be calculated explicitly
with the result [19]
h 1
® 2eZexp (Jmin/T) +1

and, consequently, the conductance is equal to

B 2¢2/h
1+ [exp (J@in/T) + 1]~

T

ForT — 0, G approaches the universal valueXf /h. For T > J&in G ap-
proaches anothdr -independent limit, equal t®/3)2¢?/h. The actual number
in the high-temperature limit of the conductance is modgahdent (it is dif-
ferent, for example, for an isotropic spin-chain), but thaimresult,i.e., the
non-universality of conductance quantization at higheeratures, survives.

As it was mentioned in Sec. 7.3.4, the experiment shows llea¢ tis a shoul-
der in the conductance preceding the first quantizatioregiatt a fractional
value of about 0.%2¢2/h. Surprisingly, this “0.7 feature” is more pronounced
athighertemperatures, and té dependence of this feature was reported to be
of an activated type [95]. The magnetic field transforms th& feature” into a
fully developed quantization plateau/h, which is to be expected in a fully
polarized, and thus spinless, regime. The sensitivity éontlagnetic field hints
at the spin origin of the effect, and a significant theorét@tort was invested
in understanding how spins can explain the observed phemanfdthough the
effect, described in this Section, does have all qualigativaracteristics of the
observed “0.7 feature”, it is not clear at the moment whethisrfeature indeed
corresponds to the spin-incoherent regime. Other exptarsabf the “0.7 fea-
ture” have been suggested (most prominently, the Kondoiphys believed to
be involved [99, 98]), but a further discussion of this pajoes beyond the scope
of these notes.

7.5. Thermal conductance: Fabry-Perrot resonances ofrptass

There is an important difference between charge and the@ledtronic) con-
ductances [22]. As we have just shown, the charge conduetamrual ta:? /A
regardless of interaction in the wire. This means that #westmission coefficient
of electrons is equal to unity. The effect of the temperaturéhe charge con-
ductance is the same as for a non-interacting, perfectiginitting wire: at finite
temperature, not only the lowest but also higher subbandso$verse quanti-
zation are populated, and the quantization plateaux arargme However, this
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effect is exponentially small for temperatures smallentkedher the Fermi en-
ergy, Er, or the difference between the Fermi energy and the thregifdlde
next subband of transverse quantizatidnwhichever is smaller.

Thermal current is carried not by electrons but bosonictetions: acous-
tic plasmons. In contrast to electrons, plasmons get refleat the boundary
between the reservoirs and the wire due to the mismatch afjehselocities
(this reflection happens even for an adiabatically smoathsition). From the
plasmon’s point-of-view, a wire coupled to reservoirs esamts a Fabry-Perrot
interferometer. Interference of plasmon waves scatteffati® opposite ends of
the wire results in an oscillatory dependence of the trassion coefficient on
the frequency with a period given by the travel time of plaesithrough the wire

2rwy, = L/uw.

As long as\r < L, this period is longw; <« FEp . The difference between
charge and heat transport is that the chemical potentialasipons is equal to
zero, and thus the characteristic scale for frequency ibys&t Therefore, the
thermal conductance varies with the temperature on a $talev; .

Suppose that a small temperature differef¢eis maintained between the
reservoirs, connected by a quantum wire. As the Hamiltoofaan interacting
system is diagonalized of terms of plasmons, plasmons nardatecoupled and
contribute to the energy flux independently. Then the théyraseraged energy
current,i.e.,, the thermal current can be found via a Landauer-like argime

*° dw 9 w w
Jr = —_— t T < - (_) ’
r= [ Gk QM<T+ﬂT) anr)
whereny, r (w/T') are the Bose distribution functions in the reservoirs. Expa
ing in smallé7', we obtain the thermal conductance

Gr—Jr_ 1 /Oodw ) (7.25)
T7 5T~ 8nT2 0 sinh? w/2T . .

For a free systerrlt (w)|”> = 1 andGy = #T/6. The charge and thermal con-
ductances of a free system obey the Wiedemann-Franz law

Gr
76 - 0= 3
whereLy is the Lorentz number. This means that charge and energyaaied
by the same excitations. This is not so in a Luttinger liquid.
For an interacting system, relation (7.26) holds in thetliofiT — 0. The

characteristic scale for frequencies in integral (7.25)ésermined byTl". For

(7.26)
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T < wy, one can substitute = 0 into |# (w)|* . Regardless of the interaction
strength ¢ (0)|* = 1 : a Fabry-Perrot interferometer becomes transparent in the
long wavelength limit. Fof" > wy,, the result folGr depends on how the charge
velocity varies along the wire, and is thus non-universai.t@ other hand, the
charge conductance is universal. Therefore, their ratimis-universal and the
Wiedemann-Franz law is violated.

In a step-like model of Sec. 7.3.1, the transmission coefiitodf plasmons is

equal to

1

t(w)]* = :
1+ (K:I;;)z sin? i

Obviously,|t (0)|* = 1 regardless of<, an agreement with what was said above.
ForT < wy, the Lorentz number is close to the universal valuetf3e?. For

T > wy, the oscillations oft (w)|” become very fast, so that(w)|* can be
replaced by its averaged value

2\ _ de_W w 2 2K
(It @) >—/O ()]

WL T K21

The thermal conductance increases linearly Witlso thatL, approaches a con-
stant but a non-universal value

2K
Lirsw, = mLo < Lyo. (7.27)
As the Lorentz number varies with temperature in betweenliwits specified
by Egs.(7.26) and (7.27), the Wiedemann-Franz law is \édlat
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Appendix A. Polarization bubble for small ¢ in arbitrary dimensionality

The polarization bubble in Matsubara frequencies arild at0 is given by

(iw,q) = (2];771)“ //dedsG (iz + iw, f+ @) G (ie, p)
7T
Ns //dD de— 1 (G (ie + iw, 5+ @) — G (ie, p)]

D1 poe——F"—"—""-— ¢ w,prq)— e, p

(2m)Pt! iw — &prq + &5

Y [arp D=1 )

(2m)P*! w—Eprgt &5

where f is the Fermi function. Expanding ifi and switching from the integra-

tion overd®p to d¢, we obtain

dQ iw )

II (4 = —Ng 1— | —
(1w, ) UD( Qp iw — vpqcos

whereQ)p = 47 (3D), = 27 (2D), = 2 (1D) andvp, is the DoS inD dimensions
per one of theV, isospin components. For D=1, the integral oas understood
as a sum of terms withos # = £1. Itis obvious already this form that the small
g—form of the bubble depends on the combinatigfvrq for any D. The final
result depends on the dimensionality. Performing anabiatinuation to real
frequenciesw — w + 40T, we obtain

df) w

e = —N, 1— [ — .
(w,q) YD < QDw—qucosé’—i-iO)

Taking the imaginary part
ImIT? (w, q) = —FNSUDw/ 3—96 (w—vpgqcosh). (A. 1)
D
From here

cosf = w/vpg,

which means tha# ~ 7/2 for w < vpg. Thus, the fermionic momentupiis
almost perpendicular to the bosonic ogigin this limit.
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Appendix B. Polarization bubblein 1D

Appendix B.1. Smadl

Free time-ordered (causal) Green’s function in 1D is equal t

1
£ — & +i0tsgngt

G(jt (e, k) =

where
é.l:ct ::tvF(k:FkF)v

and+ signs correspond to right/left moving fermions. We will beasuring the
momenta from the corresponding Fermi points. For +brahch & — k and
for -branch:k + kr — k. Consequently,

1
€ Fupk +i0tsgnk’

GY (e, k) =

| assume théV,— fold degeneracyN = 2 for electrons with spinN, = 1 for
spinless electrons), so that

Iy (w,q)_—ﬁNs/ds/dei (e+w,k+q)GY (e,k).

Calculatege.g, I :

i 1 1
I = —N, | d dk
# (27)° / E/ e+ w—vp(k+q) +i07sgn(k + g) e — vk + i0*sgnk
i 1
= " N, [de | ax _ : B.1
(2m)? / E/ w —vpq +i0Fsgn(k + q) — i0Fsgnk &
x [GY (e,k) — G (e +w,k+q)]. (B.2)

The integral of the Green'’s over the frequency gives a Feistrildution function
[23]

ny (k) = —i/g—;Gi (e, k).

For free fermions,

Now,

N, 1
e =2 [dk 0(—k)—0(—k—1q)].
+(@,q) 27 / w—vpq +10Fsgn(k + ¢) — i0tsgnk 16(=F) ( @)
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The integral is not equal to zero only if the arguments of@h&unctions are of
the opposite signs. Consider different situations.
DEk>0k+g<0—-0< k< —q— q<0.Inthis case,
N, q
119 == 0;
+(W7Q) 27T(AJ_’UF(]—Z.O+7q< ’
2k<0,k+¢>0—-—q<k<0—¢g>0

N q
% (w,q) = —=——F—— ¢>0.
+(@9) 27Tw—qu—|—iO+q

Combining the results fay > 0 andg < 0 together,
N, q

119 == : B.3
+(@.q) 21 w — vpq + 10T sgng (8.-3)
Similarly,
N q

I = . B.4
- (@.9) 21 w — vpq + 10Fsgnw (B.4)

The total bubble

N 2

I (,q) = 1} (,q) + I (w,q) = *———T——.  (B.5)

T w? —vig? 40t

In what follows, we will also need the retarded and advaneethfof the
bubble. These forms can easily be obtained by repeatingathelation above in
Matsubara frequencies and analytically continuing — w+:0. Even simpler,
one can use the general relation between time-ordered tarded propagators
[23] (which works equally well for fermionic and bosonic auigies)

% (w,q) = T4 (w,q), forw >0

= II (w,q), forw < 0.

Using Egs. (B. 3) and (B. 4) we obtain
N q

If =+ B.6
i(waQ) 27Tw—qu+i0+ ( )
and
Ns UFQQ
" = ==
(@) T w? —vhg? +i0tsgnw
Ny 2
- = ol : (B.7)
T (w+i01)" — vig?
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Appendix B.2.q near2kp

We will also need th&kr bubble. This time, | choose to do the calculation in
Matsubara frequencies:

N, . . .
Moy, (w,q) = —= /dk/dsG+ (te +iw, k+ q) G— (ie, k)
(2m)?
N, 1 1
= - dk [ d )
(27T)2/ / Es—i—w—i—z’(k—i—q)s—ik
Polesins; =ik andey = —i (k + ¢) —w have to be on different sides of the real

axis, otherwise the integral is equal to zero. Chaopse 0. Then this condition
is satisfied in two intervals of : k > 0 and—A/2 < k < —q, whereA is the
ultraviolet cut-off

N, [ M2 ~a 1
Mo, = —- / dk — / dk : ,
2 | Jo —AJ2 w + 2tvpk + ivpq
N, iAvp W —Upq
= —— |In - —1In -
4 w + ivpq —iAvp
N, A?v2,

= ——"In———. B.8
4T nw2+qu2 (B.8)

Because the result depends@rthere is no need for a separate calculation for
the casey < 0.

Appendix C. Some details of bosonization procedure

Appendix C.1. Anomalous commutators

p(q) > a:,_q/gap+q/2 = p4 +p—;
p

_ T
p>0(p<0)

The operators of full density commute. The operators ofrigftit densities have
non-trivial commutators. For example, let us calculate(q) , p+ (¢')]
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/ _ N T T
Coa(0:d) = e @pr @ = 3 [ahyntpraso 0l yjptisy )
p>0,k>0
al a al Gty
p—q/2 p+q/2%,—q’ /2 k+q'/2
N—_— ——
= Z :6p+q/2’k7q//2_a£*Q’/2%+q/2
- T
p>0k>0 | Y=g/ /2 Uktq /20 _q/2 Ap+q/2
— —

:5k+q,/2«P*Q/27a:77q/2ak+q//2
The firstd— function means that = p + ¢/2 + ¢’/2 > 0 and the second one
thatk =p — q/2 — ¢'/2.

Ciy(0,4) = Z a;_q/2@p+q/2+q“9 (p+aq/2+4/2)— a:,_q/g_q/@mq/z@ (p—a/2-4/2)
p>0

—[f (¢, q) = f(d )],

where
A 1 I
f(Q7Q) = Z ap,q/Qak,q//gaerq/QakJrq//Q
p,k>0
_ TaT
= D afafa, iy
p,k>0

It is easy to show thaf (¢,¢') = f (¢, ¢) . Indeed,
f(q/a q) = Z a;j)alzap—q’ ak-i—q
p,k>0
= re — labellingk «— p = Z aLaLak_q/aerq
p,k>0

= anticommuting = Z aLaLaerqakJrq/ = f(q,q).
p,k>0

Thus

Coy (0:4) =Y al_ tpigrarg® (p+a/2+ ¢ /2)—al_ o ayiq0(p—q/2—q/2).
p>0

Introduce a new momentum
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In the first sum, shifp + ¢’ /2 — p and in the second sum shjft— ¢’/2 — p.
Then

Cir (0.2Q—q) = D al_qa,olf(p+a/2)—0(p—q/2)]
p>0
_ T 1l
- Z Ap—QU+Q — Z 4p—Q+Q
p>—q/2 p>q/2

If the main contribution to the sum is given by the states Whie either deep
below or far above the Fermi levels, then the quantum fluictoatin the occu-
pancy of these states are small, and the opera}qréaﬁg can be replaced by

their expectation vaIue@zLQaH@ = dg,0np = 09,00 (pr — p). Doing this,

we find
PF PF I P P
C—H— (Q7 2Q — Q) = 5Q70 Z — Z — 6Q,O_ / dp — / dp
21w —q/2 /2
p>—q/2 p>q/2 q q
- aL
= 99,0 o
Therefore,
gL .
[p+(q), p+(—q)] = -, spinless. (C.1)

2w
The same procedure for fermions with spin gives

qL . .
[P+, (@), P00 (=@)] = 850 o, with spin.

Similarly,
qL . .
[P—,a (Q)a p—,a’(_Q)] = —500/2—, with spin.
s
and
[p-i—,a (Q)a p—,a(_q)] =0.
Combining these results together

qL

o, o sy Pa’ o’ \— = 6010/600"_1
[Pao (4) par.o (=4)] = @daar00.0 5

wherea = = is the chirality index. For full charge density and currénteans
that

0 (@), p° (=) = [P () + 0% (q), 0% (—q) + p° (—q)]
@V avV _avV 4V

o 2 2 2
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Similarly,

whereas

c - gV 4V qV  qV 2
[0 (q),5°(=q)] = T

In 4-notations,
Ay -V v 2
(@), 3" (=a)] = " —aL,

wheree? = ¢l =0, ¥ = —€19 = 1.

Appendix C.2. Bosonic operators

Let's check that the representation of density operat@stzndard bosonic op-
erators does reproduce commutation relation for densitypakd the density
operators over the normal modes

1 ) )
pr (@) = L Z Ag (bge™™ + bzeizqm) ;
q>0
p—(x) = % ZAQ (bge™* + bge_i‘”) :
q<0

where, without a loss of generality,, can be chosen real and even function of
q. Fourier transforming. (x)

o0 . 1 . -1
o+ (@) / d:ceﬂqzz Aq/ (bq/elq T4+ b:;/eﬂq z) , (C.2)

oo =
= A, (0@t +0(-0)bl,).
Choosg; > 0 and substitute (C. 2) into the commutation relation

_ b

[p+ (@) . p+ (—q)] = A2 [bg,bl] = A2 =

—

4, = &
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Appendix C.2.1. Commutation relations for bosonic fieldmd v
Using

; 1 iqx —iqx
px) = —i Z ngnq(bqeq —ble i) ;

—oo<g<oo
iqx T _—iqz) .
(e""by — bye )

1
9(z) = i S
,Oo%:@o V2lql L

1
V() = — —
m;@o V2lql L

we find

q (eiqmbq + b;e—iqm) ’

[o(2),9" ()] =

1 1
P q|
a,q’ 2|q|L \/2|Q|/L

iqgr _ 3T —iqw ig’x’ 3t Jig'x’
X [bqe bye™ " byre bye

:25q,*q/

1 iqg(z—a') _ -
zz;eq( ) =id(z— ).

Appendix C.3. Problem with backscattering

101

As it was pointed out in the main text, straightforward bagation of the Hamil-
tonian for the spinless case encounters a problem if ong toieaccount for
backscattering. As backscattering )X is just an exchange process to forward
scattering of fermions of opposite chiralitigs ), the Luttinger liquid parameters
with g1 # 0 should be obtained from those wigh = 0 by a simple replacement:
g2 — g2 — g1. However, if we do this, we cannot satisfy the Pauli principhech
says that for a contact interaction, when= g, = g1, all the interaction effects
should disappear. Indeed, Egs.6.2) and (6.11)uf@and K, correspondingly,

change to

2
W2 (1+%)2— 92 =91\ .
2 2 ’

ga—ga+

_ 1+q4 gzr g1

gatg2—g1 -’
1+ 2m

2
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For contact interaction, whep = g4 = g1, we get

2 _ g\?

v = (1+=) #1
2

K = 1.

The charge velocity is different from 1. In addition, the gwet« K is renormal-
ized from unity—this is also a problem, as it means that theect operator is
renormalized by the interactions. How to fix this problem?. R&7] shows how
to arrive at the expressions farand K which satisfy all necessary constraints
just on the basis on Galilean invariance and dimensiondysisa Ref. [78] ar-
rives at the same result by using a careful point-splittintne operators. Here, |
present the method of Ref. [78].

Recall that the density operator, represented in terms sditio fields, con-
tains not only the lowest harmonig (~ 0), corresponding to long-wavelength
excitations, but also harmonics oscillatinggat 2kr, 4kr, etc. Indeed, taking
into account only th@kr— oscillations, we have

pl@) = (0] @e ™ol (@) e*r7) (b4 (@) €T+ po (@) e )

= b (@) s (@) + 9L () v (@) + 72 H 7Pl (@) Yo (2) + Hee.

The first term in this equation has to be treated using thetyslitting proce-
dure, because it involves two fermionic operators at theeganmt. The result is
an infinite constantyy, which is just a uniform density, plus the gradient term.
The2kr -component can be bosonized without a problem, as it inggveducts
of different fermions. The result is

1 1
p(x) — po = ﬁam@ + 3o OXP [2v7p + 2kpz| + H.c.
Using this expression for the interaction partfdfwe have
1
Ho = 5 [do [V @=o)p@) - pol o) - )
= Hp+ Hp,

where the forward and backscattering parts of the Haméioare given by

1
Hp = 2_/dx/da:’v (z — 2) O pOur 3
™

Hy — » 12/d/d’V( 5
B = 9\ 21 Sl A

x {exp [2iv/p ()] exp [2ivmp (2/)] €24 =) 4 He}
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In Hg, we neglected the terms that oscillate withe’ ,andx + x’, and kept only
those terms that oscillate with—z’. As our potential is sufficiently short-ranged,
the oscillations of the first group of terms will average authereas the second
group will survive. Introducing new coordinates

!
R = .’L‘—l—SC;

r = ITr—

and assuming thd?| > |r|, the forward-scattering part of the Hamiltonian
reduces to

Hp = o / AR (Orp)? / drV (r) = % / dR (Orp)* .

The product of the two exponentials needs to be evaluatddaoaite. Applying
the Baker-Hausdorff identity

_142_1p?
eAeB —: (ATB . ((AB-3A°—4B%)
we get

exp [2iv/Tp ()] exp [-2ivmp ()] = exp [2iv7 (¢ (2) — ¢ (2))] -
x exp[4m (i (z — 2') 0 (0) — ¢* (0)],
Using the expression for the free bosonic propagator

1 a?

(p(z—2") ¢ (0) = ¢ (0)] = el e £

and expanding im = x — 2’ under the normal-ordering sign, we obtain
. . 1 a?
exp [2iv/mo (x)] exp [—2iv/mp (a))] = —5471' (Oryp)’ TQT—Q = —21 (Ory)” d®.

(While expanding, we neglected the first derivativegofvhich can be always
eliminated by choosing appropriate boundary conditioH g. reduces to

2
Hy = 1 (L) QﬁaQ/dR(aRgg)z/drV (r) 2 cos 2kpr
a

I
|
|
U
=

Orp)” / drV (r) cos 2kpr

= - dR (Ore)” .
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Therefore, the bosonized form of the total Hamiltonian

W /dR(aRSD)2

manifestly obeys the Pauli principle. The Luttinger-lidygarameters are now
given by

Hint =

u_\/H_V(O)—V(%F);K_ 1

2w /1 4 V(O);Z(Qkp)
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