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Abstract

Some aspects of physics on interacting fermions in 1D are discussed in a tutorial-
like manner. We begin by showing that the non-analytic corrections to the Fermi-
liquid forms of thermodynamic quantities result from essentially 1D collisions em-
bedded into a higher-dimensional phase space. The role of these collisions in-
creases progressively as dimensionality is reduced until,finally, they lead to a
breakdown of the Fermi liquid in 1D. An exact solution of the Tomonaga-Luttinger
model, based on the Ward identities, is reviewed in the fermionic language. Tunnel-
ing in a 1D interacting systems is discussed first in terms of the scattering theory for
interacting fermions and then via bosonization. Universality of conductance quan-
tization in disorder-free quantum wires is discussed alongwith the breakdown of
this universality in the spin-incoherent case. A difference between charge (univer-
sal) and thermal (non-universal) conductances is explained in terms of Fabry-Perrot
resonances of charge plasmons.
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1. Introduction

The theory of interacting fermions in one dimension (1D) hassurvived several
metamorphoses. From what seemed to be a purely mathematicalexercise up until
the 60s, it had evolved into a practical tool for predicting and describing phenom-
ena in conducting polymers and organic compounds–which were the1D systems
of the 70s. Beginning from the early 90s, when the progress innanofabrication
led to creation of artificial 1D structures–quantum wires and carbon nanotubes,
the theory of 1D systems started its expansion into the domain of mesoscopics;
this trend promises to continue in the future. Given that there is already quite a
few excellent reviews and books on the subject [1]-[10] , I should probably be-
gin with an explanation as to what makes this review different from the others.
First of all, it is not a review but–being almost a verbatim transcript of the lec-
tures given at the 2004 Summer School in Les Houches–rather atutorial on some
(and definitely not all) aspects of 1D physics. A typical review on the subject
starts with describing the Fermi Liquid (FL) in higher dimensions with an aim of
emphasizing the differences between the FL and its 1D counter-part –Luttinger
Liquid (LL). My goal–if defined only after the manuscript waswritten–was rather
to highlight thesimilaritiesbetween higher-D and 1D systems. The progress in
understanding of 1D systems has been facilitated tremendously and advanced to
a greater detail, as compared to higher dimensions, by the availability of exact or
asymptotically exact methods (Bethe Ansatz, bosonization, conformal field the-
ory), which typically do not work too well above 1D. The downside part of this
progress is that 1D effects, being studied by specifically 1Dmethods, look some-
what special and not obviously related to higher dimensions. Actually, this is
not true. Many effects that are viewed as hallmarks of 1D physics,e.g.,the sup-
pression of the tunneling conductance by the electron-electron interaction and
the infrared catastrophe, do have higher-D counter-parts and stem from essen-
tially the same physics. For example, scattering at Friedeloscillations caused by
tunneling barriers and impurities is responsible for zero-bias tunneling anoma-
lies in all dimensions [11, 16]. The difference is in the magnitude of the effect
but not in its qualitative nature. Following the tradition,I also start with the FL
in Sec. 2, but the main message of this Section is that the difference between
D = 1 andD > 1 is not all that dramatic. In particular, it is shown that the
well-known non-analytic corrections to the FL forms of thermodynamic quan-
tities (such as a venerableT 3 lnT -correction to the linear-in-T specific heat in
3D) stem from rare events of essentially 1D collisions embedded into a higher-
dimensional phase space. In this approach, the difference betweenD = 1 and
D > 1 is quantitative rather than qualitative: as the dimensionality goes down,
the phase space has difficulties suppressing the small-angle and2kF−scattering
events, which are responsible for non-analyticities. The special point when these
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events go out of control and start to dominate the physics happens to be in 1D.
This theme is continued in Sec.5, where scattering from a single impurity em-
bedded into a 1D system is analyzed in the fermionic language, following the
work by Yue, Matveev, Glazman [11]. The drawback of this approach–the per-
turbative treatment of the interaction–is compensated by the clarity of underlying
physics. Another feature which makes these notes differentfrom the rest of the
literature in the field is that the description goes in terms of the original fermions
for quite a while (Secs.2 through 5) , whereas the weapon of choice of all 1D
studies–bosonization– is invoked only at a later stage (Sec. 6 and beyond). The
rationale–again, a post-factum one–is two-fold. First, 1Dsystems in a meso-
scopic environment–which are the main real-life application discussed here– are
invariably coupled to the outside world via leads, gates, etc. As the outside world
is inhabited by real fermions, it is sometimes easier to think of, e.g., both the
interior and exterior a quantum wire coupled to reservoirs in terms of the same
elementary quasi-particles. Second, after 40 years or so ofbosonization, what
could have been studied within a model of fermions withlinearizeddispersion
and not too strong interaction–and this is when bosonization works–was proba-
bly studied. (As all statements of this kind, this is one is also an exaggeration.)
The last couple of years are characterized by a growing interest in either the ef-
fects that do not occur in a model with linearized dispersion, e.g.,Coulomb drag
due to small-momentum transfers [17] and energy relaxation, or situations when
strong Coulomb repulsion does not permit linearization of the spectrum at any
energies [19, 20, 21]. Experiment seems to indicate that theCoulomb repulsion
is strong in most systems of interest, thus studies of a strongly-coupled regime
are quite timely. Once the assumption of the linear spectrumis abandoned, the
beauty of a bosonized description is by and large lost, and one might as well
come back to original fermions. Sec.6 is devoted to transport in quantum wires,
mostly in the absence of impurities. The universality of conductance quantiza-
tion is explained in some detail, and is followed by a brief discussion of the recent
result by Matveev [19], who showed that incoherence in the spin sector leads to
a breakdown of the universality at higher temperatures (Sec. 7.4). Also, a differ-
ence in charge (universal) and thermal (non-universal) transport–emphasized by
Fazio, Hekking, and Khmelnitskii [22]– in addressed in Sec.7.5. What is missing
is a discussion of transport in a disordered (as opposed to a single-impurity) case.
However, this canonically difficult subject, which involves an interplay between
localization and interaction, is perhaps not ready for a tutorial-like discussion at
the moment. (For a recent development on this subject, see Ref.[18].)

Even a brief inspection of these notes shows that the choice between making
them comprehensive or self-contained was made for the latter with a focus on a
relatively small number of topics. It is quite easy to see what is missing: there
is no discussion of lattice effects, bosonization is introduced without the Klein
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factors, the sine-Gordon model is not treated in depth, chiral Luttinger liquids
are not discussed at all, and the list goes on. The discussionof the experiment
is scarce and perfunctory. However, the few subjects that are discussed are pro-
vided with quite a detailed–perhaps somewhat excessively detailed– treatment,
so that a reader may not feel a need to consult the reference list too often. For
the same reason, the notes also cover such canonical procedures as the pertur-
bative renormalization group in the fermionic language (Sec. 4) and elementary
bosonization (Sec. 6), which are discussed in many other sources and a reader
already familiar with the subject is encouraged to skip them.

Also, a relatively small number of references (about one perpage on average)
indicates once again that this isnot a review. The choice of cited papers is sub-
jective and the reference list in no way pretends to represent a comprehensive
bibliography to the field. My apologies in advance to those whose contributions
to the field I have failed to acknowledge here.

~ = kB = 1 through out the notes, unless specified otherwise.

2. Non-Fermi liquid features of Fermi liquids: 1D physics in higher dimen-
sions

One often hears the statement that, by and large, a Fermi liquid (FL) is just a
Fermi gas of weakly interacting quasi-particles; the only difference being the
renormalization of the essential parameters (effective mass,g− factor) by the in-
teractions. What is missing here is that the similarity between the FL and Fermi
gas holds only for leading terms in the expansion of the thermodynamic quan-
tities (specific heatC(T ), spin susceptibilityχs, etc.) in the energy (tempera-
ture) or spatial (momentum) scales. Next-to-leading terms, although subleading,
are singular (non-analytic) and, upon a closer inspection,reveal a rich physics
of essentially 1D scattering processes, embedded into a high-dimensional phase
space.

In this chapter, I will discuss the difference between “normal” processes which
lead to the leading, FL forms of thermodynamic quantities and “rare” 1D pro-
cesses which are responsible for the non-analytic behavior. We will see that the
role of these rare processes increases as the dimensionality is reduced and, even-
tually, the rare processes become the norm in 1D, where the FLbreaks down.

In a Fermi gas, thermodynamic quantities form regular, analytic series as func-
tion of either temperature,T, or the inverse spatial scale (bosonic momentumq)
of an inhomogeneous magnetic field. ForT ≪ EF , whereEF is the Fermi
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energy, andq ≪ kF , wherekF is the Fermi momentum, we have

C(T )/T = γ + aT 2 + bT 4 + . . . ; (2.1a)

χs (T, q = 0) = χ0
s(0) + cT 2 + dT 4 + . . . ; (2.1b)

χs (T = 0, q) = χ0
s(0) + eq2 + fq4 + . . . , (2.1c)

whereγ is the Sommerfeld constant,χ0
s is the static, zero-temperature spin sus-

ceptibility (which is finite in the Fermi gas), anda . . . f are some constants. Even
powers ofT occur because of the approximate particle-hole symmetry ofthe
Fermi function around the Fermi energy and even powers ofq arise because of
the analyticity requirement1

Our knowledge of the interacting systems comes from two sources. For a sys-
tem with repulsive interactions, one can assume that as longas the strength of the
interaction does not exceed some critical value, none of thesymmetries (transla-
tional invariance, time-reversal, spin-rotation, etc.),inherent to the original Fermi
gas, are broken. In this range, the FL theory is supposed to work. However, the
FL theory is an asymptotically low-energy theory by construction, and it is really
suitable only for extracting the leading terms, corresponding to the first terms
in the Fermi-gas expressions (2.1a-2.1c). Indeed, the freeenergy of a FL as an
ensemble of quasi-particles interacting in a pair-wise manner can be written as
[25]

F − F0 =
∑

k

(ǫk − µ) δnk +
1

2

∑

k,k′

fk,k′δnkδnk′ +O
(
δn3

k

)
, (2.2)

whereF0 is the ground state energy,δnk is the deviation of the fermion occu-
pation number from its ground-state value, andfk,k′ is the Landau interaction
function. Asδnk is of the order ofT/EF , the free energy is at most quadratic
in T, and therefore the correspondingC(T ) is at most linear inT. Consequently,
the FL theory–at least, in the conventional formulation–claims only that

C∗(T )/T = γ∗;

χ∗
s (T, q) = χ∗

s (0) ,

1The expressions presented above are valid in all dimensions, except forD = 2 with quadratic
dispersion. There, because the density of states (DoS) doesnot depend on energy, the leading correc-
tion to theγT− term inC(T ) is exponential inEF /T andχs does not depend onq for q ≤ 2kF .
However, this anomaly is removed as soon as we take into account a finite bandwidth of the electron
spectrum, upon which the universal (T 2n andq2n) behavior of the series is restored.
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symmetry breaking
U

T, Q, H ...E F

Fermi−liquid theory

Microscopic models:
‘‘non−ideal Fermi gas"
high−density Coulomb gas
...

Fig. 1. Combined “diagram of knowledge". x-axis: energy scale (given by temperatureT , bosonic
momentumQ, magnetic fieldH) in appropriate units. y-axis: interaction strength. Fermi liquid
works for not necessarily weak interactions (but smaller than the critical value for an instability of
the ground state denoted by the red dot) but at the lowest energy scales. Microscopic models work
for weak interactions but for arbitrary energies.

whereγ∗ andχ∗
s (0) differ from the corresponding Fermi-gas values, and does

not say anything about higher-order terms2.
Higher-order terms inT or q can be obtained within microscopic models

which specify particular interaction and, if an exact solution is impossible–which
is always the case in higher dimensions– employ some kind of aperturbation the-
ory. Such an approach is complementary to the FL: the former nominally works
for weak interactions3 but at arbitrary temperatures, whereas FL works both
for weak and strong interactions, up to some critical value corresponding to an
instability of some kind,e.g., a ferromagnetic transition, but only in the low-
temperature limit. In the{ temperature, interaction} plane, the validity regions
of these two approaches are two strips running along the two axes (cf. Fig. 1).
For weak interactions and at low temperatures, the regions should overlap.

Microscopic models (Fermi gas with weak repulsion, Coulombgas in the
high-density limit, electron-phonon interaction, paramagnon model, etc.) show
that the higher-order terms in the specific heat and spin susceptibility are non-

2Strictly speaking, non-analytic terms inC(T ) can be obtained from the free energy (2.2) by
taking into account the non-analytic terms in the quasi-particle spectrum, see Ref. [29]b.

3Some results of the perturbation theory can be rigorously extended to an infinite order in the
interaction, and most of them can be guaranteed to hold even if the interactions are not weak.
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analytic functions ofT andq [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38].
For example,

C(T )/T = γ3 − α3T
2 lnT (3D); (2.3a)

C(T )/T = γ2 − α2T (2D) ; (2.3b)

χs (q) = χs(0) + β3q
2 ln q−1 (3D); (2.3c)

χs (q) = χs(0) + β2 |q| (2D), (2.3d)

where all coefficients are positive for the case of repulsiveelectron-electron in-
teraction4

As seen from Eqs. (2.3a-2.3d), the non-analyticities become stronger as the
dimensionality is reduced. The strongest non-analyticityoccurs in 1D, where–
as far as single-particle properties are concerned–the FL breaks down:

C(T )/T = γ1 + α1 lnT (1D);

χ (q) = χ0 + β1 ln |q| (1D).

It turns out that the evolution of the non-analytic behaviorwith the dimen-
sionality reflects an increasing role of special, almost 1D scattering processes in
higher dimensions. Thus non-analyticities in higher dimensions can be viewed
as precursors of 1D physics forD > 1.

It is easier to start with the non-analytic behavior of a single-particle prop-
erty, the self-energy, which can be related to the thermodynamic quantities via
standard means [23] (see also appendix A). Within the Fermi liquid,

ReΣR (ε, k) = −Aε+Bξk + . . . (2.4a)

−ImΣR (ε, k) = C(ε2 + π2T 2) + . . . (2.4b)

Expressions (2.4a) and (2.4b) are equivalent to two statements: i) quasi-particles
have a finite effective mass near the Fermi level

4Notice that not only the functional forms but also thesign of the q− dependent term in the
spin susceptibility is different for free and interacting systems. “Wrong” sign of theq− dependent
corrections has far-reaching consequences for quantum critical phenomena. For example, it precludes
a possibility of a second-order, homogeneous quantum ferromagnetic phase transition in an itinerant
system [39]. What is possible is either a first-order transition or ordering at finiteq, e.g. helical
structure. In 1D, a homogeneous ferromagnetic state is forbidden by the Lieb-Mattis theorem [46],
which states that the ground state of 1D fermions, interacting via spin-independent but otherwise
arbitrary forces, is non-magnetic. One could speculate that the non-analyticities in higher dimensions
indicate the existence of a higher-D version of the Lieb-Mattis theorem. Certainly, this does not
mean that ferromagnetism does not exist in higher dimensions (it is hard to deny the existence of,
e.g., iron). However, ferromagnetism may not exist inmodels dealingonly with itinerant electrons in
continuum.
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k , ε,q ε ωk

,q ω

ε ,k

Fig. 2. Self-energy to first order in the interaction with a dynamic bosonic field.

m∗ = m0
A+ 1

B + 1
,

and ii) damping of quasiparticles is weak: the level width ismuch smaller than
the typical quasi-particle energy

Γ = −2ImΣR (ε, k) ∝ max
{

|ε|2 , T 2
}

≪ |ε| , T.

Landau’s argument for theε2 (or T 2) behavior ofImΣR relies on the Fermi
statistics of quasiparticles and on the assumption that theeffective interaction is
screened at large distances [23]. It requires two conditions. One condition is ob-
vious: the temperature has to be much smaller than the degeneracy temperature
TF = kF v

∗
F , wherev∗F is the renormalized Fermi velocity. The other condition

is less obvious: it requires inter-particle scattering to be dominated by processes
with large (generically, of orderkF ) momentum transfers. Once these two con-
ditions are satisfied, the self-energy assumes a universal form, Eqs. (2.4a) and (
2.4b),regardless of a specific type of the interaction (e-e, e-ph) and dimensional-
ity. To see this, let’s have a look atImΣR (ε, k) due to the interaction with some
“boson” (Fig. 2).

The wavy line in Fig.2 can be,e.g.,a dynamic Coulomb interaction, phonon
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propagator, etc. On the mass shell (ε = ξk) atT = 0 and forε > 0, we have5

ImΣR (ε) = − 2

(2π)
D+1

∫ ε

0

dω

∫

ddqImGR (ε− ω,k− q) ImV R (ω,q) .

(2.5)
The constraint on energy transfers (0 < ω < ε) is a direct manifestation of
the Pauli principle which limits the number of accessible energy levels. In real
space and time,V (r, t) is a propagator of some field which has a classical limit
(when the occupation numbers of all modes are large). Therefore,V (r, t) is a
real function, hence ImV is an odd function ofω. I will make this fact explicit
writing ImV as

ImV R (ω, q) = ωW (|ω| , q) .
Now, suppose that we integrate overq and the result does not depend onω. Then
we immediately get

−ImΣR (ε) ∼ C
∫ ε

0

dωω ∼ Cε2,

whereC is the result of theq− integration which contains all the information
about the interaction. Once we got theε2-form for ImΣR (ε) , the ε- term in
ReΣR (ε) follows immediately from the Kramers-Kronig transformation, and we
have a Fermi-liquid form of the self-energy regardless of a particular interaction
and dimensionality. Thus a sufficient condition for the Fermi liquid is thesepa-
rability of the frequency and momentum integrations, which can only happen if
the energy and momentum transfers are decoupled.

Now, what is the condition for separability? As a function ofq, W has at
least two characteristic scales. One is provided by the internal structure of the
interaction (screening wavevector for the Coulomb potential, Debye wavevector
for electron-phonon interaction, etc.) or bykF , whichever is smaller. This scale
(let’s call it Q) does not depend onω. Moreover, as|ω| is bounded from above
by ε, and we are interested in the limitε → 0, one can safely assume thatQ ≫
|ω| /vF . The role ofQ is just to guarantee the convergence of the momentum
integral in the ultraviolet, that is, to ensure that forq ≫ Q the integrand falls
off rapidly enough. Any physical interaction will have thisproperty as larger
momentum transfer will have smaller weight. The other scaleis |ω| /vF . Now,

5To get Eq. (2.5), one can start with the Matsubara form of diagram Fig. 2, convert the Matsubara
sums into the contour integrals, use the dispersion relation

DR(ε) =
1

π

∫ ∞

−∞

dε′
ImDR (ε′)

ε′ − ε − i0+
,

which is valid for any retarded function, and take the limitT → 0.
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let’s summarize this by re-writing ImV in the following scaling form

ImV R (ω, q) = ω
1

QD
U

( |ω|
vFQ

,
q

Q

)

,

whereU is a dimensionless function and the factorQ−D was singled out to keep
the units right.

In the perturbation theory, the Green’s function in (2.5) isa free one. Assum-
ing the free-electron spectrumξk = (k2 − k2

F )/2m,

ImGR
(

ε− ω,~k − ~q
)

= −πδ
(
ε− ω − ξk + ~vk · ~q − q2/2m

)
.

On the mass shell,

ImGR
(

ε− ω,~k − ~q
)

|ε=ξk
= −πδ

(
ω − ~vk · ~q + q2/2m

)
.

The argument of the delta-function simply expresses the energy and momentum
conservation for a processε→ ε− ω,~k → ~k − ~q. The angular integral involves
only the delta-function. For anyD, this integral gives

〈δ (. . . )〉Ω =
1

vF q
AD

(
ω + q2/2m

vF q

)

,

wherevk was replaced byvF because all the action takes place near the Fermi
surface. ForD = 3 andD = 2,

A3 (x) = 2θ(1− |x|);

A2 (x) =
2θ (1− |x|)√

1− x2
.

The constraint on the argument ofAD is purely geometric: the magnitude of the
cosine of the angle between~k and~q has to be less then one. For power-counting
purposes, functionAD has a dimensionality of 1. Therefore, its only role is to
provide a lower cut-off for the momentum integral. Then, by power counting

ImΣR (ε) ∼ 1

vFQD

∫ ε

0

dωω

∫

q≥|ω|/vF

dqqD−2U

( |ω|
vF q

,
q

Q

)

. (2.6)

Now, if the integral overq is dominated byq ∼ Q and is convergent in thein-
frared, one can putω = 0 in this integral. After this step, the integrals overω and
q decouple. Theω− integral givesε2 regardless of the nature of the interaction
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Fig. 3. a) and b) Non-trivial second order diagrams for the self-energy. c) Same diagrams as in a)
and b) re-drawn as a single “sunrise" diagram. d) Diagrams relevant for non-analytic terms in the
self-energy. e) Kinematics of scattering in a polarizationbubble: the dynamic partΠ ∝ ω/vF q
comes from the processes in which the internal fermionic momentum (~p) is almost perpendicular to
the external bosonic one (~q).
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and dimensionality whereas theq− integral supplies a prefactor which entails all
the details of the interaction

ImΣR (ε) = CD
ε2

vFQ
.

For example, for a screened Coulomb interaction in the weak-coupling (high-
density) limitQ = κ, whereκ is the screening wavevector, we have in 3D

−ImΣR (ε) =
π2

64

κ

kF

ε2

EF
.

Now we can formulate a sufficient (but not necessary) condition for the Fermi-
liquid behavior. It will occur whenever if kinematics of scattering is such that
the typical momentum transfers are determined by some internal and, what is
crucial,ω− independent scale, whereas the energy transfers are of order of the
quasi-particle energy (or temperature). Excluding special situations, such as
the high-density limit of the Coulomb interaction,Q is generically of order of
the ultraviolet range of the problem∼ kF . In other words, isotropic scattering
guarantees aε2- behavior. Small-angle scattering with typical angles of order
ε/vF ≪ Q≪ kF gives this behavior as well.

Theε2− result seems to be quite general under the assumptions made.When
and why these assumptions are violated?

A long-range interaction, associated with small-angle scattering, is known to
destroy the FL. For example, transverse long-range (current-current [44] or gauge
[45]) interactions, which–unlike the Coulomb one–are not screened by electrons,
lead to the breakdown of the Fermi liquid. However, the current-current inter-
action is of the relativistic origin and hence does the trickonly at relativistically
small energy scales, whereas the gauge interaction occurs only under special cir-
cumstances, such as near half-filling or for composite fermions. What about a
generic case when nothing of this kind happens? It turns out that even if the
bare interaction is of the most benign form,e.g., a delta-function in real space,
there are deviations from a (perceived) FL behavior. These deviations get ampli-
fied as the system dimensionality is lowered, and, eventually, lead to a complete
breakdown of the FL in 1D.

A formal reason for the deviation from the FL-behavior is that the argument
which led us to theε2-term is good only in the leading order inω/qvF . Recall
that the angular integration gives usq−1 factors in all dimensions, and, to arrive
at theε2 result we putω = 0 in functionsAD andU. If we want to get a next
term inε, then we need to expandU andA in ω. Had such expansions generated
regular series, ImΣR would have also formed regular series inε2: ImΣR =
aε2 + bε4 + cε6 + . . . . However, each factor ofω comes withq−1, so that no
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matter how high the dimensionality is, at some order ofω/vF q we are bound to
have an infrared divergence.

2.1. Long-range effective interaction

Let’s look at the simplest case of a point-like interaction.A frequency depen-
dence of the self-energy arises already at the second order.At this order, two
diagrams in Fig. 3 are of interest to us. For a contact interaction, diagram b) is
just -1/2 of a) (which can be seen by integrating over the fermionic momentum~p
first), so we will lump them together. Two given fermions interact via polarizing
the medium consisting of other fermions. Hence, the effective interaction at the
second order is just proportional to the polarization bubble

ImV R(ω, q) = −U2ImΠR(ω, q).

Let’s focus on small angle-scattering first:q ≪ 2kF . It turns out that in all
three dimensions, the bubble has a similar form (see Appendix Appendix A for
an explicit derivation of this result)

−ImΠR(ω, q) = νD
ω

vF q
BD

(
ω

vF q

)

, (2.7)

whereνD = aDmk
D−2
F is the DoS inD dimensions [a3 = (2π)−2, a2 =

(2π)−1, a1 = 1/2π] andBD is a dimensionless function, whose main role is
to impose a constraintω ≤ vF q in 2D and 3D andω = vF q in 1D. Eq.(2.7)
entails the physics ofLandau damping.The constraint arises because collective
excitations–charge- and spin-density waves– decay into particle-hole pairs. De-
cay occurs only if bosonic momentum and frequency (q andω) are within the
particle-hole continuum (cf. Fig. 4). ForD > 1, the boundary of the continuum
for smallω andq is ω = vF q, hence the decay takes place ifω < vF q. The
rest of Eq. (2.7) can be understood by dimensional analysis.Indeed,ΠR is the
retarded density-density correlation function; hence, bythe same argument we
applied to ImV R, its imaginary part must be odd inω. For q ≪ kF , the only
combination of units of frequency isvF q, and the frequency enters asω/vF q.
Finally, a factorνD makes the overall units right. In 1D, the difference is that the
continuum shrinks to a single lineω = vF q, hence decay of collective excitations
is possible only on this line. In 3D, functionB3 is simply aθ− function

ImΠR(ω, q) = −ν3
ω

vF q
θ (q − |ω/vF |) .

Next-to-leading term in the expansion of ImΣR in ε comes from retaining the
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ω = ω =v q

2k 2k

(a) (b)

F

v q

F

ω ω 

qq

F F

Fig. 4. Particle-hole continua forD > 1 (left) andD = 1 (right). For the 1D case, only half of the
continuum (q > 0) is shown.

/vF
|ω|

/vF
|ω| /vF

a)

b) c)

F

q~Q

|q − 2k  |~q~ |ω|

Fig. 5. Kinematics of scattering. a) “Any-angle” scattering. Momentum transferq is of order of the
intrinsic scale of the interaction orkF , whichever is smaller, and is independent of the energy transfer,
ω, which is of order of the initial energyǫ. This process contributes regular terms to the self-energy.
b) Dynamic forward scattering:q ∼ |ω|/vF . c) Dynamic backscattering:|q − 2kF | ∼ |ω|/vF .
Processes b) and c) are responsible for the non-analytic terms in the self-energy.
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lower limit in the momentum integral of Eq. (2.6), upon whichwe get

−ImΣR ∼ U2mkF

∫ ε

0

dω

∫ Q∼kF

ω/vF

dqq2
1

vF q

ω

vF q

∼ U2mkF

v2
F

∫ ε

0

dωω







kF
︸︷︷︸

FL

− ω

vF
︸︷︷︸

beyond FL








∼ aε2 − b |ε|3 .

The first term in the square brackets is the FL contribution that comes from
q ∼ Q. The second term is a correction to the FL coming fromq ∼ ω/vF .
Thus, contrary to a naive expectation an expansion inε is non-analytic.The frac-
tion of phase space for small-angle scattering is small–most of the self-energy
comes from large-angle scattering events (q ∼ Q); but we already start to see the
importance of the small-angle processes. Applying Kramers-Kronig transforma-
tion to the non-analytic part (|ε|3) in ImΣR, we get a corresponding non-analytic
contribution to the real part as

(
ReΣR

)

non−an
∝ ε3 ln |ε| .

Correspondingly, specific heat which, by power counting, isobtained from ReΣR

by replacing eachε by T , also acquires a non-analytic term6

C(T ) = γ3T + β3T
3 lnT.

This is the familiarT 3 lnT term, observed both in He3 [40] and metals [41]
(mostly, heavy-fermion materials)7.

In 2D, the situation is more dramatic. Theq− integral diverges now logarith-

6One has to be careful with the argument, as a general relationbetweenC(T ) and the single-
particle Green’s function [23] involves the self-energy onthe mass shell. In 3D, the contribution
to Σ from forward scattering, as defined in Fig. 6, vanishes on themass shell; hence there is no
contribution toC(T ) [50]. The non-analytic part ofC(T ) is related to the backscattering part of the
self-energy (scattering of fermions with small total momentum), which remains finite on the mass
shell. That forward scattering does not contribute to non-analyticities in thermodynamics is a general
property of all dimensions, which can be understood on the basis of gauge-invariance [42].

7TheT 3 ln T -term in the specific heat coming from the electron-electroninteractions is often re-
ferred to in the literature as to the “spin-fluctuation” or “paramagnon” contribution [27, 28]. Whereas
it is true that this term is enhanced in the vicinity of a ferromagnetic (Stoner) instability, it exists even
far way from any critical point and arises already at the second order in the interaction [29].
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mically in the infrared:

−ImΣR (ω) ∼ U2

v2
F

m

∫ ε

0

dωω

∫ ∼kF

∼|ω|/vF

dq

q

∼ U2

vF
mε2 ln

EF

|ε| .

Now, dynamic forward-scattering (with transfersq ∼ ω/vF ) is not a perturba-
tion anymore: on the contrary, theε dependence of ImΣR is dominated by for-
ward scattering (theε2 ln |ε|-term is larger than the “any-angle”ε2-contribution
). Correspondingly, the real part acquires a non-analytic term ReΣ ∝ ε |ε|, and
the specific heat behaves as8

C(T ) = γ2T − β2T
2.

The non-analyticT 2-term in the specific heat has been observed in recent exper-
iments on monolayers of He3 adsorbed on a solid substrate [43]9.

Finally, in 1D the same power-counting argument leads to ImΣR ∝ |ε| and
ReΣR ∝ ε ln |ε| 10Correspondingly, the “correction” to the specific heat behaves
asT ln T and is larger than the leading,T− term. This is the ultimate case of
dynamic forward scattering, whose precursors we have already seen in higher
dimensions11.

8again, only processes with small total momentum contribute
9If a T 2 term inC(T ) does not fit your definition of non-analyticity, you have to recall that the

right quantity to look at is the ratioC(T )/T. Analytic behavior corresponds to seriesC(T )/T =
γ + δT 2 + σT 4 + . . . . whereas we have aT 2 ln T andT terms as the leading order corrections to
the Sommerfeld constantγ for D = 3 andD = 2, correspondingly.

10Special care is required in 1D as in the perturbation theory one gets a strong divergence in the
self-energy corresponding to interactions of fermions of the same chirality (Fig. 8a,c). This point will
be discussed in more detail in Section 2.3 (along with a weaker but nonetheless singularity in 2D).
For now, let us focus on a regular part of the self-energy corresponding to the interaction of fermions
of opposite chirality (Fig. 8b).

11Bosonization predicts thatC(T ) of a fermionic system is the same as that of 1D bosons, which
scales asT for D = 1 [10]. This is true only for spinless fermions, in which case bosonisation
provides an asymptotically exact solution. For electrons with spins, the bosonized theory is of the
sine-Gordon type with the non-Gaussian (cosφ) term coming from the backscattering of fermions of
opposite spins. Even if this term is marginally irrelevant and flows down to zero at the lowest energies,
at intermediate energies it results in a multiplicativelnT factor in C(T ) and alnmax{q, T, H}
correction to the spin susceptibility (whereH is the magnetic field, and units are such thatq, T, and
H have the units of energy). The difference between the non-analyticities inD > 1 andD = 1 is
that the former occurs already at the second order in the interaction, whereas the latter start only at
third order. Naive power-counting breaks down in 1D because the coefficient in front ofT ln T term
in C(T ) vanishes at the second order, and one has to go to third order.In the sine-Gordon model, the
third order in the interaction is quite natural: indeed, onehas to calculate the correlation function of
the cosφ term, which already contains two coupling constants; the third one occurs by expanding the
exponent to leading (first) order. For more details, see [47],[48],[49].
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Even if the bare interaction is point-like, the effective one contains a long-
range part at finite frequencies. Indeed, the non-analytic parts ofΣ andC(T )
come from the region of smallq, and hence large distances. Already to the sec-
ond order inU , the effective interactioñU = U2Π(ω, q) is proportional to the
dynamic polarization bubble of the electron gas,Π(ω, q). In all dimensions,
ImΠR is universal and singular inq for |ω| /vF ≪ q ≪ kF

ImΠR (ω, q) ∼ νD
ω

vF |q|
.

Although the effective interaction is indeed screened atq → 0 –and this is
why the FL survives even if the bare interaction has a long-range tail–it has a
slowly decaying tail in the intermediate range ofq. In real space,̃U(r) behaves
asω/rD−1 at distancesk−1

F ≪ r ≪ vF /|ω|.
Thus, we have the same singular behavior of the bubble in all dimensions, and

the results for the self-energy differ only because the phase volumeqD is more
effective in suppressing the singularity in higher dimensions than in lower ones.

There is one more special interval ofq: q ≈ 2kF , i.e., Kohn anomaly. Usu-
ally, the Kohn anomaly is associated with the2kF - non-analyticity of thestatic
bubble, and its most familiar manifestation is the Friedel oscillation in electron
density produced by a static impurity (discussed later on).Here, the static Kohn
anomaly is of no interest for us as we are dealing with dynamicprocesses. How-
ever, the dynamic bubble is also singular near2kF . For example, in 2D,

ImΠR (q ≈ 2kF , ω) ∝ ω
√

kF (2kF − q)
θ (2kF − q) .

Because of the one-sided singularity inImΠR nearq = 2kF , the effective in-
teraction oscillates and falls off as a power ofr. By power counting, if a static
Friedel oscillation falls off assin 2kF r/r

D , then the dynamic one behaves as

Ũ ∝ ω sin 2kF r

r(D−1)/2
.

Dynamic Kohn anomaly results in the same kind of non-analyticity in the self-
energy (and thermodynamics) as the forward scattering. The“dangerous” range
of q now is |q − 2kF | ∼ ω/vF –“dynamic backscattering”. It is remarkable that
the non-analytic term in the self-energy is sensitive only to strictly forward or
backscattering events, whereas processes with intermediate momentum transfers
contribute only to analytic part of the self-energy. To see this, we perform the
analysis of kinematics in the next section.
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Fig. 6. Scattering processes responsible for divergent and/or non-analytic corrections to the self-
energy in 2D. a) “Forward scattering”–an analog of the “g4”-process in 1D. All four fermionic
momenta are close to each other. b) Backscattering–an analog of the “g2”-process in 1D. The net
momentum before and after collision is small. Initial momenta are close to final ones. Although the
momentum transfer in such a process is small, we still refer to this process as “backscattering” (see
the discussion in the main text). c)2kF− scattering.

2.2. 1D kinematics in higher dimensions

The similarity between non-FL behavior in 1D and non-analytic features in higher
dimensions occurs already at the level of kinematics. Namely, one can make a
rather strong statement:the non-analytic terms in the self-energy in higher di-
mensions result from essentially 1D scattering processes.Let’s come back to
self-energy diagram 3a. In general, integrations over fermionic momentum~p and
bosonic~q are independent of each other: one can first integrate over (~p, ε), form-
ing a bubble, and then integrate over (~q, ω). Generically,~p spans the entire Fermi
surface. However, the non-analytic features inΣ come not from generic but very
specific~p which are close to either to~k or to−~k.

Let’s focus on the 2D case. Theε2 ln |ε| term results from the product of two
q−1 -singularities: one is from the angular average of ImG and the other one
from the dynamic,ω/vF q, part of the bubble. In Appendix Appendix A, it is
shown that theω/vF q singularity in the bubble comes from the region where~p is
almost perpendicular to~q. Similarly, the angular averaging of ImG also pins the
angle between~k and~q to almost90◦.

ImGR(ε− ω,~k − ~q) = −πδ (ε− ω − qvF cos θ′)→

cos θ′ =
ε− ω
vF q

∼ ω

vF q
≪ 1→ θ′ ≈ π/2.

As ~p and~k are almost perpendicular to the same vector (~q), they are either almost
parallel or anti-parallel to each other. In terms of a symmetrized (“sunrise”) self-
energy (cf. Fig. 3), it means that either all three internal momenta are parallel to
the external one or one of the internal one is parallel to the external whereas the
other two are anti-parallel12. Thus we have three almost 1D processes:

12In 3D, conditions~p ⊥ ~q and~k ⊥ ~q mean only that~p and~k lie in the same plane. However,
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• all four momenta (two initial and two final) are almost parallel to each other;
• the total momentum of the fermionic pair is near zero, whereas the transferred

momentum is small;
• he total momentum of the fermionic pair is near zero, whereasthe transferred

momentum is near2kF .
These are precisely the same 1D processes we are going to dealwith in the

next Section–the only difference is that in 2D, trajectories do have some angular
spread, which is of order|ω| /EF . The first one is known as “g4” (meaning: all
four momenta are in the same direction) and the other one as “g2” (meaning: two
out of four momenta are in the same direction). Both of these processes are of
the forward-scattering type as the transferred momentum issmall. In 1D, these
processes correspond to scattering of fermions of same (g4) or opposite chirality
(g2). The last (2kF ) process is known “g1” in 1D.

It turns out that of these two processes, theg2- and2kF - ones, are directly
responsible for theε2 ln ε behavior. Theg4-process leads to a mass-shell singu-
larity in the self-energy both in 1D and 2D, discussed in the next section, but does
not affect the thermodynamics, so we will leave it for now.

What about2kF− scattering? Suppose electron~k scatters into−~k emitting
an electron-hole pair of momentum2~k. In general,2~k of the e-h pair may consist
of any two fermionic momenta which differ by2~k : ~p and~p + 2~k. But since∣
∣
∣2~k
∣
∣
∣ ≈ 2kF , the components of the e-h pair will be on the Fermi surface only if

~p ≈ −~k and~p+ 2~k ≈ ~k. Only in this case does the effective interaction (bubble)
have a non-analytic form at finite frequency. Thus2kF - scattering is also of the
1D nature forD > 1.

What we have said above, can be summarized in the following pictorial way.
Suppose we follow the trajectories of two fermions, as shownin Fig. 7. There
are several types of scattering processes. First, there is “any-angle” scattering
which, in our particular example, occurs at a third fermion whose trajectory is not
shown. This scattering contributes regular, FL terms both to the self-energy and
thermodynamics. Second, there are dynamic forward-scattering events, when
q ∼ |ω| /vF . These arenot 1D processes, as fermionic trajectories enter the
interaction region at an arbitrary angle to each other. In 3D, a third order in
such processes results in the non-analytic behavior ofC(T )–this is the origin

it is still possible to show that for a closed diagram,e.g., thermodynamic potential,~p and~k are
either parallel or anti-parallel to each other. Hence, the non-analytic term inC(T ) also comes from
the 1D processes. In addition, there are dynamic forward scattering events (marked with a star in
Fig. 7) which, although not being 1D in nature, do lead to a non-analyticity in 3D. Thus, theT 3 lnT
anomaly inC(T ) comes from both 1D and non-1D processes [50] . The differenceis that the former
start already at the second order in the interaction whereasthe latter occur only at the third order. In
2D, the entireT− term inC(T ) comes from the 1D processes.
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g2

4

1

dynamic forward scattering

1D forward or backscattering

‘‘any−angle" scattering −−> regular (FL) contribution

Fig. 7. Typical trajectories of two interacting fermions. Explosion: “any-angle” scattering at a third
fermion (not shown) which leads to a regular (FL) contribution. Five-corner star: dynamic forward
scatteringq ∼ |ω|/vF . This process contributes to non-analyticity in 3D (to third order in the inter-
action) but not in 2D. Four-corner star: 1D dynamic forward and backscattering events, contributing
to non-analyticities both in 3D and 2D.

of the “paramagnon” anomaly inC(T ). In 2D, dynamic forward scattering does
not lead to non-analyticity. Finally, there are processes,marked by“g1”, “ g2”,
and “g4", when electrons conspire to align their initial momenta sothat they are
either parallel or antiparallel to each other. These processes determine the non-
analytic parts ofΣ and thermodynamics in 2D (and also, formally, forD < 2.)
A crossover betweenD > 1 andD = 1 occurs when all other processes butg1,
g2, andg4 are eliminated by a geometrical constraint.

We see that for non-analytic terms in the self-energy (and thermodynamics),
large-angle scattering does not matter. Everything is determined by essentially
1D processes. As a result, if the bare interaction has someq dependence, only
two Fourier components matter:U(0) andU(2kF ). For example, in 2D

ImΣR (ε) ∝
[
U2 (0) + U2 (2kF )− U(0)U(2kF )

]
ε2 ln |ε| ;

ReΣR (ω) ∝
[
U2 (0) + U2 (2kF )− U(0)U(2kF )

]
ε |ε| ;

C(T )/T = γ∗ − a
[
U2 (0) + U2 (2kF )− U(0)U(2kF )

]
T ;

χs(Q, T ) = χ∗
s (0) + bU2 (2kF )max {vFQ, T } ;

wherea andb are coefficients. These perturbative results can be generalized for
the Fermi-liquid case, when the interaction is not necessarily weak. Then the
leading, analytic parts ofC(T ) andχs are determined by the angular harmonics
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of theLandau interaction function

F̂ (~p, ~p′) = Fs (θ) Î + Fa (θ) ~σ · ~σ′,

whereθ is the angle between~p and~p′. In particular,

γ∗ = γ0 (1 + 〈cos θFs〉) ;

χ∗
s (0) = χ0

s

1 + 〈cos θFs〉
1 + 〈Fa〉

,

whereγ0 andχ0
s are the corresponding quantities for the Fermi gas. Becauseof

the angular averaging, the FL part is rather insensitive to the details of the in-
teraction. As genericallyFs andFa are regular functions ofθ, the whole Fermi
surface contributes to the FL renormalizations. VerticesU(0) andU(2kF ), oc-
curring in the perturbative expressions, are replaced byscattering amplitudesat
angleθ = π

Â (~p, ~p′) = As (θ) Î +Aa (θ)~σ · ~σ′,

Beyond the perturbation theory [37],

C(T )/T = γ∗ − ā
[
A2

s (π) + 3A2
a (π)

]
T ;

χs(Q, T ) = χ∗
s (0) + b̄A2

a (π) max {vFQ, T } .

Non-analytic parts are not subject to angular averaging andare sensitive to a
detailed behavior ofAs,a nearθ = π13.

2.3. Infrared catastrophe

2.3.1. 1D
By now, it is well-known that the FL breaks down in 1D and an attempt to ap-
ply the perturbation theory to 1D problem results in singularities. Let’s see what
precisely goes wrong in 1D. I begin with considering the interaction of fermions
of opposite chirality, as in diagram Fig. 8b. Physically, a right-moving fermion
emits (and then re-absorbs) left-moving quanta of density excitations (same for
left-moving fermion emitting/absorbing right-moving quanta). Now, instead of
the order-of-magnitude estimate (2.7), which is good in alldimensions but only
for power-counting purposes, I am going to use an exact expression for the bub-
ble, Eq. (B. 4), formed by left-moving fermions. On the Fermisurface (k = kF ,

13The renormalization of the scattering amplitudes by the Cooper channel of the interaction results
in additionalln T -dependences ofAc,s(π)
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Fig. 8. Self-energy in 1D.± refer to right (left)-moving fermions.

we have

−ImΣR
+− (ε) ∼ U2ν1

∫ ε

0

dω

∫

dqImGR
+ (ε− ω, k − q) ImΠR

−

∼ U2ν1

∫ ε

0

dω

∫

dqδ (ε− ω + vF q) (ω/vF ) δ (ω + vF q)

∼ g2 |ε| ,

whereg ≡ U/vF is the dimensionless coupling constant. The correspondingreal
part behaves asε ln |ε| . What we got is bad, asImΣR scales withε in the same
way as the energy of a free excitation above the Fermi level and ReΣR increases
faster thanε (which means that the effective mass depends onε asln |ε|), but not
too bad because, as long asg ≪ 1, the breakdown of the quasi-particle picture
occurs only at exponentially small energy scales:ε . EF exp(−1/g2). Now,
let’s look at scattering of fermions of the same chirality. This time, I choose to
be away from the mass shell.

−ImΣR
++ ∝

∫ ε

0

dω

∫

dq δ (ε− ω − vF (k − q))
︸ ︷︷ ︸

ImGR
+

ωδ (ω − vF q)
︸ ︷︷ ︸

ImΠR
+

(2.8)

= ε2δ (ε− vFk) . (2.9)
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It is not difficult to see that the full (complex) self-energyis simply

ΣR
++ ∝ −

ε2

ε− vFk + i0+
. (2.10)

On the mass shell (ε = vFk) we have a strong–delta-function–singularity. This
anomaly was discovered by Bychkov, Gor’kov, and Dzyaloshinskii back in the
60s [52], who called it the “infrared catastrophe”. Indeed,it is similar to an
infrared catastrophe in QED, where an electron can emit an infinite number of
soft photons. Likewise, since we have linearized the spectrum, a 1D fermion
can emit an infinite number of soft bosons: quanta of charge- and spin-density
excitations. The point is that in 1D there is a perfect match between momentum
and energy conservations for a process of emission (or absorption) of a boson
with energy and momentum related byω = vF q :

k′ = k − q
ε′ = ε− ω = vFk − vF q = vF (k − q) .

On the mass-shell, the energy and momentum conservations are equivalent. Imag-
ine that you want to find a probability of certain scattering process using a Fermi
Golden rule. Then you have a product of twoδ− functions: one reflecting the
momentum and other energy conservation. But if the arguments of the delta-
functions are the same, you have an essential singularity: asquare of the delta-
function. As a result, the corresponding probability diverges.

A pole in the self-energy [Eq. (2.10)] indicates the non-perturbativeand specif-
ically 1D effect: spin-charge separation. Indeed, substituting Eq. (2.10) we get
two poles corresponding to excitations propagating with velocities vF (1± g)
(recall thatg ≪ 1). This peculiar feature is confirmed by an exact solution (see
Section 3): already theg4−interaction leads to a spin-charge separation (but not
to anomalous scaling). What we did not get quite right is thatthe velocities of
both–spin- and charge-modes–are modified by the interactions. In fact,the exact
solution shows that the velocity of the spin-mode remains equal tovF , whereas
the velocity of the charge mode is modified.

Obviously, there is no spin-charge separation for spinlesselectrons. Indeed, in
this case diagram Fig. 8a does not have an additional factor of two as compared to
Fig. 8c (but is still of opposite sign), so that the forward-scattering parts of these
two diagrams cancel each other. As a result, there is no infrared catastrophe for
spinless fermions.

2.3.2. 2D
What we considered in the previous section sounds like an essentially 1D effect.
However, a similar effect exists also in 2D (more generally,for 1 ≤ D ≤ 2).
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This emphasizes once again that the difference betweenD = 1 andD > 1 is not
as dramatic as it seems.

In 2D, the self-energy also diverges on the mass shell, if onelinearizes the
electron’s spectrum, albeit the divergence is weaker than in 1D–to second order,
it is logarithmic14. The origin of the divergence can be traced back to the form
of the polarization bubble at small momentum transfer, Eq. (A. 1). Integrating
over the angle in 2D, we get

ImΠR(ω, q) = −
(m

2π

) ω
√

(vF q)
2 − ω2

θ (vF q − |ω|) . (2.11)

ImΠR(ω, q) has a square-root singularity at the boundary of the particle-hole
continuum,i.e., at ω = vF q. (This is a threshold singularity of the van Hove
type: the band of soft electron-hole pairs is terminated atω = vF q, but the
spectral weight of the pairs is peaked at the band edge). On the other hand,
expandingǫk+q in GR(ε + ω,k+q) asξk+q = ξk + vF q cos θ and integrating
overθ, we obtain another square-root singularity

∫

dθImGR = −2π
[

(vF q)
2 − (ε+ ω − ξk)

2
]−1/2

. (2.12)

On the mass shell (ω = ξk), the arguments of the square roots in Eqs. (2.11) and
(2.12) coincide, and the integral overq diverges logarithmically. The resulting
contribution to ImΣR diverges on the mass shell (ε = ξk) [53, 54, 55],[34],[37]

ImΣR
g4

(ε, k) = −u
2

8π

ε2

EF
ln

EF

|ε− ξk|
,

where∆ ≡ ε − ξk andu ≡ mU/2π. The process responsible for the log-
singularity is the “g4” process in Fig. 6. On the other hand,g2 andg1 processes
give a contribution which is finite on the mass shell

ImΣR
g1+g2

(ε, k) = −u
2

4π

ε2

EF
ln

EF

|ε+ ξk|
.

(The divergence atε = −ξk is spurious and is removed by going beyond the log-
accuracy [34],[37].) We see therefore that the familiar form of the self-energy in
2D [ε2 ln |ε|, see Ref. [56]] is valid only on the Fermi surface(ξk = 0) . The loga-
rithmic singularity in ImΣR on the mass shell is eliminated by retaining the finite
curvature of single-particle spectrum (which amounts to keeping theq2/2m term
in ξ~k+~q). This brings in a new scaleε2/EF . The emerging singularity in (2.3.2)

14In 3D, there is no mass-shell singularity to any order of the perturbation theory.
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is regularized at|ε− ξk| ∼ ε2/EF and theε2 ln |ε| behavior is restored. How-
ever, higher orders diverge as power-laws and finite curvature does not help to
regularize them. This means that–in contrast to 3D–the perturbation theory must
be re-summed even for an infinitesimally weak interaction. Once this is done, the
singularities are removed. Re-summation also helps to understand the reason for
the problems in the perturbation theory. In fact, what we were trying to do was
to take into account a non-perturbative effect–an interaction with the zero-sound
mode–via a perturbation theory. Once all orders are re-summed, the zero-sound
mode splits off the continuum boundary–now it is a propagating mode with ve-
locity c > vF . This splitting is what regularizes the divergences. The resulting
state is essentially a FL: the leading term inΣ behaves asε2 ln |ε| . However,
some non-perturbative features remain: for example, the spectral function ex-
hibits a second peak away from the mass shell corresponding to the emission of
the zero-sound waves by fermions. A two-peak structure of the spectral function
is reminiscent of the spin-charge separation, although we do not really have a
spin-charge separation here: in contrast to the 1D case, thespin-density collec-
tive mode lies within the continuum and is damped by the particle-hole pairs.

3. Dzyaloshinskii-Larkin solution of the Tomonaga-Luttinger model

3.1. Hamiltonian, anomalous commutators, and conservation laws

In the Tomonaga-Luttinger model [57],[58] one considers a system of 1D spin-
1/2 fermions with a linearized dispersion. Only forward scattering of left- and
right-moving fermions is taken into account (g2 andg4− processes), whereas
backscattering is neglected. This last assumption means that the interaction po-
tential is of sufficiently long-range, so thatU (2kF ) ≪ U (0) . [We will come
back to this condition later.] Coupling between fermions ofthe same chirality
(g4) is assumed to be different from coupling between fermions of different chi-
rality (g2). If the original Hamiltonian contains only density-densityinteraction,
theng2 = g4. A difference betweeng2 andg4 leads to an unphysical (within
this model) current-current interaction. We will keepg2 6= g4, however, at the
intermediate steps of the calculations as it helps to elucidate certain points. At
the end, one can makeg2 equal tog4 without any penalty. In addition, in some
physical situations,g2 6= g4 . 15 In what follows I will follow the original paper
by Dzyaloshinskii and Larkin (DL) [59] and a paper by Metznerand di Castro

15For example, Coulomb interaction between the electrons at the edges of a finite-width Hall bar
(in the Integer Quantum Hall Effect regime) has this feature: electrons of the same chirality are
situated on the same edge, whereas electrons of different chirality are on opposite edges; hence the
matrix elements for theg2− andg4- interactions are different.
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[60], where the Ward identity used by Dzyaloshinskii and Larkin is derived in a
detailed way.

The Hamiltonian of the model is written as

H = H0 +Hint;

Hint ≡ H2 +H4,

where
H0 = vF

∑

k,σ

k
(

a†+,σ(k)a+,σ(k)− a†−,σ(k)a−,σ(k)
)

is the Hamiltonian of free fermions (± denote right/left moving fermions andσ
is the spin projection) and

H2 =
g2
L

∑

q

∑

σ,σ′

ρ+,σ (q) ρ−,σ′ (−q) ;

H4 =
g4
2L

∑

q

∑

σ,σ′

ρ+,σ (q) ρ+,σ′ (−q) + ρ−,σ (q) ρ−,σ′ (−q) ,

with
ρ±,σ =

∑

k

a†±,σ (k + q) a±,σ (k) .

To avoid additional complications, I assume that the interaction is spin-independent.
To simplify the notations and to emphasize the similarity between this model and
QED, I will setvF to unity in this section.

Introducing the chiral charge- and spin densities as

ρc
± = ρ±,↑ + ρ±,↓;

ρs
± = ρ±,↑ − ρ±,↓,

and total charge density and current as

ρc = ρc
+ + ρc

−;

jc = ρc
+ − ρc

−,

the interaction part of the Hamiltonian reduces to

Hint =
∑

q

1

2
(g2 + g4) ρ

c (q) ρc (−q) +
1

2
(g4 − g2) jc (q) jc (−q) . (3.1)

As we have already said, forg2 = g4, the interaction is of a pure density-density
type. Notice also that the spin density and current drop out of the Hamiltonian–
this is to be expected for a spin-invariant interaction. To make a link with QED,
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let us introduce Minkowski currentjµ with µ = 0, 1 so thatj0 = ρc (=j0) and
j1 = jc (=-j1). Then the interaction can be written as a 4-product of Minkowski
currents in a Lorentz-invariant form

Hint =
∑

q

gµνjνj
ν ,

where

g00 =
1

2
(g2 + g4) ;

g11 =
1

2
(g4 − g2) ;

g01 = g10 = 0. (3.2)

In what follows, we will need the following anomalous commutators

[ρ±,σ (q) , H0] = ±qρ±,σ (q) ;

[ρ±,σ (q) , H2] = ± g2
2π
qρ∓,σ (q) ;

[ρ±,σ (q) , H4] = ± g4
2π
qρ±,σ (q) .

The derivation of these commutation relations can be found in a number of stan-
dard sources [61, 10] and I will not present it here. Adding upthe commutators,
we get

[ρ±,σ, H ] = [ρ±,σ, H0 +H2 +H4]

= ±qρ±,σ ±
g2
2π
qρc

∓ ±
g4
2π
qρc

±

Adding up equations for spin-up and -down fermions, we obtain

[
ρc
±,, H

]
= ±qρc

± ±
g2
π
qρc

∓ ±
g4
π
qρc

±.

Finally, adding up the± components yields

i∂tρ
c = [ρc, H ] = vcqj

c, (3.3)

where
vc ≡ 1 +

g4 − g2
π

(recall thatvF = 1). Eq. (3.3) is a continuity equation reflecting charge conser-
vation. As if we did not have enough new notations, here is another one

Qµ = (ω, q)
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Fig. 9. a) Three-leg correlatorK. b) Vertex partΛ.

and
Qµ = (ω, vcq) .

In these notations and after a Fourier transform, the continuity equation can be
written as

Qµj
µ = 0.

The same relation for free particles reads

Qµj
µ = 0.

3.2. Reducible and irreducible vertices

Now, construct a mixed (fermion-boson) correlator

Kµ
±,σ (k, q|t, t1, t′1) = −〈T jµ (q, t) a±,σ (k, t1) a

†
±,σ (k + q, t1)〉, (3.4)

whereµ = 0, 1 and

j0 = ρc
+ + ρc

−;

j1 = ρc
+ − ρc

−.



32 Dmitrii L. Maslov

+=Λ

Γ Α

g

µν

µν

Fig. 10. Relation between verticesΛ andΓ.

Kµ is an analog of the three-leg vertex in QED , except that in QEDthe “boson”
is theµ− the component of the photon field

QED : Kµ = −〈TAµaā〉.

A diagrammatic representation ofKµ is a three-particle (one boson and two
fermions) diagram (cf. Fig. 9a).

The diagrams with self-energy insertions to solid lines simply renormalize the
Green’s functions. Absorbing these renormalizations, we single out the vertex
part, re-writingKµ as

Kµ = G2Λµ. (3.5)

Notice that there are as many vertex parts as there are bosonic degrees of free-
dom. In (3+1) QED,Λ0 is ascalar vertex andΛµ=1,2,3 are the components of
the vectorvertex. Diagrams representingΛµ are shown in Fig. 9b. These se-
ries can be re-arranged further by separating thephoton-irreduciblevertex part,
Γµ. A photon-irreducible part is obtained by separating the corrections to the
bosonic line, i.e., taking into account polarization. VerticesΛµ andΓµ are re-
lated via a kind of Dyson equation, which is simpler than the usual Dyson in
a sense that there is noΛµ on the right-hand-side. Diagrammatically, this rela-
tion is represented by Fig.10 where a shaded bubble is an exact (renormalized)
current-current correlation function

Aµν (q, t) = − i

V
〈jµ (q, t) jµ (−q, 0)〉.

Algebraically, equation in Fig.10 says

Λµ
±,σ = Γµ

±,σ +AµνgµλΓλ
±,σ. (3.6)

(We remind the reader that indices±, σ simply specify the fermionic flavor which
is not mixed in our approximation of forward-scattering andspin-independent
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forces, so all relations are applicable to each individual flavor). The coupling
constantsgµν relate currents to densities. According to Eqs. (3.1) and (3.2), den-
sities couple to densities and currents to currents with no cross terms. Opening
the matrix product in Eq. (3.6), we obtain

Λµ
i = Γµ

i +Aµ0g00Γ
0 +Aµ1g11Γ

1. (3.7)

3.3. Ward identities

A Ward identity for vertexΛµ is obtained by applyingi∂t to Kµ in Eq. (3.4)
and using the continuity equation (3.4).16 Performing this operations and Fourier
transforming in time, we obtain

QµK
µ
i (K,Q) = Gi (K)−Gi (K +Q) ,

wherei denotes the branch
i ≡ ±, σ.

Recalling Eq. (3.5), we see that the Ward identity becomes

QµΛµ
i (K,Q) = G−1

i (K +Q)−G−1
i (K) , (3.8)

which is identical to a corresponding identity in QED. For those who like to see
things not masked by fancy notations, here is Eq. (3.8) in an explicit form

ωΛ0
i (ε, k;ω, q)− vcqΛ

1
i (ε, k;ω, q) = G−1

i (ε+ ω, k + q)−G−1
i (ε, k) . (3.9)

Notice that Eqs.(3.8,3.9) containrenormalizedvelocity vc. In what follows, we
will actually need a Ward identity not forΛµ but for the photon-irreducible ver-
tex Γµ. This one is obtained by deriving the continuity equation for4-current
correlation functionAµν . To this end, one appliesi∂t toA0ν and uses continuity
equation (3.3), which yields17

QµA
µν =

2

π
qδν,1. (3.11)

16When differentiating, recall that theT− product can be represented by step-functions in time
which, upon differentiating, yield delta-functions

17To get this result, recall the form of the anomalous density-density commutator

[jµ (q) , jν (−q)] = ǫµν 2

π
qL,

whereǫ00 = ǫ11 = 0, ǫ01 = −ǫ10 = 1. Now open theT− product inA0ν and applyi∂t

i∂tA
0ν (q, t) = −

i

V
(i∂t) 〈θ (t) j0 (q, t) jν (−q, 0) + θ (−t) jν (−q, 0) j0 (q, t)〉

=
1

V
δ (t) [j0 (q, 0) , jν (−q, 0)] + vaqA1ν = 2

q

π
δν,1 + vaqA1ν . (3.10)

In 4-notations, (3.10) is equivalent to (3.11).
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Now, we form a scalar product betweenQµ and Eq. (3.7), using continuity
equation forAµν (3.11). This brings us to

QµΛµ
i = QµA

µ,

where

QµΛµ
i = Qµ

(
Γµ

i +Aµ0g00Γ
0
i +Aµ1g11Γ

1
i

)

= QµΓµ
i +QµA

µ0

︸ ︷︷ ︸

=0

g00Γ
0
i +QµA

µ1

︸ ︷︷ ︸

=2q/π

g11Γ
1
i

= ωΓ0
i − vc

︸︷︷︸

=1+(g4−g2)/π

qΓ1
i +

2q

π

1

2

g4 − g2
π

Γ1
i

= ωΓ0
i − qΓ1

i = QµΓµ.

Finally, the Ward identity for photon-irreducible vertex is

QµΓµ = G−1
i (K +Q)−G−1

i (K) . (3.12)

It is remarkable that the left-hand-side of Eq. (3.12) contains thebare Fermi
velocity (= 1) instead of the renormalized one. This is true even if we allowed
for spin-dependent interaction in the Hamiltonian.

It seems that we have not achieved much, as the conservation law was simply
cast into a different form. However, in our 1D problem with a linearized spec-
trum a further progress can be made because the current and density (for given
chirality) are just the same quantity (up to an overall factor of the Fermi velocity):

Γ1
±,σ = ±Γ0

±,σ

Therefore, we have a closed relation between just one vertexand Green’s func-
tions. Suppressing the 4-vector indexµ, we get the Ward identity for the density
vertex

Γ0
±,σ (K,Q) =

G−1
±,σ (K +Q)−G−1

±,σ (K)

ω ∓ q . (3.13)

This is the identity that we need to proceed further with the Dzyaloshinskii-
Larkin solution of the Tomonaga-Luttinger problem. Noticethat (3.13) contains
fully interacting Green’s functions.
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Fig. 11. Dyson equation for the effective interaction. Solid line: Green’s function of a right-moving
fermion. Dashed line: Green’s function of a left-moving fermion. Single wavy line: bare interaction
of fermions of the same chirality; spiral line: same for the fermions of opposite chirality. Double
wavy and spiral lines represent the renormalized interactions.

3.4. Effective interaction

Effective interaction is obtained by collecting polarization corrections to the bare
one. Diagrammatically, this procedure is described by the Dyson equation, rep-
resented in Fig.11. The interaction and polarization bubble are matrices with
components

V̂ =

(
V++ V+−
V+− V++

)

, V̂0 =

(
g4 g2
g2 g4

)

, Π̂ =

(
Π+ 0
0 Π−

)

,

where we used an obvious symmetryV++ = V−−, V+− = V−+. The Dyson
equation in the matrix form reads

V̂ = V̂0 + V̂0Π̂V̂ ,

or, in components,

V++ = g4 + g4Π+V++ + g2Π−V+−;

V+− = g2 + g2Π−V++ + g4Π−V+−. (3.14)

The bubbles in these equations arefully renormalizedones,i.e., they are built on
exact Green’s functions and contain a vertex (hatched corner):

Π± (ω, q) = −2i

∫ ∫
dkdε

(2π)
2G± (ε+ ω, k + q)G± (ε, k) Γ0

± (ε, k;ω, q) .
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Now we use the Ward identity forΓ0
± (3.13) to get18

Π± (ω, q) = −2i
1

ω ∓ q

∫ ∫
dkdε

(2π)
2 [G± (ε, k)−G± (ε+ ω, k + q)] . (3.15)

Eq. (3.15) looks exactly the same as afree bubble [cf. Eq. (B. 1)] except that
it contains exact rather than free Green’s functions. Because we managed to
transform the product of two Green’s functions into a difference, frequency inte-
gration in Eq. (3.15) can be performed term by term yieldingexactmomentum
distribution functionsn± (k) andn± (k + q) :

Π± (ω, q) =
1

ω ∓ q

∫ ∫
dk

π
[n±(k)− n±(k + q)] . (3.16)

At the first glance, it seems that we have not achieved much so far. Indeed, we
traded one unknown quantity (Π±) for another (n±). Both of them include the
interaction to all orders and without any further simplification we are stuck. In
fact, we have already made an important simplification: whenspecifying the
model, we assumed only forward scattering. This means that the interaction
is sufficiently long-range in real space so that backscattering can be neglected.
Equivalently, in the momentum space it means that our interaction operates only
in a narrow window of widthq0 near the Fermi points,±kF . Thus the states far
away from the Fermi points are not affected by the interaction. The momentum
integral in (3.16) comes from regions far away from the Fermisurface where
unknown functionsn± can be approximated by free Fermi steps. This approx-
imation is good as long asq0 ≪ kF . The solution is going to be exact only in
a sense that there will be no constraints on the amplitude of the interaction (pa-
rametersg2 andg4) but not its range.19Now we understand better why the title of
the paper by Dzyaloshinskii and Larkin [59] is “Correlationfunctions for a one-
dimensional Fermi system withlong-rangeinteraction (Tomonaga model)”20.

18I skipped over a subtlety related to the infinitesimal imaginary partsi0+ in the denominator.
Works the same way. If you are unhappy with this, imagine thatwe work with Matsubara frequencies.
Then there are noi0+s whatsoever.

19In higher dimensions, we have a familiar problem of the Coulomb potential. Because it’s a
power-law potential, one cannot separate it into “amplitude” and “range”. There is in fact a sin-
gle dimensionless parameter,rs, which must be small for the perturbation theory–Random Phase
Approximation–to work. Oncers ≪ 1, we have two things: the screened potential is simultaneously
weakand long-ranged. The Tomonaga-Luttinger model unties these two things: the interaction is
assumed to be long-ranged but not necessarily weak.

20What seemed to be just a matter of mathematical convenience in the 70s, turns out to be quite a
realistic case these days. If a wire of widtha is located at distanced to the metallic gate, the Coulomb
potential between electrons in the wire is screened by theirimages in the gate. Typically,d ≫ a. A
simple exercise in electrostatics shows that in this caseU(0) is larger thanU(2kF ) by large factor
ln (d/a) [62].
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With this simplification, the momentum integration proceeds in the same way
as for free fermions (see Appendix Appendix B) with the result that the fully
interacting bubbles are the same as free ones

Π± (ω, q) = Π0
± (ω, q) = ± 1

π

q

ω − q + i0+sgnω
. (3.17)

This is a truly remarkable result which is a cornerstone for the DL solution21.
Because our bubbles were effectively “liberated” from the interaction effects,

system (3.14) is equivalent to what we would have obtained from the Random
Phase Approximation (RPA). It turns out that RPA isasymptoticallyexact in 1D
in the limit q0/kF → 0. Solving the 2 by 2 system, we obtain for the effective
interaction

V++ (ω, q) = (ω − q) g4 (ω + q) +
(
g2
4 − g2

2

)
q/π

ω2 − u2q2 + i0+
,

where22

u =

√

1 +
2g4
π

+
g2
4 − g2

2

π
.

Forg4 = g2 ≡ g,
V++ (ω, q) = g

ω2 − q2
ω2 − u2q2 + i0+

. (3.18)

3.5. Dyson equation for the Green’s function

The Dyson equation for right-moving fermions reads

Σ+ (P ) = i

∫
d2Q

(2π)
2G+ (P −Q)V++ (Q) Γ0

+ (P,Q) .

Diagrammatically, this equation is shown in Fig. 12. For linear dispersion,

Σ± (ε, p) = ε∓ p−G−1
± (ε, p)

Substituting this relation back into the Dyson equations, we obtain

(ε− p)G+ (ε, p) = 1+i

∫ ∫
dωdq

(2π)
2G+ (ε, p)G+ (ε− ω, p− q)V++ (ω, q) Γ0

+ (ε, p;ω, q) .

21In QED, this statement is known as Furry theorem (W. H. Furry,1937)
22Notice that as long asg4 6= g2, the left-right symmetry is broken, i.e., the potential is not

symmetric with respect toq → −q.
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Fig. 12. Dyson equation for the self-energy.

Using the Ward identity (3.13) , we get

(ε− p+ Σ0)G+ (ε, p) = 1 + i

∫ ∫
dωdq

(2π)2
G+ (ε, p)G+ (ε− ω, p− q)

×V++ (ω, q)

ω − q
[
G−1

+ (ε, p)−G−1
+ (ε− ω, p− q)

]

= 1 + i

∫ ∫
dωdq

(2π)
2G+ (ε− ω, p− q) V++ (ω, q)

ω − q +G+ (ε, p)× const,

where

const =i

∫ ∫
dωdq

(2π)2
V++ (ω, q)

ω − q
. A constant term can always be absorbed intoΣ, which simply results in a shift
of the chemical potential. We are free to choose this shift insuch a way that
const=0, so that the Dyson equation reduces to

(ε− p)G+ (ε, p) = 1 + i

∫ ∫
dωdq

(2π)2
G+ (ε− ω, p− q) V++ (ω, q)

ω − q . (3.19)

Notice that Eq. (3.19) is an integral equation with a difference kernel, which
can be reduced to a differential equation forG. Before we demonstrate how it is
done, let’s have a brief look at a case when there is no coupling between left- and
right-moving fermions:g2 = 0. In this case,

V++ (ω, q) = π
(w − 1) (ω − q)
ω − wq + i0+

,

where
w = 1 + g4/π.
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Eq. (3.19) takes the form

(ε− p)G+ (ε, p) = 1 + i (w − 1)

∫ ∫
dωdq

4π

G+ (ε− ω, p− q)
ω − wq + i0+

.

This equation is satisfied by the following function

G+ (ε, p) =
1

√

ε− p+ i0+
√

ε− wp+ i0+
. (3.20)

This is an example of a non-Fermi-liquid behavior: the pole of a freeG splits into
the product of two branch cuts, one peaked on the mass shell offree fermions
(ε = p) and another one at the renormalized mass shell (ε = wp). As left- and
right movers are totally decoupled in this problem, the sameresult would have
been obtained for two separate subsystems of left- and rightmovers. For exam-
ple, Eq. (3.20) predicts that an edge state of anintegerquantum Hall system is
not a Fermi liquid, if spins are not yet polarized by the magnetic field [63]. The
same procedure for a spinless system would give us a pole-likeG with a renor-
malized Fermi velocity. The non-Fermi-liquid behavior described by Eq. (3.20)
is rather subtle: it exists only if bothε andp are finite. In the limiting case of
p = 0 (tunneling DoS) we are back to a free-fermion behaviorG (ε, 0) = ε−1.
Also, theε− integral of Eq. (3.19) gives a step-like distribution function in mo-
mentum space. The spectral function, however, is characteristically non-FL-like:
instead of delta-function peak we have a whole region|p| < |ε| < w |p| in which
ImG is finite. At the edges of this interval ImG has square-root singularities.

3.6. Solution for the caseg2 = g4

Substituting the effective interaction (3.18) into Dyson equation (3.19), we obtain

(ε− p)G+ (ε, p) = 1 + i

∫
dωdq

4π2
G (ε− ω, p− q) g (q)

ω + q

ω2 − u2q2
,

where
u =

√

1 + 2g/π.

Notice that the constantg is replaced by a momentum-dependent interaction,
g (q) . The reason is that without such a replacement the integral diverges at the
upper limit. Here, the assumption of a cut-off in the interaction becomes impor-
tant again. Transforming back to real time and space

G (x, t) =

∫ ∫
dεdp

(2π)
2G (ε, p) ei(px−εt),
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we obtain the Dyson equation in a differential form
(
∂

∂t
+

∂

∂x

)

G (x, t) = P (x, t)G (x, t)− iδ (x)δ(t) , (3.21)

where

P (x, t) =
1

4π2

∫ ∫

dωdqei(qx−ωt)g (q)
ω + q

ω2 − u2q2 + i0+
. (3.22)

The integral forP diverges ifg is constant. To ensure convergence, we will
approximateg (q) = ge−|q|/q0 . An actual form of the cut-off function is not
important as long as we are interested in such times and spatial intervals such
thatx, t ≫ q−1

0 . The integral overω is solved by closing the contour around the
poles of the denominatorω = ±u |q| (1 + i0+) . For t > 0, we need to choose
the one with Imω < 0. Doing so, we obtain

∫
dω

2π
· · · = i

sgnq + u

2u
ei(qx−u|qt|).

Solving the remainingq− integral, we obtain forP (x, t)

P (x, t) =
g

4πu

(
u+ 1

x− ut+ i/q0
− u− 1

x+ ut+ i/q0

)

.

For t < 0, one needs to changeq0 → −q0 in the last formula.
The delta-function term can be viewed as a boundary condition

G (x, 0+)−G (x, 0−) = −iδ (x) . (3.23)

Once the functionP (x, t) is known, Eq. (3.21) is trivially solved in terms of new
variablesr = x− t, s = x+ t. For example, fort > 0

G+ (r, t > 0) = G0 (x, t) f> (r) exp

[

i

∫ s

r

ds′P (r, s′)

]

, (3.24)

where functionf>(r) is determined by the analytic properties ofG as a function
of ε. Substituting result forP (x, t) into Eq. (3.24), we get

G+ (x, t > 0) =
1

2π
G0 (x, t) f> (x− t)

(
x− t+ i/q0
x− ut+ i/q0

)α+1/2(
x− t− i/q0
x+ ut− i/q0

)α

.

where

α =
(u− 1)

2

8u
. (3.25)
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Formula fort < 0 is obtained by choosing another functionf< and replacing
q0 → −q0. Functionsf>,< are determined from the analytic properties. First of
all, recall that

G0 (x, t) =
1

x− t+ isgnt0+
.

We see that althoughG0 is not an analytic function oft for any t, it is analytic
for Ret > 0 in the right lower quadrant (Imt < 0) and for Ret < 0 in the upper
left quadrant (Imt > 0). The interaction cannot change analytic properties of a
Green’s function hence we should expect the same propertiesto hold for fullG.
23

From the boundary condition (3.23), it follows that

f> (x) = f< (x)

and f (0) = 0.

Analyzing different factors in the formula forG, we see that only the term
(x− t∓ i/q0)α does not satisfy the required analyticity property. This term is
eliminated by choosing functionf (x) as

f (x) =
(
q20x

2 + 1
)−α

.

Finally, the result forG takes the form

G+ (x, t) =
1

2π

1

x− t+ isgnt0+

(
x− t+ iγ

x− ut+ iγ

)1/2

× 1

[q20 (x− ut+ iγ) (x+ ut− iγ)]α ,

whereγ = sgnt/q0. It seems somewhat redundant to keep two different damp-
ing terms (isgnt0+ andγ) in the same equation. However, these terms contain
different physical scales. Indeed,isgnt0+ enters a free Green’s function and0+

there has to be understood as the limit of the inverse system size. On the other
hand,γ contains a cut-off of the interaction. Obviously,|γ| ≫ 1/L → 0+ for
a realistic situation. The difference between the two cutoffs becomes important

23Indeed, this property follows immediately from the Lehmannrepresentation forG

G (x, t) = −i
∑

ν

|Mν0|
2 eipνxe−i(Eν−E0)t, for t > 0;

= i
∑

ν

|Mν0|
2 e−ipνxei(Eν−E0)t, for t < 0,

whereMν0 are the matrix elements between the ground state and stateν with energyEν > E0. The
required property simply follows from the condition for convergence of the sum.
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for the momentum distribution function and tunneling DoS, discussed in the next
Section.

3.7. Physical properties

3.7.1. Momentum distribution
Having an exact form of the Green’s function, we can now calculate the momen-
tum distribution of,e.g.,right-moving fermions:

n+ (p) = −i
∫ ∞

−∞
dxe−ipxG+

(
x, t→ 0+

)

= − i

2π

∫ ∞

−∞
dx

e−ipx

x+ i0+

1

[q20x
2 + 1]

α

= − i

2π

∫ ∞

−∞
dxe−ipx

[

P 1

x
− iπδ (x)

]
1

[q20x
2 + 1]

α

=
1

2
− 1

π
sgnp

∫ ∞

0

dx
sin |p|x

x

1

[q20x
2 + 1]

α ,

We are interested in the behavior atp → 0 (which means|p| ≪ q0). The final
result forn+ (p) depends on whetherα is larger or smaller than1/2 [59, 64].
• Forα < 1/2 (“weak interaction”), one cannot expandsin px in x because the

resulting integral diverges atx =∞. Instead, rescalepx→ y

n+ (p) =
1

2
− 1

π

∫ ∞

0

dy
sin y

y

1
[

(q0/p)
2
y2 + 1

]α

and neglect1 in the denominator. This gives

n+ (p) =
1

2
+ C1

( |p|
q0

)2α

sgnp (3.26)

where

C1 =
sinπα

π
Γ (−2α) .

Notice thatn+ (p) is finite (= 1/2) at p = 0, although its derivative is singular.
We should be able to recover the Fermi-gas step atp = 0 by settingα = 0 in
(3.26). Indeed,

lim
α→0

C1 = α
1

−2α
= −1

2

and

n (p) =
1− sgnp

2
,
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which is just the Fermi-gas result. Notice also that there isnothing special about
the limit α→ 0 24. Indeed, constantC1 has a regular expansion inα

C1 = −1

2
− γα+ . . . ,

whereγ = 0.577 . . . and factor(|p| /q0)2α can be expanded for finitep and small
α as

(|p| /q0)2α
= 1 + 2α ln |p| /q0.

To leading order inα, we obtain

n+ (p) =
1

2
− sgnp

1

2
[1 + 2α ln |p| /q0] = n0 (p)− αsgnp ln |p| /q0,

which is a perfectly regular inα (but logarithmically divergent atp → 0) be-
havior. Once again, it is not surprising: despite the fact that the results for a 1D
system differ dramatically from that for the Fermi gas, theyare stillperturbative,
i.e., analytic,in the coupling constant.
• Forα > 1/2 (“strong interaction”), it is safe to expandsin px and the result

is

n+ (p) =
1

2
− C2p/q0,

where

C1 =
1

2
√
π

Γ (α− 1/2)

Γ (α)
.

In this case, no remains of a jump at the Fermi point is presentin n+ (p) which
is a regular, linear function nearp = 0.
• Finally, α = 1/2 is a special case, where expansion inp results in a log-

divergent integral. To log-accuracy

n+ (p) =
1

2
− 1

π

p

q0
ln
q0
|p| .

In general,n (p) is some hypergeometric function ofp/q0 which decays rapidly
for p≫ q0 and approaches1 for p≪ −q0. A posteriori,this justifies the replace-
ment of exactn (p) by its free form in the Dyson equation.

3.7.2. Tunneling density of states
Now we turn to the tunneling DoS

N (ε) = − 1

π
ImGR (ε, x = 0) .

24contrary to some statements in the literature.
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Recalling that [23]

GR (ε) = G (ε) , for ε > 0;

= G∗ (ε) , for ε < 0,

we see that

ImGR (ε, 0) = sgnεImG (ε, 0)

and

N (ε) = − 1

π
sgnεImG (0, ε) = − 1

π
sgnε

[∫

dteiεtG (0, t)−
∫

dte−iεtG∗ (0, t)

]

= − 1

π
sgnε

[∫

dteiεt {G (0, t)−G∗ (0,−t)}
]

For t→∞,
G (0, t) =

const

(−t)1+2α

and

G (0, t)−G∗ (−t)

is an odd function oft. Thus

N (ε) = − 1

π
sgnεImG (0, ε) = − 1

π
sgnε

1

2i

[∫

dteiεtG (0, t)−
∫

dte−iεtG∗ (0, t)

]

= − 1

π
sgnε

[∫ ∞

0

dt sin εt {G (0, t)−G∗ (0,−t)}
]

∝ sgnε
∫ ∞

0

dt
sin εt

t1+2α
.

The integral is obviously convergent forα < 1/2. In this case,

Ns (ε) ∝ |ε|2α
,

which means that the local tunneling DoS is suppressed at theFermi level. Actu-
ally, the exponent forα > 1/2 is the same, however, the prefactor is a different
function ofα [65].

The DoS in Eq. (3.7.2) with exponent2α, whereα is given by Eq. (3.25)
corresponds to tunneling into the “bulk” of a 1D system,i.e., when the tunneling
contact (with a tip of an STM or another carbon nanotube crossing the first one)
is far away from its ends. In the next Section, we will analyzetunneling into an
edge of a 1D conductor, which is characterized by a differentexponent,α′.
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4. Renormalization group for interacting fermions

The Tomonaga-Luttinger model can be solved exactly as it wasdone in the previ-
ous Section– only in the absence of backscattering. Backscattering can be treated
via the Renormalization Group (RG) procedure. This treatment is standard by
now and discussed in a number of sources [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. For the
sake of completeness, I present here a short derivation of the RG equations. A
reader familiar with the procedure can skip this Section andgo directly to Sec. 5,
where these equations will be used in the context of a single-impurity problem.

An exact solution of the previous Section is parameterized by two coupling
constants,g2 andg4, which are equal to their bare values. In the RG language,
it means that these couplings do not flow. Let’s see if this is indeed the case. In
what follows, I will neglect theg4− processes, as their effect on the flow of other
couplings is trivial, and, for the sake of simplicity, consider a spin-independent
interaction. To second order, the renormalization of theg2− coupling is ac-
counted for by two diagrams: diagrams a) and b) of Fig. 13.

Diagram a) is a correction tog2 in the particle-particle channel. The correc-
tion tog2 is given by

(

g
(2)
2

)

a
=

g2
2

(2π)
2

∫

dq

∫

dωG+ (iε1 + iω, k1 + q)G− (iε2 − iω, k2 − q) .

Without a loss of generality, one can choose all momenta to beon the Fermi
“surface”: k1 = k2 = k3 = k4 = 0. Chooseq > 0 (the other choiceq < 0 will
simply double the result)

(

g
(2)
2

)

a
=

g2
2

(2π)2

∫

dq

∫

dωG+ (iε1 + iω, q)G− (iε2 − iω,−q)

=
g2
2

(2π)
2

∫ Λ/2

0

dq

∫

dω
1

i (ε1 + ω)− q
1

i (ε2 − ω)− q

=
2πig2

2

(2π)
2

∫ Λ/2

0

dq
1

ε1 + ε2 + ω + 2iq
=
g2
2

4π
ln

iΛ

ε1 + ε2

Adding the result up with the (identical)q < 0 contribution, we find

(

g
(2)
2

)

a
=
g2
2

2π
ln

iΛ

ε1 + ε2
.
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Diagram b) is a correction tog2 in the particle-hole channel:

(

g
(2)
2

)

b
=

g2
2

(2π)
2

∫

dq

∫

dωG+ (iε1 + iω, q)G− (iε4 + iω, q)

=
g2
2

(2π)
2

∫ Λ/2

0

dq

∫

dω
1

i (ε1 + ω)− q
1

i (ε4 + ω) + q

= − 2πi

(2π)
2 g

2
2

∫ Λ/2d

0

q
1

ε1 − ε4 + ω + 2iq
= − g

2
2

4π
ln

iΛ

ε1 − ε4
.

As in the previous case, the final result is:

(

g
(2)
2

)

b
= − g

2
2

2π
ln

iΛ

ε1 − ε4
.

If we sum only the Cooper ladders, adding up more vertical interaction lines
to diagram a), the full vertex becomes

Γpp =
g2

1 + g2 ln iΛ
ε1+ε2

.

(To keep track of the signs, one needs to recall that in Matsubara frequencies each
interaction line comes with the minus sign from the expansion of theS−matrix).
The resulting vertex blows up for attractive interaction (g2 < 0) asε1 + ε2 → 0,
which is nothing more than a Cooper instability.

Likewise, untwisting the crossed lines in diagram b) and adding more interac-
tion lines, we get the particle-hole vertex

Γph =
g2

1− g2 ln iΛ
ε1−ε4

.

This vertex has an instability for repulsive interaction (g2 > 0). In fact, none of
these instabilities occur. To see this, add up the results ofdiagrams a) and b)

(

g
(2)
2

)

a+b
=
g2
2

2π

[

ln
iΛ

ε1 + ε2
− ln

iΛ

ε1 − ε4

]

=
g2
2

2π
ln
ε1 − ε4
ε1 + ε2

.

In the RG, one changes the cut-off and follow the corresponding evolution of the

couplings. As the cut-off dependence cancelled out in the result for
(

g
(2)
2

)

a+b
,

couplingg2 remains invariant under the RG flow.
Backscattering generates additional diagrams: diagrams c)-f) in Fig.13.
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ε

ε

ε  +ω
a) b)

d1)

f1)

c)

e)d2)

f2)

ε+ε  −ε 

ε  −ω ε2
4

2

1 3

4

ε  +ω1
ε  +ω1ε

1 3

Fig. 13. Second order diagrams for couplingsg2 (solid wavy line) andg1 (dashed wavy line). Straight
solid and dashed lines correspond to Green’s functions of right- and left moving fermions, corre-
spondingly.
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Diagram c) describes repeated backscattering in the particle-particle channel,
which is equivalent to forward scattering. Therefore, thisdiagram gives a correc-
tion to g2− coupling. Using the relation betweenG±, i.e.,G± = − (G∓)

∗
, we

find

(

g
(2)
2

)

c
=

g2
1

(2π)
2

∫

dq

∫

dωG− (iε1 + iω, q)G+ (iε4 + iω, q)

=
g2
1

(2π)
2

[∫

dq

∫

dωG+ (iε1 + iω, q)G− (iε4 + iω, q)

]∗
.

The last integral is the same as for
(

g
(2)
2

)

a
. Thus,

(

g
(2)
2

)

c
=
g2
1

g2
2

[

dg
(1)
2

]∗
=
g2
1

2π
ln
−iΛ
ε1 + ε2

.

The rest of the diagrams provide corrections tog1.
Diagram d1) is the same as diagram a) except for the prefactor being equal

to g1g2 :
(

g
(2)
1

)

d1
=
g1g2
2π

ln
iΛ

ε1 + ε2

Diagram d2) is a complex-conjugate of diagram d1). The sum of diagrams
d1) and d2) is equal to

(

g
(2)
1

)

d1+d2
=

g1g2
2π

ln
iΛ

ε1 + ε2
+
g1g2
2π

ln
−iΛ
ε1 + ε2

=
g1g2
π

ln
Λ

ε1 + ε2
.

Diagrams e) is a polarization correction to the bareg1−coupling:

(

g
(2)
1

)

e
= −

︸︷︷︸

fermionic loop

g2
1Π2kF (ω = ε1 − ε2, q = 0) .

Using Eq. (B. 8), we obtain

(

g
(2)
1

)

e
=
Ns

2π
g2
1 ln

Λ

|ε1 − ε2|
,

whereNs is the degeneracy factor (=2 for spin 1/2 fermions, occupying a single
valley in the momentum space).
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Diagram f1) is the same as the bubble insertion, except for no minus sign,no
degeneracy factor (Ns) factor, and the overall coefficient isg1g2:

(

g
(2)
1

)

f1
= − 1

2π
g1g2 ln

Λ

|ε1 − ε2|
.

Diagram f2) is equal to f1). Their sum

(

g
(2)
1

)

f1+f2
= − 1

π
g1g2 ln

Λ

|ε1 − ε2|

Collecting all contributions together, we obtain

−Γ2 = −g2 +
(

g
(2)
2

)

a
+
(

g
(2)
2

)

b
+
(

g
(2)
2

)

c
;

Γ2 = g2−
g2
2

2π
ln

iΛ

ε1 + ε2
+
g2
2

2π
ln

iΛ

ε1 − ε4
︸ ︷︷ ︸

cancel out in the RG sense

− g
2
1

2π
ln
−iΛ
ε1 + ε2

;

−Γ1 = −g1 +
(

g
(2)
2

)

d
+
(

g
(2)
2

)

e
+
(

g
(2)
2

)

f
;

Γ1 = g1 −
g1g2
π

ln
Λ

ε1 + ε2
− Ns

2π
g2
1 ln

Λ

|ε1 − ε2|
+

1

π
g1g2 ln

Λ

|ε1 − ε2|
.

Second and fourth terms inΓ1 also cancel out in the RG sense. Changing the
cut-off fromΛ to Λ + d Λ, we obtain two differential equations

dΓ2

dl
= −Γ2

1

2π
; (4.1)

dΓ1

dl
= −Ns

Γ2
1

2π
, (4.2)

wherel = ln Λ. We see that a quantity

Γ̄ = Γ2 −
1

Ns
Γ1 = const= g2 −

1

Ns
g1. (4.3)

is invariant under RG flow, therefore its value can be obtained by substituting the
bare values of the coupling constants (g2 andg1) into (4.3). The RG-invariant
combination is then

Γ̄ = g2 −
1

Ns
g1. (4.4)

For spinless electrons (Ns = 1),

Γ̄ = Γ2 − Γ1 = U (0)− U (2kF ) .
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This last result can be understood just in terms of the Pauli principle. Indeed,
the anti-symmetrized vertex for spinless electrons is obtained by switching the
outgoing legs of the diagram (p1, p2 → p3, p4). To first order,

Γ (p1, p2; p3, p4) = U (p1 − p3)− U (p1 − p4) .

Choosingp3 = p1 − q andp4 = p2 + q, we obtain [recall thatU (q) = U (−q)]

Γ (p1, p2|q) = U (q)− U(p1 − p2 − q).

One of the incoming fermions is a right mover (p1 = pF ) and the other one is a
left mover (p2 = −pF ). As q is small compared topF , we obtain

Γ (p1, p2|q) = U (0)− U(2kF ).

In fact, for spinless electronsg2 andg1 processes are indistinguishable25 as we
do not know whether the right-moving electron in the final state is a right-mover
of the initial state, which experienced forward scattering, or the left-mover of the
initial state, which experienced backscattering. A properway to treat the case of
spinless fermions is to include backscattering into Dzyaloshinskii-Larkin scheme
from the very beginning, re-write the Hamiltonian in terms of forward scattering
with invariant couplinḡΓ, and proceed with the solution. All the results will then
be expressed in terms ofΓ̄ rather than ofg2.

Solving the equation forΓ1, gives on scaleε

Γ1 =
1

(g1)
−1

+ Ns

2π ln Λ/ε
. (4.5)

At low energies,Γ1 renormalizes to zero (Γ∗
1 = Γ1 (l =∞) = 0), if the inter-

action is repulsive, and blows up atε = Λ exp (−1/|g1|), if the interaction is
attractive. CouplingΓ2 also flows to a new value which can be read off from
Eq. (4.4)

Γ∗
2 = g2 −

1

Ns
g1.

Roughly speaking,g1 is not important for repulsive interaction as the effective
low-energy theory will look like a theory with forward scattering only. This does

25That does not mean that backscattering is unimportant! It comes with a different scattering
amplitudeU (2kF ) . In fact, it is only backscattering which guarantees that thePauli principle is
satisfied, namely, for a contact interaction, whenU (0) = U (2kF ) , we must get back to a Fermi
gas as fermions are not allowed to occupy the same position inspace and hence they cannot interact
via contact forced. Our invariant combinationU (0)−U (2kF ) obviously satisfies this criterion. We
will see that bosonization does have a problem with respecting the Pauli principle, and it takes some
effort to recover it.
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not really mean, however, that one can consider a fixed point as a new problem
in which backscattering is absent, and apply our exact solution to this problem.
Instead, one should calculate observables, derive the RG equations for flows, and
use current values of coupling constants in these RG equations. An example of
this procedure will be given in the next Section, where we will see that the flow
of Γ1 provides additional renormalization of the transmission coefficient in an
interacting system.

Assigning different coupling constants to the interactionof fermions of par-
allel (g1||) and anti-parallel (g1⊥) spins, one could see that the coupling which
diverges for attractive interaction is in factg1⊥. This clarifies the nature of the
gap that RG hints at (in fact, a perturbative RG can at most just give a hint): it is a
spin gap. This becomes obvious in the bosonization technique, as the instability
occurs in the spin-sector of the theory. An exact solution byLuther and Emery
[66] for a special case of attractive interaction confirms this prediction.

5. Single impurity in a 1D system: scattering theory for interacting fermions

A single impurity or tunneling barrier placed in a 1D Fermi gas reduces the con-
ductance from its universal value–e2/h per spin orientation–to

G = Ns
e2

h
|t0|2, (5.1)

wheret0 is the transmission amplitude. The interaction renormalizes the bare
transmission amplitude. As a result, the conductance depends on the charac-
teristic energy scale (temperature or applied bias), whichis observed as a zero-
bias anomaly in tunneling. This effect is not really a uniqueproperty of 1D
: in higher dimensions, zero-bias anomalies in both dirty and clean (ballistic)
regimes [67, 12, 13, 14] as well as the interaction correction to the conductiv-
ity [67, 15], stem from the same physics, namely, scatteringof electrons from
Friedel oscillations produced by tunneling barriers or impurities. 1D is special
in the magnitude of the effect: the conductance varies significantly already on
the energy scale comparable to the Fermi energy, whereas in higher dimensions
the effect of the interaction is either small at all energiesor becomes significant
only at low energies (below some scale which is much smaller thanEF as long
as the parameterkF l, wherel is the elastic mean free path, is large. The 1D
zero-bias anomaly is described quite simply in a bosonized language [68], which
does not require the interaction to be weak. We will use this description in Sec.6.
However, in this Section I will choose another description–via the scattering the-
ory for fermions rather than bosons–developed by Matveev, Yue, and Glazman
[11]. Although this approach is perturbative in the interaction, it elucidates the
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underlying mechanism of the zero-bias anomaly and allows for an extension to
higher-dimensional case (which was done for the case of tunneling in Ref.[12]
and transport in Ref.[15]).

5.1. First-order interaction correction to the transmission coefficient

In this section we consider a 1D system ofspinlessfermions with a tunneling
barrier located atx = 0 [11]. For the sake of simplicity, I assume that the barrier
is symmetric, so that transmission and reflection amplitudefor the waves coming
from the left and right are the same. Also, I assume that e-e interaction is present
only to the right of the barrier, whereas to the left we have a Fermi gas. Such
a situation models a setup when a tunneling contact separates a 1D interacting
system (quantum wire or carbon nanotube) and a “good metal”,where one can
be neglect the interaction. We also assume that the interaction potentialU (x)
is sufficiently short-ranged, so thatU (0) is finite and one can neglect over-the-
barrier interaction. However,U (0) 6= U (2kF ) (otherwise, spinless electrons do
not interact at all26).

The wave function of the free problem for a right-moving state is:

ψ0
k (x) =

1√
L

(
eikx + r0e

−ikx
)
, x < 0; (5.2)

=
1√
L
t0e

ikx, x > 0.

For a left-moving state:

ψ0
−k (x) =

1√
L

(
e−ikx + r0e

ikx
)
, x > 0;

=
1√
L
t0e

−ikx, x < 0. (5.3)

Herek =
√

2mE > 0. To begin with, we consider a high barrier:|t0| ≪ 1, r0 ≈
−1. Then the free wavefunction reduces to

ψ0
k (x) =

2i√
L

sin kx, x < 0 (incoming from the left+reflected); (5.4)

=
1√
L
t0e

ikx, x > 0 (transmitted left→ right); (5.5)

26For a contact potential [which leads toU (0) = U (2kF )], the four-fermion interaction for the

spinless case reduces to
[
Ψ† (0)

]2
Ψ2 (0) . By Pauli principle,

[
Ψ† (0)

]2
= Ψ2 (0) = 0, so that

the interaction is absent.
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Fig. 14. Correction to the Green’s function: exact with respect to the barrier and first order in the
interaction.

ψ0
−k (x) =

1√
L
t0e

−ikx, x < 0 (transmitted right→ left); (5.6)

= − 2i√
L

sinkx, x > 0 (incoming from the right+reflected).(5.7)

The barrier causes the Friedel oscillation in the electron density on both sides of
the barrier. The interaction is treated perturbatively, via finding the corrections to
the transmission coefficient due to additional scattering at the potential produced
by the Friedel oscillation. Diagrammatically, the corrections to the Green’s func-
tion are described by the diagrams in Fig.14, where a) represents the Hartree and
b) the exchange (Fock) contributions, correspondingly. Compared to the text-
book case, though, the solid lines in these diagrams are the Green’s functions
composed of the exact eigenstates in the presence of the barrier (but no interac-
tion). Because the barrier breaks translational invariance, these Green’s functions
are not translationally invariant as well. I emphasized this fact by drawing the di-
agrams in real space, as opposed to the momentum -space representation. Notice
also that the Hartree diagram is usually discarded in textbooks because the bub-
ble there corresponds to the total charge density (density of electrons minus that
of ions), which is equal to zero in a translationally invariant and neutral system.
However, what we have in our case is thelocal density of electrons at some dis-
tance from the barrier. Friedel oscillation is a relativelyshort-range phenomenon
(the period of the oscillation is comparable to the electronwavelength), and it is
possible to violate the charge neutrality locally on such a scale. As a result, the
Hartree correction is not zero.

To first-order in the interaction, an equivalent way of solving the problem is
to find a correction to the wave-function, rather than the Green’s function, in
the Hartree-Fock method. The electron wave-function whichincludes both the
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barrier potential and the electron-electron interaction is

ψk(x) = ψ0
k(x) +

∫ ∞

0

dx′G>
0 (x,x′, E)

×
∫ ∞

0

dx′′[VH(x′′)δ(x′ − x′′) + Vex(x′, x′′)]ψ0
k (x′′) , (5.8)

whereG>
0 is the Green’s function of free electrons on the right semi-line, E

is the full energy of an electron,VH andVex are the Hartree and the exchange
potentials. The Hartree potential is

VH(x) =

∫

dx′U(x− x′)δn(x′), (5.9)

whereδn(x) = n(x) − n0 is the deviation of the electron density from its uni-
form value (in the absence of the potential) andU(x) is the interaction potential.
Hartree interaction is a direct interaction with the modulation of the electron den-
sity by the Friedel oscillation. For a high barrier, which isessentially equivalent
to a hard-wall boundary condition, the electron density is

n(x) = 4

∫ kF

0

dk

2π
sin2(kx) = n0

(

1− sin 2kFx

2kFx

)

→ (5.10)

δn (x) = − sin (2kFx) /2πx, (5.11)

wheren0 = kF /π is the density of electrons. Then,

VH(x) = − 1

2π

∫ ∞

0

dx′U(x− x′)sin 2kFx
′

x′
. (5.12)

Notice that although the bare interaction is short-range, the effective interaction
has a slowly-decaying tail due to the Friedel oscillation. (The integral goes over
only for positive values ofx′ because electrons interact only there.)

The exchange potential is equal to

Vex(x, x) = −U(x− x′)
[ ∫ kF

0

dk

2π

[
ψ0

k(x′)
]∗
ψ0

k(x)

+

∫ kF

0

dk

2π

[
ψ0
−k(x′)

]∗
ψ0
−k(x)

]

. (5.13)

Since we assumed that electrons interact only if they are located to the right of
the barrier, the integral in (5.8) runs only overx, x′ > 0 and the Green’s function
is a Green’s function on a semi-line. The wave-function in (5.8) needs to be
evaluated atx→∞, which means that we will only need an asymptotic form of
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the Green’s function far away from the barrier. This form is constructed by the
method of images

G>
0 (x, x′, E) = G0(x, x

′, E)−G0(x,−x′, E), (5.14)

where

G0 (x, x′, E) =
1

ivk
eik|x−x′|

is the free Green’s function on a line withk =
√

2mE andvk = k/m. Coordi-
natex′ is confined to the barrier, whereasx→∞, thusx > x′ and

G>
0 (x, x′, E) = − 2

vk
sin(kx′)eikx.

5.1.1. Hartree interaction
Our goal is to present the correction to the wave-function for electrons going
from x < 0 to x > 0 in the form

ψk − ψ0
k =

1√
L
δteikx, (5.15)

whereδt is the interaction correction to the transmission coefficient. Substituting
(5.15) into (5.8), we obtain for the Hartree contribution tot

δtH

t0
= − 2

vF

∫ ∞

0

dx sin kxeikxVH(x),

where one can replacevk → vF in all non-oscillatory factors. For a delta-
function potential,U (x) = Uδ (x)

VH(x) = − U
2π

sin 2kFx

x
. (5.16)

However, theδ− function potential is not good enough for us, because the Hartree
and exchange contributions cancel each other for this case.Friedel oscillation
arises due to backscattering. With a little more effort, onecan show thatU in the
last formula is replaced byU (2kF ) :27

VH(x) = −U (2kF )

2π

sin 2kFx

x
.

27Notice that the sign of the Hartree interaction is attractive near the barrier (assuming the sign of
the e-e interaction is repulsive at2kF ): for x → 0, VH (x) → −U (2kF ) kF /π. The reason is that
the depletion of electron density near the barrier means that the positive background is uncompen-
sated. As a result, electrons areattractedto the barrier and transmission isenhancedby the Hartree
interaction.
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Substituting this intoδt/t yields

δtH
t0

=
U(2kF )

πvF

∫ ∞

0

dx sin (kx) eikx sin 2kFx

x

=
U(2kF )

πvF

∫ ∞

0

dx
1

2i

(

e2ikx − 1
︸︷︷︸

regular correction to Imt
) sin 2kFx

x

=
U(2kF )

πvF

∫ ∞

0

dx
1

2i
e2ikx sin 2kFx

x
=
U(2kF )

2πvF

×
∫ ∞

0

dx
(

sin 2kx+ i−1 cos 2kx
︸ ︷︷ ︸

yet another regular correction
) sin 2kFx

x

=
U(2kF )

2πvF

∫ ∞

0

dx sin 2kx
sin 2kFx

x

=
U(2kF )

4πvF
ln

k + kF

|k − kF |
≈ α′

2kF
ln

kF

|k − kF |
,

where

α′
2kF

=
g1

4πvF
,

andg1 = U (2kF ) . In deriving the final result, all terms regular in the limit
k → kF were discarded.

5.1.2. Exchange
Now bothx andx′ > 0. We need to select the largest wave-function,i.e., such
that does not involve a small transmitted component. Obviously, this is only
possible fork < 0 (second term in (5.13)) andψ0

−k , given by (5.7). Substituting
the free wave-functions into the equation for the exchange interaction, we get

Vex(x, x′) = −U(x− x′)ρ(x, x′), (5.17)

where the 1D density-matrix is

ρ(x, x′) = 4

∫ kF

0

dk

2π
sin(kx) sin(kx′) (5.18)

= 2

∫ kF

0

dkx

2π
[cos k(x− x′)− cos k(x+ x′)] (5.19)

= · · · − sin kF (x+ x′)

π(x+ x′)
, (5.20)
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where. . . stand for the term which depends onx−x′. This term does not lead to
the log-divergence inδt and will be dropped28. Forx = x′,we get the correction
to the densityδn (x) , as we should.

Correction to the transmission coefficient

δtex/t0 = − 2

πvF

∫ ∞

0

dx′
∫ ∞

0

dx′′U (x′ − x′′) sinkx′eikx′′ sin kF (x′ + x′′)

x′ + x′′
.

(5.21)
After a little manipulation with trigonometric functions,which involves dropping
of the terms depending only onx− x′, we arrive at

δtex

t0
= − 1

4π2vF

∫ +∞

0

dq

q
U(q)

∫ ∞

0

dx+

x+
(5.22)

×{sin 2(k − kF + q)x+ − sin 2(k − kF − q)x+}, (5.23)

where

x+ =
x′ + x′′

2
. (5.24)

Integral overx+ provides a lower cut-off for theq− integral

∫ +∞

0

dx+

x+
{sin 2(k − kF + q)x+ − sin 2(k − kF − q)x+} (5.25)

=
π

2
sgn(q + k − kF ) +

π

2
sgn(q − k + kF ) (5.26)

= πθ(q − |k − kF |). (5.27)

Now
δtex

t0
= − 1

4πvF

∫ +∞

|k−kF |

dq

q
U(q). (5.28)

As U (q) is regular atq → 0 29, one can takeU (q) out of the integral atq = 0
(denotingU (0) = g2)

δtex

t0
≈ − 1

4πvF
g2

∫ q0

|k−kF |

dq

q
= −α′

0 ln
q0

|k − kF |
.

28Notice that the important part of the exchange potential isrepulsivenear the barrier. This means
that electrons are repelled from the barrier and transmission is suppressed.

29If U(q) has a strong dependence onq for q → 0 (which is the case for a bare Coulomb potential
U (q) ∝ ln q), this dependence affects the resulting dependence of the transmission coefficient on
energy|k − kF | , i.e.,on the temperature and/or bias. Instead of a familiar power-law scaling of the
tunneling conductance for the short-range interaction, the conductance falls off with energy faster
than any power law for the bare Coulomb potential.
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Combining the exchange and Hartree corrections together (in doing so, we choose
the smallest upper cut-off for the log which we assume to be the inverse interac-
tion range,q0)) we get

δt = −t0α′ ln
q0

|k − kF |
, (5.29)

where
α′ = α′

0 − α′
2kF

=
g2 − g1
4πvF

; asymmetric geometry. (5.30)

It can be shown in a similar manner that if we had interacting regions onboth
sides of the barrier, the result forα′ would be double of that in Eq. (5.30).

α′ = α′
0 − α′

2kF
=
g2 − g1
2πvF

; symmetric geometry. (5.31)

The sign of the correction tot depends on the sign ofg2−g1 = U (0)−U (2kF ) .
Notice that transmission isenhanced,if U (2kF ) > U(0). Usually, this behavior
is associated with attraction. We see, however, that even ifthe interaction is
repulsive at allq but U (2kF ) > U(0), it works effectively as an attraction.
The caseU (2kF ) > U(0) is not a very realistic one, at least not in a situation
when electrons interact only among themselves. Other degrees of freedom,e.g.,
phonons, must be involved to give a preference to2kF− scattering.

5.2. Renormalization group

It is tempting to think that the first-order in interaction correction tot0 in Eq. (5.30)

is just an expansion of the scaling formt ∝ |k − kF |α
′

. A poor-man RG indeed
shows that this is the case. Near the Fermi level,k − kF = (E − EF ) /vF =
ε/vF so that the first-order correction tot is

t1 = t0

(

1− α′ ln
W0

|ε|

)

,

whereW0 = q0vF is the effective bandwidth. The meaning of this bandwidth
is that the states at±W0 from the Fermi level (=0) are not affected by the inter-
action. For|ε| = W0, t1 = t0. Suppose that we want to reduce to bandwidth
W0 →W1 < W0 and findt at |ε| = W1

t1 = t0

(

1− α′ ln
W0

W1

)

.

It is of crucial importance here that coefficientα′ (which will become the tun-
neling exponent in the scaling form we are about to get) is proportional to the
RG-invariantcombinationU (0) − U (2kF ) = g2 − g1 for spinless electrons.
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This means thatα′ is to be treated as a constant under the RG flow. Repeating
this procedure usingt, found at the previous stage instead of a baret0, n times,
we get

tn+1 = tn

(

1− α′ ln
Wn

Wn+1

)

.

The renormalization process is to be stopped when the bandwidth coincides with
the physical energy|ε| , at whicht is measured. In the continuum limit (tn+1 −
tn = dt;Wn+1 = Wn − dW ), this equation reduces to a differential one

dt

t
= α′ dW

W

Integrating fromt (ε) to t0 (and, correspondingly, fromW = |ε| toW = W0),
we obtain

t (ε) = t0 (|ε| /W0)
α′

.

5.3. Electrons with spins

Now let’s introduce the spin. The effect will be more interesting than just mul-
tiplying the result for the tunneling conductance by a factor of two (which is
all what happens for non-interacting electrons.) To keep things general, I will
assume an arbitrary “spin” (which may involve other degreesof freedom) degen-
eracyNs and putNs = 2 at the end. In this section we will exploit the result of
Sec.4 stating the backscattering amplitude flows under RG. This flow affects the
renormalization of the transmission coefficient at low energies.

Repeating the steps for the first-order correction tot for the case of electrons
with spin is straightforward: one just has to recall that theHartree correction is
multiplied byNs (as the polarization bubble involves summation over all isospin
components, it is simply multiplied by a factor ofNs). On the contrary, the ex-
change interaction is possible only between electrons of the same spin, so there
areNs identical exchange potentials for every spin component. I am going to
discuss the strong barrier case first in the symmetric geometry. Then, taking into
account what we have just said about the factor ofNs, we can replace the result
for spinless electrons (5.30) by

α′ → α′ = α′
0 −Nsα

′
2kF

=
g2 −Nsg1

4πvF
. (5.32)

(and similarly for the symmetric geometry of the tunneling experiment). Corre-
spondingly, the correction to the transmission coefficient(for a given spin pro-
jection) changes to

tσ = t0 (1− α′ lnW/ |ε|) .
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The tunneling conductance is found from the Landauer formula

G =
e2

h

Ns∑

σ=1

|tσ|2 ,

where, as the barrier is spin-invariant, the sum simply amounts to multiplying the
result for a given spin component byNs. Now, the result in Eq. (5.32) seems to be
interesting, as the2kF contribution gets a boost. IfNsU (2kF ) > U (0), we have
in increase of the barrier transparency. It does not seem toohard to satisfy this
condition. For example, it is satisfied already for the delta-function potential30

andNs = 2. However, as opposed to the spinless case,α′ is not an RG-invariant
but flows under renormalizations. Let’s splitα′ into an RG-invariant part (4.4)
and the rest

α′ =
1

4πvF

[

U (0)− 1

Ns
U (2kF )

]

− 1

4πvF

N2
s − 1

Ns
U (2kF )

= α′
s −

1

4πvF

N2
s − 1

Ns
g1,

where

α′
s =

1

4πvF

(

g2 −
1

Ns
g1

)

=
Γ̄

4πvF
. (5.33)

The condition for the tunneling exponent to be negative is more restrictive that it
seemed to be:g1 > Nsg2. It is not hard to see that the RG equation fortσ now
changes to

dt

dl
= −t

(

α′
s −

1

4πvF

N2
s − 1

Ns
Γ1 (l)

)

, (5.34)

whereΓ1 (l) is given by

Γ1 =
1

(g1)
−1

+ Ns

2π l
.

Integrating (5.34), we find

tσ = t0

(

1 +
Nsg1
4πvF

ln
W

|ε|

)βs

(|ε| /W )
α′

s ,

where

βs =
N2

s − 1

N2
s

.

30as now electrons have spins, they are allowed to be at the samepoint in space and interact.
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In particular, forNs = 2, we get

tσ = t0

(

1 +
g1

2πvF
ln
W

|ε|

)3/4

(|ε| /W )
α′

s .

and conductance

G = G0

(

1 +
g1

2πvF
ln
W

|ε|

)3/2

(|ε| /W )2α′
s , (5.35)

whereG0 is the conductance for the free case. Thus the flow of the backscatter-
ing amplitude results in a multiplicative log-renormalization of the transmission
coefficient. One can check the first-order result is reproduced if expand the RG
result to the first log.

An interesting feature of this result is that it predictsthreepossible types of
behavior of the conductance as function of energy.

1. weak backscattering:
α′ > 0→ g1 < g2/Ns.

In this regime already the first-order correction corresponds to suppression of
the conductance, which decreases monotonically as the energy goes down.

2. intermediate backscattering:

α′ > 0 butα′
s < 0→ g2/Ns < g1 < Nsg2.

In this regime, the first-order correction enhances the transparency, but the RG
result shows that the forε → 0, the transmission goes to zero. It means that
at higher energies, when the RG has not set in yet, the conductance increases
as the energy goes down, but at lower energies the conductance decreases.
The dependence ofG (ε) on ε is non-monotonic–there is a maximum at the
intermediate energies.

3. strong backscattering:
α′

s < 0→ g1 > Nsg2.

In this regime, tunneling exponentα′
s is negative and the conductance in-

creases as the energy goes down.

5.4. Comparison of bulk and edge tunneling exponents

Tunneling into the bulk of a 1D system is described by the density of states ob-
tained,e.g., in the DL solution of the Tomonaga-Luttinger model (no backscat-
tering). The “bulk” tunneling exponent is equal to

2α =
(u− 1)

2

4u
,
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where
u =

√

1 + 2g2/πvF .

In this Section, we considered tunneling into the edge for weak interaction and
found that the conductance scales with exponent2α′

s (5.33). To compare the two
exponents, we need to expand the DL exponent for weak interaction

2α =
g2
2

4π2vF
.

Forg1 = 0, the edge exponent is

2α′
s =

1

2πvF
g2.

We see that for weak coupling tunneling into the edge is stronger affected by the
interaction than tunneling into the bulk: the former effectstarts at the first order
in the interaction whereas the latter starts at the second order. This difference has
a simple physical reason which is general for all dimensions. In a translationally
invariant system, the shape of the Green’s function is modified in a non-trivial
way only starting at the second order. For example, the imaginary part of the
self-energy (decay of quasi-particles) occur only at the second order. The first-
order corrections lead only to a shift in the chemical potential and, if the potential
is of a finite-range, to a renormalization of the effective mass. If the translational
invariance is broken, non-trivial changes in the Green’s function occur already
at the first order in the interaction. That tunneling into thebulk and edge are
characterized by different exponents is also true in the strong-coupling case (cf.
Sec.6). As the relation between the bulk and edge exponents is known for an
arbitrary coupling, one can eliminate the unknown strengthof interaction and
express one exponent via the other. Knowing one exponent from the experiment,
one can check if the observed value of the second exponent agrees with the data.
This cross-check was cleverly used in the interpretation ofthe experiments on
single-wall carbon nanotubes [71, 72].

6. Bosonization solution

Bosonization procedure in described in a number of books andreviews [1]-[10].
Without repeating all standard manipulations, I will only emphasize the main
steps in this Section, focusing on a couple of subtle points not usually discussed
in the literature. A reader familiar with bosonization may safely skip the first
part of this Section, and go directly to Secs. 6.1.5 and 6.2.1, where tunneling
exponents are calculated. Some technical details of the bosonization procedure



Fundamental aspects of electron correlations and quantum transport 63

are presented in Appendix Appendix C. As in Sec.3,vF = 1 in this Section,
unless specified otherwise.

6.1. Spinless fermions

6.1.1. Bosonized Hamiltonian
We start from a Hamiltonian of interacting fermions withoutspin

H =
1

L

∑

p,k,q

ξka
†
kak +

1

2L2

∑

p,k,q

Vqa
†
p−qa

†
k+qakap.

The interacting part of the Hamiltonian can be re-written using chiral densities

ρ± (q) =
∑

p≷0

a†p−q/2ap+q/2

as

Hint = g2
1

L

∑

q

ρ+ (q) ρ− (−q) +
g4
2

1

L

∑

q

ρ+ (q) ρ+ (−q) + ρ− (q) ρ− (−q) .

The interacting part is in the already bosonized form. For a linearized dispersion

ξk = |k| − kF ,

it is also possible to express the free part via densities. Tocheck this, let’s assume
thatH0 can indeed be written as

H0 =
1

L

∑

q

Aq [ρ+ (q) ρ+ (−q) + ρ− (q) ρ− (−q)] ,

whereAq is some unknown function. Commutingρ+ with H0, and making use
of the anomalous commutator[ρ+ (q) , ρ+ (−q)] = qL/2π, we obtain

[ρ+ (q) , H0] =
1

L

∑

q′

Aq′ [ρ+ (q) , ρ+ (q′) ρ+ (−q′)]

= Aqρ+ (q)
q

π
.

On the other hand, the same commutator can be calculated directly in a model
with the linearized spectrum, using only the fermionic anticommutation relations
[69]. This gives

[ρ+ (q) , H0] = qρ+ (q) .
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Comparing the two results, we see that

Aq = π

and thus

H0 = π
1

L

∑

q

ρ+ (q) ρ+ (−q) + ρ− (q) ρ− (−q) .

Combining the free and interacting parts of the Hamiltonian, we obtain

H = π
1

L

(

1 +
g4
2π

)∑

q

{ρ+ (q) ρ+ (−q) + ρ− (q) ρ− (−q)}+π 1

L
g2
∑

q

ρ+ (q) ρ− (−q) .

Notice that if only theg4− interaction is present, the system remains free but the
Fermi velocity changes.

It is convenient to expand the density operators over the normal modes

ρ+ (x) =
∑

q>0

√

|q|
2πL

(
bqe

iqx + b†qe
−iqx

)
;

ρ− (x) =
∑

q<0

√

|q|
2πL

(
bqe

iqx + b†qe
−iqx

)
.

One can readily make sure that density operators defined in this way reproduce

the correct commutation relations, given that
[

bq, b
†
q′

]

= δq,q′ . In terms of these

operators, the Hamiltonian reduces to

H = π
(

1 +
g4
2π

)∑

q>0

q
{

b†qbq + b†−qb−q

}

+ πg2
∑

q

q
(

b†qb
†
−q + bqb−q

)

.

Introducing new bosons via a Bogoliubov transformation

c†q = cosh θqbq + sinh θqb
†
−q;

c†−q = cosh θqb
†
−q + sinh θqbq

and choosingθq so that the Hamiltonian becomes diagonal,i.e.,

tanh 2θq =
g2/2π

1 + g4/2π
,

we obtain

H =
1

L

∑

q

ωqc
†
qcq,
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where
ωq = u |q| ,

and31

u =

[(

1 +
g4
2π

)2

−
( g2

2π

)2
]1/2

. (6.2)

For the spinless case, backscattering can be absorbed into forward scattering.
The resulting expression for the renormalized velocity forthe caseg2 = g4 6= g1
is (cf. Appendix Appendix C.3 )

u =

√

1 +
g2 − g1

2π
.

6.1.2. Bosonization of fermionic operators
TheΨ− operators of right/left movers can be represented as

Ψ± (x) =
1√
2πa

e±2πi
∫ x
−∞

ρ±(x′)dx′

, (6.3)

wherea is the ultraviolet cut-off in real space. Using the commutation relations
for ρ±, one can show that the (anti) commutation relations

{

Ψ± (x) ,Ψ†
± (x′)

}

= δ (x− x′)

are satisfied.
The argument of the exponential can be re-written as two bosonic fields

Ψ± (x) =
1√
2πa

e±i
√

πϕ±(x); (6.4)

ϕ± (x) = ϕ (x)∓ ϑ (x) .

31Let’s now introduce backscattering. Since for spinless fermions backscattering is just an ex-
change process to forward scattering of fermions of opposite chirality (think of a diagram where
you have right and left lines coming in and then interchange them at the exit), the only effect of
backscattering is to replaceg2 → g2 − g1. (cf. discussion in Sec. 4). Instead of (6.2), we then have

u =

[
(

1 +
g4

2π

)2
−

(
g2 − g1

2π

)2
]1/2

. (6.1)

Now, consider a delta-function interaction, wheng1 = g2 = g4. Pauli principle says that we
should get back to the Fermi gas in this case. However,u still differs from unity (Fermi velocity)
and thus our result violates the Pauli principle. See Appendix Appendix C.3 for a resolution of the
paradox.
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Equating exponents in (6.3) and (6.4), we obtain

√
π [ϕ (x)− ϑ (x)] = 2π

∫ x

−∞
dx′ρ+ (x′) (6.5)

= 2π
∑

q>0

√

|q|
2πL

1

iq

(
bqe

iqx − b†qe−iqx
)
;

√
π [ϕ (x) + ϑ (x)] = 2π

∫ x

−∞
dx′ρ− (x′) (6.6)

= 2π
∑

q<0

√

|q|
2πL

1

iq

(
bqe

iqx − b†qe−iqx
)
.

Solving forϕ (x) andϑ (x) gives

ϕ (x) = −i
∑

−∞<q<∞

1
√

2 |q|L
sgnq

(
bqe

iqx − b†qe−iqx
)
; (6.7)

ϑ (x) = i
∑

−∞<q<∞

1
√

2 |q|L
(
eiqxbq − b†qe−iqx

)
. (6.8)

Using (6.7) and (6.8), one can prove thatϕ (x) and∂xϑ (x) satisfy canonical
commutation relations between coordinate and momentum (cf. Appenidx Ap-
pendix C.2.1)

[ϕ (x) , ∂x′ϑ (x′)] = iδ (x− x′) . (6.9)

Using Eqs. (6.5) and (6.6), we obtain the density and currentas the gradients of
the bosonic fields

ϕ (x) =
√
π

∫ x

−∞
dx′ (ρ+ (x′) + ρ− (x′)) =

√
π

∫ x

−∞
dx′ρ (x′)→

ρ (x) =
1√
π
∂xϕ;

ϑ (x) = −
√
π

∫ x

−∞
dx′ (ρ+ (x′) + ρ− (x′)) = −

√
π

∫ x

−∞
dx′j (x′)→

j (x) = − 1√
π
∂xϑ (x) .

The continuity equation,
∂tρ+ ∂xj = 0

relates the Heisenberg fieldsϕ (x, t) andϑ (x, t)

∂tϕ = ∂xϑ.
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The current can be also found as

j (x, t) = − 1√
π
∂tϕ (x, t) .

We will use this relation later. ExpressingH in the real space viaρ±

H = π

∫

dx
[
ρ2
+ + ρ2

−
]
+
g4
2

∫

dx
[
ρ2
+ + ρ2

−
]
+ g2

∫

dxρ+ρ−

and using the relations

ρ± =
1

2
√
π

(∂xϕ∓ ∂xϑ) ,

we obtain a canonical form ofH in terms of the bosonic fields

H =
1

2

∫

dx
[

(∂xϕ)
2

+ (∂xϑ)
2
]

+
g2 + g4

4π

∫

dx (∂xϕ)
2

+
g2 − g4

4π

∫

dx (∂xϑ)
2

=
1

2

∫

dx
[ u

K
(∂xϕ)

2
+ uK (∂xϑ)

2
]

, (6.10)

where32

u =

√
(

1 +
g4
2π

)2

−
( g2

2π

)2

; K =

√

1 + g4−g2

2π

1 + g4+g2

2π

. (6.11)

Forg4 = g2 ≡ g, we have

u =
√

1 + g/π; K =
1

√

1 + g/π
. (6.12)

Notice that in this caseuK = 1. This is important: in the next Section, we will
see that this product renormalizes the Drude weight (and thepersistent current).
Neither of these quantities are supposed to be affected by the interactions, as the
Galilean invariance remains intact. We see that it is indeedthe case in our model.

If backscattering is present (butg2 = g4), the parameters change to (cf. Ap-
pendix Appendix C.3)

u =

√

1 +
g2 − g1
π

; (6.13)

K =
1

√

1 + (g2 − g1) /π
. (6.14)

32As we have already seen in Sec.3, a difference betweeng2 andg4 leads to the current-current
interaction in the Hamiltonian. In the bosonized form, thisinteraction is the(g2 − g4) (∂xϑ)2 term
in the first line of Eq. (6.10).
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Had we started with another microscopic model,e.g., with fermions on a lattice
but away from half-filling, the effective low-energy theorywould have also been
described by Hamiltonian (6.10) albeit with different–and, in general, unknown–
parametersu andK. The term “Luttinger liquid” (LL) [70] refers to a universal
Hamiltonian of type (6.10), which describes the low-energyproperties of many
seemingly different systems. In that sense, the LL is a 1D analog of higher-
dimensional Fermi liquids, which describe the low-energy properties of a large
class of fermionic systems, while encoding the quantitative differences in their
high-energy properties by a relatively small set of parameters.

6.1.3. Attractive interaction
What happens for the case of an attractive interaction,g < 0? Formally, for
g < −π (or g2 − g1 < π), u2 in Eqs.(6.12,6.13) is negative, which seems to
suggest some kind of an instability. Actually, this is not the case [59], as a 1D
system of spinless fermions does not have any phase transitions even atT = 0.
All it means that the interacting system is a liquid rather than a gas,i.e., it does
not require external pressure to mantain its volume. An equilibrium value of the
density is fixed by given ambient pressure. To see this, restore the Fermi velocity
vF = πn/m, wheren is the density

u2 = v2
F

(

1 +
g

πvF

)

=
(πn

m

)2

+
ng

m
(6.15)

and recall the thermodynamic relation

u2 = m−1∂P/∂n, (6.16)

whereP is the pressure. Integrating (6.16) with the boundary conditionP (n = 0) =
0, we obtain the constituency relation

P =
( π

m

)2 n3

3
+

g

2m
n2.

For g < 0, there is a metastable region of negative pressure. This means that if
the ambient pressure is equal to zero, the thermodynamically stable value of the
density is given by the non-zero root of the equationP (n) = 0:

n∗ =
3

2π2
|g|m.

The square of the sound velocity at this density is positive:

(u∗)2 =
3

4π2
g2.
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The Fermi velocity atn = n∗ is

v∗F = πn∗/m =
3

2π2
|g|

and parameterK

K =
v∗F
u∗

=

√
3

π

is a universal number, independent of the interaction.

6.1.4. Lagrangian formulation
In what follows, it will be more convenient to work in the Lagrangian rather the
Hamiltonian formulation (and also in complex time). A switch from the Hamil-
tonian to Lagrangian formulation is done via the usual canonical transformation

S =

∫

dx

∫

dt (q̇p−H (p, q)) , (6.17)

whereH is the Hamiltonian density defined such that

H =

∫

dxH

andq andp are the canonical coordinate and momentum, correspondingly. Ac-
cording to commutation relation (6.9),

q = ϕ p = ∂xϑ. (6.18)

Performing a Wick rotation,t→ −iτ, we reduce the quantum-mechanical prob-
lem into a statistical-mechanics one with the partition function

Z =

∫

Dϕ

∫

Dϑe−SE ,

where the Euclidian action

SE =

∫

dτ

∫

dx

[
1

2

u

K
(∂xϕ)

2
+

1

2
uK (∂xϑ)

2 − i∂τϕ∂xϑ

]

.

In a Fourier-transformed form

SE =

∫

d2k

[
1

2

u

K
q2ϕ~kϕ−~k +

1

2
uKϑ~kϑ−~k + iqωϕ~kϑ−~k

]

,
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where~k ≡ (q, ω). If one needs only an average composed of fields of one type
(ϕ or ϑ), then the other field can be integrated out. This leads to two equivalent
forms of the action

Sϕ =
1

2K

∫

d2k

[
1

u
ω2 + uq2

]

ϕ~kϕ−~k (6.19a)

=
1

2K

∫

dx

∫

dτ

[
1

u
(∂τϕ)

2
+ (∂xϕ)

2

]

; (6.19b)

Sϑ =
K

2

∫

d2k

[
1

u
ω2 + uq2

]

ϑ~kϑ−~k (6.19c)

=
K

2

∫

dx

∫

dτ

[
1

u
(∂τϑ)

2
+ (∂xϑ)

2

]

. (6.19d)

In calculating certain correlation functions,e.g., the fermionic Green’s func-
tion, one also needs a cross-correlator〈ϕϑ〉. This one is computed by keeping
bothϕ andϑ in the action.

It is convenient to re-write the action in the matrix form

SE =
1

2

∫

d2kη̂†~kD̂
−1η̂~k,

where

η̂~k =

(
ϕ~k
ϑ~k

)

and the inverse matrix of propagators

D̂−1 =

(
q2uK iqω
iqω q2 u

K

)

.

Inverting the matrix, we obtain

D̂ =
1

u2q2 + ω2

(
uK −iω/q
−iω/q u

K

)

.

The space-time propagators can be found by performing the Fourier transforms
of D̂. For diagonal terms, one really does not need to do it, as it is obvious from
(6.19a) and (6.19c) that these propagators just coincide with the Green’s function
of a 2D Laplace’s equations. Recalling that the potential ofa line charge is a
log-function of the distance, we obtain

Φ (z) = 〈ϕ (z)ϕ (0)− ϕ2 (0)〉 =
K

4π
ln

a2

x2 + (u |τ |+ a)2
,

Θ (z) = 〈ϑ (z)ϑ (0)− ϑ2 (0)〉 = 1

4πK
ln

a2

x2 + (u |τ |+ a)
2
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wherea is “lattice constant”,z ≡ (x, τ) , andx2 + u2τ2 ≫ a2. 33 These are
the two correlation functions we will need the most. In addition, there is also an
off-diagonal propagator

Ξ (z) = 〈ϕ (z)ϑ (0)− ϕ (0)ϑ (0)〉 = 〈ϑ (z)ϕ (0)− ϑ (0)ϕ (0)〉

=

∫

d2k
(

ei~k·~z − 1
)

〈ϕ~kϑ−~k〉 = −i
∫

d2k
(

ei~k·~z − 1
) ω/q

u2q2 + ω2
.

Ξ (z) depends only on the ratiox/uτ and thus does not change the power-
counting. To see this, introduce polar coordinatesq = k cosα/u, ω = sinα, x =
(z/u) cosβ, andτ = z sinβ. Then

Ξ (x, τ) = −i
∫

d2k

(2π)
2

(

ei(qx−ωτ) − 1
) ω/q

u2q2 + ω2

= −i 1

(2π)
2

∫ ∞

0

dk

k

∫ 2π

0

dα
(

eik cos(α+β) − 1
)

tanα.

The resulting integral is a function of onlyβ = tan−1 (x/uτ).

6.1.5. Correlation functions
Now we can calculate various correlation functions, including the Green’s func-
tion.

Non-time-ordered Green’s function for right movers:

G+ (x, τ) = −〈TB
τ ψ+ (x, τ)ψ†

+ (0, 0)〉 (6.20)

=
1

2πa
〈TB

τ e
i
√

π(ϕ(1)−ϑ(1))e−i
√

π(ϕ(0)−ϑ(0))〉,

where(1) ≡ (x, τ) and(0) ≡ (x = 0, τ = 0) , and whereTB
τ is a bosonic time-

ordering operator.34 I will use the well-known result, valid for an average of the
product of the exponentials of gaussian fields (see the booksby Tsvelik [6] or
Giamarchi [10] for a derivation)

〈TτΠje
iAjγ(zj)〉 = δ∑

j Aj ,0 × e−
∑

k>j AjAk〈Tτ γ(zj)γ(zk)〉e−
1
2

∑

k A2
k〈γ2(zj)〉.

(6.21)

33A non-symmetric appearance of the cut-off with respect to time and space coordinates reflect an
asymmetric way the sums over bosonic momenta and frequencies were cut. We adopted a standard
procedure in which the sum of overq is regularized byexp (− |k| a) , whereas the frequency sum is
unlimited. Other choices of regularization are possible.

34Surely, it is not a conventional definition of the Green’s function, but it is easier to work with this
one for now, and restore the fermionicTτ product at the end.
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[Eq. (6.21) is essentially a field-theoretical analog of theprobability theory result
for the average ofeiAγ , whereγ is a Gaussian random variable.] For example, in
the average

Av (z) = 〈Tτe
i
√

πϕ(z)e−i
√

πϕ(0)〉
A1 =

√
π, A2 = −√π and

Av (z) = eπ〈Tτ [ϕ(z)γ(0)−ϕ2(0)]〉 =

(

a2

x2 + (u |τ |+ a)
2

)1/4K

.

Similarly, with the help of (6.21), Eq. (6.20) reduces to

G+ (x, τ) =
1

2πa
eπ〈ϕ(1)ϕ(0)−ϕ2(0)〉τ eπ〈ϑ(1)ϑ(0)−ϑ2(0)〉τ e−2〈ϕ(1)ϑ(0)−ϕ(0)ϑ(0)〉τ

=
1

2πa
eπΦ(x,τ)eπΘ(x,τ)e−2Ξ(x,τ) (6.22)

=
1

2πa

(

a2

x2 + (u |τ |+ a)2

)K+K−1

4

eif(x/uτ),

where〈. . . 〉τ stands for a time-ordered product and where it was used that in a
translationally invariant and equilibrium system〈ϕ2 (0)〉 = 〈ϕ2 (1)〉 (same for
ϑ). Functionf (x/uτ) is a phase factor which does not effect the power-counting.

Bulk tunneling DoS Forx = 0,

G (0, τ) ∝ τ− K+K−1

2 .

By power-counting,

ν (ε) ∝ |ε|
K+K−1

2 −1 = |ε|
(K−1)2

2K . (6.23)

This is an analog of the DL result for the spinless case.

Edge tunneling DoS In a tunneling experiment, one effectively measures the
local DoS at the sample’s surface. In a correlated electron system, the boundary
condition affects the wavefunction over a long (exceeding the electron wave-
length) distance from the surface. Therefore, the surface DoS differs signifi-
cantly from the “bulk” one. If a tunneling barrier is high, then–to leading order
in transmission– the DoS can be found via imposing a hard-wall boundary con-
dition. The presence of the surface (boundary) can be taken into account by
imposing the boundary conditions on the number current

j (x = 0, τ) = − 1

i
√
π
∂τϕ = 0. (6.24)
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at x = 0. This means thatϕ is pinnedat the boundary,i.e., it takes some time-
independent value. In the gradient-invariant theory, we can always choose this
constant to be zero. Thus,

ϕ (0, τ) = 0.

This suggests that the local correlatorΦ(0, τ) = 0, and the long-time behavior
of the Green’s function in Eq. (6.22) is determined only by the correlator of the
ϑ fields. Had the boundary not affected this correlator, we would have arrived at

G (x = x′ = 0, τ) ∝ exp (πΘ (x = 0, τ)) ∝ 1

|τ |1/2K
. (wrong)

But then we have a problem, as Eq. (wrong) does not reproduce the free-fermion

behavior forK = 1. Consequently, the DoS at the edgeνe (ε) ∝ |ε|
1

2K −1 would
have not reproduced the free behavior either. What went wrong is that we pinned
one field but forgot the other one is canonical conjugate to the first one. By
the uncertainty principle, fixing the “coordinate” (ϕ) increases the uncertainty
in the “momentum” (ϑ)–and vice versa. Thus, fluctuations ofϑ fields should
increase. A rigorous solution to this problem is to change the fermionic basis
from the plane waves to the solutions of the Schrodinger equation with the hard-
wall boundary condition and to bosonize in this basis. This was done by Eggert
and Affleck [75] and Fabrizio and Gogolin [76] , [9]. Here I will give an heuristic
argument based on a simple image construction, which leads to the same result.

Eq. (6.24) translates into the boundary conditions for the bosonic propagators:

Φe(x, x
′, τ) = 0; ∂x,x′Θe (x, x′, ω) = 0, (6.25)

for x, x′ = 0, where subindexe denotes the correlators in a semi-infinite system.
SinceΦe andΘe satisfy the Laplace’s equation, we can view these propagators
as potentials produced by some fictitious charges. Then,Φe andΘe can be con-
structed from the propagators of an infinite sample by the method of images:

Φe(x, x
′, τ) = Φ(x− x′, τ)− Φ(x + x′, τ);

Θe (x, x′, τ) = Θ (x− x′, τ) + Θ (x+ x′, τ) .

Forx = x′,

Φe(0, 0, τ) = 0; Θe (0, 0, τ) = 2Θ (0, τ) . (6.26)

Hence, pinning theϕ field enhances the rms fluctuations of theϑ field by a factor
of two. This leads us to

G+ (0, 0, τ) ∝ exp (πΦe (0, 0, τ)) exp (πΘe (0, 0, τ))

= exp (2πΘe (0, τ)) ∝ exp

(
2π

2πK
ln

a

|τ |

)

∝ |τ |−1/K
.
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Consequently, the DOS becomes

νe (ε) ∝ |ε|K
−1−1

. (6.27)

This result by Kane and Fisher [68] initiated the new (and still continuing) surge
of interest to 1D systems (in terms of the impurity scattering time, this result was
obtained earlier in Refs. [73, 74]). For tunneling from a contact with energy-
independent DoS (“Fermi liquid”) into a 1D system, the tunneling conductance
scales asνe (ε)

G(ε) ∝ νe(ε) ∝ |ε|K
−1−1

.

Now we see that the free-fermion behavior is correctly reproduced forK = 1.

Expanding the tunneling exponentK−1−1 with parameterK from Eq. (6.14)
for the weak-coupling case gives

K−1 − 1 ≈ g2 − g1
2πvF

.

This is the same result as the weak-coupling tunneling exponent (5.30) obtained
in Sec.5 via the scattering theory for interacting fermions.

Where do the “bulk" and “edge" forms of DoS match? Consider anobject
G(x = x′, ε). At the boundary, the DoS is of the “edge” form (6.27). Far
away from the boundary, the Green’s function does not dependon x andν(ε)
acquires a “bulk" form (6.23). As a function ofx, G(x = x′, ε) varies on the
scale≃ u/|ε| and the crossover between two limiting forms ofν occurs on this
scale. Choosing the energy in a tunneling experiment,i.e., temperature or bias–
whichever is larger, determines how far from the boundary one should go in order
to see a change in the scaling behavior.

6.2. Fermions with spin

For fermions with spin, each component of the fermionic operator is bosonized
separately

ψ±,σ =
1√
2πa

exp
[
±i
√
π (ϕσ ∓ ϑσ)

]
.

Indexσ of the bosonic field does not mean that bosons acquired spin. We simply
have more bosonic fields. Charge and spin densities and currents are related to
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the derivatives of the bosonic fields

ρ±,σ =
1

2
√
π

(ϕ′
σ ∓ ϑ′σ) ρσ = ρ+,σ + ρ−,σ =

1√
π
ϕ′

σ;

jσ = ρ+,σ − ρ−,σ =
1√
π
ϑ′σ;

ρc = ρ↑ + ρ↓ =
1√
π

(
ϕ′
↑ + ϕ′

↓
)

=

√

2

π
ϕ′

c

ρs = ρ↑ − ρ↓ =
1√
π

(
ϕ′
↑ − ϕ′

↓
)

=

√

2

π
ϕ′

s;

jc = j↑ + j↓ =
1√
π

(
ϑ′↑ + ϑ′↓

)
=

√

2

π
ϑ′c;

js = j↑ − j↓ =
1√
π

(
ϑ′↑ − ϑ′↓

)
=

√

2

π
ϑ′s,

where′ denotes∂x and where the charge and spin bosons are defined as

ϕc,s =
ϕ↑ ± ϕ↓√

2
; ϑc,s =

ϑ↑ ± ϑ↓√
2

. (6.28)

I assume that the interaction is spin-invariant, i.e., couplings of↑↑ and↑↓ fermions
are the same. Substituting the relations between charge- and spin-densities into
the Hamiltonian, one arrives at the familiar bosonized Hamiltonian which con-
sists of totally independent charge and spin parts

H = Hc +Hs;

Hc =
1

2

∫

dx
uc

Kc
(∂xφc)

2 + ucKc (∂xθc)
2 ;

Hs =
1

2

∫

dx
us

Ks
(∂xφs)

2
+ usKs (∂xθs)

2

+
2g1

(2πa)
2

∫

dx cos
(√

8πφσ

)

. (6.29)

Parameters of the Gaussian parts are related to the microscopic parameters of the
original Hamiltonian

uc =
(

1 +
g1
2π

)1/2
(

1 +
4g2 − g1

2π

)1/2

; Kc =

(
1 + g1/2π

1 + (4g2 − g1) /2π

)1/2

;

us =

(

1−
( g1

2π

)2
)1/2

; Ks =

(
1 + g1/2π

1− g1/2π

)1/2

.
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Notice thatKc < 1 for g1 < 2g2 (“repulsion”) andKc > 1 for g1 > 2g2 (“attrac-
tion”). The boundaries for “repulsive” and “attractive” behaviors coincide with
those obtained when studying tunneling of interacting electrons. The velocity of
the charge part forg1 = 0 coincides with that found in the DL solution (Sec. 3)

uc =

(

1 +
2g2
π

)1/2

.

Scaling dimension of the backscattering term in the spin part can be read off
from the correlation function

1

a4
〈ei

√
8πφσ(z)e−i

√
8πφs〉 = 1

a4
exp

(
8πKs

4π
ln
a2

z2

)

=
1

a4

(
a

|z|

)4Ks

∝ a4(Ks−1).

If we allowed for different coupling constants between electrons of different spin
orientations, then the coefficient in front of the cos term would have beeng1⊥.
ForKs > 1, the operator scales down to zero asa → 0, whereas forKs < 1, it
blows up signaling an instability: a spin-gap phase.

The RG-flow of the spin-part is described by the Berezinskii-Kosterlitz-Thouless
phase diagram. The fixed-point value ofg∗1 = 0 for K∗

s > 1. In the weak cou-
pling limit, the RG reduces to a single equation forg1, which we have derived in
the fermionic language in Sec.4

dg1
dl

= −g2
1 → g1 =

1

(g0
1)

−1
+ l

, (6.30)

6.2.1. Tunneling density of states
The procedure of finding the scaling behavior for the DoS reduces to a simple
recipe.
• Take the free Green’s function and split it formally into thespin and charge

parts

G (x, t) =
1

x− t =
1

(x− t)1/2

1

(x− t)1/2
.

• In an interacting system, the exponent of1/2 in the charge part is replaced by
(
Kc +K−1

c

)
/4 and in the spin-part by

(
Ks +K−1

s

)
/4. If the spin-rotational

invariance is preserved, then the spin exponent remains equal to1/2.
• Forx = 0,

G (t) ∝ 1

t(Kc+K−1
c )/4+1/2

and the DoS behaves as

ν (ε) ∝ |ε|(Kc+K−1
c )/4−1/2 = |ε|

(Kc−1)2

4Kc = |ε|
(uc−1)2

4uc .
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Comparing this result forg1 = 0 with that by DL (Sec. 3), we see that the
bosonization solution gives the same result as the fermionic one.
• For tunneling into the edge, removeKc, which comes from the correlator
〈ϕϕ〉 pinned by the boundary, and multiplyK−1

c , which comes from〈ϑϑ〉, by a
factor of 2. This gives

Ge (t) ∝ 1

tK
−1
c /2+1/2

and
G ∝ νe (ε) ∝ |ε|

1
2 (K−1

c −1) .

ExpandingKc back in the interaction

Kc =

(
1 + g1/2π

1 + (4g2 − g1) /2π

)1/2

≈ 1− g2 − (1/2)g1
π

,

we obtain the weak-coupling limit for the tunneling exponent

(1/2)

(

1/Kc − 1 ≈ g2 − (1/2)g1
2π

)

.

This coincides with the result obtained in the fermionic language (Sec.5). What
was missed in a bosonization solution is a multiplicative log-renormalization,
present in Eq. (5.35). This is because we evaluatedG at the fixed point, where
g∗1 = 0, rather then derived an independent RG equation for the flow of the
conductance. This procedure should bring in the log-factors (cf. Ref.[74] where
these factors were obtained for the impurity scattering time).

7. Transport in quantum wires

7.1. Conductivity and conductance

7.1.1. Galilean invariance
Interactions between electrons cannot change the responseto an electric field in
a Galilean-invariant system–the electric field couples only to the center-of-mass
whose motion is not affected by the inter-electron interaction. This property is
reproduced by the bosonized theory provided that the product uK = 1 (= vF in
dimensional form.) To see this, combine the Heisenberg equation of motion for
densityρ (spinless fermions) with the continuity equation:

∂tρ = i[H, ρ] = −∂xj. (7.1)
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Calculating the commutator in Eq. (7.1) with the help of Eq. (6.9), we identify
the current operator as

∂tρ =
uK√
π
∂2

xϑ = −∂x

(

−uK√
π
∂xϑ

)

→

j = −uK√
π
∂xϑ .

The current is not affected by the interaction as long asuK = 1.

7.1.2. Kubo formula for conductivity
The Kubo formula relates the conductivity, a response function to an electric field
at finiteω andq, to the current-current correlation function

σ (ω, q) =
1

iω

[

−e
2

π
+ 〈JJ〉Rqω

]

, (7.2)

where it was used thatn = kF /π andkF /m = vF = 1 in our units.
Electric current for electrons(e > 0)

J = −ej =
e√
π
∂xϑ.

In complex time,

〈JJ〉Rx,τ =

(
e√
π

)2
(
−∂2

x

)
〈ϑϑ〉x,τ →

〈JJ〉Rq,ωm
=

e2

π
q2〈ϑϑ〉q,ωm

=
e2

π
− e2

π

ω2
m

ω2
m + u2q2

=
e2

π
+ 〈J̃ J̃〉q,ωm . (7.3)

The first term in (7.3) cancels the diamagnetic response in (7.2). Continuing
analytically to real frequencies, we find

σ (ω, q) =
1

iω
〈J̃ J̃〉q,ωm→−iω+δ

= −e
2

π

1

iω

−ω2

− (ω + iδ)
2
m + u2q2

(7.4)

= i
e2

π

ω

ω2 − u2q2 + isgnωδ
.
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Consequently, the dissipative conductivity is equal to

Reσ (ω, q) = −e
2

π
ωIm

1

ω2 − u2q2 + isgnωδ

=
e2

2
[δ (ω − uq) + δ (ω + uq)] . (7.5)

7.1.3. Drude conductivity

In a macroscopic system, one is accustomed to take the limitq → 0 first: this cor-
responds to applying a spatially uniform but time-dependent electric field [61].
(For the lack of a better name, I will refer to the conductivity obtained in this way
as to theDrude conductivity). The Drude conductivity in our case is the same as
for the Fermi gas as the charge velocity drops out from the result

Reσ (ω, 0) = e2δ (ω)

or, restoring the units,

Reσ (ω, 0) =
e2vF

~
δ (ω) .

All it means that when a static electric field is applied to a continuous system of
either free or interacting electrons, the center-of-mass moves with an acceleration
and there is no linear response, as there is no “friction” that can balance the
electric force.

For electrons with spins, the electrical current is relatedonly to the charge
component of theϑ− field:

Jc = −ejc = e

√

2

π
∂xϑc,

where againucKc = 1. Because of the
√

2 factor in the current, the conductivity
is by a factor of two different from that in the spinless case

Reσ (ω, 0) =
2e2vF

~
δ (ω) .

(Notice, however, that at fixed densityvF is by a factor of 2 smaller for electrons
with spin, so that the conductivity is the same.)
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7.1.4. Landauer conductivity
Let’s consider now the opposite order of limits, corresponding to a situation when
a static electric field is applied over a part of the infinite wire. (Again, for the lack
of a better name, I will refer to this conductivity as to theLandauer conductivity.)
The electric field might as well be non-uniform; the only constraint we are going
to use is that the integral

∫

dxE (x) ,

equal to the applied voltage, is finite. The induced current (which in 1D coincides
with the current density) is given by

J (t, x) =

∫

dx′
∫

dt′σ (t− t′;x, x′)E (t′, x′)

=

∫

dx′
∫
dω

2π
e−iωtσ(ω;x, x′)E (ω, x′) .

In linear response, the conductivity is defined in the absence of the field. As such,
it is still a property of a translationally invariant systemand depends thus only on
x− x′. This allows one to switch to Fourier transforms

J (t, x) =

∫

dx′
∫
dω

2π

∫
dq

2π
eiq(x−x′)e−iωtσ (ω, q)E (ω, x′) . (7.6)

Now use the fact that the applied field is static:E (x, ω) = 2πδ (ω)E0 (x) (upon
which thet-dependence of the current disappears, as it should be in thesteady
state)

J(x) =

∫

dx′
∫

dq

2π
eiq(x−x′)σ (0, q)E0 (x′) . (7.7)

From (7.5),

σ (0, q) =
1

u
e2δ (q) = Ke2δ (q) , (7.8)

whereuK = 1 was used again. Substituting (7.8) into (7.7), we see that thex−
dependence of the current also disappears

J =
Ke2

2π

∫

dx′E0 (x′) =
Ke2

2π
V.

ConductanceG = J/V is given by

G =
Ke2

2π
,
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or, restoring the units,

G = K
e2

h
. (7.9)

For electrons with spin, a similar consideration gives

G = Kc
2e2

h
. (7.10)

We see that the conductance is renormalized by the interactions from it universal
value given by the Landauer formula for an ideal wire [68].

7.2. Dissipation in a contactless measurement

What kind of an experiment Eqs. (7.9) and (7.10) correspond to?
Suppose that we connect a wire of lengthL to an external resistor and place

the whole circuit into a resonator [79]. Now, we apply anacelectric fieldE (x, t)
of frequencyω0 and parallel to a segment of the wire of lengthLE ≪ L, and
measure the losses in the resonator. The external resistor takes care of energy
dissipation: as the wire is ballistic (also in a sense that electrons travel through
the wire without emitting phonons), the Joule heat can be generated only outside
the wire. Dissipated energy, averaged over many periods of the field, is given by

Q̇ = −
∫

dx〈J (x, t)E (x, t)〉.

For a monochromatic field,E (x, t) = E0 (x) cosω0t and after averaging over
many periods of oscillations, we obtain

Q̇ = −
∫

dx

∫

dx′Reσ (ω0;x, x
′)E0 (x)E0 (x′) .

Now, choose the frequency in such a way that

LE ≪
u

ω0
≪ L, (7.11)

whereu is the velocity of the charge mode in the wire. Because the wavelength
of the charge excitations at frequencyω0–acoustic plasmons– is much shorter
than the distance to contacts (L), the conductivity is essentially the same as for
an infinite wire and depends only onx−x′. Performing partial Fourier transform
in Eq. (7.5), we find

Reσ (ω, x) =
e2

2πu
cos (ωx/u) =

e2

2π
K cos (ωx/u) , (7.12)
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so that

Q̇ = −1

2

e2

2π
K

∫

dx

∫

dx′ cos [ω0 (x− x′) /u]E0 (x)E0 (x′) .

On the other hand, because|x, x′| ≤ LE ≪ u/ω0, the cosine can be replaced by
unity, and

Q̇ = − e
2

2π
KV 2 ≡ −GV 2,

or

G =
e2

2π
K.

Therefore, dissipation in a contactless measurements under the conditions spec-
ified by Eq. (7.11) corresponds to a renormalized conductance. To the best of
my knowledge, this experiment has not been performed. A typical (two-probe)
transport measurement is done by applying the current and measuring the voltage
drop between the reservoirs. In this case, the measured conductance doesnotcor-
respond to Eqs.(7.9,7.10) but is rather given simply bye2/h per spin projection–
regardless of the interaction in the wire[80],[81],[82]. This result is discussed in
the next Section.

7.3. Conductance of a wire attached to reservoirs

The reason why the two-terminal conductance is not renormalized by the inter-
actions within the wire is very simple. For the Fermi-gas case, the conductance
of e2/h per channel is actually not the conductance of wire itself–adisorder-free
wire by itself does not provide any resistance to the current. In a four-probe mea-
surement, when the voltage and current are applied to and measured in different
contacts, the conductance of a disorder-free wire is, in fact, infinite. However, in
a two-probe measurement, the voltage and current contacts are the same. Finite
resistance comes only from scattering of electrons from theboundary regions,
connecting wide reservoirs to the narrow wire [83, 84], as shown in Fig.15a).
The universal value ofe2/h is approached in the limit of an adiabatic (smooth on
the scale of the electron wavelength) connection between the reservoirs and the
wire [85] 35. As the resistance comes from the regionsexterior to the wire, the
interactionwithin the wire is not going to modify thee2/h− result. Another way
to think about it is to notice that the renormalized conductance (7.9,7.10) can be

35Accidentally, the actual constraint on the adiabaticity ofthe connection is rather soft–it is enough
to require the radius of curvature of the transition region be just comparable to, rather than much larger
than, the electron wavelength [85].
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Fig. 15. a) A Luttinger-liquid (LL) wire attached to Fermi-liquid (FL) reservoirs. b) same for a single
impurity within the wire.

interpreted as a manifestation of thefractional chargee∗ =
√
K(
√
Kc), associ-

ated with the excitations in a 1D system. However, the current coming from,e.g.,
the left reservoir is carried by integer charges, and as all these charges get even-
tually transmitted through the wire, the current collectedin the right reservoir
is carried again by integer charges. Fractional charges is atransient phenomena
which, in principle, can be observed in anacconductance or noise measurements
but not in adc experiment. In the rest of this Section, these arguments will be
substantiated with some simple calculations.

7.3.1. Inhomogeneous Luttinger-liquid model
An actual system consists of two Fermi-liquid reservoirs connected via a Luttinger-
liquid (LL) wire and , due to the presence of the reservoirs, is not one-dimensional.
In theinhomogeneous Luttinger-liquid model,the actual system is replaced by an
effective 1D system, which is an infinite LL with a position-dependent interac-
tion parameterK(x) (cf. Fig. 16). The actual reservoirs are higher (D = 2 or
3) systems, where the effect of the interaction can be disregarded. Consequently,
the reservoirs are modelled by one-dimensional free conductors withKL = 1.
In between,K (x) goes through some variation. Similarly, the charge velocity
is equal to the Fermi one in the reservoirs and varies withx in the middle of the
system. The potential difference applied to the system produces some distribu-
tion of the electric field along the wire. The shape of this distribution is irrelevant
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K(x)
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vL

E(x)
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K
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=

Fig. 16. Inhomogeneous Luttinger-liquid model.

in thedc linear response.

7.3.2. Elastic-string analogy
The (real-time) bosonic action for a spinless LL is

S =
1

2

∫

d2x
1

K(x)

{

u(x)(∂xϕ)2 − 1

u(x)
(∂tϕ)2

}

. (7.13)

The density of the electrons (minus the background density)and the (number)
current are given by

ρ = ∂xϕ/
√
π, j = −∂tϕ/

√
π. (7.14)

The interaction with an external electromagnetic fieldAµ is described by

Sint =
e

2
√
π

∫

d2x {A0∂xϕ−A1∂tϕ} , (7.15)

so that the equation of motion forϕ is

∂t

(
1

Ku
∂tϕ

)

− ∂x

( u

K
∂xϕ

)

=
e√
π~
E(x, t), (7.16)

whereE = −∂xA0 + ∂tA1 is the electric field. We assume that the electric field
is switched on att = 0, so thatE(x, t) = 0 for t < 0 andE(x, t) = E(x)
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Fig. 17. a) Solution of the wave equation in the homogeneous case fort = 5L/u. b) Schematic
solution in the inhomogeneous case fort ≫ L/u.

for t ≥ 0. The problem reduces now to determining the profile of an infinite
elastic string under the external force. In this language,ϕ(x, t) is the transverse
displacement of the string at pointx and at timet, while the number current
j = −∂tϕ/

√
π is proportional to the transverse velocity of the string.

To develop some intuition into the solution of Eq. (7.16), wefirst solve it in the
homogeneous case, whenK =const,u =const, andE(x) =const for|x| ≤ L/2,
and is equal to zero otherwise. In this case, the solution of Eq. (7.16) fort > L/u,
is

ϕ(x, t) =
KeV

2
√
π
×







t− x2+L2/4
Lu for |x| ≤ L/2;

t− |x|/u for L/2 ≤ |x| ≤ ut− L/2
u
2L

(
t− |x|−L/2

u

)2
for ut− L/2 ≤ |x| ≤ ut+ L/2

0, for |x| ≥ ut+ L/2,

whereV = EL is the total voltage drop. This solution is depicted in Fig. 17a.
The profile of the string consists of two segments (I and II in Fig. 17a) whose

widths, equal to(ut−L), grow with time, and of three segments (III, IV and V in
Fig. 17a) whose widths are constant in time and equal toL. In segments I and II,
the profile of the stringϕ(x, t) is linear inx, and therefore, being the solution of
the wave equation, also int; in segments III-V, the profile is parabolic. Outside
segments IV and V, the string is not perturbed yet, andϕ(x, t) = 0. As time
goes on, the larger and larger part of the profile becomes linear. For late times,
the pulse produced by the force spreads outwards with velocity u, involving the
yet unperturbed parts of the string in motion; simultaneously, in all but narrow



86 Dmitrii L. Maslov

segments in the middle and at the leading edges of the pulse, the string moves
upwards with thet- andx-independent “velocity”∂tϕ = KeV/2

√
π. In terms

of the original transport problem, it means that the charge currentJ = −ej
is constant outside the wire (but not too close to the edges ofthe regions of
where the electron density is not yet perturbed by the electric field) and given by
J = Ke2V/h. Therefore, the conductance (per spin orientation) isG = Ke2/h.

We now turn to the inhomogeneous case. As in the previous case, the profile
consists of several characteristic segments (cf. Fig. 17b). In segments III-V, the
profile is affected by the inhomogeneities inK(x), u(x), andE(x) and depends
on the particular choice of thex-dependences in all these quantities. In segments
I and II however, the profile, being the solution of the free wave equation, is
again linear inx (and in t). Requiring the slopes of the string be equal and
opposite in segments I and II (which is consistent with the condition of the current
conservation), the solution in these regions can be writtenasϕ(x, t) = A(t −
|x|/uL). The constantA can be found by integrating Eq. (7.16) between two
symmetric points±a , chosen outside the wire

−
∫ +a

−a

dx∂x

( u

K
∂xϕ

)

=
e√
π

∫ +a

−a

dxE(x) =
eV√
π
. (7.17)

Outside the wire,K(x) = KL andu(x) = uL, thusA = KLeV/2
√
π~. Calcu-

lating the current, we getG = KLe
2/h and, recalling thatKL = 1, we finally

arrive atG = e2/h. Thus, the conductance is not renormalized by the interactions
in the wire.

7.3.3. Kubo formula for a wire attached to reservoirs
The Kubo formula for a translationally non-invariant system can be written as

σ (ω;x, x′) = − e2

iπω
δ (x− x′)

+
e2

iπω

{∫

d (τ − τ ′) eiωmτ 〈Tτ∂τϕ (x, τ) ∂τ ′ϕ (x′, τ ′)〉
}

|iωm→ω+iδ.

The diamagnetic contribution is cancelled by a delta-function term, which is ob-
tained when integrating by parts in the time-ordered product [86, 10]. Having
this in mind, I will re-write the conductivity via the Fourier transform of theϕϕ-
correlator without theT− product

σ (ω;x, x′) = i
e2

πω
ω2

mΦωm (x, x′) |iωm→ω+iδ.

For a translationally invariant case, this reduces back to Eq. (7.4). Now,K (x)
andu (x) depend on position. The propagator of theϕ fields satisfy the wave
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equation (or a Laplace’s equation as we are dealing with the imaginary time)
[

ω2
m

u (x)K (x)
− ∂x

(
u (x)

K (x)
∂x

)]

Φωm (x, x′) = δ (x− x′) . (7.18)

In a model of step-like variation ofK (x) andu (x) (K = KW andu = uW

within the wire andK = KL = 1 andu = uL = 1 outside the wire), Eq.
(7.18) is complemented by the following boundary conditions: 1) Φωm (x, x′)
is continuous atx = ±L/2, 2) u (x)K (x) ∂xΦωm (x, x′) is continuous atx =
±L/2; but 3) undergoes a jump of unit height atx = x′. Solution of this problem
is totally equivalent to finding a potential of a point chargelocated somewhere
in a sandwich-like system, consisting of three insulators with different dielectric
constants. Two of these layers are semi-infinite and the third one (in the middle)
is of finite thickness. “Potential”Φωm (x, x′) can be found in a general form for
arbitraryx, x′. In the expression for the current

J (t, x) =

∫

dx′
∫
dω

2π
σ (ω;x, x′)E (ω, x′) ,

x′ is within the wire; hence we need to knowΦωm (x, x′) only for−L/2 ≤ x′ ≤
L/2. In a steady-state regime, one is free to measure the current through any
cross-section; let’s choosex also within the wire. As we are interested in the
limit ω → 0,when the plasmon wavelength is larger than the wire length, we can
putx = x′. In the interval−L/2 < x = x′ < L/2 the solution of the Laplace’s
equation is

Φωm (x, x) =
KW

2 |ωm|
+

KW

2 |ωm|
κ2
−e

−L/Lω + κ+κ− cosh (2x/Lω)

eL/Lωκ2
+ − e−L/Lωκ2

−
, (7.19)

whereLω = uW / |ωm| , uW is the charge velocity within the wire, and

κ± = K−1
W −K−1

L .

Lettingωm in (7.19) to zero (and thusLω to∞), we find that

Φω (x, x) =
KL

2iω
=

1

2iω
,

as by our assumptionKL = 1. This result is true for anyx, x′ within the wire for
ω → 0

Φω (x, x′) =
1

2iω
, for − L/2 < x, x′ < L/2.

The Luttinger-liquid parameters of the wire drop out from the answer. Thedc
conductivity reduces to its free value

σ (ω → 0;x, x′) =
e2

2π
,
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and, consequently, the conductance

G =
e2

h

is not renormalized by the interaction. The same consideration for electrons with
spins gives

G =
2e2

h
(7.20)

7.3.4. Experiment

Most of the experiments on quantum wires indeed show that theconductance is
quantizated in units of2e2/h at relatively high temperatures.36 37 At lower
temperatures, the conductance decreases beyond the universal value and also the
quantization plateaux exhibit some structure as a functionof the gate voltage
[90]. This can be interpreted as the effect of residual disorder: as was discussed
in Secs. 5,6 transmission decreases at lower energy scales.An effect of single
impurity in a quantum wire will be largely insensitive to thepresence of reser-
voirs: as long as the transmission coefficient for an impurity is much smaller than
one, the largest voltage drops occurs near the impurity rather than at the contacts
to the wire. One can show that the scaling of the conductance with energy is de-
termined by the interaction parameterK insidethe wire [91], in a contrast to the
disorder-free case when onlyK outside the wire matters. Also, the mesoscopic
conductance fluctuations increase as the temperature goes down (the theory pre-
dicts that this effect is enhanced by the interaction [92]).As one is dealing here
with a crossover regime from scattering at a single impurityto that at many impu-
rities, a quantitative analysis of the temperature dependences is difficult; another
complication arises from the finite length of the wire which cuts off scalings with
temperature and voltage. In addition, at higher temperatures the first quantization
plateau exhibits a well-defined step at about0.7× 2e2/h [93, 94, 95, 96, 97, 98].
This “0.7” feature is not likely to result from spurious impurity scattering but
rather reveals some interesting physics beyond what has been discussed so far in
this review. Although the “0.7” feature deserves a review onits own, I will come
back to this subject briefly in the next Section.

36However, it has been observed recently that the conductanceof carbon nanotubes is quantized in
units ofe2/h –as opposed to4e2/h, predicted by the non-interacting theory for this case [87].

37A special case of a non-universal conductance quantizationis very long wires grown by cleaved-
edge overgrowth technique [88] can be attributed to a non-trivial coupling between the wire and 2D
reservoirs [89], characteristic for these systems.
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7.4. Spin component of the conductance

As we have shown in the previous sections, the Luttinger-liquid models predicts
that conductance of a disorder-free wire is given bye2/h per channel at any tem-
perature. Also, thanks to spin-charge separation, spin degrees of freedom do not
play an essential role in charge transport except for givingan overall factor of
two to the conductance. These two results hold as long as the Luttinger-liquid
model is a good description for interacting electrons in thewire. When does this
model break down? If the interaction is strong, electrons form almost a periodic
1D structure: quasi-Wigner crystal. The exchange energy ofalmost localized
electrons is exponentially small and, correspondingly, the spin velocity is small
too: us ≪ uc. The Luttinger-liquid model should work for energies (temper-
atures) much smaller than the smallest of the two (spin and charge) bandwidth
T ≪ uskF ≪ uckF , when both spin- and charge degrees of freedom are coher-
ent. Thespin- incoherent regime, i.e.,uskF ≪ T ≪ uckF , has attracted con-
siderable interest recently [19, 20, 21], and was shown to spoil the conductance
quantization in integer multiples of2e2/h [19] at temperatures larger than the
spin bandwidth (uskF ). In what follows, I present a short summary of Ref.[19].

In a quasi-Wigner-crystal regime, a reasonable starting point for describing
the spin sector is the Heisenberg model

Hs = Jex

∑

l

~Sl · ~Sl+1,

where spins are localized at “lattice sites” correspondingto positions of electrons.
Because the Lieb-Mattis theorem [46] forbids ferromagnetic ordering in 1D, the
sign of the exchange interaction must be antiferromagnetic: Jex > 0. Assuming
that electrons are well localized at distancesa = 1/n from each other,Jex can be
estimated in the WKB approximation:Jex ∼ EF exp

(
−c/√aBn

)
,wherec ∼ 1

andaB is the Bohr radius. A spin-1/2 chain is then mapped onto a Hubbard 1/2-
filled model of spinless fermions via the Jordan-Wigner transformation

Sz (l) = a†l al − 1/2;

Sx (l) + iSy (l) = a†l exp

(

iπ

l−1∑

Jex=1

a†Jex
aJex

)

with the result

Hs = −Jex

2

∑[

c†l+1cl +H.c.
]

+ Jex

∑

: c†l cl − 1/2 :: c†l+1cl − 1/2 : .

The spinless Hubbard model can be bosonized

Hs =
1

2

∫

dx
u

K
(∂xφ)

2
+ uK (∂xθ)

2
+

aJex

(2πa)
2 cos

(√
16πφ

)

. (7.21)
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A comparison to the Bethe Ansatz solution of the Hubbard model at half-filling
enables one to identify the parameters of the spinless LL with the microscopic
parameters of the spin-1/2 chain. In particular, for an isotropic spin chain (Jx =
Jy = Jz)

u =
π

2
Jexa; K = 1/2. (7.22)

Comparing the spin-part of the Hamiltonian of the original LL model, Eq. (6.29)
with that of the spinless LL, Eq. (7.21), one notices that they the same upon the
following mapping

φ =
1√
2
φs; θ =

√
2θs;

us

Ks
=

u

2K
; usKs = 2uK, (7.23)

or
us = u =

π

2
Jexa; Ks = 2K = 1. (7.24)

As Jex is exponentially small, so is the spin bandwidth. Therefore, the Luttinger-
liquid description is valid only at very low temperatures.

A translationally invariant LL still possesses spin-charge separation. However,
this is no longer true for a wire connected to non-interacting leads. To understand
this point, let’s come back to the inhomogeneous LL model (cf. Sec. 7.3.1),
where the electron density changes from a higher value in theleads to a lower
value within the wire. BecauseJex depends on the local density, it is modulated
along the wire, and its minimum value is at the middle of the wire. In the leads,
we have a non-interacting system, whereJex ∼ EF ≫ T.However, in the middle
of the wire spins are incoherent, ifJmin

ex ≪ T. Thus a spin part of the electron
incoming from the lead at energyT above the Fermi level cannot propagate freely
through the wire because the spin band narrows down: it worksas if there is a
barrier for spin excitations in the wire. Although charge plasmons propagate
freely, backscattering of spin plasmons leads to additional dissipation, and thus
to additional resistance. The total resistance of the wire consists now of two parts

R = Rc +Rs.

The charge part,Rc, is due to propagation of charge plasmons. Since the charge
part is still described by the LL model, our previous result for universal con-
ductance, Eq. (7.20), still holds andRc = G−1 = h/2e2. ForT ≪ Jmin

ex , only
athermal spin plasmons, with energies exceeding the width of the spin band, con-
tribute toRs. The number of such plasmons is exponentially small, hence

Rs ∝ exp
(
−Jmin

ex /T
)
,

and total conductanceG = (Rc +Rs)
−1 is exponentially close to2e2/h. At high

temperatures
(
T ≫ Jmin

ex

)
, almost all spin plasmons are reflected by the wire.
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ThenRs ∼ Rc ∼ h/e2, and the conductance differ substantially from its univer-
sal value. This qualitative picture can be confirmed in a particular simple case of
theXY− model for the spin-chain. In this case,Rs can be calculated explicitly
with the result [19]

Rs =
h

2e2
1

exp (Jmin
ex /T ) + 1

and, consequently, the conductance is equal to

G =
2e2/h

1 + [exp (Jmin
ex /T ) + 1]

−1 .

For T → 0, G approaches the universal value of2e2/h. For T ≫ Jmin
ex ,G ap-

proaches anotherT -independent limit, equal to(2/3)2e2/h. The actual number
in the high-temperature limit of the conductance is model-dependent (it is dif-
ferent, for example, for an isotropic spin-chain), but the main result,i.e., the
non-universality of conductance quantization at higher temperatures, survives.

As it was mentioned in Sec. 7.3.4, the experiment shows that there is a shoul-
der in the conductance preceding the first quantization plateau at a fractional
value of about 0.7×2e2/h. Surprisingly, this “0.7 feature” is more pronounced
at highertemperatures, and theT - dependence of this feature was reported to be
of an activated type [95]. The magnetic field transforms the “0.7 feature” into a
fully developed quantization plateau ate2/h, which is to be expected in a fully
polarized, and thus spinless, regime. The sensitivity to the magnetic field hints
at the spin origin of the effect, and a significant theoretical effort was invested
in understanding how spins can explain the observed phenomena. Although the
effect, described in this Section, does have all qualitative characteristics of the
observed “0.7 feature”, it is not clear at the moment whetherthis feature indeed
corresponds to the spin-incoherent regime. Other explanations of the “0.7 fea-
ture” have been suggested (most prominently, the Kondo physics is believed to
be involved [99, 98]), but a further discussion of this pointgoes beyond the scope
of these notes.

7.5. Thermal conductance: Fabry-Perrot resonances of plasmons

There is an important difference between charge and thermal(electronic) con-
ductances [22]. As we have just shown, the charge conductance is equal toe2/h
regardless of interaction in the wire. This means that the transmission coefficient
of electrons is equal to unity. The effect of the temperatureon the charge con-
ductance is the same as for a non-interacting, perfectly transmitting wire: at finite
temperature, not only the lowest but also higher subbands oftransverse quanti-
zation are populated, and the quantization plateaux are smeared. However, this
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effect is exponentially small for temperatures smaller than either the Fermi en-
ergy,EF , or the difference between the Fermi energy and the thresholdof the
next subband of transverse quantization,∆; whichever is smaller.

Thermal current is carried not by electrons but bosonic excitations: acous-
tic plasmons. In contrast to electrons, plasmons get reflected at the boundary
between the reservoirs and the wire due to the mismatch of charge velocities
(this reflection happens even for an adiabatically smooth transition). From the
plasmon’s point-of-view, a wire coupled to reservoirs represents a Fabry-Perrot
interferometer. Interference of plasmon waves scattered off the opposite ends of
the wire results in an oscillatory dependence of the transmission coefficient on
the frequency with a period given by the travel time of plasmons through the wire

2πωL = L/uW .

As long asλF ≪ L, this period is long:ωL ≪ EF . The difference between
charge and heat transport is that the chemical potential of plasmons is equal to
zero, and thus the characteristic scale for frequency is setby T . Therefore, the
thermal conductance varies with the temperature on a scaleT ≃ ωL.

Suppose that a small temperature differenceδT is maintained between the
reservoirs, connected by a quantum wire. As the Hamiltonianof an interacting
system is diagonalized of terms of plasmons, plasmons modesare decoupled and
contribute to the energy flux independently. Then the thermally averaged energy
current,i.e., the thermal current can be found via a Landauer-like argument

JT =

∫ ∞

0

dω

2π
ω |t (ω)|2

(

nL

(
ω

T + δT

)

− nR

(ω

T

))

,

wherenL,R (ω/T ) are the Bose distribution functions in the reservoirs. Expand-
ing in smallδT, we obtain the thermal conductance

GT =
JT

δT
=

1

8πT 2

∫ ∞

0

dω
ω2

sinh2 ω/2T
|t (ω)|2 . (7.25)

For a free system,|t (ω)|2 = 1 andGT = πT/6. The charge and thermal con-
ductances of a free system obey the Wiedemann-Franz law

GT

TG = L0 =
π2

3e2
, (7.26)

whereL0 is the Lorentz number. This means that charge and energy are carried
by the same excitations. This is not so in a Luttinger liquid.

For an interacting system, relation (7.26) holds in the limit of T → 0. The
characteristic scale for frequencies in integral (7.25) isdetermined byT. For
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T ≪ ωL, one can substituteω = 0 into |t (ω)|2 . Regardless of the interaction
strength,|t (0)|2 = 1 : a Fabry-Perrot interferometer becomes transparent in the
long wavelength limit. ForT & ωL, the result forGT depends on how the charge
velocity varies along the wire, and is thus non-universal. On the other hand, the
charge conductance is universal. Therefore, their ratio isnon-universal and the
Wiedemann-Franz law is violated.

In a step-like model of Sec. 7.3.1, the transmission coefficient of plasmons is
equal to

|t (ω)|2 =
1

1 + (K2−1)2

4K2 sin2 ω
ωL

.

Obviously,|t (0)|2 = 1 regardless ofK, an agreement with what was said above.
ForT ≪ ωL, the Lorentz number is close to the universal value ofπ2/3e2. For
T ≫ ωL, the oscillations of|t (ω)|2 become very fast, so that|t (ω)|2 can be
replaced by its averaged value

〈|t (ω)|2〉 =
∫ ωL

0

dω

ωL
|t (ω)|2 =

2K

K2 + 1
.

The thermal conductance increases linearly withT, so thatL0 approaches a con-
stant but a non-universal value

L|T≫ωL =
2K

K2 + 1
L0 < L0. (7.27)

As the Lorentz number varies with temperature in between twolimits specified
by Eqs.(7.26) and (7.27), the Wiedemann-Franz law is violated.
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Appendix A. Polarization bubble for small q in arbitrary dimensionality

The polarization bubble in Matsubara frequencies and atT = 0 is given by

Π(iω, q) =
Ns

(2π)D+1

∫ ∫

dDpdεG (iε+ iω, ~p+ ~q)G (iε, p)

=
Ns

(2π)
D+1

∫ ∫

dDpdε
1

iω − ξ~p+~q + ξ~p
[G (iε+ iω, ~p+ ~q)−G (iε, p)]

=
Ns

(2π)D+1

∫

dDp
f (|~p+ ~q|)− f (p)

iω − ξ~p+~q + ξ~p
,

wheref is the Fermi function. Expanding in~q, and switching from the integra-
tion overdDp to dξ, we obtain

Π(iω, q) = −NsνD

(

1−
∫

dΩ

ΩD

iω

iω − vF q cos θ

)

.

whereΩD = 4π (3D),= 2π (2D) ,= 2 (1D) andνD is the DoS inD dimensions
per one of theNs isospin components. For D=1, the integral overΩ is understood
as a sum of terms withcos θ = ±1. It is obvious already this form that the small
q−form of the bubble depends on the combinationω/vF q for anyD. The final
result depends on the dimensionality. Performing analyticcontinuation to real
frequenciesiω → ω + i0+, we obtain

ΠR (ω, q) = −NsνD

(

1−
∫

dΩ

ΩD

ω

ω − vF q cos θ + i0

)

.

Taking the imaginary part

ImΠR (ω, q) = −πNsνDω

∫
dΩ

ΩD
δ (ω − vF q cos θ) . (A. 1)

From here
cos θ = ω/vF q,

which means thatθ ≈ π/2 for ω ≪ vF q. Thus, the fermionic momentum~p is
almost perpendicular to the bosonic one,~q, in this limit.
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Appendix B. Polarization bubble in 1D

Appendix B.1. Smallq

Free time-ordered (causal) Green’s function in 1D is equal to

G0
± (ε, k) =

1

ε− ξ±k + i0+sgnξ±k
,

where
ξ±k = ±vF (k ∓ kF ) ,

and± signs correspond to right/left moving fermions. We will be measuring the
momenta from the corresponding Fermi points. For +branch :k − kF → k and
for -branch:k + kF → k. Consequently,

G0
± (ε, k) =

1

ε∓ vFk + i0+sgnk
.

I assume theNs− fold degeneracy (Ns = 2 for electrons with spin,Ns = 1 for
spinless electrons), so that

Π± (ω, q) = − i

(2π)
2Ns

∫

dε

∫

dkG0
± (ε+ ω, k + q)G0

± (ε, k) .

Calculate,e.g., Π+ :

Π+ (ω, q) = − i

(2π)
2Ns

∫

dε

∫

dk
1

ε+ ω − vF (k + q) + i0+sgn(k + q)

1

ε− vFk + i0+sgnk

= − i

(2π)
2Ns

∫

dε

∫

dk
1

ω − vF q + i0+sgn(k + q)− i0+sgnk
(B. 1)

×
[
G0

+ (ε, k)−G0
+ (ε+ ω, k + q)

]
. (B. 2)

The integral of the Green’s over the frequency gives a Fermi distribution function
[23]

n+ (k) = −i
∫

dε

2π
G0

+ (ε, k) .

For free fermions,
n+ (k) = θ (−k)

Now,

Π0
+ (ω, q) =

Ns

2π

∫

dk
1

ω − vF q + i0+sgn(k + q)− i0+sgnk
[θ (−k)− θ (−k − q)] .
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The integral is not equal to zero only if the arguments of theθ -functions are of
the opposite signs. Consider different situations.

1) k > 0; k + q < 0→ 0 < k < −q → q < 0. In this case,

Π0
+ (ω, q) =

Ns

2π

q

ω − vF q − i0+
, q < 0;

2) k < 0, k + q > 0→ −q < k < 0→ q > 0

Π0
+ (ω, q) =

Ns

2π

q

ω − vF q + i0+
, q > 0.

Combining the results forq > 0 andq < 0 together,

Π0
+ (ω, q) =

Ns

2π

q

ω − vF q + i0+sgnq
. (B. 3)

Similarly,

Π0
− (ω, q) = −Ns

2π

q

ω − vF q + i0+sgnω
. (B. 4)

The total bubble

Π0 (ω, q) = Π0
+ (ω, q) + Π0

− (ω, q) =
Ns

π

vF q
2

ω2 − v2
F q

2 + i0+
. (B. 5)

In what follows, we will also need the retarded and advanced form of the
bubble. These forms can easily be obtained by repeating the calculation above in
Matsubara frequencies and analytically continuingiωm → ω+i0 . Even simpler,
one can use the general relation between time-ordered and retarded propagators
[23] (which works equally well for fermionic and bosonic quantities)

ΠR
± (ω, q) = Π± (ω, q) , for ω > 0

= Π∗
± (ω, q) , for ω < 0.

Using Eqs. (B. 3) and (B. 4) we obtain

ΠR
± (ω, q) = ±Ns

2π

q

ω − vF q + i0+
(B. 6)

and

ΠR (ω, q) =
Ns

π

vF q
2

ω2 − v2
F q

2 + i0+sgnω

=
Ns

π

vF q
2

(ω + i0+)
2 − v2

F q
2
. (B. 7)
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Appendix B.2.q near2kF

We will also need the2kF bubble. This time, I choose to do the calculation in
Matsubara frequencies:

Π2kF (iω, q) =
Ns

(2π)2

∫

dk

∫

dεG+ (iε+ iω, k + q)G− (iε, k)

= − Ns

(2π)2

∫

dk

∫

dε
1

ε+ ω + i (k + q)

1

ε− ik .

Poles inε1 = ik andε2 = −i (k + q)−ω have to be on different sides of the real
axis, otherwise the integral is equal to zero. Chooseq > 0. Then this condition
is satisfied in two intervals ofk : k > 0 and−Λ/2 < k < −q, whereΛ is the
ultraviolet cut-off

Π2kF = − iNs

2π

[
∫ Λ/2

0

dk −
∫ −q

−Λ/2

dk

]

1

ω + 2ivFk + ivF q

= −Ns

4π

[

ln
iΛvF

ω + ivF q
− ln

ω − ivF q

−iΛvF

]

= −Ns

4π
ln

Λ2v2
F

ω2 + vF q2
. (B. 8)

Because the result depends onq2 there is no need for a separate calculation for
the caseq < 0.

Appendix C. Some details of bosonization procedure

Appendix C.1. Anomalous commutators

ρ (q) =
∑

p

a†p−q/2ap+q/2 = ρ+ + ρ−;

ρ± =
∑

p>0(p<0)

a†p−q/2ap+q/2.

The operators of full density commute. The operators of left-right densities have
non-trivial commutators. For example, let us calculate[ρ+ (q) , ρ+ (q′)]
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C++ (q, q′) = [ρ+ (q) , ρ+ (q′)] =
∑

p>0,k>0

[

a†p−q/2ap+q/2, a
†
k−q′/2ak+q′/2

]

=
∑

p>0,k>0











a†p−q/2 ap+q/2a
†
k−q′/2

︸ ︷︷ ︸

=δp+q/2,k−q′/2−a†

k−q′/2
a

p+q/2

ak+q′/2

−a†k−q′/2 ak+q′/2a
†
p−q/2

︸ ︷︷ ︸

=δk+q′/2,p−q/2−a†
p−q/2

a
k+q′/2

ap+q/2











.

The firstδ− function means thatk = p + q/2 + q′/2 > 0 and the second one
thatk = p− q/2− q′/2.

C++ (q, q′) =
∑

p>0

a†p−q/2ap+q/2+q′ϑ (p+ q/2 + q′/2)− a†p−q/2−q′ap+q/2θ (p− q/2− q′/2)

− [f (q, q′)− f (q′, q)] ,

where

f(q, q′) =
∑

p,k>0

a†p−q/2a
†
k−q′/2ap+q/2ak+q′/2

=
∑

p,k>0

a†pa
†
kap+qak+q′

It is easy to show thatf (q, q′) = f (q′, q) . Indeed,

f(q′, q) =
∑

p,k>0

a†pa
†
kap−q′ak+q

= re− labelling k←→ p =
∑

p,k>0

a†ka
†
pak−q′ap+q

= anticommuting =
∑

p,k>0

a†pa
†
kap+qak+q′ = f (q, q′) .

Thus

C++ (q, q′) =
∑

p>0

a†p−q/2ap+q/2+q′θ (p+ q/2 + q′/2)−a†p−q/2−q′ap+q/2θ (p− q/2− q′/2) .

Introduce a new momentum

Q =
q + q′

2
.
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In the first sum, shiftp + q′/2 → p and in the second sum shiftp − q′/2 → p.
Then

C++ (q, 2Q− q) =
∑

p>0

a†p−Qap+Q [θ (p+ q/2)− θ (p− q/2)]

=
∑

p>−q/2

a†p−Qap+Q −
∑

p>q/2

a†p−Qap+Q

If the main contribution to the sum is given by the states which lie either deep
below or far above the Fermi levels, then the quantum fluctuations in the occu-
pancy of these states are small, and the operatorsa†p−Qap+Q can be replaced by

their expectation values〈a†π−Qap+Q〉 = δQ,0np = δQ,0θ (pF − p). Doing this,
we find

C++ (q, 2Q− q) = δQ,0





pF∑

p>−q/2

−
pF∑

p>q/2



 = δQ,0
L

2π

(
∫ pF

−q/2

dp−
∫ pF

q/2

dp

)

= δQ,0
qL

2π
.

Therefore,

[ρ+ (q), ρ+(−q)] =
qL

2π
, spinless. (C. 1)

The same procedure for fermions with spin gives

[ρ+,σ (q), ρ+,σ′(−q)] = δσσ′

qL

2π
,with spin.

Similarly,

[ρ−,σ (q), ρ−,σ′(−q)] = −δσσ′

qL

2π
,with spin.

and
[ρ+,σ (q), ρ−,σ(−q)] = 0.

Combining these results together

[ρα,σ (q) , ρα′,σ′ (−q)] = αδα,α′δσ,σ′

qL

2π
,

whereα = ± is the chirality index. For full charge density and current,it means
that

[ρc (q) , ρc (−q)] =
[
ρc
+ (q) + ρc

− (q) , ρc
+ (−q) + ρc

− (−q)
]

=
qV

2π
+
qV

2π
− qV

2π
− qV

2π
= 0.
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Similarly,

[jc (q) , jc (−q)] = 0,

whereas

[ρc (q) , jc (−q)] =
qV

2π
+
qV

2π
+
qV

2π
+
qV

2π
=

2

π
qL.

In 4-notations,

[jµ (q) , jν (−q)] = ǫµν 2

π
qL,

whereǫ00 = ǫ11 = 0, ǫ01 = −ǫ10 = 1.

Appendix C.2. Bosonic operators

Let’s check that the representation of density operators via standard bosonic op-
erators does reproduce commutation relation for density. Expand the density
operators over the normal modes

ρ+ (x) =
1

L

∑

q>0

Aq

(
bqe

iqx + b†qe
−iqx

)
;

ρ− (x) =
1

L

∑

q<0

Aq

(
bqe

iqx + b†qe
−iqx

)
,

where, without a loss of generality,Aq can be chosen real and even function of
q. Fourier transformingρ+ (x)

ρ+ (q) =

∫ ∞

−∞
dxe−iqx 1

L

∑

q′>0

Aq′

(

bq′eiq′x + b†q′e
−iq′x

)

, (C. 2)

= Aq

(

θ (q) bq + θ (−q) b†−q

)

.

Chooseq > 0 and substitute (C. 2) into the commutation relation

[ρ+ (q) , ρ+ (−q)] = A2
q

[
bq, b

†
q

]
= A2

q =
qL

2π
→

Aq =

√

qL

2π
.
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Appendix C.2.1. Commutation relations for bosonic fieldsϕ andϑ
Using

ϕ (x) = −i
∑

−∞<q<∞

1
√

2 |q|L
sgnq

(
bqe

iqx − b†qe−iqx
)
;

ϑ (x) = i
∑

−∞<q<∞

1
√

2 |q|L
(
eiqxbq − b†qe−iqx

)
;

ϑ′ (x) = −
∑

−∞<q<∞

1
√

2 |q|L
q
(
eiqxbq + b†qe

−iqx
)
,

we find

[ϕ (x) , ϑ′ (x)] = i
∑

q,q′

1
√

2 |q|L
1

√

2 |q|′ L
|q′|

×
[

bqe
iqx − b†qe−iqx, bq′eiq′x′ − b†q′e

iq′x′
]

︸ ︷︷ ︸

=2δq,−q′

= i
1

L

∑

q

eiq(x−x′) = iδ (x− x′) .

Appendix C.3. Problem with backscattering

As it was pointed out in the main text, straightforward bosonization of the Hamil-
tonian for the spinless case encounters a problem if one tries to account for
backscattering. As backscattering (g1) is just an exchange process to forward
scattering of fermions of opposite chiralities (g2), the Luttinger liquid parameters
with g1 6= 0 should be obtained from those withg1 = 0 by a simple replacement:
g2 → g2−g1.However, if we do this, we cannot satisfy the Pauli principlewhich
says that for a contact interaction, wheng2 = g4 = g1, all the interaction effects
should disappear. Indeed, Eqs.6.2) and (6.11) foru andK, correspondingly,
change to

u2 =
(

1 +
g4
2π

)2

−
(
g2 − g1

2π

)2

;

K2 =
1 + g4−g2+g1

2π

1 + g4+g2−g1

2π

.
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For contact interaction, wheng2 = g4 = g1, we get

u2 =
(

1 +
g

2π

)2

6= 1

K = 1.

The charge velocity is different from 1. In addition, the productuK is renormal-
ized from unity–this is also a problem, as it means that the current operator is
renormalized by the interactions. How to fix this problem? Ref. [77] shows how
to arrive at the expressions foru andK which satisfy all necessary constraints
just on the basis on Galilean invariance and dimensional analysis. Ref. [78] ar-
rives at the same result by using a careful point-splitting of the operators. Here, I
present the method of Ref. [78].

Recall that the density operator, represented in terms of bosonic fields, con-
tains not only the lowest harmonic (q → 0), corresponding to long-wavelength
excitations, but also harmonics oscillating atq = 2kF , 4kF , etc. Indeed, taking
into account only the2kF− oscillations, we have

ρ (x) =
(

ψ†
+ (x) e−ikF x + ψ†

− (x) eikF x
) (
ψ+ (x) eikF x + ψ− (x) e−ikF x

)

= ψ†
+ (x)ψ+ (x) + ψ†

− (x)ψ− (x) + e−2ikF xψ†
+ (x)ψ− (x) +H.c.

The first term in this equation has to be treated using the point-splitting proce-
dure, because it involves two fermionic operators at the same point. The result is
an infinite constant,ρ0, which is just a uniform density, plus the gradient term.
The2kF -component can be bosonized without a problem, as it involves products
of different fermions. The result is

ρ (x) − ρ0 =
1√
π
∂xϕ+

1

2πα
exp

[
2
√
πϕ+ 2kFx

]
+H.c.

Using this expression for the interaction part ofH, we have

Hint =
1

2

∫

dx

∫

dx′V (x− x′) [ρ (x)− ρ0] [ρ (x′)− ρ0]

= HF +HB,

where the forward and backscattering parts of the Hamiltonian are given by

HF =
1

2π

∫

dx

∫

dx′V (x− x′) ∂xϕ∂x′ϕ;

HB =
1

2

(
1

2πa

)2 ∫

dx

∫

dx′V (x− x′)

×
{

exp
[
2i
√
πϕ (x)

]
exp

[
−2i
√
πϕ (x′)

]
e2ikF (x−x′) +H.c

}

.
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In HB, we neglected the terms that oscillate withx, x′,andx+ x′, and kept only
those terms that oscillate withx−x′. As our potential is sufficiently short-ranged,
the oscillations of the first group of terms will average out,whereas the second
group will survive. Introducing new coordinates

R ≡ x+ x′

2
;

r ≡ x− x′,

and assuming that|R| ≫ |r| , the forward-scattering part of the Hamiltonian
reduces to

HF =
1

2π

∫

dR (∂Rϕ)
2
∫

drV (r) =
V (0)

2π

∫

dR (∂Rϕ)
2
.

The product of the two exponentials needs to be evaluated with care. Applying
the Baker-Hausdorff identity

eAeB =: eA+B : e〈AB− 1
2A2− 1

2B2〉,

we get

exp
[
2i
√
πϕ (x)

]
exp

[
−2i
√
πϕ (x′)

]
= exp

[
2i
√
π (ϕ (x)− ϕ (x′))

]
:

× exp[4π〈ϕ (x− x′)ϕ (0)− ϕ2 (0)],

Using the expression for the free bosonic propagator

〈ϕ (x− x′)ϕ (0)− ϕ2 (0)] =
1

4π
ln

a2

(x− x′)2 ,

and expanding inr = x− x′ under the normal-ordering sign, we obtain

exp
[
2i
√
πϕ (x)

]
exp

[
−2i
√
πϕ (x′)

]
= −1

2
4π (∂Rϕ)

2
r2
a2

r2
= −2π (∂Rϕ)

2
a2.

(While expanding, we neglected the first derivative ofϕ which can be always
eliminated by choosing appropriate boundary condition.).HB reduces to

HB = −1

2

(
1

2πa

)2

2πa2

∫

dR (∂Rϕ)
2
∫

drV (r) 2 cos 2kF r

= − 1

2π

∫

dR (∂Rϕ)
2
∫

drV (r) cos 2kF r

= −V (2kF )

2π

∫

dR (∂Rϕ)2 .



104 Dmitrii L. Maslov

Therefore, the bosonized form of the total Hamiltonian

Hint =
V (0)− V (2kF )

2π

∫

dR (∂Rϕ)
2

manifestly obeys the Pauli principle. The Luttinger-liquid parameters are now
given by

u =

√

1 +
V (0)− V (2kF )

2π
; K =

1
√

1 + V (0)−V (2kF )
2π

.
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