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Abstract. We consider the completely positive map on the Toep-
litz operator system given by conjugation by a composition oper-
ator; that is, we analyze operators of the form

C∗
ϕTfCϕ

We prove that every such operator is weakly asymptotically Toep-
litz, and compute its asymptotic symbol in terms of the Aleks-
androv-Clark measures for ϕ. When ϕ is an inner function, this
operator is Toeplitz, and we show under certain hypotheses that
the iterates of Tf under a suitably normalized form of this map
converge to a scalar multiple of the identity. When ϕ is a finite
Blaschke product, this scalar is obtained by integrating f against
a conformal measure for ϕ, supported on the Julia set of ϕ. In
particular the composition operator Cϕ can detect the Julia set by
means of the completely positive map.

1. Introduction

The purpose of this paper is to study the completely positive map
induced by a composition operator on the Hardy space H2. That is,
we are interested in the mapping

(1.1) A→ C∗ϕACϕ

where A is a bounded operator on H2; our focus is on the case where
A is a Toeplitz operator Tf .

This work was originally motivated by the desire to understand C*-
algebraic relations that obtain between Toeplitz and composition op-
erators; such relations have already been studied by the author [10, 11]
(for composition operators with automorphic symbols) and Kriete,
MacCluer and Moorhouse [13, 12] in the case of non-automorphic linear
fractional symbols, and by Hamada and Watatani when the symbol is a
finite Blaschke product with an interior fixed point [9]. The expressions
C∗ϕTfCϕ arise naturally in this last setting. It is easy to show, using the
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Brown-Halmos criterion, that such an operator is Toeplitz; the prob-
lem of calculating its symbol lies somewhat deeper. It turns out that
this question is closely related to the properties of the dynamical sys-
tem obtained from the action of ϕ on the unit circle, and in fact this
completely positive map gives a close and very direct link between Cϕ
and the dynamical system, which does not seem to be apparent when
one considers only “spatial” properties of the operator (e.g. spectral
or cyclicity properties, both much studied in the composition operator
literature). In particular the operator Cϕ, by means of the map (1.1)
can “see” the Julia set of ϕ and can recover conformal measures on the
Julia set.

The paper is organized as follows: after the preliminary material
of Section 2, in Section 3 we analyze the the operators C∗ϕTfCϕ. We
prove that these operators are asymptotically Toeplitz (Definition 2.4)
and compute the asymptotic symbol in terms of f and the Aleksandrov
measures for ϕ. In particular if ϕ is inner then C∗ϕTfCϕ is a Toeplitz
operator. In sections 4 and 5 we specialize to the case when ϕ is in-
ner (resp. a finite Blaschke product). We show that, under suitable
hypotheses, if Cϕ is replaced by a certain weighted composition op-
erator Wϕ,h = ThCϕ then the iterates of Tf under the corresponding
completely positive map converge in norm to a scalar multiple of the
identity. In turn the map sending f to this scalar determines a measure
on the circle with important dynamical properties (e.g. when ϕ is a
finite Blaschke product, this measure is supported on the Julia set of
ϕ, invariant under ϕ and conformal).

2. Preliminaries

Throughout the paper, ϕ denotes a holomorphic mapping of the open
unit disk D ⊂ C into itself. By the Littlewood subordination principle,
the map

Cϕ : f → f ◦ ϕ
defines a bounded operator on H2(D), the space of all holomorphic
functions on D with square-summable power series. Passing to bound-
ary values H2 may be identified with a closed subspace of L2 on the
unit circle T, and we let P : L2 → H2 denote the orthogonal projection.
It is then the case that every f ∈ L∞(T) defines a bounded operator

Tf : g → P (fg)

on H2, called the Toeplitz operator with symbol f . The Toeplitz oper-
ator with symbol f(z) = z is called the unilateral shift and denoted by
S.
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As is nearly always the case in the study of composition operators,
we require the Denjoy-Wolff theorem:

Theorem 2.1 (Denjoy-Wolff Theorem). Let ϕ : D → D be analytic.
If ϕ is not conjugate to a rotation then there exists a unique point
w ∈ D such that ϕn → w uniformly on compact subsets of D. Moreover
if ϕ fixes a point z ∈ D then z = w, and if |w| = 1 then ϕ has
a finite angular derivative at w (in the sense of Carathéodory) and
0 < ϕ′(w) ≤ 1.

2.1. Aleksandrov measures. One of the main technical tools in our
study will be the Aleksandrov measures associated to an analytic map
ϕ : D → D; we begin by defining them and recalling some of their
properties. We refer to [5, Chapter 9] and its references for details. For
notational simplicity, all integrals in this paper are taken over the unit
circle unless otherwise indicated.

Definition 2.2. Let ϕ : D → D be analytic. The Aleksandrov mea-
sures for ϕ are the measures µα defined for each α ∈ T by

1− |ϕ(z)|2

|α− ϕ(z)|2
=

∫
1− |z|2

|1− zζ|2
dµα(ζ)

Each µα has a Lebesgue decomposition

µα = hαdm+ σα

where dm denotes normalized Lebesgue measure on the circle. The
absolutely continuous part is given by

hα(ζ) =
1− |ϕ(ζ)|2

|α− ϕ(ζ)|2

Consider the set

Eϕ = {ζ ∈ T : |ϕ(ζ)| = 1}
The function hα is zero almost everywhere on Eϕ, and the singular part
σα is carried by ϕ−1(α) ⊂ Eϕ. When ϕ is understood we will write E
for Eϕ.

For a bounded Borel function f on the circle, define

Aϕ(f)(α) =

∫
f(ζ) dµα(ζ).

The function Aϕ(f) is again a bounded Borel function, and Aϕ extends
to a well-defined, bounded operator on L∞(T) (and is in fact bounded
on all of the Lp spaces for p ≥ 1). Moreover Aϕ is also bounded on
C(T).
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We also define operators Acϕ and Asϕ, for f a bounded Borel function
and α ∈ T, by

Acϕ(f)(α) =

∫
f(ζ)hα(ζ) dm(ζ)

and

Asϕ(f)(α) =

∫
f(ζ)dσα(ζ)

The operators Acϕ and Asϕ will be called the continuous and singular
parts of Aϕ respectively. Clearly Aϕ = Asϕ + Acϕ. Alternatively, we
could define

Acϕ(f) = Aϕ((1− χEϕ)f)

Asϕ(f) = Aϕ(χEϕf)

and from this latter definition it is clear (from the corresponding results
for Aϕ) that Acϕ and Asϕ are well-defined and bounded on Lp(T) for all
1 ≤ p ≤ ∞ (note however that these operators are not separately
bounded on C(T) in general).

We will also need the Aleksandrov disintegration theorem: if f ∈
L1(T, dm), then f ∈ L1(T, dµα) for almost every α ∈ T, and∫ (∫

f(ζ) dµα(ζ)

)
dm(α) =

∫
f(ζ) dm(ζ)

The significance of the Aleksandrov operator in the present context is
shown by the following proposition:

Proposition 2.3. Let ϕ : D → D be analytic and suppose ϕ(0) = 0.
Then C∗ϕ = Aϕ.

Proof. By [5, Corollary 9.1.7], if λ ∈ D and ϕ(0) = 0 then for every
α ∈ T

Aϕ(kλ)(α) =

∫
1

1− λζ
dµα(ζ) =

1

1− ϕ(λ)α
= C∗ϕ(kλ)(α)

Thus C∗ϕ and Aϕ agree on the span of the kernel functions kλ, which is

dense in H2. Since Aϕ is bounded on L2(T) the result follows.
�

2.2. Asymptotic Toeplitz operators. The notion of an asymptotic
Toeplitz operator was introduced by Barŕıa and Halmos [2], in connec-
tion with the problem of finding the essential commutant of a Toeplitz
operator. Very recently Nazarov and Shapiro [15] have considered ver-
sions of this property (with various topologies) for single composition
operators. In this paper we are interested in operators of the form
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C∗ϕTfCϕ; we will prove that every such operator is strongly asymptot-
ically Toeplitz and calculate the asymptotic symbol.

Definition 2.4. [2] Let S denote the unilateral shift on H2. An oper-
ator A ∈ B(H2) will be called (strongly) asymptotically Toeplitz if the
limit

lim
n→∞

S∗nASn

exists in the strong operator topology. If this limit is 0, A will be called
asymptotically compact.

Proposition 2.5. An operator A ∈ B(H2) is strongly asymptotically
Toeplitz if and only if

A = T +Q

where T is a Toeplitz operator and Q is asymptotically compact. More-
over every asymptotically Toeplitz operator can be written uniquely in
this form, and T is given by limn→∞ S

∗nASn.

Proof. Recall (ref) that T is a Toeplitz operator if and only if S∗TS =
T . Thus if A = T +Q then

lim
n→∞

S∗nASn = lim
n→∞

S∗nTSn + lim
n→∞

S∗nQSn = T

so A is asymptotically Toeplitz. Conversely, if A is asymptotically
Toeplitz let B = limS∗nASn. By definition, S∗BS = B so B is Toeplitz
and A − B is asymptotically compact. To prove uniqueness, observe
that if T is an asymptotically compact Toeplitz operator then T =
limS∗nTSn = 0. �

If A is asymptotically Toeplitz then the symbol of T will be called
the asymptotic symbol of A.

3. The action of Cϕ on Toeplitz operators

In this section we prove that C∗ϕTfCϕ is asymptotically Toeplitz and
compute its asymptotic symbol. We also give sufficient conditions un-
der which C∗ϕTfCϕ is a Toeplitz operator; in particular this will be the
case whenever ϕ is an inner function.

We begin with the following two lemmas, which will be used to reduce
the proof of the main theorem to the case ϕ(0) = 0.

Lemma 3.1. Let ϕ : D → D be analytic. For fixed w ∈ D let ψ(z) =
w−z
1−wz . If µα and να are the Aleksandrov measures for ϕ and ψ ◦ ϕ
respectively, then

µα = |ψ′(α)|2νψ(α)
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Proof. The result follows immediately from the definition of the Alek-
sandrov measures and the identity

1− |ψ(ϕ(z))|2

|ψ(α)− ψ(ϕ(z))|2
=

1

|ψ′(α)|2
1− |ϕ(z)|2

|α− ϕ(z)|2

�

Lemma 3.2. If f ∈ L∞(T) and ψ(z) = w−z
1−wz , then

C∗ψTfCψ = T|ψ′|2f◦ψ−1

Proof. Fix h ∈ H2 and consider the quadratic form A→ 〈Ah, h〉. Then
making the change of variable η = ψ(ζ) in the first integral below,

〈C∗ψTfCψh, h〉 =

∫
f(ζ)|h(ψ(ζ))|2 dm(ζ)

=

∫
f(ψ−1(η))|ψ′(η)|2|h(η)|2 dm(η)

= 〈T|ψ′|2f◦ψ−1h, h〉
which proves the lemma. �

Theorem 3.3. Let ϕ : D → D be analytic and let f ∈ L∞(T). Then
C∗ϕTfCϕ is strongly asymptotically Toeplitz, with asymptotic symbol
Asϕ(f). Moreover, if f = 0 almost everywhere on Ec, then C∗ϕTfCϕ
is a Toeplitz operator.

Proof. We let S = Tz denote the unilateral shift and observe the rela-
tion

(3.1) CϕS = TϕCϕ

This follows immediately from the definitions of the operators. To
prove that C∗ϕTfCϕ is asymptotically Toeplitz, it suffices to assume
that f ≥ 0, since every L∞ function is a linear combination of four
bounded nonnegative functions. In this case, the sequence of positive
operators

(3.2) S∗nC∗ϕTfCϕS
n

is monotone decreasing, since

C∗ϕTfCϕ − S∗C∗ϕTfCϕS = C∗ϕTf(1−|ϕ|2)Cϕ(3.3)

≥ 0(3.4)

by the relation (3.1) and the fact that T ∗ϕTfTϕ = Tf |ϕ|2 . It follows that
the sequence (3.2) is convergent in the strong operator topology, so
C∗ϕTfCϕ is asymptotically Toeplitz.



COMPLETELY POSITIVE MAPS INDUCED BY COMPOSITION OPERATORS 7

To compute the symbol, we look at the sequence more closely. We
have for each n

S∗nC∗ϕTfCϕS
n = C∗ϕT

∗n
ϕ TfT

n
ϕCϕ.

Now since ϕ is analytic, we have T ∗nϕ TfT
n
ϕ = T|ϕ|2nf . Since |ϕ|2n → χE

pointwise a.e. on T as n→∞, we now claim that

C∗ϕT|ϕ|2nfCϕ → C∗ϕTχEfCϕ

in the weak operator topology. To see this, let g, h ∈ H2. Then

〈C∗ϕT|ϕ|2nfCϕg, h〉 = 〈T|ϕ|2nfCϕg, Cϕh〉

=

∫
|ϕ|2nf · (g ◦ ϕ)(h ◦ ϕ) dm

which converges (by the dominated convergence theorem) to∫
χEf · (g ◦ ϕ)(h ◦ ϕ) dm = 〈C∗ϕTχEfCϕg, h〉

This proves that C∗ϕTχEfCϕ is a Toeplitz operator. The “moreover”
statement of the theorem follows immediately, since to say f = 0 a.e.
on Ec just means f = χEf a.e.

So far we have established that C∗ϕTfCϕ is strongly asymptotically
Toeplitz, and its asymptotic symbol is the symbol g of the Toeplitz
operator C∗ϕTχEfCϕ. To find g, first note that it suffices to assume
that is f real-valued, and hence so is g since C∗ϕTχEfCϕ is a self adjoint
Toeplitz operator. We will also assume for now that ϕ(0) = 0. For
h ∈ L2(T) let Ph denote the Szegő projection of h into H2. Then

Tg1 = Pg = C∗ϕTχEfCϕ1 = C∗ϕTχEf1

= C∗ϕP (χEf)

= AϕP (χEf)

Thus for almost every α ∈ T,

(Pg)(α) =

∫
P (χEf) dµα

Now since g is real-valued, we have g = Pg + Pg −
∫
Pg dm. (Of

course Pg need not lie in L∞, but it does belong to L1 which is all
that is needed below.) Furthermore, by the Aleksandrov disintegration
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theorem [5, Theorem 9.4.11],∫
Pg dm =

∫ (∫
P (χEf)(ζ) dµα(ζ)

)
dm(α)

=

∫
P (χEf)(ζ) dm(ζ)

=

∫
P (χEf)dm ·

∫
dµα

since µα is a probability measure for all α (by our assumption that
ϕ(0) = 0). Therefore,

g = Pg + Pg −
∫
Pg dm

=

∫
P (χEf) + P (χEf)−

(∫
TP (χEf) dm

)
dµα

=

∫
(χEf)(ζ) dµα(ζ)

=

∫
E

f(ζ) dµα(ζ)

Now, since the absolutely continuous part of µα puts zero mass on E
and the singular part σα is concentrated on ϕ−1(α) ⊂ E, we obtain
finally for a.e. α ∈ T

g(α) =

∫
f(ζ) dσα(ζ) = Asϕ(f)(α)

This proves the theorem when ϕ(0) = 0. To obtain it for general
ϕ, we use Lemmas 3.1 and 3.2. Let now ϕ : D → D be an arbitrary
holomorphic map and let

ψ(z) =
ϕ(0)− z
1− ϕ(0)z

Then θ = ψ ◦ ϕ satisfies θ(0) = 0, and Cϕ = CθCψ. Suppose f = χEf ,
and observe that |ϕ(ζ)| = 1 if and only if |θ(ζ)| = 1. Thus C∗ϕTfCϕ
and C∗θTfCθ are both Toeplitz operators, and

C∗ϕTfCϕ = C∗ψC
∗
θTfCθCψ

= C∗ψTAsθ(f)Cψ

= T|ψ′|2(Asθ(f)◦ψ)

Now, let σα and τα be the singular parts of the Aleksandrov measures
for ϕ and θ respectively. Then for almost every α ∈ T we have by
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Lemma 3.1

|ψ′(α)|2Asθ(f)(ψ(α)) =

∫
|ψ′(α)|2f(ζ) dτψ(α)(ζ)

=

∫
f(ζ) dσα(ζ)

= Asϕ(f)(α)

Thus

C∗ϕTfCϕ = TAsϕ(f)

as desired. �

The following Corollary is immediate:

Corollary 3.4. If ϕ is an inner function then for every f ∈ L∞(T),

C∗ϕTfCϕ = TAϕ(f).

3.1. Remarks. 1. The converse to the second statement of Theo-
rem 3.3 is not true; that is, it is possible that C∗ϕTfCϕ is Toeplitz but

f is not almost everywhere 0 on Ec: for example, let ϕ(z) = z2 and
f(z) = z. Then for all analytic polynomials p, q,

〈C∗ϕTzCϕp, q〉 =

∫
ζp(ζ2)q(ζ2) dm(ζ) = 0

since the integrand is an odd trigonometric polynomial. It follows that
C∗ϕTzCϕ = 0 (hence trivially a Toeplitz operator).

There are special cases in which the converse does hold; for example
if ϕ is continuous and univalent on the circle (e.g. if ϕ is a linear
fractional transformation). The converse also holds if it is additionally
assumed that the symbol f is nonnegative.

2. In general the strong convergence in Theorem 3.3 cannot be im-
proved to norm convergence. For a simple counterexample, let f ≡
1; then Asϕ(f)(α) = ‖σα‖. Letting Pn = SnS∗n, by an elementary
Hilbert space argument (see e.g. [18, Prop. 5.1]) the sequence of
norms ‖CϕPn‖ converges to the essential norm of Cϕ, which is equal to
(supα∈T ‖σα‖)1/2 [4]. Combining this with the inequality

‖Cϕ‖2e = lim ‖PnC∗ϕCϕPn‖ ≤ lim inf ‖S∗nC∗ϕCϕSn‖
we see that if S∗nC∗ϕCϕS

n → T‖σα‖ in norm then

sup
α
‖σα‖ ≤ ‖T‖σα‖‖ = ess. sup

α
‖σα‖,

which is obviously false if, say, Cϕ is non-compact but m(E) = 0; the
map ϕ(z) = (z + 1)/2 is an example.
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Indeed, it is known that an operator A is uniformly asymptotically
Toeplitz (that is, S∗nASn is norm convergent) if and only if A is the sum
of a Toeplitz operator and a compact operator. It would be interesting
to know when this is the case for C∗ϕCϕ; from what we have done so
far this will be the case when ϕ is inner (the “pure Toeplitz” case)
and when Cϕ is compact ( the “pure compact” case). Interestingly, the
intermediate case is also possible, that is, we may have C∗ϕCϕ = Tf +K
with both f and K nonzero. While this example is interesting, it is
tangential to the remaining results of the paper so is relegated to the
appendix. It is known [11] that C∗ϕCϕ is a Toeplitz operator if and only
if ϕ is inner.

4. Convergence of weighted iterates for inner symbols

In the remainder of the paper, we will consider only inner symbols
ϕ. Broadly, our goal is to relate the behavior of the map

Tf → C∗ϕTfCϕ

to the dynamics of ϕ viewed as a transformation of the unit circle
T. When ϕ fixes a point in the interior of the disk, the analysis is
relatively simple; this is the subject of the present section. The next
section handles the case of boundary fixed points under the additional
assumption that ϕ is a finite Blaschke product. The proofs in the
next section require techniques from the theory of complex dynamical
systems, and so the methods of proof used there do not carry over to
the case of general inner functions. This will be discussed further at
the end of the next section.

We begin by considering certain weighted composition operators. In
particular, when ϕ is inner, it is possible to modify Cϕ by a Toeplitz
operator Ta such that

Vϕ = CϕTa = Ta◦ϕCϕ

is an isometry, and such that a version of Theorem 3.3 still holds. In
order to state this theorem, we introduce the normalized Aleksandrov
operator, defined by

Ãϕ(f)(α) =
1

‖σα‖

∫
f(ζ) dσα(ζ)

When ϕ is a finite Blaschke product, the next two theorems will be
superseded by the theorems of Section 5.
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Theorem 4.1. Let ϕ be an inner function and let

a(z) =
1− ϕ(0)z

(1− |ϕ(0)|2)1/2

Then the operator
Vϕ := CϕTa

is an isometry, and for every f ∈ L∞(T)

V ∗ϕTfVϕ = T eAϕ(f)

Proof. By Theorem 3.3, C∗ϕCϕ is a Toeplitz operator with symbol

Asϕ(1)(α) =

∫
dσα = ‖σα‖

On the other hand, the symbol of C∗ϕCϕ can be computed directly ([3,
Proposition 3] or [11, Lemma 2.5]) as

b(α) =
1− |ϕ(0)|2

|1− ϕ(0)α|2
=

∣∣∣∣∣(1− |ϕ(0)|2)1/2

1− ϕ(0)α

∣∣∣∣∣
2

With g defined as above we have I = T ∗aTbTa = V ∗ϕVϕ. Furthermore, if
f ∈ L∞ then

V ∗ϕTfVϕ = T ∗aTAsϕ(f)Ta

= T|a|2Asϕ(f)

By the calculation above, we have |a(α)|2 = ‖σα‖−1 for all α ∈ T, and
the theorem follows. �

Theorem 4.2. Suppose ϕ is an inner function with Denjoy-Wolff point
w ∈ D. Then for every f ∈ C(T),

lim
n→∞

V ∗nϕ TfV
n
ϕ =

(∫
f dmw

)
· I

in norm, where mw is harmonic measure at w.

Proof. As before first assume ϕ(0) = 0; in this case 0 is the Denjoy-
Wolff point and harmonic measure m0 is Lebesgue measure m. Since
0 is fixed Cϕ is an isometry and in particular Vϕ = Cϕ. Fix f ∈ C(T);
then by Theorem 4.1 we have for all n ≥ 0

V ∗nϕ TfV
n
ϕ = TAnϕf

Since the norm of a Toeplitz operator is equal to the uniform norm of
its symbol, proving the theorem amounts to proving

Anϕf →
∫
f dm
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uniformly. To prove this, it suffices to prove it for f equal to the Poisson
kernel Pz for each z ∈ D, since the linear span of these functions is dense
in C(T). We now have by the definition of Aϕ

Aϕ(Pz)(α) =

∫
Pz dσα = Pϕ(z)(α)

Iterating, we obtain

Anϕ(Pz) = Pϕn(z)

By the Denjoy-Wolff theorem, for each z ∈ D the sequence ϕn(z) con-
verges to ϕ(0) = 0, and it is then clear that

Anϕ(Pz)(α) = Pϕn(z)(α) =
1− |ϕn(z)|2

|α− ϕn(z)|2
→ 1 =

∫
Pz dm

uniformly in α.
In the general case w 6= 0, let

ψ(z) =
w − z
1− wz

and define a unitary operator Uψ on H2 by

(Uψh)(z) =
(1− |w|2)1/2

1− w(z)
h(ψ−1(z))

It is a straightforward calculation to verify the identity

U∗ψTfUψ = Tf◦ψ

Moreover, if Vϕ is the isometry of Theorem 4.1, then

U∗ψVϕUψ = Cψ−1◦ϕ◦ψ = Cθ

and the symbol of this latter composition operator is an inner function
fixing 0. Therefore

lim
n→∞

U∗ψV
∗n
ϕ TfV

n
ϕ Uψ = lim

n→∞
C∗nθ Tf◦ψC

n
θ

= P [f ](ψ(0)) · I

=

(∫
f dmw

)
· I

and conjugating by Uψ completes the proof. �
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4.1. Remarks. 1. From the point of view of dynamical systems, The-
orem 4.2 can be interpreted as a very strong mixing property for ϕ. If
ϕ is an inner function fixing 0, then ϕ preserves Lebesgue measure on
the circle. Aaronson [1] and independently Neuwirth [16] proved that
such a ϕ is “strong mixing” (and hence ergodic) on the circle; this is
essentially equivalent to the statement that for every f ∈ L1(T), the
iterates Anϕf converge to the constant

∫
f dm in L1 (indeed this is how

Aaronson proves the result, though without discussing the Aleksandrov
operator explicitly.) Since continuous functions are dense in L1, this is
obviously implied by Theorem 4.2.

2. It is not difficult to modify the above proof to show that if we
omit the convergence factor Tg then

C∗nϕ TfC
n
ϕ →

(∫
f dm

)
TPw

where Pw is the Poisson kernel at w. Indeed, in this case for each
g, h ∈ H2 the measures

g ◦ ϕnh ◦ ϕndm

will converge weak-* to (∫
gh dmw

)
dm.

However the convergence factor will be necessary in the next section
to obtain convergence in the case |w| = 1. Indeed, consider

ϕ(z) =

(
3z + 1

z + 3

)2

This ϕ has Denjoy-Wolff point 1 and |ϕ′(1)| = 1. It is easy to see
that the iterates C∗nϕ TfC

n
ϕ will not converge in general; for f ≡ 1, the

operator C∗nϕ C
n
ϕ is Toeplitz with symbol

1− |ϕn(0)|2

|1− ϕn(0)z|2

Since ϕn(0) → 1 along the real axis, this sequence is divergent even
in the weak operator topology. Thus to obtain convergence some nor-
malization as in Theorem 4.1 is necessary. In the next section we show
that the renormalized iterates are in fact norm convergent. As we have
already mentioned, however, the proofs in the next section depend
heavily on the theory of rational dynamics, and do not seem to extend
to cover general inner functions. Nonetheless there is good reason to
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think that we should still have convergence of the normalized iterates
when |w| = 1.

Question 4.3. Suppose ϕ is an inner function which does not fix any
point in D and f ∈ C(T). Is the sequence of operators

V ∗nϕ TfV
n
ϕ

norm convergent?

3. While elementary, the proof of the previous theorem in some sense
masks its underlying dynamical content. Indeed, one may be initially
tempted to conjecture that when the Denjoy-Wolff point w of ϕ lies on
the boundary, the iterates V ∗nϕ TfV

n
ϕ will converge to the scalar f(w).

However this is not the case; the proofs in the next section will give
a clearer idea of what may be expected in the boundary case. From
this point of view, the harmonic measure mw arises as the unique |a|2-
conformal probability measure supported on the Julia set of ϕ (which
coincides with the circle when |w| < 1).

5. The transfer operator and conformal measures for
finite Blaschke products

In this section ϕ will be a finite Blaschke product. We would like to
establish convergence of the sequence

C∗nϕ TfC
n
ϕ

for continuous symbols f . However, as remarked above, this sequence
can be badly divergent even for very reasonable ϕ and f . In this sec-
tion we prove that if we replace Cϕ with certain weighted composition
operators

(5.1) Wh,ϕ := ThCϕ

then the sequence

W ∗n
ϕ,hTfW

n
ϕ,h

will converge in norm to a scalar multiple of the identity operator. The
map assigning the symbol f to this limiting scalar then determines a
measure µ on the circle, which turns out to be a conformal measure
which appears in the theory of complex dynamical systems.

The weight functions h appearing in (5.1) will be continuous func-
tions on the circle which extend analytically to the open unit disk, with
the property that

g := log |h|2

is an admissible weight, which we now define:
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Definition 5.1. A function g : T → R will be called an admissible
weight if

(1) g is Hölder continuous, that is, for some C > 0 and 0 < α < 1
we have

|g(z′)− g(z)| ≤ C|z′ − z|α

for all z, z′ ∈ T.
(2) For all z ∈ T, ∑

ϕ(z′)=z

exp(g(z′)) = 1

We may now define a unital completely positive map L : C(T) →
C(T) by

(5.2) L(f)(z) =
∑

ϕ(z′)=z

exp(g(z′))f(z′)

The operator L will be called the transfer operator for the pair (ϕ, g).
This operator is also sometimes called a Perron-Frobenius-Ruelle op-
erator. The algebraic significance of L is that it is a left inverse for
composition by ϕ on C(T), and in fact for any f1, f2 ∈ C(T) we have

L(f1 · (f2 ◦ ϕ)) = L(f1) · f2.

In this section we prove that given any such g, there is an analytic
Toeplitz operator Th (with continuous symbol) such that for all f ∈
C(T),

(5.3) Φg(Tf ) = W ∗
ϕ,hTfWϕ,h = TL(f)

We also prove that there exists a unique invariant exp(g)-conformal
probability measure µ supported on the Julia set J(ϕ) such that

(5.4) lim
n→∞

Φn
g (Tf ) =

(∫
f dµ

)
· I

(By definition a measure µ on J is called F -conformal if for every Borel
subset E ⊂ J on which ϕ is injective,

µ(E) =

∫
ϕ(E)

F dµ,

that is, F is a measure-theoretic Jacobian for ϕ−1 with respect to µ.)
Conformal measures are important dynamical invariants for ϕ; they
were introduced by D. Sullivan [19] (in the special case F = |ϕ′|δ)
as a technique for estimating the Hausdorff dimension of Julia sets.
For example Sullivan proved that the Hausdorff dimension of J(ϕ) is
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equal to the infimum over all δ such that there exists a |ϕ′|δ-conformal
measure supported on the Julia set J(ϕ).

5.1. Weighted CP maps implementing L. We now show that the
transfer operators L considered in the previous section can be imple-
mented on the symbols of Toeplitz operators by conjugating by an iso-
metric weighted composition operator of the form Wh,ϕ = ThCϕ. The
convergence results of the last section then imply norm convergence of
the iterates of the map

Tf → W ∗
ϕ,hTfWϕ,h

to a scalar multiple of I; and this scalar is given by the integral of f
against the conformal measure associated to L.

Theorem 5.2. Let ϕ be a finite Blaschke product and let g be a Hölder
continuous function on T satisfying

(5.5)
∑

ϕ(z′)=z

exp(g(z′)) = 1

for all z ∈ T. Then there exists a function h in the disk algebra such
that the weighted composition operator

Wϕ,h = ThCϕ

is an isometry and

W ∗
ϕ,hTfWϕ,h = TL(f)

for all f ∈ C(T).

Proof. For any h ∈ A(D), it follows from Corollary 3.4 that

(5.6) W ∗
ϕ,hTfWϕ,h = TAϕ(|h|2f)

Since ϕ is a finite Blaschke product, the Aleksandrov measures µα for
ϕ are given by

µα =
∑

ϕ(ζ)=α

1

|ϕ′(ζ)|
δζ

(see [5, Example 9.2.4].)It follows that

Aϕ(|h|2f)(z) =
∑
ϕ(ζ)=z

|h(ζ)|2

|ϕ′(ζ)|
f(ζ)

It therefore suffices to produce a function h ∈ A(D) such that

(5.7) log |h| = 1

2
(log |ϕ′|+ g)
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Since log |ϕ′| + g is obviously integrable on T, we can define h to be
the outer function

(5.8) h(z) = exp

(
1

2

∫
eiθ + z

eiθ − z
(
g(eiθ) + log |ϕ′(eiθ)|

)
dm(θ)

)
By definition, h is analytic in D. To see that it has continuous bound-
ary values, we observe that since ϕ′ is nonvanishing on the circle, the
function log |ϕ′| is real analytic and hence g+ log |ϕ′| is Hölder contin-
uous on T. Since harmonic conjugation preserves the Hölder classes [8,
Theorem 5.8], it follows from that the function inside the exponential
in (5.8) is continuous on the circle, and thus so is h. �

Remark: The Hölder assumption on g is necessary in the above
theorem in order to show that the outer function h is continuous; if g
is only assumed continuous this need not be the case. This is because
harmonic conjugation preserves the Hölder classes Λα(T) (for α < 1)
but not C(T).

5.2. Convergence of the iterates of the transfer operator. The
convergence in (5.4) is proved using (5.3) and a Perron-Frobenius the-
orem for the transfer operator L. To state this result, we first make
some definitions. Given a transfer operator L, a unitary eigenvalue of
L is an eigenvalue of modulus 1, and the set of all such eigenvalues
is called the unitary spectrum, denoted specu. The unitary eigenspace
of L is the closed linear span in C(T) of the eigenspaces of the uni-
tary eigenvalues. The operator L is called almost periodic if for each
f ∈ C(T), the set of iterates {Ln(f)}n≥0 is precompact in C(T). We
then have the following, a special case of a result due to Ljubich [14,
p. 354]:

Theorem 5.3. Assume that L is almost periodic, specu = {1}, and the
unitary eigenspace of L is one-dimensional (and hence consists only of
the scalars). Then there exists an L∗-invariant measure µg on T such
that for all f ∈ C(T),

Lng (f)→
(∫

f dµg

)
· 1

in norm.

We note that since the L∗-invariance of µg means simply∫
L(f) dµg =

∫
f dµg

for all f ∈ C(T), the measure µg is seen to be exp(g)-conformal by a
standard approximation argument. We also observe that in the present
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setting the measure µ must be supported on the Julia set of ϕ, and
because it is an exp(g)-conformal measure, the support is in fact equal
to the Julia set, and therefore by the theorem of Denker and Urbański
[7, Theorem 30] this measure is unique. This will be discussed further
below.

Given the formula (5.3), which will be proved in Section 4.2, the
convergence in (5.4) will follow once we have proved that our trans-
fer operator L satisfies the hypotheses of Theorem 5.3. The spectral
conditions will be checked presently. To prove almost periodicity, we
observe that since L is contractive, the iterates {Lnf} are uniformly
bounded and hence by the Arzela-Ascoli theorem it suffices to show
that this set is equicontinuous on T. This is done in Section 5.3 below.

We now prove that L satisfies the spectral hypotheses of Theo-
rem 5.3. The argument is essentially the same as that given by Ljubich
[14, Lemma 2] for the case g ≡ log d.

Theorem 5.4. For L as above, specu(L) = {1}, and the corresponding
eigenspace contains only the constants.

Proof. Let λ ∈ specu(L) and let f be a nonzero eigenfunction. Let
z ∈ T maximize |f(z)|. Then since L(f)(z) = λf(z) is a convex com-
bination of the values of f at the preimages ζ ∈ ϕ−1(z), it follows
that

f(ζ) = λf(z)

for each such ζ. Iterating, we find

f(ζ) = λnf(z)

for all ζ ∈ ϕ−n(z). Since the backwards orbit of z accumulates on the
Julia set J(ϕ), for any w ∈ J(ϕ) we can find a sequence ζn ∈ ϕ−n(z)
such that ζn → w. Thus

λnf(z)→ f(w)

and λ = 1. Assume now that f is real. It follows that f is constant on
the Julia set and if f attains its maximum at z, f(z) is equal to this
constant. The same argument applied to the minimum of f shows that
f is constant; considering the real and imaginary parts of f separately
completes the proof. �

5.3. Equicontinuity of {Lnf}. Our proof of equicontinuity follows
broadly the argument of Przytycki [17, Appendix A] but also draws
on the earlier argument of Ljubich [14]. Before beginning the proof we
make a few preliminary observations about the dynamics of ϕ.
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In our setting the arguments of [17] simplify considerably since, first,
we consider only unital transfer operators, and second, the dynamics
of Blaschke products are comparatively simple—

The first observation is that a finite Blaschke product ϕ has no crit-
ical points on the circle, and the forward orbit of the set of critical
points accumulates only at the Denjoy-Wolff point. Indeed, let

ϕ(z) = λ

d∏
i=1

αi − z
1− αiz

Then by an elementary computation,

|ϕ′(z)| =
d∑
i=1

1− |αi|2

|αi − z|2

for all |z| = 1. Thus every critical point of ϕ in the Riemann sphere Ĉ
lies either in the interior or the exterior of the unit disk. Moreover, by
the Denjoy-Wolff theorem, if the Denjoy-Wolff point w of ϕ lies on the
circle then the iterates of ϕ converge uniformly to w on every compact
subset disjoint from T. In particular the forward orbit of the critical
points of ϕ accumulates only at w. (If |w| < 1 then this orbit does not
accumulate at any point of T.)

To prove the equicontinuity of the iterates Lnf , it suffices (since T
is compact) to prove equicontinuity on a neighborhood of every point
of T. In the proof of Theorem 5.6 we will first do this for points other
that the Denjoy-Wolff point w of ϕ. Our second observation is that
for z0 6= w on T, by the remarks above there is a neighborhood U
of z0 such that the closure of U is disjoint form the forward orbit of
the critical points of ϕ. Thus on U there exists a system of inverse
branches {ϕ−mk }, k = 1, . . . dm of ϕm for each m = 1, 2, . . . . Moreover
these branches may be chosen compatibly, in the sense that for any
m < n and 1 ≤ i ≤ dn there exists 1 ≤ j ≤ dn−m such that

(5.9) ϕm ◦ ϕ−ni = ϕm−nj

on U . By a standard application of Montel’s theorem [14, Proposition
2] the family {ϕ−mk } is equicontinuous on U .

The next lemma is elementary; we state it so as to have a ledger of
the constants that will be used in the proof of Theorem 5.6 below.

Lemma 5.5. Let ϕ be a finite Blaschke product, g an admissible weight
and f a continuous function on the circle. Let ε > 0 be given. Then
there exist:

(1) β and γ such that supT e
g ≤ β < γ < 1
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(2) ε′ such that |1− ex| < ε/(4‖f‖∞) whenever |x| < ε′

(3) n0 ∈ N such that

a) C
∞∑

j=n0

(γα)j <
ε′

2
, where C and α are as in the Hölder in-

equality for g, and

b)
∞∑

j=n0

(
β

γ

)j
<

ε

8‖f‖∞
(4) δ1 > 0 such that d(z, ζ) < δ1 implies |f(z)− f(ζ)| < ε

2

(5) δ2 > 0 such that d(z, ζ) < δ2 implies |ϕ−mk (z) − ϕ−mk (ζ)| < δ1
for all k = 1, . . . dm, m = 1, 2, . . .

(6) δ3 > 0 such that d(z, ζ) < δ3 implies∑
m<n0

dm∑
k=1

∣∣(g(ϕ−mk (z))− g(ϕ−mk (ζ))
)∣∣ < ε′

2

Proof. (1) follows from the unitarity condition in the definition of an
admissible weight, together with the fact that g is continuous.

(2) is of course the continuity of ex; (3a) follows from the fact that
γ, α < 1 and (3b) from β < γ.

Finally, (4) is the uniform continuity of f , (5) is the equicontinuity
of the branches {ϕ−mk } mentioned above, and (6) the equicontinuity of
the finite family of functions g ◦ ϕ−mk for m < n0, k = 1, . . . dm. �

To streamline the notation, define for each n

En(z) = exp

(
n−1∑
j=0

g(ϕj(z))

)
It follows that for all n and all z ∈ T

Ln(f)(z) =
∑

ϕn(ζ)=z

En(ζ)f(ζ)

and in particular ∑
ϕn(ζ)=z

En(ζ) ≡ 1.

Theorem 5.6. The sequence of functions {Ln(f)} is equicontinuous
on T.

Proof. Fix a point on the circle z0 6= w and a neighborhood U of z0 in
C such that the closure of U is disjoint from the forward orbit of the
critical points (in particular w /∈ U). Now fix an open arc I ⊂ T ∩ U
containing z0; we first prove that {Lnf} is equicontinuous on I. It
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suffices to show that given ε > 0, there exists a δ > 0 such that
whenever z, ζ ∈ I and d(z, ζ) < δ,

|Ln(f)(z)− Ln(f)(ζ)| < ε

for all n ≥ n0 chosen as in Lemma 5.5. Indeed, if this is possible
then equicontinuity for all n follows by shrinking δ sufficiently. We
claim that δ < min{δ1, δ2, δ3} works. After proving this we will prove
equicontinuity on an arc containing w.

For z, ζ ∈ I
|Ln(f)(z)− Ln(f)(ζ)| =

=

∣∣∣∣∣
dn∑
k=1

En(ϕ−nk (z))f(ϕ−nk (z))−
dn∑
k=1

En(ϕ−nk (ζ))f(ϕ−nk (ζ))

∣∣∣∣∣
≤

dn∑
k=1

En(ϕ−nk (z))
∣∣f(ϕ−nk (z))− f(ϕ−nk (ζ))

∣∣+(I)

+
dn∑
k=1

|f(ϕ−nk (ζ))|
∣∣En(ϕ−nk (z))− En(ϕ−nk (ζ))

∣∣(II)

We now estimate the sums (I) and (II) separately. If d(z, ζ) < δ then
by items (4) and (5) of Lemma 5.5, the sum (I) will be less than ε/2.
To estimate (II), we split it into two further sums (II′) and (II′′) ac-
cording to the behavior of the branches ϕj(ϕ−nk ). For the constant γ
of Lemma 5.5, we call a branch ϕ−mk “good” if

diam(ϕ−mk (I)) ≤ γm

and “bad” otherwise. By a simple packing argument, for each m the
number of bad branches of ϕ−m is at most γ−m.1 Now for each n ≥ n0

define

Tn =
{
t ∈ {1, . . . dn} : ϕj ◦ ϕ−nt is good for all 0 ≤ j ≤ n− n0

}
We now split the sum (II) into two sums (II′) and (II′′) according as
the index k ∈ Tn or k /∈ Tn respectively. Working first with (II′), write

II′ =
∑
k∈Tn

|f(ϕ−nk (ζ))|
∣∣En(ϕ−nk (ζ))− En(ϕ−nk (z))

∣∣(5.10)

=
∑
k∈Tn

|f(ϕ−nk (ζ))|En(ϕ−nk (ζ))

∣∣∣∣1− En(ϕ−nk (z))

En(ϕ−nk (ζ))

∣∣∣∣(5.11)

1Note that the set of good branches is always nonempty, that is, γ is always
strictly larger than 1/d. To see this, combine the assumption (5.1) with item (1)
of Lemma 5.5.
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To show that this sum is less than ε/4, it suffices to prove that d(z, ζ) <
δ implies

(5.12)

∣∣∣∣∣
n∑
j=1

(
g(ϕj(ϕ−nk (ζ)))− g(ϕj(ϕ−nk (z)))

)∣∣∣∣∣ < ε′

for each k ∈ Tn, with ε′ chosen as in Lemma 5.5. Indeed if this is so
then ∣∣∣∣1− En(ϕ−nk (z))

En(ϕ−nk (ζ))

∣∣∣∣ < ε

4‖f‖∞
and it follows that (5.11) is less than ε/4.

To prove (5.12), we consider the sums from j = 1 to n−n0 and from
n−n0 + 1 to n separately. For the first sum, by the definition of Tn all
of the branches ϕj(ϕ−nk ) are good. Therefore, for 0 ≤ j ≤ n0

d
(
ϕj(ϕ−nk (z)), ϕj(ϕ−nk (ζ))

)
≤ γn−j.

Since g is Hölder continuous, it follows that∣∣g(ϕj(ϕ−nk (z)))− g(ϕj(ϕ−nk (ζ)))
∣∣ ≤ C · γα(n−j)

By the choice of δ3, the portion of the sum (5.12) from n− n0 + 1 to n
is no more than ε′/2. Therefore the entire sum (5.12) is dominated by

ε′

2
+

n−n0∑
j=1

Cγα(n−j) =
ε′

2
+ C

n−1∑
j=n0

γαj < ε′

We have thus proved that (II′) is less than ε/4.
Finally we consider (II′′). Write temporarily ψjk = ϕj(ϕ−nk ). Since

Ln = Ln−jLj for each j, we can rewrite (II′′) as

n−n0∑
j=0

∣∣∣∣∣∣
∑

{k:ψjk bad}

En−j(ψjk(ζ))Lj(f)(ψjk(ζ))− En−j(ψjk(z))Lj(f)(ψjkζ)

∣∣∣∣∣∣
(In other words, we have sorted the branches ψjk = ϕj(ϕ−nk ), for k /∈ Tn,
into those that are bad for j = 0, then good for j = 0 but bad for j = 1,
etc.) Recalling that supEm ≤ βm and that the number of bad branches
of the form ϕj(ϕ−nk ) is at most γj−n, we see that for each fixed j ≤ n−n0

the term in the absolute value bars above is controlled by

2‖f‖∞βn−jγj−n

Thus we can estimate (II′′) by

II′′ ≤ 2‖f‖∞
n−n0∑
j=0

(
β

γ

)n−j
< ε/4
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by the choice of n0 (item 3(b) of Lemma 5.5). This completes the proof
of equicontinuity on open arcs not containing w.

We now prove equicontinuity on a neighborhood of w. Let ε > 0 be
given, and let N be a positive integer such that

EN(w) = exp(Ng(w)) <
ε

6‖f‖∞
We observe that because ϕ′(w) > 0, for every p ≥ 1 the number w is
a root of ϕp(z) = w of multiplicity one. Let zi denote the roots of the
equation

ϕN(z) = w, i = 1, . . . dN − 1

different from w (repeated according to multiplicity). Since all of the
points zi are distinct from w, by Theorem (previous) we can find δ′ > 0
such that

d(zi, ζ) < δ′ implies |Ln(f)(zi)− Ln(f)(ζ)| < ε

3

for i = 1, . . . dN − 1 and all n = 1, 2, . . . . Shrink δ′ further if necessary
so that

d(z, ζ) < δ′ implies |EN(z)− EN(ζ)| < ε

3dN‖f‖∞
for all z, ζ ∈ T. For this δ′, choose 0 < δ < δ′ so that

d(a, ζ) < δ implies d(zi, ζi) < δ′

for appropriately chosen ζi satisfying ϕN(ζi) = ζ. Thus, if d(a, ζ) < δ
we can estimate for all n (as at the beginning of Theorem 5.6)

|LN+n(f)(a)− LN+n(f)(ζ)| ≤

≤
dN−1∑
k=1

EN(zi) |Ln(f)(ζi)− Ln(f)(zi)|+(5.13)

+
dN−1∑
k=1

|Ln(f)(ζi)| |EN(ζi)− EN(zi)|+(5.14)

+ |EN(w)Ln(f)(w)− EN(ζ)Ln(f)(ζ)|(5.15)

By the choice of δ and δ′, the two sums are each less than ε/3. The
last term is controlled by

(EN(w) + EN(ζ)) ‖f‖∞
which is less than ε/3 by the choice of N and δ. It follows that the
family {Ln(f)} is equicontinuous on the arc of radius δ around w for
n ≥ N , and hence for all n by shrinking δ. �
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Theorem 5.7. Let g be an admissible weight and L the associated
transfer operator. Then there exists a probability measure µ such that
for all f ∈ C(T),

lim
n→∞

Ln(f) =

∫
f dµ

uniformly. Moreover the support of µ is equal to the Julia set of ϕ.

Proof. The existence of µ follows from Theorem 5.3; its hypotheses are
verified by Theorems 5.4 and 5.6. It remains only to check the claim
that supp(µ) = J .

Since
Lng (f)(z) =

∑
ϕn(ζ)=z

En(ζ)f(ζ)

we may write

Lng (f)(z) =

∫
f dµzn

where the measure µzn is supported on the finite set ϕ−n(z). It follows
that

supp(µ) ⊆
∞⋃
j=1

ϕ−j(z) = Kz

for every z ∈ T. Since the set of limit points of ∪jϕ−j(z) is precisely
the Julia set J , we see that Kz is the union of J with a countable set of
isolated points. Thus if µ is not supported on J it must have an atom
at some point z0 ∈ K \J . Consequently, µzn must have at atom at z0 for
infinitely many n, and since this must be the case for every z ∈ T, we
conclude that for each z ∈ T there exists an N such that z0 ∈ ϕ−N(z),
which is obviously false. Thus supp(µ) ⊂ J . Since we know that µ is
an exp(g) conformal measure, it follows from [7, Theorem 30] that in
fact supp(µ) = J .

�

Combining Theorems 5.3 and 5.2, we have proved:

Theorem 5.8. Let ϕ be a finite Blaschke product, let g be a Hölder
continuous function on the circle as above, and h ∈ A(D) as in Theo-
rem 5.2. Then for every f ∈ C(T),

lim
n→∞

W ∗n
ϕ,hTfW

n
ϕ,h =

(∫
f dµg

)
· I

in norm.

In particular, since supp(µg) = J(ϕ), a nonnegative function f ∈
C(T) vanishes on the Julia set if and only if the above limit is 0. In
this sense the composition operator Cϕ can “see” the Julia set of ϕ.
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Appendix A. An example

We now give an example, mentioned in the remarks following The-
orem 3.3, of a composition operator Cϕ such that C∗ϕCϕ is uniformly
asymptotically Toeplitz (and hence of the form Tf + K) with both f
and K nonzero. (In fact one may compute the function f described
below exactly to see that it is in fact continuous, but we will not need
this). In what follows we let ψ denote the conformal map from D to
the upper half plane H

ψ(z) = i
1 + z

1− z
Example A.1. Let ϕ be the Riemann map of the unit disk onto the
upper half-disk {z ∈ D|Im(z) > 0}, conjugate to the mapping z →

√
z

on the upper half plane. Then

C∗ϕCϕ = Tf +K

for a nonzero continuous function f and nonzero compact operator K.

To begin, we observe that ϕ extends continuously to the unit circle,
and has modulus one precisely on the upper semicircle

E = {z ∈ T : Imz ≥ 0},

which is taken by ψ to the nonnegative real axis (including the point
at infinity). Now write

C∗ϕCϕ = C∗ϕTχECϕ + C∗ϕTχEcCϕ

The first operator is Toeplitz by Theorem 3.3. Both operators are
nonzero, since they each give 1/2 under the state 〈·1, 1〉. To see that
C∗ϕTχcECϕ is compact, we first define a measure µ on Borel subsets

F ⊂ D by

µ(F ) = m(ϕ−1(F ) ∩ T ∩ Ec)

This measure satisfies

(A.1)

∫
D
g dµ =

∫
Ec
g ◦ ϕdm

for all nonnegative measurable functions g in D (see [6, Lemma 2.1]).
For ζ = eiθ ∈ T and 0 < r < 1, let S(ζ, r) denote the Carleson region

S(ζ, r) = {z ∈ D : |ζ − z| ≤ r}

We now claim that

(A.2) lim
r→0

sup
ζ∈T

µ(S(ζ, r))

r
= 0.
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In fact we will show that there is an absolute constant C (independent
of ζ) so that for all r sufficiently small,

µ(S(ζ, r)) ≤ Cr2

which clearly implies (A.2). From the definition of µ, we see that for
small r, µ(S(ζ, r)) = 0 unless S(ζ, r) contains 1 or −1. Assume now
S(ζ, r) contains −1, which is sent to 0 by the conformal map ψ from
D to the upper half plane H. The set S(ζ, r) is taken by ψ to a half-
disk in H centered on the real line, and for small r the radius of this
disk is comparable to r. The half-disk intersects the positive real and
imaginary axes in two segments each of length at most C · r. The
preimage of the disk under the mapping z →

√
z then intersects the

real line in a segment of length at most C · r2, which has length again
at most C · r2 when conjugated back to an arc of the circle. Since
µ(S(ζ, r)) is the length of the intersection of this arc with Ec, we have
proved the claim for ζ near −1; the case near 1 (taken to the point at
infinity under ψ) is handled similarly.

Combining (A.2) with the identity (A.1), it can be shown using stan-
dard Carleson measure arguments (along the lines of the proof of [6,
Theorem 3.4]) that the operator

f → χEc · (f ◦ ϕ)

is compact from H2 to L2, which clearly implies the compactness of
C∗ϕTχEcCϕ.
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[2] José Barŕıa and P. R. Halmos. Asymptotic Toeplitz operators. Trans. Amer.
Math. Soc., 273(2):621–630, 1982.

[3] Paul S. Bourdon and Barbara MacCluer. Selfcommutators of automorphic
composition operators. Complex Var. Elliptic Equ., 52(1):85–104, 2007.

[4] Joseph A. Cima and Alec L. Matheson. Essential norms of composition oper-
ators and Aleksandrov measures. Pacific J. Math., 179(1):59–64, 1997.

[5] Joseph A. Cima, Alec L. Matheson, and William T. Ross. The Cauchy trans-
form, volume 125 of Mathematical Surveys and Monographs. American Math-
ematical Society, Providence, RI, 2006.

[6] Manuel D. Contreras and Alfredo G. Hernández-Dı́az. Weighted composition
operators on Hardy spaces. J. Math. Anal. Appl., 263(1):224–233, 2001.
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