MODERN ANALYSIS, FALL 2014
HOMEWORK 7

Problems marked with * are to be turned in for grading.

1. Let \(f, g : X \rightarrow Y \) be continuous functions and let \(E \) be a dense subset of \(X \).
 a) Prove that \(f(E) \) is dense in \(f(X) \).
 b) Prove that if \(f(p) = g(p) \) for all \(p \in E \), then \(f = g \). (That is, a continuous function is determined by its values on a dense set.)

*2. Let \(X \) be a metric space and \(C \subset X \) a nonempty closed set. For each \(x \in X \) define
 \[f_C(x) := \inf \{ d(x, y) : y \in C \} . \]
 \(f_C(x) \) is called the distance from \(x \) to \(C \).
 a) Prove that \(f_C(x) = 0 \) if and only if \(x \in C \).
 b) Prove that the function \(f_C : X \rightarrow \mathbb{R} \) is continuous.
 c) Let \(X = \mathbb{R}^d \) and let \(C \subset \mathbb{R}^d \) be closed. Prove that for each \(x \in \mathbb{R}^d \), there exists a point \(x^* \in C \) such that \(f_C(x) = \|x - x^*\| \) (in other words, the infimum in the definition of \(f_C \) is attained). (Hint: for each \(n \) there exists \(x_n \in C \) with \(d(x, x_n) < f_C(x) + \frac{1}{n} \).) Show by example that the point \(x^* \) need not be unique.

3. Consider the function \(f : \mathbb{R} \rightarrow \mathbb{R} \) defined by
 \[f(x) = \begin{cases} 0 & \text{if } x \text{ is irrational} \\ \frac{1}{n} & \text{if } x = \frac{m}{n} \text{ in lowest terms}, n \geq 1 . \end{cases} \]
 Prove that \(f \) is continuous precisely on the irrationals.

*4. Suppose that \(X, Y \) are metric spaces, \(f : X \rightarrow Y \) is a function, and \(X \) is compact. Let \(X \times Y \) have the metric described in Homework 2, problem 1. The graph of \(f \) is the subset \(G \subset X \times Y \) defined by
 \[G = \{(x, f(x)) : x \in X \} . \]
 Prove that \(f \) is continuous if and only if its graph \(G \) is compact.
5. Let $f : X \to Y$ be continuous. Prove that for any $E \subset X,$

$$f(E) \subset f(E).$$

(here the bar denotes the closure of the set.) Show by example that the inclusion can be proper.

6. Let $E \subset \mathbb{R}$ be bounded and let $f : E \to \mathbb{R}$ be a uniformly continuous function. Prove that f is bounded. Show, by example, that the conclusion can be false if “uniformly” is omitted.

7. Suppose that $f : X \to Y$ is uniformly continuous. Prove that if (x_n) is a Cauchy sequence in $X,$ then $(f(x_n))$ is a Cauchy sequence in $Y.$ Show by example that the conclusion can be false if f is only assumed continuous.