An optimal approximation problem for noncommutative polynomials

Palak Arora
(Joint work with M.Augat, M.Jury, M.Sargent)
Department of Mathematics, UF
ANALYSIS AND PROBABILITY SEMINAR

October 4, 2022

UF
College of Liberal
Arts \& Sciences
UNIVERSITY of FLORIDA

Outline

Motivation

Preliminaries

Main Theorem

Optimal Polynomial Approximants (opa's)

Classical Setting

For $f \in H^{2}(\mathbb{D})$, we say a polynomial p_{n} of degree at most n is an optimal approximant of order n if p_{n} minimizes

$$
\|p f-1\|_{H^{2}}
$$

for $p \in \mathcal{P}_{n}$ where \mathcal{P}_{n} is the set of all polynomials of degree at most n.

Non commutative Setting

For an nc function, f in d noncommuting arguments, we find an nc polynomial p_{n}, of degree at most n, to minimize

$$
\|p f-1\|_{\mathcal{F}_{d}}
$$

over \mathcal{P}_{n}, the set of all polynomials of total degree at most n.

Classical $H^{2}(\mathbb{D})$ setting

Due to Beurling: for $f \in H^{2}(\mathbb{D})$

$$
\left\|p_{n} f-1\right\|_{H^{2}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

f is an outer function.

Classical $H^{2}(\mathbb{D})$ setting

Due to Beurling: for $f \in H^{2}(\mathbb{D})$

$$
\left\|p_{n} f-1\right\|_{H^{2}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

iff
f is an outer function.
For a polynomial function, f
f is an outer function
iff
$f(z) \neq 0$ in the disk $|z|<1$.

Classical $H^{2}(\mathbb{D})$ setting

So, for polynomial $f \in H^{2}(\mathbb{D})$:
$\left\|p_{n} f-1\right\|_{H^{2}} \rightarrow 0$ as $n \rightarrow \infty$ iff $f(z) \neq 0$ in the disk $|z|<1$.

Classical $H^{2}(\mathbb{D})$ setting

So, for polynomial $f \in H^{2}(\mathbb{D})$:
$\left\|p_{n} f-1\right\|_{H^{2}} \rightarrow 0$ as $n \rightarrow \infty$ iff $f(z) \neq 0$ in the disk $|z|<1$. A sketch:

Let us first consider $f(z)=1-z$. (Or, $1-\alpha z$ for $|\alpha| \leq 1$)
Consider $q_{n}:=1+z+z^{2}+\cdots+z^{n}$. Then $1 \in \overline{\{p(z) f(z)\}}^{\|\cdot\|}$ since

- $\left(1+z+z^{2}+\cdots+z^{n}\right)(1-z) \rightarrow 1$ pointwise in \mathbb{D}, and
- $\sup _{n}\left\|1-z^{n+1}\right\|<\infty$.

Thus $1 \in \overline{\{p(z) f(z)\}}^{\text {wk }}$ and hence $1 \in \overline{\{p(z) f(z)\}}^{\|} \cdot \|$.
Rest follows by induction on the factors of the polynomial(with no zeros on \mathbb{D}).

In the Non-commutative(nc) setting

Main Theorem

For an nc polynomial f,

$$
\begin{gathered}
\left\|p_{n} f-1\right\|_{\mathcal{F}_{d}}^{2} \rightarrow 0 \\
\text { if and only if } \\
\operatorname{det}(f) \neq 0 \text { in row-ball. }
\end{gathered}
$$

Remark: Main theorem gives a new proof of the cyclicity theorem in $[1]^{1}$ with an estimate on the rate of decay.

[^0]
Quantitative Cyclicity

Classically ${ }^{2}$, we have:
f is an outer polynomial then $\left\|p_{n} f-1\right\|_{H^{2}}^{2}=O\left(\frac{1}{n}\right)$.

We now prove that:

Noncommutative case:

f is an nc polynomial nonsingular on the row ball then $\left\|p_{n} f-1\right\|_{\mathcal{F}_{d}}^{2}=O\left(\frac{1}{n^{n}}\right)$ for some $p>0$ depending on f.

[^1]
Fock Space

Definition

Let $\mathrm{x}=\left\{x_{1}, \ldots, x_{d}\right\}$ be freely noncommuting (abbreviated as nc) indeterminates.
The free monoid $\langle\mathbb{x}\rangle$ is called the word set in the letters x_{1}, \ldots, x_{d} with \varnothing representing the empty word.

If $w \in\langle\mathbb{x}\rangle$ and $w=x_{i_{1}} \ldots x_{i_{m}}$, then the length of $w,|w|=m$ while $|\varnothing|=0$.
Let $\mathbb{C}\langle\mathbb{x}\rangle$ denote the free algebra. Define an inner product by declaring $\{w\}_{w \in \mathbb{C}\langle x\rangle}$ orthonormal.

The completion of $\mathbb{C}\langle\mathbb{x}\rangle$ with respect to the inner product gives us \mathcal{F}_{d}, the Fock space on d letters.

Fock Space

Definition

Concretely,

$$
\mathcal{F}_{d}=\left\{\sum_{w \in\langle\mathbb{x}\rangle} a_{w} w: \sum_{w \in\langle\mathbb{x}\rangle}\left|a_{w}\right|^{2}<\infty\right\} .
$$

Shift Operators

Definition

The left d-shift is the tuple of operators $L=\left(L_{1}, \ldots, L_{d}\right)$ where each

$$
L_{i}: \mathcal{F}_{d} \rightarrow \mathcal{F}_{d}
$$

is given by

$$
L_{i}: f \mapsto x_{i} f
$$

We similarly define the right d-shift.

Cyclic function

Analogous to the notion of cyclicity in Hardy space:

Definition

A function $f \in \mathcal{F}_{d}$ is cyclic for the left d-shift if the set

$$
\{p f: p \in \mathbb{C}\langle\mathbb{x}\rangle\}
$$

is dense in \mathcal{F}_{d}.

Frobenius-Fock norm

Definition

For any $k, \ell \geq 1$, we define the Frobenius norm on $M_{k \times \ell}(\mathbb{C})$ by

$$
\|A\|_{F, k \times \ell}:=\sqrt{\sum_{i=1}^{k} \sum_{j=1}^{\ell}\left|A_{i, j}\right|^{2}}
$$

where $A=\left(A_{i, j}\right)_{i, j=1}^{k, \ell} \in M_{k \times \ell}(\mathbb{C})$.
Thus Frobenius-Fock norm on $M_{k \times \ell}\left(\mathcal{F}_{d}\right)$ is defined by

$$
\|f\|_{F}:=\sqrt{\sum_{w \in\langle\mathbb{x}\rangle}\left\|A_{w}\right\|_{F, k \times \ell}^{2}}
$$

where $f(\mathbb{x})=\sum_{w \in\langle\mathbb{x}\rangle} A_{w} w \in M_{k \times \ell}\left(\mathcal{F}_{d}\right)$.

Row ball

Definition

We define $\|A\|_{\text {row }}:=\left\|A_{1} A_{1}^{*}+\cdots+A_{d} A_{d}^{*}\right\|_{o p}^{1 / 2}$ for $A=\left(A_{1}, \cdots, A_{d}\right) n \times n$ matrices.
Then \mathfrak{B}_{n}^{d} is the set of all A with $\|A\|_{\text {row }}<1$.
The set $\mathfrak{B}^{d}:=\bigsqcup_{n=1}^{\infty} \mathfrak{B}_{n}^{d}$, which is closed under direct sums and conjugation by unitaries, is called the row ball.

If $\|A\|_{\text {row }} \leq 1$ then it is row contraction and if $\|A\|_{\text {row }}<1$ then it is a strict row contraction.
Analogously, we have column contraction and strict column contraction.

Linear Pencil

Definition

An $m \times \ell \mathrm{nc}$ linear pencil (in d indeterminates) is an expression of the form

$$
L_{A}(\mathbb{x})=A_{0}+A x
$$

where $A_{\mathbb{x}}=A_{1} x_{1}+\cdots+A_{d} x_{d}$. If $A_{0}=I$ then we call $L_{A}(\mathbb{x})$ a monic linear pencil.

Linear Pencil

Definition

An $m \times \ell \mathrm{nc}$ linear pencil (in d indeterminates) is an expression of the form

$$
L_{A}(\mathbb{x})=A_{0}+A \mathbb{x}
$$

where $A \mathbb{x}=A_{1} x_{1}+\cdots+A_{d} x_{d}$. If $A_{0}=I$ then we call $L_{A}(\mathbb{x})$ a monic linear pencil.

Definition

A matrix tuple $A=\left(A_{1}, \ldots, A_{d}\right) \in M_{m}(\mathbb{C})^{d}$ is irreducible if

$$
M_{m}(\mathbb{C})=\{p(A): p \in \mathbb{C}\langle\mathbb{x}\rangle\}
$$

The monic linear pencil L_{A} is irreducible if A is irreducible.

Stable Associativity

Definition

Given $A \in M_{k \times k}(\mathbb{C}\langle x\rangle)$ and $B \in M_{\ell \times \ell}(\mathbb{C}\langle x\rangle)$.
We say A and B are stably associated if
$\exists \mathrm{N} \in \mathbb{Z}^{+}$and $P, Q \in \mathrm{GL}_{N}(\mathbb{C}\langle\mathbb{x}\rangle)$ such that

$$
P\left(\begin{array}{ll}
A & \\
& 1
\end{array}\right) Q=\left(\begin{array}{ll}
B & \\
& 1
\end{array}\right) .
$$

Notation:

$$
A \sim_{\text {sta }} B .
$$

Free Zero Locus

Definition

If $F \in M_{k \times k}(\mathbb{C}\langle\mathbb{x}\rangle)$, then

$$
z_{n}(F)=\left\{X \in M_{n}(\mathbb{C})^{d}: \operatorname{det}(F(X))=0\right\},
$$

and

$$
z(F):=\bigsqcup_{n \geq 1} Z_{n}(F) .
$$

The set $Z(F)$ is the free zero locus of F.
Observe:

If $F \sim_{\text {sta }} G$ then $\mathcal{Z}(F)=\mathcal{Z}(G)$.

Main Result

Theorem

For $F \in M_{k \times k} \otimes \mathbb{C}\langle\mathbb{x}\rangle$,

$$
\begin{gathered}
\left\|P_{n} F-1\right\|^{2} \rightarrow 0 \\
\text { ifand only if } \\
\operatorname{det}(F) \neq 0 \text { on } \mathfrak{B}^{d} .
\end{gathered}
$$

In particular,
Say F is nonsingular in the row ball and F is a product of exactly ℓ atomic factors, then the opa's, P_{n}, for F satisfy

$$
\left\|P_{n}(x) F(x)-I\right\|_{2}^{2} \lesssim \frac{1}{n^{p}}
$$

where $p=\frac{1}{3^{\ell-1}}$.

Main Result

Theorem

For $F \in M_{k \times k} \otimes \mathbb{C}\langle\mathbb{x}\rangle$,

$$
\begin{gathered}
\left\|p_{n} F-1\right\|^{2} \rightarrow 0 \\
\text { ifand only if } \\
\operatorname{det}(F) \neq 0 \text { on } \mathfrak{B}^{d} .
\end{gathered}
$$

Proof.

One direction (\Rightarrow) : easy.

Main Result

Theorem

For $F \in M_{k \times k} \otimes \mathbb{C}\langle\mathbb{x}\rangle$,

$$
\begin{gathered}
\left\|p_{n} F-1\right\|^{2} \rightarrow 0 \\
\text { ifand only if } \\
\operatorname{det}(F) \neq 0 \text { on } \mathfrak{B}^{d} .
\end{gathered}
$$

Proof.

One direction (\Rightarrow) : easy.

For the converse (\Leftarrow), we need the following lemma.

The Lemma

Lemma

Assume that M is column contraction, i.e., $\|M\|_{\text {col }} \leq 1$,
then $1-M_{\mathbb{x}}$ is cyclic in $M_{k \times k}(\mathbb{C}) \otimes \mathcal{F}_{d}$.

In fact, $\exists 1$-variable polynomials, π_{n} of degree n so that:

$$
\left\|\pi_{n}(M \mathbb{x})\right\|_{\infty} \lesssim n
$$

and

$$
\left\|\pi_{n}(M \mathbb{x})(1-M \mathbb{x})-1\right\|_{2}^{2} \lesssim \frac{1}{n} .
$$

The Lemma

Proof.

A (qualitative) sketch.

For $F(\mathbb{x})=I-M_{\mathbb{x}} \in M_{k \times k}(\mathbb{C}) \otimes \mathcal{F}_{d},\|M\|_{\text {col }} \leq 1$, following are true:

1. $\left(I+M \mathbb{X}+\cdots+(M \mathbb{X})^{n}\right)(I-M \mathbb{X}) \rightarrow I$, pointwise in \mathfrak{B}^{d}.
2. $\sup _{n}\left\|I-(M \mathbb{X})^{n}\right\|_{F}<\infty$.

And done.

Note. For quantitative form of lemma we import estimates from [2] ${ }^{a}$

Proof of main result continues...

(\Leftarrow) Let $F \in M_{k \times k}(\mathbb{C}\langle\mathbb{x}\rangle)$ be nonsingular in \mathfrak{B}^{d}.
We can assume, without loss of generality, that $F(0)=I$.
BIG IDEA: Using Linearization trick $[3]^{3}$ we have that $F \sim_{\text {sta }} L_{A}(\mathbb{x})$ where $L_{A}(\mathbb{x})$ is a monic linear pencil.

[^2]
Proof of main result

We have that $F \sim_{s t a} L_{A}(\mathbb{x})$ where $L_{A}(\mathbb{x})$ is a monic linear pencil.
So $L_{A}(\mathbb{x})$ is nonsingular in \mathfrak{B}^{d}.
Proposition 4.1, $[1]^{4}$ implies that outer spectral radius of $A, \rho(A) \leq 1$ where it is defined as follows:

Outer spectral radius $\rho(X)$: Let $n \in \mathbb{N}$ and $X \in M_{n \times n}(\mathbb{C})^{d}$ we have the associated completely positive map on $M_{n \times n}$ as

$$
\Psi_{X}(T)=\sum_{j=1}^{d} X_{j} T X_{j}^{*}
$$

Then outer spectral radius is $\rho(X):=\lim _{k \rightarrow \infty}\left\|\Psi_{X}^{k}(I)\right\|^{1 / 2 k}$.

[^3]
Proof of main result

Proposition 4.1, [1] implies that joint spectral radius of $A, \rho(A) \leq 1$.

Proof of main result

Proposition 4.1, [1] implies that joint spectral radius of $A, \rho(A) \leq 1$.
Now it follows from Burnside's theorem, any monic linear pencil is similar to a block upper-triangular linear pencil of the form:

$$
\left[\begin{array}{ccccc}
L_{1}(x) & * & * & \ldots & * \\
0 & L_{2}(x) & * & \ldots & * \\
0 & 0 & L_{3}(x) & \ldots & * \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & L_{\ell}(x)
\end{array}\right]
$$

where for every k, linear pencils, $L_{k}=1$ or L_{k} is an irreducible. Say for each $k, L_{k}(\mathrm{x})=1-\bar{A}^{(k)} \mathbb{X}$ where $\bar{A}^{(k)}=\left(\bar{A}_{1}^{(k)} \bar{A}_{2}^{(k)} \cdots \bar{A}_{d}^{(k)}\right)$. That is, $L_{k}(\mathbb{x})=I-\sum_{j=1}^{d} \bar{A}_{j}^{(k)} x_{j}$.

Proof of Main Result

Thus from above we get that, for each $k, \rho\left(\bar{A}^{(k)}\right) \leq 1$.
Hence for each $k, \bar{A}^{(k)}$ is irreducible with spectral radius ≤ 1.

Proof of Main Result

Thus from above we get that, for each $k, \rho\left(\bar{A}^{(k)}\right) \leq 1$.
Hence for each $k, \bar{A}^{(k)}$ is irreducible with spectral radius ≤ 1.
From $[4]^{5}$, it follows that for each $k, \bar{A}^{(k)}$ is similar to a column contraction.
Let us say that $\bar{A}^{(k)} \sim M^{(k)}$ where for $1 \leq k \leq I, M^{(k)}$ is a column contraction.

[^4]
Proof of Main Result

Finally we get that our F is stably associated to the following block upper-triangular form:

$$
F \sim_{\text {sta }}\left[\begin{array}{ccccc}
I-M^{(1)}(\mathbb{x}) & * & * & \ldots & * \\
0 & I-M^{(2)}(\mathbb{x}) & * & \ldots & * \\
0 & 0 & I-M^{(3)}(\mathbb{x}) & \ldots & * \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & I-M^{(\ell)}(\mathbb{x})
\end{array}\right]
$$

where $M^{(k)}$ is a column contraction.

Proof of Main Result

Finally we get that our F is stably associated to the following block upper-triangular form:

$$
F \sim_{\mathrm{sta}}\left[\begin{array}{ccccc}
I-M^{(1)}(\mathrm{x}) & * & * & \ldots & * \\
0 & I-M^{(2)}(\mathbb{x}) & * & \ldots & * \\
0 & 0 & I-M^{(3)}(\mathbb{x}) & \ldots & * \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & I-M^{(\ell)}(\mathrm{x})
\end{array}\right]=G
$$

where $M^{(k)}$ is a column contraction.

Now we are going to prove our result via induction on ℓ just for this monic linear pencil and that would suffice due to the following lemma:

Another Lemma

Lemma

If $F \sim_{\text {sta }} G$ then

$$
\left\|p_{n} F-1\right\|^{2} \rightarrow 0 \text { iff }\left\|q_{n} G-1\right\|^{2} \rightarrow 0
$$

(with comparable rate of decay.)

Another Lemma

Lemma

If $F \sim_{\text {sta }} G$ then

$$
\left\|p_{n} F-1\right\|^{2} \rightarrow 0 \text { iff }\left\|q_{n} G-1\right\|^{2} \rightarrow 0
$$

(with comparable rate of decay.)

We prove our result via induction on ℓ that is, we prove that there exists a matrix polynomial $g^{(\ell)}$ such that $\left\|g^{(\ell)} G-1\right\|<\epsilon$.

Proof of Main Result

For $\ell=2$, let us assume

$$
F \sim_{\text {sta }} G=\left[\begin{array}{cc}
I-M^{(1)}(\mathbb{x}) & Y(\mathbb{x}) \\
0 & I-M^{(2)}(\mathbb{x})
\end{array}\right]
$$

where for $k=1,2, M^{(k)}$ is a column contraction.
Consider the polynomial matrix, $g=\left(\begin{array}{cc}p & r \\ 0 & q\end{array}\right)$ where p, r, q are polynomials of any degree. Then

$$
g G=\left(\begin{array}{cc}
p(x)\left(I-M^{(1)}(x)\right) & -p(x) Y(x)+r(x)\left(I-M^{(2)}(x)\right) \\
0 & q(x)\left(I-M^{(2)}(x)\right)
\end{array}\right)
$$

Proof of Main Result

Then

$$
g C(x)=\left(\begin{array}{cc}
p(x)\left(I-M^{(1)}(x)\right) & -p(x) Y(x)+r(x)\left(I-M^{(2)}(x)\right) \\
0 & q(x)\left(I-M^{(2)}(x)\right)
\end{array}\right)
$$

From the Lemma, $I-M^{(1)}(\mathbb{x})$ is cyclic in $M_{k \times k}(\mathbb{C}) \otimes \mathcal{F}_{d}$, so \exists a matrix polynomial, $p(\mathbb{x})$ such that $p(\mathbb{x})\left(I-M^{(1)}(\mathbb{x})\right)$ can be made close to I.

Similarly, $\left(I-M^{(2)}(\mathbb{x})\right)$ is cyclic in $M_{k \times k}(\mathbb{C}) \otimes \mathcal{F}_{d}$ we can find: $q(\mathbb{x})$ and $r(\mathbb{x})$ such that $q(\mathbb{x})\left(I-M^{(2)}(\mathbb{x})\right)$ can be made close to I;
$r(\mathbb{x})\left(I-M^{(2)}(\mathbb{x})\right)$ can be made close to $p(\mathbb{x}) Y(\mathbb{x})$.

Proof of Main Result

Thus, given an $\epsilon>0, \exists\left[\begin{array}{ll}p & r \\ 0 & q\end{array}\right]$ such that

$$
\left\|\left[\begin{array}{ll}
p & r \\
0 & q
\end{array}\right]\left[\begin{array}{cc}
I-M^{(1)}(\mathbb{x}) & Y(\mathbb{x}) \\
0 & I-M^{(2)}(\mathbb{x})
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right\|_{F}^{2}<\epsilon .
$$

Then the rest of the proof is just induction on the number of diagonal blocks in the matrix, ℓ.
We are done.

Open Questions

So we have proved that

$$
\left\|P_{n}(x) F(x)-I\right\|_{2}^{2} \lesssim \frac{1}{n^{p}}
$$

where $p=\frac{1}{3^{\ell-1}}$.

Questions which have not been answered yet:

1. Is this p uniform?
2. Like the classical setting, is it $O\left(\frac{1}{n}\right)$?
3. Can we prove a similar result for a rational nc function as well?

囯 M. T. Jury, R. T. W. Martin, and E. Shamovich, "Non-commutative rational functions in the full fock space," 2020.

國
C. Bénéteau, A. A. Condori, C. Liaw, D. Seco, and A. A. Sola, "Cyclicity in Dirichlet-type spaces and extremal polynomials," J. Anal. Math., vol. 126, pp. 259-286, 2015.
J. W. Helton, I. Klep, and J. Volčič, "Geometry of free loci and factorization of noncommutative polynomials," Adv. Math., vol. 331, pp. 589-626, 2018. [Online]. Available: https://doi.org/10.1016/j.aim.2018.04.007G. Salomon, O. M. Shalit, and E. Shamovich, "Algebras of noncommutative functions on subvarieties of the noncommutative ball: The bounded and completely bounded isomorphism problem," Journal of Functional Analysis, vol. 278, no. 7, p. 108427, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0022123619304203

[^0]: ${ }^{1}$ [Jury, Martin, Shamovich, 2021]

[^1]: ${ }^{2}$ [[2]BÉNÉTEAU, CONDORI, LIAW, SECO, AND SOLA, 2015]

[^2]: ${ }^{3}$ [Helton, Klep, Volcic, 2018]

[^3]: ${ }^{4}$ [Jury, Martin, Shamovich, 2021]

[^4]: ${ }^{5}$ [Salomon, Shalit, Shamovich, 2020]

