An optimal approximation problem for noncommutative polynomials

Palak Arora (Joint work with M.Augat, M.Jury, M.Sargent)

Department of Mathematics, UF

ANALYSIS AND PROBABILITY SEMINAR

October 4, 2022

Preliminaries

Main Theorem

Outline

Motivation

Preliminaries

Main Theorem

Optimal Polynomial Approximants (opa's)

Classical Setting

For $f \in H^2(\mathbb{D})$, we say a polynomial p_n of degree at most n is an optimal approximant of order n if p_n minimizes

 $\|pf - 1\|_{H^2}$

for $p \in \mathcal{P}_n$ where \mathcal{P}_n is the set of all polynomials of degree at most n.

Non commutative Setting

For an nc function, f in d noncommuting arguments, we find an nc polynomial p_n , of degree at most n, to minimize

$$\|pf-1\|_{\mathcal{F}_d}$$

over \mathcal{P}_n , the set of all polynomials of total degree at most n.

Preliminaries

Main Theorem

Classical $H^2(\mathbb{D})$ setting

Due to Beurling: for $f \in H^2(\mathbb{D})$

$$\|p_nf-1\|_{H^2}
ightarrow 0$$
 as $n
ightarrow\infty$

iff

f is an outer function.

Preliminaries

Main Theorem

Classical $H^2(\mathbb{D})$ setting

Due to Beurling: for $f \in H^2(\mathbb{D})$

$$\|p_nf-1\|_{H^2} \to 0 \text{ as } n \to \infty$$

iff

f is an outer function.

For a polynomial function, f

f is an outer function

iff

 $f(z) \neq 0$ in the disk |z| < 1.

Main Theorem

Classical $H^2(\mathbb{D})$ setting

So, for polynomial $f \in H^2(\mathbb{D})$: $\|p_n f - 1\|_{H^2} \to 0$ as $n \to \infty$ iff $f(z) \neq 0$ in the disk |z| < 1.

Classical $H^2(\mathbb{D})$ setting

So, for polynomial $f \in H^2(\mathbb{D})$: $\|p_n f - 1\|_{H^2} \to 0$ as $n \to \infty$ iff $f(z) \neq 0$ in the disk |z| < 1. A sketch:

Let us first consider
$$f(z) = 1 - z$$
. (Or, $1 - \alpha z$ for $|\alpha| \le 1$)
Consider $q_n := 1 + z + z^2 + \cdots + z^n$. Then $1 \in \overline{\{p(z)f(z)\}}^{\|\cdot\|}$ since

▶
$$(1 + z + z^2 + \cdots + z^n)(1 - z) \rightarrow 1$$
 pointwise in \mathbb{D} , and
▶ $sup_n ||1 - z^{n+1}|| < \infty$.

Thus 1
$$\in \overline{\{p(z)f(z)\}}^{\mathsf{wk}}$$
 and hence 1 $\in \overline{\{p(z)f(z)\}}^{\|\cdot\|}.$

Rest follows by induction on the factors of the polynomial (with no zeros on \mathbb{D}).

Preliminaries

Main Theorem

In the Non-commutative(nc) setting

Main Theorem

For an nc polynomial f,

$$\|p_n f - 1\|_{\mathcal{F}_d}^2 \to 0$$

if and only if

 $det(f) \neq 0$ in row-ball.

Remark: Main theorem gives a new proof of the cyclicity theorem in [1]¹ with an estimate on the rate of decay.

¹[Jury, Martin, Shamovich, 2021]

Main Theorem

Quantitative Cyclicity

Classically², we have : f is an outer polynomial then $||p_n f - 1||_{H^2}^2 = O(\frac{1}{n})$.

We now prove that:

Noncommutative case:

f is an nc polynomial nonsingular on the row ball then $||p_n f - 1||_{\mathcal{F}_d}^2 = O(\frac{1}{n^p})$ for some p > 0 depending on f.

²[[2]BÉNÉTEAU, CONDORI, LIAW, SECO, AND SOLA, 2015]

Preliminaries

Fock Space

Definition

Let $x = \{x_1, \ldots, x_d\}$ be freely noncommuting (abbreviated as nc) indeterminates.

The free monoid $\langle x \rangle$ is called the word set in the letters x_1, \ldots, x_d with \emptyset representing the empty word.

If $w \in \langle x \rangle$ and $w = x_{i_1} \dots x_{i_m}$, then the length of w, |w| = m while $|\emptyset| = 0$.

Let $\mathbb{C}\langle x \rangle$ denote the **free algebra**. Define an inner product by declaring $\{w\}_{w \in \mathbb{C}\langle x \rangle}$ orthonormal.

The completion of $\mathbb{C}\langle x \rangle$ with respect to the inner product gives us \mathcal{F}_d , the **Fock space** on *d* letters.

Preliminaries

Main Theorem

Fock Space

Preliminaries

Shift Operators

Definition

The **left** *d*-shift is the tuple of operators $L = (L_1, \ldots, L_d)$ where each

$$L_i:\mathcal{F}_d\to \mathcal{F}_d$$

is given by

$$L_i: f \mapsto x_i f.$$

We similarly define the **right** *d*-shift.

Preliminaries

Main Theorem

Cyclic function

Analogous to the notion of cyclicity in Hardy space:

Definition

A function $f \in \mathcal{F}_d$ is **cyclic** for the left *d*-shift if the set

$$\{pf : p \in \mathbb{C}\langle x \rangle\}$$

is dense in \mathcal{F}_d .

Frobenius-Fock norm

Definition

For any $k, \ell \geq 1$, we define the Frobenius norm on $M_{k \times \ell}(\mathbb{C})$ by

$$\|A\|_{F,k imes \ell} := \sqrt{\sum_{i=1}^{k} \sum_{j=1}^{\ell} |A_{i,j}|^2},$$

where $A = (A_{i,j})_{i,j=1}^{k,\ell} \in M_{k \times \ell}(\mathbb{C})$. Thus Frobenius-Fock norm on $M_{k \times \ell}(\mathcal{F}_d)$ is defined by

$$\|f\|_F := \sqrt{\sum_{w \in \langle x \rangle} \|A_w\|_{F,k imes \ell}^2}$$

where $f(\mathbf{x}) = \sum_{w \in \langle \mathbf{x} \rangle} A_w w \in M_{k \times \ell}(\mathcal{F}_d)$.

Preliminaries

Row ball

Definition

We define $||A||_{row} := ||A_1A_1^* + \cdots + A_dA_d^*||_{op}^{1/2}$ for $A = (A_1, \cdots, A_d) n \times n$ matrices.

Then \mathfrak{B}_n^d is the set of all A with $||A||_{row} < 1$.

The set $\mathfrak{B}^d := \bigsqcup_{n=1}^{\infty} \mathfrak{B}^d_n$, which is closed under direct sums and conjugation by unitaries, is called the **row ball**.

If $\|A\|_{row} \leq 1$ then it is **row contraction** and if $\|A\|_{row} < 1$ then it is a **strict row contraction**.

Analogously, we have column contraction and strict column contraction.

Preliminaries

Linear Pencil

Definition

An $m \times \ell$ nc linear pencil (in *d* indeterminates) is an expression of the form

$$L_A(\mathbf{x}) = A_0 + A\mathbf{x}$$

where $A_{\mathbb{X}} = A_1 x_1 + \cdots + A_d x_d$. If $A_0 = I$ then we call $L_A(\mathbb{X})$ a monic linear pencil.

Preliminaries

Linear Pencil

Definition

An $m \times \ell$ nc linear pencil (in *d* indeterminates) is an expression of the form

$$L_A(\mathbf{x}) = A_0 + A\mathbf{x}$$

where $A_{\mathbb{X}} = A_1 x_1 + \cdots + A_d x_d$. If $A_0 = I$ then we call $L_A(\mathbb{X})$ a monic linear pencil.

Definition

A matrix tuple $A = (A_1, \ldots, A_d) \in M_m(\mathbb{C})^d$ is **irreducible** if

 $M_m(\mathbb{C}) = \{p(A) : p \in \mathbb{C}\langle x \rangle\}.$

The monic linear pencil L_A is **irreducible** if A is irreducible.

Stable Associativity

Definition

Given
$$A \in M_{k \times k}(\mathbb{C}\langle x \rangle)$$
 and $B \in M_{\ell \times \ell}(\mathbb{C}\langle x \rangle)$
We say A and B are **stably associated** if

$$\exists N \in \mathbb{Z}^+$$
 and $P, Q \in \operatorname{GL}_N(\mathbb{C}\langle \mathrm{x} \rangle)$ such that

$$P\begin{pmatrix}A\\&I\end{pmatrix}Q=\begin{pmatrix}B\\&I\end{pmatrix}.$$

Notation:

$$A \sim_{\mathrm{sta}} B.$$

Preliminaries

Free Zero Locus

Definition

If $F \in M_{k \times k}(\mathbb{C}\langle x \rangle)$, then

$$\mathcal{Z}_n(F) = \Big\{ X \in M_n(\mathbb{C})^d : \det(F(X)) = 0 \Big\},$$

and

$$\mathcal{Z}(F) := \bigsqcup_{n\geq 1} \mathcal{Z}_n(F).$$

The set $\mathcal{Z}(F)$ is the **free zero locus** of *F*.

Observe:

If $F \sim_{\text{sta}} G$ then $\mathcal{Z}(F) = \mathcal{Z}(G)$.

Preliminaries

Main Result

Theorem

For $F \in M_{k imes k} \otimes \mathbb{C} \langle \mathrm{x} \rangle$,

$$\|P_nF-1\|^2\to 0$$

if and only if

 $det(F) \neq 0$ on \mathfrak{B}^d .

In particular,

Say F is nonsingular in the row ball and F is a product of exactly ℓ atomic factors, then the opa's, P_n, for F satisfy

$$\|P_n(x)F(x)-I\|_2^2\lesssim \frac{1}{n^p}$$

where $p = \frac{1}{3^{\ell-1}}$.

Μ	oti	vat	tio	n
0	00	0	0	

Main Result

Theorem

For $F \in M_{k imes k} \otimes \mathbb{C}\langle \mathrm{x} angle$,		
	$\ p_nF-1\ ^2 ightarrow 0$	
	if and only if	
	det(F) $ eq$ 0 on \mathfrak{B}^d .	

Proof.

One direction (\Rightarrow): easy.

Μ	oti	vat	tio	n
0	00	0	0	

Main Result

Theorem

For $F\in M_{k imes k}\otimes \mathbb{C}\langle \mathrm{x} angle$,		
	$\ p_nF-1\ ^2 ightarrow 0$	
	if and only if	
	$det(F) eq 0$ on $\mathfrak{B}^d.$	

Proof.

One direction (\Rightarrow): easy.

For the converse (\Leftarrow), we need the following lemma.

Preliminaries

The Lemma

Lemma

Assume that M is column contraction, i.e., $\|M\|_{col} \leq 1$,

then $I - M_{\mathbb{X}}$ is cyclic in $M_{k \times k}(\mathbb{C}) \otimes \mathcal{F}_d$.

In fact, \exists 1-variable polynomials, π_n of degree n so that:

 $\|\pi_n(Mx)\|_{\infty} \lesssim n$

and

$$\|\pi_n(M_{\mathbb{X}})(1-M_{\mathbb{X}})-1\|_2^2 \lesssim \frac{1}{n}.$$

The Lemma

Proof.

A (qualitative) sketch.

For
$$F(x) = I - Mx \in M_{k imes k}(\mathbb{C}) \otimes \mathcal{F}_d$$
, $\|M\|_{col} \leq 1$, following are true:

1.
$$(I + M_{\mathbb{X}} + \dots + (M_{\mathbb{X}})^n)(I - M_{\mathbb{X}}) \rightarrow I$$
, pointwise in \mathfrak{B}^d .
2. $\sup_n ||I - (M_{\mathbb{X}})^n||_F < \infty$.

And done.

Note. For quantitative form of lemma we import estimates from $[2]^a$

^a[BÉNÉTEAU, CONDORI, LIAW, SECO, AND SOLA, 2015]

Preliminaries 000000000

Proof of main result continues...

(⇐) Let $F \in M_{k \times k}(\mathbb{C}\langle x \rangle)$ be nonsingular in \mathfrak{B}^d .

We can assume, without loss of generality, that F(0) = I.

BIG IDEA: Using Linearization trick [3]³ we have that $F \sim_{\text{sta}} L_A(x)$ where $L_A(x)$ is a monic linear pencil.

³[Helton, Klep, Volcic, 2018]

Proof of main result

We have that $F \sim_{\text{sta}} L_A(x)$ where $L_A(x)$ is a monic linear pencil. So $L_A(x)$ is nonsingular in \mathfrak{B}^d .

Proposition 4.1, [1]⁴ implies that outer spectral radius of A, $\rho(A) \leq 1$ where it is defined as follows:

Outer spectral radius $\rho(X)$: Let $n \in \mathbb{N}$ and $X \in M_{n \times n}(\mathbb{C})^d$ we have the associated completely positive map on $M_{n \times n}$ as

$$\Psi_X(T) = \sum_{j=1}^d X_j T X_j^*.$$

Then **outer spectral radius** is $\rho(X) := \lim_{k\to\infty} \|\Psi_X^k(I)\|^{1/2k}$.

⁴[Jury, Martin, Shamovich, 2021]

Main Theorem

Proof of main result

Proposition 4.1, [1] implies that joint spectral radius of A, $\rho(A) \leq 1$.

Proof of main result

Proposition 4.1, [1] implies that joint spectral radius of A, $\rho(A) \leq 1$. Now it follows from Burnside's theorem, any monic linear pencil is similar to a block upper-triangular linear pencil of the form:

$$\begin{bmatrix} L_1(\mathbf{x}) & * & * & \dots & * \\ 0 & L_2(\mathbf{x}) & * & \dots & * \\ 0 & 0 & L_3(\mathbf{x}) & \dots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & L_{\ell}(\mathbf{x}) \end{bmatrix}$$

where for every k, linear pencils, $L_k = I$ or L_k is an irreducible. Say for each k, $L_k(\mathbf{x}) = I - \bar{A}^{(k)}\mathbf{x}$ where $\bar{A}^{(k)} = (\bar{A}_1^{(k)} \bar{A}_2^{(k)} \cdots \bar{A}_d^{(k)})$. That is, $L_k(\mathbf{x}) = I - \sum_{j=1}^d \bar{A}_j^{(k)} \mathbf{x}_j$.

Preliminaries

Proof of Main Result

Thus from above we get that, for each k, $\rho(\bar{A}^{(k)}) \leq 1$.

Hence for each k, $\bar{A}^{(k)}$ is irreducible with spectral radius ≤ 1 .

⁵[Salomon, Shalit, Shamovich, 2020]

Proof of Main Result

Thus from above we get that, for each k, $\rho(\bar{A}^{(k)}) \leq 1$.

Hence for each k, $\overline{A}^{(k)}$ is irreducible with spectral radius ≤ 1 .

From [4]⁵, it follows that for each k, $\overline{A}^{(k)}$ is similar to a column contraction.

Let us say that $\bar{A}^{(k)} \sim M^{(k)}$ where for $1 \le k \le l$, $M^{(k)}$ is a column contraction.

⁵[Salomon, Shalit, Shamovich, 2020]

Preliminaries

Main Theorem

Proof of Main Result

Finally we get that our *F* is stably associated to the following block upper-triangular form:

$$F \sim_{\text{sta}} \begin{bmatrix} I - M^{(1)}(\mathbf{x}) & * & * & \dots & * \\ 0 & I - M^{(2)}(\mathbf{x}) & * & \dots & * \\ 0 & 0 & I - M^{(3)}(\mathbf{x}) & \dots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & I - M^{(\ell)}(\mathbf{x}) \end{bmatrix}$$

where $M^{(k)}$ is a column contraction.

Preliminaries

Proof of Main Result

Finally we get that our *F* is stably associated to the following block upper-triangular form:

$$F \sim_{\text{sta}} \begin{bmatrix} I - M^{(1)}(\mathbf{x}) & * & * & \cdots & * \\ 0 & I - M^{(2)}(\mathbf{x}) & * & \cdots & * \\ 0 & 0 & I - M^{(3)}(\mathbf{x}) & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & I - M^{(\ell)}(\mathbf{x}) \end{bmatrix} = G$$

where $M^{(k)}$ is a column contraction.

Now we are going to prove our result via induction on ℓ just for this monic linear pencil and that would suffice due to the following lemma:

Preliminaries

Another Lemma

Main Theorem

Lemma

If $F \sim_{\mathrm{sta}} G$ then

$$||p_n F - 1||^2 \to 0$$
 iff $||q_n G - 1||^2 \to 0$.

(with comparable rate of decay.)

Preliminaries

Lemma

If $F \sim_{\mathrm{sta}} G$ then

$$||p_n F - 1||^2 \to 0$$
 iff $||q_n G - 1||^2 \to 0$.

(with comparable rate of decay.)

We prove our result via induction on ℓ that is, we prove that there exists a matrix polynomial $g^{(\ell)}$ such that $||g^{(\ell)}G - 1|| < \epsilon$.

Preliminaries

Main Theorem

Proof of Main Result

For $\ell=$ 2, let us assume

$$F \sim_{\text{sta}} G = \begin{bmatrix} I - M^{(1)}(\mathbf{x}) & Y(\mathbf{x}) \\ 0 & I - M^{(2)}(\mathbf{x}) \end{bmatrix}$$

where for $k = 1, 2, M^{(k)}$ is a column contraction.

Consider the polynomial matrix, $g = \begin{pmatrix} p & r \\ 0 & q \end{pmatrix}$ where p, r, q are polynomials of any degree. Then

$$gG = \begin{pmatrix} p(x)(I - M^{(1)}(x)) & -p(x)Y(x) + r(x)(I - M^{(2)}(x)) \\ 0 & q(x)(I - M^{(2)}(x)) \end{pmatrix}$$

Preliminaries

Proof of Main Result

Then

$$gG(\mathbf{x}) = \begin{pmatrix} p(\mathbf{x})(I - M^{(1)}(\mathbf{x})) & -p(\mathbf{x})Y(\mathbf{x}) + r(\mathbf{x})(I - M^{(2)}(\mathbf{x})) \\ 0 & q(\mathbf{x})(I - M^{(2)}(\mathbf{x})) \end{pmatrix}$$

From the Lemma, $I - M^{(1)}(\mathbb{x})$ is cyclic in $M_{k \times k}(\mathbb{C}) \otimes \mathcal{F}_d$, so \exists a matrix polynomial, $p(\mathbb{x})$ such that $p(\mathbb{x})(I - M^{(1)}(\mathbb{x}))$ can be made close to I.

Similarly, $(I - M^{(2)}(\mathbb{x}))$ is cyclic in $M_{k \times k}(\mathbb{C}) \otimes \mathcal{F}_d$ we can find: $q(\mathbb{x})$ and $r(\mathbb{x})$ such that $q(\mathbb{x})(I - M^{(2)}(\mathbb{x}))$ can be made close to I; $r(\mathbb{x})(I - M^{(2)}(\mathbb{x}))$ can be made close to $p(\mathbb{x})Y(\mathbb{x})$.

Preliminaries

Main Theorem

Proof of Main Result

Thus, given an
$$\epsilon > 0$$
, $\exists \begin{bmatrix} p & r \\ 0 & q \end{bmatrix}$ such that
$$\left\| \begin{bmatrix} p & r \\ 0 & q \end{bmatrix} \begin{bmatrix} I - M^{(1)}(\mathbf{x}) & Y(\mathbf{x}) \\ 0 & I - M^{(2)}(\mathbf{x}) \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\|_{F}^{2} < \epsilon.$$

Then the rest of the proof is just induction on the number of diagonal blocks in the matrix, ℓ .

We are done.

Preliminaries

Open Questions

So we have proved that

$$\|P_n(x)F(x)-I\|_2^2 \lesssim \frac{1}{n^p}$$

where $p = \frac{1}{3^{\ell-1}}$.

Questions which have not been answered yet:

- 1. Is this *p* uniform?
- 2. Like the classical setting, is it $O(\frac{1}{n})$?
- 3. Can we prove a similar result for a rational nc function as well?

Main Theorem

- M. T. Jury, R. T. W. Martin, and E. Shamovich, "Non-commutative rational functions in the full fock space," 2020.
- C. Bénéteau, A. A. Condori, C. Liaw, D. Seco, and A. A. Sola, "Cyclicity in Dirichlet-type spaces and extremal polynomials," *J. Anal. Math.*, vol. 126, pp. 259–286, 2015.
- J. W. Helton, I. Klep, and J. Volčič, "Geometry of free loci and factorization of noncommutative polynomials," *Adv. Math.*, vol. 331, pp. 589–626, 2018. [Online]. Available: https://doi.org/10.1016/j.aim.2018.04.007
- G. Salomon, O. M. Shalit, and E. Shamovich, "Algebras of noncommutative functions on subvarieties of the noncommutative ball: The bounded and completely bounded isomorphism problem," *Journal of Functional Analysis*, vol. 278, no. 7, p. 108427, 2020. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0022123619304203