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Optimal Polynomial Approximants (opa’s)

Classical Setting
For f ∈ H2(D), we say a polynomial pn of degree at most n is an optimal approximant of order n
if pn minimizes

‖pf − 1‖H2

for p ∈ Pn wherePn is the set of all polynomials of degree at most n.

Non commutative Setting
For an nc function, f in d noncommuting arguments, we find an nc polynomial pn, of degree at
most n, to minimize

‖pf − 1‖Fd

overPn, the set of all polynomials of total degree at most n.
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Classical H2(D) setting

Due to Beurling: for f ∈ H2(D)

‖pnf − 1‖H2 → 0 as n→∞

iff

f is an outer function.

For a polynomial function, f
f is an outer function

iff

f (z) 6= 0 in the disk |z| < 1.
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Classical H2(D) setting
So, for polynomial f ∈ H2(D):
‖pnf − 1‖H2 → 0 as n→∞ iff f (z) 6= 0 in the disk |z| < 1.

A sketch:

Let us first consider f (z) = 1− z. (Or, 1− αz for |α| ≤ 1)
Consider qn := 1 + z + z2 + · · ·+ zn. Then 1 ∈ {p(z)f (z)}‖·‖ since

I (1 + z + z2 + · · ·+ zn)(1− z) → 1 pointwise in D, and
I supn‖1− zn+1‖ <∞.

Thus 1 ∈ {p(z)f (z)}wk
and hence 1 ∈ {p(z)f (z)}‖·‖.

Rest follows by induction on the factors of the polynomial(with no zeros onD).
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In the Non-commutative(nc) setting

Main Theorem

For an nc polynomial f ,

‖pnf − 1‖2
Fd
→ 0

if and only if

det(f ) 6= 0 in row-ball.

Remark: Main theorem gives a new proof of the cyclicity theorem in [1]1 with an estimate on
the rate of decay.

1[Jury, Martin, Shamovich, 2021]
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Quantitative Cyclicity

Classically2, we have :
f is an outer polynomial then ‖pnf − 1‖2

H2 = O( 1
n ).

We now prove that:

Noncommutative case:
f is an nc polynomial nonsingular on the row ball then ‖pnf − 1‖2

Fd
= O( 1

np ) for some
p > 0 depending on f .

2[[2]BÉNÉTEAU, CONDORI, LIAW, SECO, AND SOLA, 2015]
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Fock Space

Definition
Letx = {x1, . . . , xd} be freely noncommuting (abbreviated as nc) indeterminates.

The free monoid 〈x〉 is called the word set in the letters x1, . . . , xd with∅ representing the
empty word.

If w ∈ 〈x〉 and w = xi1 . . . xim , then the length of w, |w| = m while |∅| = 0.

LetC〈x〉 denote the free algebra. Define an inner product by declaring {w}w∈C〈x〉
orthonormal.

The completion ofC〈x〉with respect to the inner product gives usFd, the Fock space on d
letters.
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Fock Space

Definition
Concretely,

Fd =

∑
w∈〈x〉

aww :
∑

w∈〈x〉

|aw|2 <∞

.
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Shift Operators

Definition
The left d-shift is the tuple of operators L = (L1, . . . , Ld) where each

Li : Fd → Fd

is given by
Li : f 7→ xif .

We similarly define the right d-shift.
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Cyclic function

Analogous to the notion of cyclicity in Hardy space:

Definition
A function f ∈ Fd is cyclic for the left d-shift if the set

{pf : p ∈ C〈x〉}

is dense inFd.
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Frobenius-Fock norm
Definition
For any k, ` ≥ 1, we define the Frobenius norm on Mk×`(C) by

‖A‖F,k×` :=

√√√√ k∑
i=1

∑̀
j=1

|Ai,j|2,

where A = (Ai,j)
k,`
i,j=1 ∈ Mk×`(C).

Thus Frobenius-Fock norm on Mk×`(Fd) is defined by

‖f‖F :=

√∑
w∈〈x〉

‖Aw‖2
F,k×`

where f (x) =
∑

w∈〈x〉 Aww ∈ Mk×`(Fd).
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Row ball

Definition
We define ‖A‖row := ‖A1A∗1 + · · ·+ AdA∗d‖

1/2
op for A = (A1, · · · , Ad) n× n matrices.

ThenBd
n is the set of all A with ‖A‖row < 1.

The setBd :=
⊔∞

n=1 B
d
n, which is closed under direct sums and conjugation by unitaries, is

called the row ball.

If ‖A‖row ≤ 1 then it is row contraction and if ‖A‖row < 1 then it is a strict row contraction.

Analogously, we have column contraction and strict column contraction.
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Linear Pencil

Definition
An m× ` nc linear pencil (in d indeterminates) is an expression of the form

LA(x) = A0 + Ax

where Ax = A1x1 + · · · + Adxd. If A0 = I then we call LA(x) a monic linear pencil.

Definition
A matrix tuple A = (A1, . . . , Ad) ∈ Mm(C)d is irreducible if

Mm(C) = {p(A) : p ∈ C〈x〉}.

The monic linear pencil LA is irreducible if A is irreducible.
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Stable Associativity
Definition
Given A ∈ Mk×k(C〈x〉) and B ∈ M`×`(C〈x〉).
We say A and B are stably associated if

∃N∈ Z+ and P,Q ∈ GLN(C〈x〉) such that

P
(

A
I

)
Q =

(
B

I

)
.

Notation:

A ∼sta B.
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Free Zero Locus
Definition
If F ∈ Mk×k(C〈x〉), then

Zn(F) =
{

X ∈ Mn(C)d : det(F(X)) = 0
}
,

and
Z(F) :=

⊔
n≥1

Zn(F).

The setZ(F) is the free zero locus of F.

Observe:

If F ∼sta G then Z(F) = Z(G).
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Main Result
Theorem
For F ∈ Mk×k ⊗ C〈x〉,

‖PnF − 1‖2 → 0

if and only if

det(F) 6= 0 on Bd.

In particular,
Say F is nonsingular in the row ball and F is a product of exactly ` atomic factors,
then the opa’s, Pn, for F satisfy

‖Pn(x)F(x)− I‖2
2 .

1
np

where p = 1
3`−1 .
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Main Result
Theorem
For F ∈ Mk×k ⊗ C〈x〉,

‖pnF − 1‖2 → 0

if and only if

det(F) 6= 0 on Bd.

Proof.

One direction (⇒): easy.

For the converse (⇐), we need the following lemma.

21 / 39



Motivation Preliminaries Main Theorem

Main Result
Theorem
For F ∈ Mk×k ⊗ C〈x〉,

‖pnF − 1‖2 → 0

if and only if

det(F) 6= 0 on Bd.

Proof.

One direction (⇒): easy.

For the converse (⇐), we need the following lemma.
22 / 39



Motivation Preliminaries Main Theorem

The Lemma

Lemma

Assume that M is column contraction, i.e., ‖M‖col ≤ 1,

then I−Mx is cyclic in Mk×k(C)⊗Fd.

In fact, ∃ 1-variable polynomials, πn of degree n so that:

‖πn(Mx)‖∞ . n

and
‖πn(Mx)(1−Mx)− 1‖2

2 .
1
n
.
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The Lemma
Proof.
A (qualitative) sketch.

For F(x) = I−Mx ∈ Mk×k(C)⊗Fd, ‖M‖col ≤ 1, following are true:

1. (I + Mx + · · ·+ (Mx)n)(I−Mx)→ I, pointwise inBd.
2. supn‖I− (Mx)n‖F <∞.

And done.

Note. For quantitative form of lemma we import estimates from [2]a

a[BÉNÉTEAU, CONDORI, LIAW, SECO, AND SOLA, 2015]
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Proof of main result continues...

(⇐) Let F ∈ Mk×k(C〈x〉) be nonsingular inBd.

We can assume, without loss of generality, that F(0) = I.

BIG IDEA: Using Linearization trick [3]3 we have that F ∼sta LA(x) where LA(x) is a monic
linear pencil.

3[Helton, Klep, Volcic, 2018]
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Proof of main result

We have that F ∼sta LA(x) where LA(x) is a monic linear pencil.
So LA(x) is nonsingular inBd.

Proposition 4.1, [1]4 implies that outer spectral radius of A, ρ(A) ≤ 1 where it is defined as
follows:

Outer spectral radius ρ(X): Let n ∈ N and X ∈ Mn×n(C)d we have the associated completely
positive map on Mn×n as

ΨX(T) =
d∑

j=1

XjTX∗j .

Then outer spectral radius is ρ(X) := limk→∞ ‖Ψk
X(I)‖1/2k.

4[Jury, Martin, Shamovich, 2021]
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Proof of main result
Proposition 4.1, [1] implies that joint spectral radius of A, ρ(A) ≤ 1.

Now it follows from Burnside’s theorem, any monic linear pencil is similar to a block
upper-triangular linear pencil of the form:

L1(x) ∗ ∗ . . . ∗
0 L2(x) ∗ . . . ∗
0 0 L3(x) . . . ∗
...

...
...

. . .
...

0 0 0 . . . L`(x)


where for every k, linear pencils, Lk = I or Lk is an irreducible.
Say for each k, Lk(x) = I− Ā(k)

x where Ā(k) = (Ā(k)
1 Ā(k)

2 · · · Ā(k)
d ). That is,

Lk(x) = I−
∑d

j=1 Ā(k)
j xj.
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Proof of Main Result

Thus from above we get that, for each k, ρ(Ā(k)) ≤ 1.

Hence for each k, Ā(k) is irreducible with spectral radius≤ 1.

From [4]5, it follows that for each k, Ā(k) is similar to a column contraction.

Let us say that Ā(k) ∼ M(k) where for 1 ≤ k ≤ l, M(k) is a column contraction.

5[Salomon, Shalit, Shamovich, 2020]
29 / 39



Motivation Preliminaries Main Theorem

Proof of Main Result

Thus from above we get that, for each k, ρ(Ā(k)) ≤ 1.
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From [4]5, it follows that for each k, Ā(k) is similar to a column contraction.
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Proof of Main Result

Finally we get that our F is stably associated to the following block upper-triangular form:

F ∼sta


I−M(1)(x) ∗ ∗ . . . ∗

0 I−M(2)(x) ∗ . . . ∗
0 0 I−M(3)(x) . . . ∗
...

...
...

. . .
...

0 0 0 . . . I−M(`)(x)


where M(k) is a column contraction.
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Proof of Main Result

Finally we get that our F is stably associated to the following block upper-triangular form:

F ∼sta


I−M(1)(x) ∗ ∗ . . . ∗

0 I−M(2)(x) ∗ . . . ∗
0 0 I−M(3)(x) . . . ∗
...

...
...

. . .
...

0 0 0 . . . I−M(`)(x)

 = G

where M(k) is a column contraction.

Now we are going to prove our result via induction on ` just for this monic linear pencil and
that would suffice due to the following lemma:
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Another Lemma

Lemma

If F ∼sta G then

‖pnF − 1‖2 → 0 iff ‖qn G− 1‖2 → 0.

(with comparable rate of decay.)

We prove our result via induction on ` that is, we prove that there exists a matrix polynomial
g(`) such that ||g(`)G− 1|| < ε.
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Proof of Main Result

For ` = 2, let us assume

F ∼sta G =

[
I−M(1)(x) Y(x)

0 I−M(2)(x)

]
where for k = 1, 2, M(k) is a column contraction.

Consider the polynomial matrix, g =

(
p r
0 q

)
where p, r, q are polynomials of any degree.

Then

gG =

(
p(x)(I−M(1)(x)) −p(x)Y(x) + r(x)(I−M(2)(x))

0 q(x)(I−M(2)(x))

)
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Proof of Main Result

Then

gG(x) =

(
p(x)(I−M(1)(x)) −p(x)Y(x) + r(x)(I−M(2)(x))

0 q(x)(I−M(2)(x))

)

From the Lemma, I−M(1)(x) is cyclic in Mk×k(C)⊗Fd, so∃ a matrix polynomial, p(x) such
that p(x)(I−M(1)(x)) can be made close to I.

Similarly, (I−M(2)(x)) is cyclic in Mk×k(C)⊗Fd we can find: q(x) and r(x) such that
q(x)(I−M(2)(x)) can be made close to I;
r(x)(I−M(2)(x)) can be made close to p(x)Y(x).
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Proof of Main Result

Thus, given an ε > 0, ∃
[

p r
0 q

]
such that

∥∥∥ [p r
0 q

] [
I−M(1)(x) Y(x)

0 I−M(2)(x)

]
−
[

1 0
0 1

] ∥∥∥2

F
< ε.

Then the rest of the proof is just induction on the number of diagonal blocks in the matrix, `.

We are done.
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Open Questions

So we have proved that
‖Pn(x)F(x)− I‖2

2 .
1

np

where p = 1
3`−1 .

Questions which have not been answered yet:
1. Is this p uniform?
2. Like the classical setting, is it O( 1

n )?
3. Can we prove a similar result for a rational nc function as well?
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