Interpolating sequences for pairs of kernels

Georgios Tsikalas

Washington University in St. Louis

University of Florida Analysis and Probability Seminar

October 21, 2022

Georgios Tsikalas

Interpolating sequences for pairs of kernels

UF Analysis Seminar

Interpolating sequences for H^{∞}

Let

$H^{\infty} = \{f : \mathbb{D} \to \mathbb{C} : f \text{ is analytic and bounded}\}.$

Interpolating sequences for H^∞

Let

$$H^{\infty} = \{f : \mathbb{D} \to \mathbb{C} : f \text{ is analytic and bounded}\}.$$

Definition

A sequence $\{z_n\}$ in \mathbb{D} is interpolating for H^{∞} if for every sequence $\{w_n\} \in \ell^{\infty}$, there exists $f \in H^{\infty}$ such that

$$f(z_n) = w_n, \quad \forall n.$$

Write $\{z_n\}$ satisfies (IS).

A sequence $\{z_n\}$ in \mathbb{D}

э

A sequence $\{z_n\}$ in \mathbb{D} (WS) is weakly separated if there exists $\delta > 0$ such that,

$$d(z_n, z_m) := \left| rac{z_n - z_m}{1 - \overline{z_n} z_m}
ight| > \delta, \quad ext{for all } m
eq n,$$

< 1 k

A B > A B >

A sequence $\{z_n\}$ in \mathbb{D}

(WS) is weakly separated if there exists $\delta > 0$ such that,

$$d(z_n, z_m) := \left| rac{z_n - z_m}{1 - \overline{z_n} z_m}
ight| > \delta, \quad ext{for all } m
eq n,$$

(CM) satisfies the Carleson measure condition if there exists M > 0 such that

$$\sum_j (1-|z_j|^2) |f(z_j)|^2 \leq M \int_{\partial \mathbb{D}} |f|^2 dm, \quad orall f \in \mathbb{C}[z],$$

i.e. $\mu = \sum_j (1 - |z_j|^2) \delta_{z_j}$ is a Carleson measure on \mathbb{D} .

A sequence $\{z_n\}$ in \mathbb{D}

(WS) is weakly separated if there exists $\delta > 0$ such that,

$$d(z_n, z_m) := \left| rac{z_n - z_m}{1 - \overline{z_n} z_m}
ight| > \delta, \quad ext{for all } m
eq n,$$

(CM) satisfies the Carleson measure condition if there exists M > 0 such that

$$\sum_j (1-|z_j|^2)|f(z_j)|^2 \leq M \int_{\partial \mathbb{D}} |f|^2 dm, \quad orall f \in \mathbb{C}[z],$$

i.e. $\mu = \sum_{j} (1 - |z_j|^2) \delta_{z_j}$ is a Carleson measure on \mathbb{D} .

Theorem (Carleson, 1958)

For a sequence $\{z_n\}$ in \mathbb{D} , (IS) \Leftrightarrow (WS) + (CM).

Georgios Tsikalas

Let
$$H^2 = \Big\{ f = \sum_{n=0}^{\infty} a_n z^n \in Hol(\mathbb{D}) : ||f||^2 = \sum_{n=0}^{\infty} |a_n|^2 < \infty \Big\}.$$

3

Let
$$H^2 = \Big\{ f = \sum_{n=0}^{\infty} a_n z^n \in Hol(\mathbb{D}) : ||f||^2 = \sum_{n=0}^{\infty} |a_n|^2 < \infty \Big\}.$$

This is a reproducing kernel Hilbert space on \mathbb{D} : For all $f \in H^2$ and $w \in \mathbb{D}$,

$$f(w) = \langle f, k_w \rangle_{H^2},$$

3 × 4 3 ×

< □ > < /□ >

Let
$$H^2 = \Big\{ f = \sum_{n=0}^{\infty} a_n z^n \in Hol(\mathbb{D}) : ||f||^2 = \sum_{n=0}^{\infty} |a_n|^2 < \infty \Big\}.$$

This is a reproducing kernel Hilbert space on \mathbb{D} : For all $f \in H^2$ and $w \in \mathbb{D}$,

$$f(w) = \langle f, k_w \rangle_{H^2},$$

where

$$k(z,w) = k_w(z) = rac{1}{1-z\overline{w}}, \ \ z,w\in\mathbb{D}.$$

A B < A B </p>

< 47 ▶

Let
$$H^2 = \Big\{ f = \sum_{n=0}^{\infty} a_n z^n \in Hol(\mathbb{D}) : ||f||^2 = \sum_{n=0}^{\infty} |a_n|^2 < \infty \Big\}.$$

This is a reproducing kernel Hilbert space on \mathbb{D} : For all $f \in H^2$ and $w \in \mathbb{D}$,

$$f(w) = \langle f, k_w \rangle_{H^2},$$

where

$$k(z,w) = k_w(z) = \frac{1}{1-z\overline{w}}, \quad z,w \in \mathbb{D}.$$

The multiplier algebra of H^2 is

$$\mathsf{Mult}(H^2) = \{ \phi : \mathbb{D} \to \mathbb{C} : \phi \cdot f \in H^2 \text{ for all } f \in H^2 \},$$

equipped with $||\phi||_{\mathsf{Mult}(H^2)} := ||M_{\phi}||_{\mathcal{B}(H^2)},$ where $M_{\phi}(f) = \phi \cdot f.$

A B < A B </p>

< 47 ▶

Let
$$H^2 = \Big\{ f = \sum_{n=0}^{\infty} a_n z^n \in Hol(\mathbb{D}) : ||f||^2 = \sum_{n=0}^{\infty} |a_n|^2 < \infty \Big\}.$$

This is a reproducing kernel Hilbert space on \mathbb{D} : For all $f \in H^2$ and $w \in \mathbb{D}$,

$$f(w) = \langle f, k_w \rangle_{H^2},$$

where

$$k(z,w) = k_w(z) = rac{1}{1-z\overline{w}}, \ \ z,w\in\mathbb{D}.$$

The multiplier algebra of H^2 is

$$\mathsf{Mult}(\mathsf{H}^2) = \{\phi : \mathbb{D} \to \mathbb{C} : \phi \cdot f \in \mathsf{H}^2 \text{ for all } f \in \mathsf{H}^2\},\$$

equipped with $||\phi||_{Mult(H^2)} := ||M_{\phi}||_{B(H^2)}$, where $M_{\phi}(f) = \phi \cdot f$.

Observation

 $Mult(H^2) = H^{\infty}$ with equality of norms.

Shapiro-Shields (1962): Different proof of Carleson's theorem, using:

3

Shapiro-Shields (1962): Different proof of Carleson's theorem, using:

Lemma (Shapiro-Shields)

A sequence $\{z_n\}$ in \mathbb{D} is interpolating for H^{∞} if and only if the operator

$$f \mapsto \left\{ f(z_n)\sqrt{1-|z_n|^2} \right\}_n = \left\{ \frac{f(z_n)}{||k_{z_n}||} \right\}_n$$

maps H^2 onto ℓ^2 .

Shapiro-Shields (1962): Different proof of Carleson's theorem, using:

Lemma (Shapiro-Shields)

A sequence $\{z_n\}$ in \mathbb{D} is interpolating for H^{∞} if and only if the operator

$$f\mapsto \left\{f(z_n)\sqrt{1-|z_n|^2}\right\}_n = \left\{\frac{f(z_n)}{||k_{z_n}||}\right\}_n$$

maps H^2 onto ℓ^2 .

Bishop, Marshall-Sundberg (1994): Used this idea to characterize interpolating sequences for the multiplier algebra of the Dirichlet space

$$\mathcal{D} = \{ f \in \mathsf{Hol}(\mathbb{D}) : f' \in L^2(\mathbb{D}) \}.$$

Shapiro-Shields (1962): Different proof of Carleson's theorem, using:

Lemma (Shapiro-Shields)

A sequence $\{z_n\}$ in \mathbb{D} is interpolating for H^{∞} if and only if the operator

$$f\mapsto \left\{f(z_n)\sqrt{1-|z_n|^2}\right\}_n = \left\{\frac{f(z_n)}{||k_{z_n}||}\right\}_n$$

maps H^2 onto ℓ^2 .

Bishop, Marshall-Sundberg (1994): Used this idea to characterize interpolating sequences for the multiplier algebra of the Dirichlet space

$$\mathcal{D} = \{ f \in \mathsf{Hol}(\mathbb{D}) : f' \in L^2(\mathbb{D}) \}.$$

Key property

 H^2 and \mathcal{D} are complete Pick spaces.

Nevanlinna-Pick Interpolation

Theorem (Pick 1916, Nevanlinna 1919)

Let $z_1, z_2, \ldots, z_n \in \mathbb{D}$ and $w_1, w_2, \ldots, w_n \in \mathbb{C}$. There exists $\phi \in Mult(H^2) = H^{\infty}$ with

 $\phi(z_i) = w_i ext{ for } 1 \leq i \leq n ext{ and } ||\phi||_{\mathsf{Mult}(H^2)} \leq 1$

if and only if

Nevanlinna-Pick Interpolation

Theorem (Pick 1916, Nevanlinna 1919)

Let $z_1, z_2, \ldots, z_n \in \mathbb{D}$ and $w_1, w_2, \ldots, w_n \in \mathbb{C}$. There exists $\phi \in Mult(H^2) = H^{\infty}$ with

 $\phi(z_i) = w_i ext{ for } 1 \leq i \leq n ext{ and } ||\phi||_{\mathsf{Mult}(H^2)} \leq 1$

if and only if the matrix

$$\left[\frac{1-w_i\overline{w_j}}{1-z_i\overline{z_j}}\right]_{i,j=1}^n = \left[(1-w_i\overline{w_j})k(z_i,z_j)\right]_{i,j=1}^n$$

is positive semi-definite.

Nevanlinna-Pick Interpolation

Theorem (Pick 1916, Nevanlinna 1919)

Let $z_1, z_2, \ldots, z_n \in \mathbb{D}$ and $w_1, w_2, \ldots, w_n \in \mathbb{C}$. There exists $\phi \in Mult(H^2) = H^{\infty}$ with

 $\phi(z_i) = w_i ext{ for } 1 \leq i \leq n ext{ and } ||\phi||_{\mathsf{Mult}(H^2)} \leq 1$

if and only if the matrix

$$\left[\frac{1-w_i\overline{w_j}}{1-z_i\overline{z_j}}\right]_{i,j=1}^n = \left[(1-w_i\overline{w_j})k(z_i,z_j)\right]_{i,j=1}^n$$

is positive semi-definite. Recall that $k(z, w) = (1 - z\overline{w})^{-1}$ is the reproducing kernel of H^2 .

Let \mathcal{H}_k be a reproducing kernel Hilbert space on a set X with kernel k.

< 1 k

4 E b

Let \mathcal{H}_k be a reproducing kernel Hilbert space on a set X with kernel k. Given $z_1, \ldots, z_n \in X$ and $w_1, \ldots, w_n \in \mathbb{C}$, does there exist $\phi \in \text{Mult}(\mathcal{H}_k)$ with

 $\phi(z_i) = w_i \text{ for } 1 \leq i \leq n \text{ and } ||\phi||_{\mathsf{Mult}(\mathcal{H}_k)} \leq 1?$

(人間) トイヨト イヨト ニヨ

Let \mathcal{H}_k be a reproducing kernel Hilbert space on a set X with kernel k. Given $z_1, \ldots, z_n \in X$ and $w_1, \ldots, w_n \in \mathbb{C}$, does there exist $\phi \in Mult(\mathcal{H}_k)$ with

 $\phi(z_i) = w_i \text{ for } 1 \leq i \leq n \text{ and } ||\phi||_{\mathsf{Mult}(\mathcal{H}_k)} \leq 1?$

A necessary condition is that the matrix

$$\left[(1-w_i\overline{w}_j)k(z_i,z_j)\right]_{i,j=1}^n$$

is positive semi-definite.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let \mathcal{H}_k be a reproducing kernel Hilbert space on a set X with kernel k. Given $z_1, \ldots, z_n \in X$ and $w_1, \ldots, w_n \in \mathbb{C}$, does there exist $\phi \in Mult(\mathcal{H}_k)$ with

 $\phi(z_i) = w_i \text{ for } 1 \leq i \leq n \text{ and } ||\phi||_{\mathsf{Mult}(\mathcal{H}_k)} \leq 1?$

A necessary condition is that the matrix

$$\left[(1-w_i\overline{w}_j)k(z_i,z_j)\right]_{i,j=1}^n$$

is positive semi-definite.

Definition

• \mathcal{H}_k is called a Pick space if this condition is also sufficient.

< 17 >

Let \mathcal{H}_k be a reproducing kernel Hilbert space on a set X with kernel k. Given $z_1, \ldots, z_n \in X$ and $w_1, \ldots, w_n \in \mathbb{C}$, does there exist $\phi \in \text{Mult}(\mathcal{H}_k)$ with

 $\phi(z_i) = w_i \text{ for } 1 \leq i \leq n \text{ and } ||\phi||_{\mathsf{Mult}(\mathcal{H}_k)} \leq 1?$

A necessary condition is that the matrix

$$\left[(1-w_i\overline{w}_j)k(z_i,z_j)\right]_{i,j=1}^n$$

is positive semi-definite.

Definition

- \mathcal{H}_k is called a Pick space if this condition is also sufficient.
- \mathcal{H}_k is called a complete Pick space if the analogue of this condition for matrix-valued functions is sufficient.

Georgios Tsikalas

Interpolating sequences for pairs of kernels

UF Analysis Seminar

< 17 ▶

• The Hardy space H^2 on \mathbb{D} is a complete Pick space.

э

- The Hardy space H^2 on $\mathbb D$ is a complete Pick space.
- The Bergman space $L^2_a = Hol(\mathbb{D}) \cap L^2(\mathbb{D})$ is not a Pick space.

- The Hardy space H^2 on $\mathbb D$ is a complete Pick space.
- The Bergman space $L^2_a = \operatorname{Hol}(\mathbb{D}) \cap L^2(\mathbb{D})$ is not a Pick space.
- (Agler) The Dirichlet space

$$\mathcal{D} = \{f \in \mathsf{Hol}(\mathbb{D}) : f' \in L^2(\mathbb{D})\}$$

with norm $||f||_{\mathcal{D}}^2 = ||f'||_{L^2(\mathbb{D})}^2 + ||f||_{H^2}^2$ is a complete Pick space.

- The Hardy space H^2 on $\mathbb D$ is a complete Pick space.
- The Bergman space $L^2_a = \operatorname{Hol}(\mathbb{D}) \cap L^2(\mathbb{D})$ is not a Pick space.
- (Agler) The Dirichlet space

$$\mathcal{D} = \{f \in \mathsf{Hol}(\mathbb{D}) : f' \in L^2(\mathbb{D})\}$$

with norm $||f||_{\mathcal{D}}^2 = ||f'||_{L^2(\mathbb{D})}^2 + ||f||_{H^2}^2$ is a complete Pick space.

• The Drury-Arveson space H_d^2 is the RKHS on \mathbb{B}_d , the open unit ball in \mathbb{C}^d , with reproducing kernel

$$k(z,w) = rac{1}{1-\langle z,w
angle} = rac{1}{1-\sum_{i=1}^d z_i \overline{w}_i}$$

 H_d^2 is a complete Pick space and is also universal among all complete Pick spaces (McCullough–Quiggin, Agler–McCarthy).

Let \mathcal{H}_k be a RKHS on a set X with kernel k. Also, let $\hat{k}_x := \frac{k_x}{||k_x||}$ denote the *normalized* kernel function at x.

Let \mathcal{H}_k be a RKHS on a set X with kernel k. Also, let $\hat{k}_x := \frac{k_x}{||k_x||}$ denote the *normalized* kernel function at x.

Definition

Define a metric^{*} on X by

$$d_k(z,w)=\sqrt{1-|\langle \hat{k}_z,\hat{k}_w
angle|^2}, \ \ z,w\in X.$$

Let \mathcal{H}_k be a RKHS on a set X with kernel k. Also, let $\hat{k}_x := \frac{k_x}{||k_x||}$ denote the *normalized* kernel function at x.

Definition

Define a metric^{*} on X by

$$d_k(z,w)=\sqrt{1-|\langle\hat{k}_z,\hat{k}_w
angle|^2}, \ \ z,w\in X.$$

 d_k measures how close the unit vectors \hat{k}_z, \hat{k}_w are to being parallel.

Let \mathcal{H}_k be a RKHS on a set X with kernel k. Also, let $\hat{k}_x := \frac{k_x}{||k_x||}$ denote the *normalized* kernel function at x.

Definition

Define a metric^{*} on X by

$$d_k(z,w)=\sqrt{1-|\langle\hat{k}_z,\hat{k}_w
angle|^2}, \ \ z,w\in X.$$

 d_k measures how close the unit vectors \hat{k}_z, \hat{k}_w are to being parallel.

Example

If $\mathcal{H}_k = H^2$, then

$$d_k(z,w) = \left| \frac{z-w}{1-\overline{z}w} \right|$$

is the pseudohyperbolic metric on \mathbb{D} .

・ロン ・雪と ・ヨと

3

Let \mathcal{H}_k be a RKHS on a set X with kernel k. A sequence $\{z_n\} \subset X$

3

Let \mathcal{H}_k be a RKHS on a set X with kernel k. A sequence $\{z_n\} \subset X$ (IS) is an interpolating sequence for $Mult(\mathcal{H}_k)$ if for every sequence $\{w_n\} \subset \ell^{\infty}$, there exists $\phi \in Mult(\mathcal{H}_k)$ with

$$\phi(z_n) = w_n$$
, for all $n \ge 1$.

Let \mathcal{H}_k be a RKHS on a set X with kernel k. A sequence $\{z_n\} \subset X$ (IS) is an interpolating sequence for $Mult(\mathcal{H}_k)$ if for every sequence $\{w_n\} \subset \ell^{\infty}$, there exists $\phi \in Mult(\mathcal{H}_k)$ with

$$\phi(z_n) = w_n$$
, for all $n \ge 1$.

(WS) is weakly separated by k if there exists $\delta > 0$ such that $d_k(z_n, z_m) > \delta$, for all $n \neq m$.

Let \mathcal{H}_k be a RKHS on a set X with kernel k. A sequence $\{z_n\} \subset X$ (IS) is an interpolating sequence for $Mult(\mathcal{H}_k)$ if for every sequence $\{w_n\} \subset \ell^{\infty}$, there exists $\phi \in Mult(\mathcal{H}_k)$ with

$$\phi(z_n) = w_n$$
, for all $n \ge 1$.

(WS) is weakly separated by k if there exists $\delta > 0$ such that $d_k(z_n, z_m) > \delta$, for all $n \neq m$.

(CM) satisfies the Carleson measure condition for k if there exists M > 0 such that

$$\sum_j rac{|f(z_j)|^2}{k(z_j,z_j)} \leq M ||f||^2_{\mathcal{H}_k}, ext{ for all } f \in \mathcal{H}_k,$$

i.e. $\mu := \sum_{j} \frac{1}{k(z_j, z_j)} \delta_{z_j}$ is a Carleson measure for \mathcal{H}_k .

Lemma

In every RKHS
$$\mathcal{H}_k$$
, (IS) \Rightarrow (WS) + (CM).

The converse assertion (WS) + (CM) \Rightarrow (IS)

A B M A B M

< 47 ▶

3

Lemma

In every RKHS
$$\mathcal{H}_k$$
, (IS) \Rightarrow (WS) + (CM).

The converse assertion (WS) + (CM) \Rightarrow (IS)

• (Carleson '58, Shapiro-Shields '62) holds in the Hardy space H^2 ;

< 47 ▶

A B A A B A

Lemma

In every RKHS
$$\mathcal{H}_k$$
, (IS) \Rightarrow (WS) + (CM).

The converse assertion (WS) + (CM) \Rightarrow (IS)

- (Carleson '58, Shapiro-Shields '62) holds in the Hardy space H²;
- fails, in general, in the Bergman space L_a^2 ;

4 3 5 4 3 5 5

Lemma

In every RKHS
$$\mathcal{H}_k$$
, (IS) \Rightarrow (WS) + (CM).

The converse assertion (WS) + (CM) \Rightarrow (IS)

- (Carleson '58, Shapiro-Shields '62) holds in the Hardy space H^2 ;
- fails, in general, in the Bergman space L_a^2 ;
- (Bishop, Marshall-Sundberg, '94) holds in the Dirichlet space \mathcal{D} ;

Lemma

In every RKHS
$$\mathcal{H}_k$$
, (IS) \Rightarrow (WS) + (CM).

The converse assertion (WS) + (CM) \Rightarrow (IS)

- (Carleson '58, Shapiro-Shields '62) holds in the Hardy space H^2 ;
- fails, in general, in the Bergman space L_a^2 ;
- (Bishop, Marshall-Sundberg, '94) holds in the Dirichlet space \mathcal{D} ;
- (Bøe, 2005) holds in every space on the unit ball \mathbb{B}_d with kernel

$$k(z,w)=rac{1}{(1-\langle z,w
angle)^lpha}, \hspace{1em}$$
 where $lpha\in(0,1);$

4 E N 4 E N

Lemma

In every RKHS
$$\mathcal{H}_k$$
, (IS) \Rightarrow (WS) + (CM).

The converse assertion (WS) + (CM) \Rightarrow (IS)

- (Carleson '58, Shapiro-Shields '62) holds in the Hardy space H^2 ;
- fails, in general, in the Bergman space L_a^2 ;
- (Bishop, Marshall-Sundberg, '94) holds in the Dirichlet space \mathcal{D} ;
- (Bøe, 2005) holds in every space on the unit ball \mathbb{B}_d with kernel

$$k(z,w)=rac{1}{(1-\langle z,w
angle)^lpha}, \hspace{1em} ext{where} \hspace{1em} lpha\in(0,1);$$

• (Aleman–Hartz–M^cCarthy–Richter, 2017) holds if \mathcal{H}_k is a complete Pick space!

A B M A B M

Theorem (Aleman–Hartz–M^cCarthy–Richter, 2017)

In every complete Pick space, (IS) \Leftrightarrow (WS) + (CM).

Theorem (Aleman–Hartz–M^cCarthy–Richter, 2017)

In every complete Pick space, (IS) \Leftrightarrow (WS) + (CM).

 Original proof used the solution to the Kadison-Singer problem by Marcus, Spielman and Srivastava (2013), which allows for the splitting of any {z_n} which satifies (CM) into a finite union of interpolating sequences.

Theorem (Aleman–Hartz–M^cCarthy–Richter, 2017)

In every complete Pick space, (IS) \Leftrightarrow (WS) + (CM).

- Original proof used the solution to the Kadison-Singer problem by Marcus, Spielman and Srivastava (2013), which allows for the splitting of any {z_n} which satifies (CM) into a finite union of interpolating sequences.
- New proof uses the column-row property:

Theorem (Hartz, 2020)

Assume \mathcal{H}_k is a complete Pick space and $\{\phi_n\} \subset \mathsf{Mult}(\mathcal{H}_k)$.

Theorem (Aleman–Hartz–M^cCarthy–Richter, 2017)

In every complete Pick space, (IS) \Leftrightarrow (WS) + (CM).

- Original proof used the solution to the Kadison-Singer problem by Marcus, Spielman and Srivastava (2013), which allows for the splitting of any {z_n} which satifies (CM) into a finite union of interpolating sequences.
- New proof uses the column-row property:

Theorem (Hartz, 2020)

Assume \mathcal{H}_k is a complete Pick space and $\{\phi_n\} \subset \mathsf{Mult}(\mathcal{H}_k)$. Then,

$$\left|\left|\begin{bmatrix} M_{\phi_1} & M_{\phi_2} & \cdots \end{bmatrix}\right|\right| \leq \left|\left|\begin{bmatrix} M_{\phi_1} \\ M_{\phi_2} \\ \vdots \end{bmatrix}\right|\right|.$$

Let \mathcal{H}_k and \mathcal{H}_ℓ be two RKHS on X with kernels k and ℓ , respectively.

< 47 ▶

< ∃⇒

Let \mathcal{H}_k and \mathcal{H}_ℓ be two RKHS on X with kernels k and ℓ , respectively. Define

$$\mathsf{Mult}(\mathcal{H}_k,\mathcal{H}_\ell):=\{\phi:X o\mathbb{C}\ :\ \phi\cdot f\in\mathcal{H}_\ell,\ orall f\in\mathcal{H}_k\}.$$

< 1 k

< ∃⇒

Let \mathcal{H}_k and \mathcal{H}_ℓ be two RKHS on X with kernels k and ℓ , respectively. Define

$$\mathsf{Mult}(\mathcal{H}_k,\mathcal{H}_\ell):=\{\phi:X o\mathbb{C}\ :\ \phi\cdot f\in\mathcal{H}_\ell,\ \forall f\in\mathcal{H}_k\}.$$

Example

Let $\mathcal{H}_k = H^2$ (Hardy space) and $\mathcal{H}_\ell = L_a^2$ (Bergman space). Since $H^2 \subset L_a^2$, we have

$$\mathsf{Mult}(H^2) = \mathsf{Mult}(H^2, H^2) \subset \mathsf{Mult}(H^2, L^2_a).$$

Georgios Tsikalas

Interpolating sequences for pairs of kernels

UF Analysis Seminar

(日)

Let \mathcal{H}_k and \mathcal{H}_ℓ be two RKHS on X with kernels k and ℓ , respectively. Define

$$\mathsf{Mult}(\mathcal{H}_k,\mathcal{H}_\ell):=\{\phi:X o\mathbb{C}\ :\ \phi\cdot f\in\mathcal{H}_\ell,\ orall f\in\mathcal{H}_k\}.$$

Example

Let $\mathcal{H}_k = H^2$ (Hardy space) and $\mathcal{H}_\ell = L_a^2$ (Bergman space). Since $H^2 \subset L_a^2$, we have

$$\mathsf{Mult}(H^2) = \mathsf{Mult}(H^2, H^2) \subset \mathsf{Mult}(H^2, L^2_a).$$

Actually, it is even true that

$$H^2 \subset \operatorname{Mult}(H^2, L^2_a).$$

 $Mult(H^2, L_a^2)$ was described by Stegenga (1980).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\mathsf{Mult}(\mathcal{H}_k,\mathcal{H}_\ell):=\{\phi:X\to\mathbb{C}\ :\ \phi\cdot f\in\mathcal{H}_\ell,\ \forall f\in\mathcal{H}_k\}.$$

Example

Let $\mathcal{H}_k = H^2$ (Hardy space) and $\mathcal{H}_\ell = L_a^2$ (Bergman space). Since $H^2 \subset L_a^2$, we have

$$\mathsf{Mult}(H^2) = \mathsf{Mult}(H^2, H^2) \subset \mathsf{Mult}(H^2, L^2_a).$$

Actually, it is even true that

$$H^2 \subset \operatorname{Mult}(H^2, L^2_a).$$

 $Mult(H^2, L_a^2)$ was described by Stegenga (1980).

Observation

If $\phi \in \mathsf{Mult}(\mathcal{H}_k, \mathcal{H}_\ell)$, then $|\phi(z)| \leq ||\phi||_{\mathsf{M}} \frac{||\ell_z||}{||k_z||}$, for all $z \in X$.

Interpolating sequences for pairs of kernels

Let \mathcal{H}_k and \mathcal{H}_ℓ be two RKHS on X with kernels k and ℓ , respectively.

Observation

$\text{If }\phi\in \text{Mult}(\mathcal{H}_k,\mathcal{H}_\ell)\text{, then }|\phi(z)|\leq ||\phi||_{\mathsf{M}}\frac{||\ell_z||}{||k_z||}, \ \, \text{for all }z\in X.$

Interpolating sequences for pairs of kernels

Let \mathcal{H}_k and \mathcal{H}_ℓ be two RKHS on X with kernels k and ℓ , respectively.

Observation

If
$$\phi \in \operatorname{Mult}(\mathcal{H}_k, \mathcal{H}_\ell)$$
, then $|\phi(z)| \leq ||\phi||_{\mathsf{M}} \frac{||\ell_z||}{||k_z||}$, for all $z \in X$.

Definition

A sequence $\{z_n\}$ in X is interpolating for $Mult(\mathcal{H}_k, \mathcal{H}_\ell)$ (write (IS)) if for all $\{w_n\} \in \ell^{\infty}$, there exists $\phi \in Mult(\mathcal{H}_k, \mathcal{H}_\ell)$ such that

$$\phi(z_n)=rac{||\ell_{z_n}||}{||k_{z_n}||}w_n, ext{ for all } n.$$

Interpolating sequences for pairs of kernels

Let \mathcal{H}_k and \mathcal{H}_ℓ be two RKHS on X with kernels k and ℓ , respectively.

Observation

If
$$\phi \in \operatorname{Mult}(\mathcal{H}_k, \mathcal{H}_\ell)$$
, then $|\phi(z)| \leq ||\phi||_{\mathsf{M}} \frac{||\ell_z||}{||k_z||}$, for all $z \in X$.

Definition

A sequence $\{z_n\}$ in X is interpolating for $\text{Mult}(\mathcal{H}_k, \mathcal{H}_\ell)$ (write (IS)) if for all $\{w_n\} \in \ell^{\infty}$, there exists $\phi \in \text{Mult}(\mathcal{H}_k, \mathcal{H}_\ell)$ such that

$$\phi(z_n) = \frac{||\ell_{z_n}||}{||k_{z_n}||} w_n, \text{ for all } n.$$

Lemma

If $\{z_n\} \subset X$ satisfies (IS), then it also satisfies (CM) for k and is (WS) by ℓ .

Georgios Tsikalas

Interpolating sequences for pairs of kernels

UF Analysis Seminar

15 / 24

Definition

Let k, ℓ be two kernels on X. We say that k is a factor of ℓ if ℓ/k is a kernel.

Definition

Let k, ℓ be two kernels on X. We say that k is a factor of ℓ if ℓ/k is a kernel. If k is also a complete Pick kernel, we say that it is a complete Pick factor of ℓ .

Definition

Let k, ℓ be two kernels on X. We say that k is a factor of ℓ if ℓ/k is a kernel. If k is also a complete Pick kernel, we say that it is a complete Pick factor of ℓ .

Example

Let $\mathcal{H}_k = H^2$ and $\mathcal{H}_\ell = L_a^2$. Then, k is a complete Pick factor of ℓ .

4 1 1 1 4 1 1 1

Definition

Let k, ℓ be two kernels on X. We say that k is a factor of ℓ if ℓ/k is a kernel. If k is also a complete Pick kernel, we say that it is a complete Pick factor of ℓ .

Example

Let $\mathcal{H}_k = H^2$ and $\mathcal{H}_\ell = L_a^2$. Then, k is a complete Pick factor of ℓ .

Question (Aleman–Hartz–M^cCarthy–Richter)

Suppose that k is a complete Pick factor of ℓ . Is it true that

(IS) wrt
$$\operatorname{Mult}(\mathcal{H}_k, \mathcal{H}_\ell) \Leftrightarrow (\operatorname{CM}) \text{ for } k + (\operatorname{WS}) \text{ by } \ell$$
 ?

- 4 回 ト 4 三 ト 4 三 ト

Definition

Let k, ℓ be two kernels on X. We say that k is a factor of ℓ if ℓ/k is a kernel. If k is also a complete Pick kernel, we say that it is a complete Pick factor of ℓ .

Example

Let $\mathcal{H}_k = H^2$ and $\mathcal{H}_\ell = L_a^2$. Then, k is a complete Pick factor of ℓ .

Question (Aleman–Hartz–M^cCarthy–Richter)

Suppose that k is a complete Pick factor of ℓ . Is it true that

(IS) wrt
$$\operatorname{Mult}(\mathcal{H}_k, \mathcal{H}_\ell) \Leftrightarrow (\operatorname{CM}) \text{ for } k + (\operatorname{WS}) \text{ by } \ell$$
?

Theorem (Aleman–Hartz–M^cCarthy–Richter, 2017)

The answer is yes if ℓ is a power of a complete Pick kernel.

Georgios Tsikalas

Interpolating sequences for pairs of kernels

Definition

Let ℓ be a kernel on X and $\{z_n\} \subset X$. Given $m \ge 2$, we say that $\{z_n\}$ is *m*-weakly separated by ℓ (write (*m*-WS)) if there exists $\delta > 0$ such that for every *m*-point subset $\{\mu_1, \ldots, \mu_m\} \subset \{z_n\}$ we have

Definition

Let ℓ be a kernel on X and $\{z_n\} \subset X$. Given $m \ge 2$, we say that $\{z_n\}$ is *m*-weakly separated by ℓ (write (*m*-WS)) if there exists $\delta > 0$ such that for every *m*-point subset $\{\mu_1, \ldots, \mu_m\} \subset \{z_n\}$ we have

$$d = {\sf dist}ig(\hat{\ell}_{\mu_1}, \ {\sf span}ig\{ \hat{\ell}_{\mu_2}, \dots, \hat{\ell}_{\mu_m} ig\} ig) \geq \delta.$$

Definition

Let ℓ be a kernel on X and $\{z_n\} \subset X$. Given $m \ge 2$, we say that $\{z_n\}$ is *m*-weakly separated by ℓ (write (*m*-WS)) if there exists $\delta > 0$ such that for every *m*-point subset $\{\mu_1, \ldots, \mu_m\} \subset \{z_n\}$ we have

$$d = \mathsf{dist}\big(\hat{\ell}_{\mu_1}, \ \mathsf{span}\big\{\hat{\ell}_{\mu_2}, \dots, \hat{\ell}_{\mu_m}\big\}\big) \geq \delta.$$

Observation: (2-WS) coincides with (WS).

Definition

Let ℓ be a kernel on X and $\{z_n\} \subset X$. Given $m \ge 2$, we say that $\{z_n\}$ is *m*-weakly separated by ℓ (write (*m*-WS)) if there exists $\delta > 0$ such that for every *m*-point subset $\{\mu_1, \ldots, \mu_m\} \subset \{z_n\}$ we have

$$d = \mathsf{dist}ig(\hat{\ell}_{\mu_1}, \; \mathsf{span}ig\{ \hat{\ell}_{\mu_2}, \dots, \hat{\ell}_{\mu_m} ig\} ig) \geq \delta.$$

Observation: (2-WS) coincides with (WS).

Example

Let
$$X = \{1, 2, 3\}, v_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T, v_2 = \begin{bmatrix} 0 & 1 \end{bmatrix}^T, v_3 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}^T$$

Definition

Let ℓ be a kernel on X and $\{z_n\} \subset X$. Given $m \ge 2$, we say that $\{z_n\}$ is *m*-weakly separated by ℓ (write (*m*-WS)) if there exists $\delta > 0$ such that for every *m*-point subset $\{\mu_1, \ldots, \mu_m\} \subset \{z_n\}$ we have

$$d = \mathsf{dist}ig(\hat{\ell}_{\mu_1}, \; \mathsf{span}ig\{ \hat{\ell}_{\mu_2}, \dots, \hat{\ell}_{\mu_m} ig\} ig) \geq \delta.$$

Observation: (2-WS) coincides with (WS).

Example

Let
$$X = \{1, 2, 3\}, v_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T, v_2 = \begin{bmatrix} 0 & 1 \end{bmatrix}^T, v_3 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}^T$$
.
Define $\ell : X \times X \to \mathbb{C}$ by

$$\ell(i,j) = \langle \mathbf{v}_i, \mathbf{v}_j \rangle_{\mathbb{C}^2}.$$

T

Definition

Let ℓ be a kernel on X and $\{z_n\} \subset X$. Given $m \ge 2$, we say that $\{z_n\}$ is *m*-weakly separated by ℓ (write (*m*-WS)) if there exists $\delta > 0$ such that for every *m*-point subset $\{\mu_1, \ldots, \mu_m\} \subset \{z_n\}$ we have

$$d = \mathsf{dist}ig(\hat{\ell}_{\mu_1}, \; \mathsf{span}ig\{ \hat{\ell}_{\mu_2}, \dots, \hat{\ell}_{\mu_m} ig\} ig) \geq \delta.$$

Observation: (2-WS) coincides with (WS).

Example

Let
$$X = \{1, 2, 3\}, v_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T, v_2 = \begin{bmatrix} 0 & 1 \end{bmatrix}^T, v_3 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}^T$$

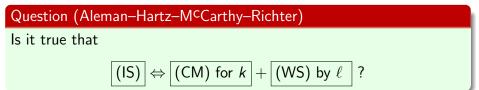
Define $\ell : X \times X \to \mathbb{C}$ by

$$\ell(i,j) = \langle \mathbf{v}_i, \mathbf{v}_j \rangle_{\mathbb{C}^2}.$$

Then, $\{1,2,3\}$ will be (2-WS) but not (3-WS) by $\ell.$

Main result

Let $\mathcal{H}_k, \mathcal{H}_\ell$ be two RKHS on X such that k is a complete Pick factor of ℓ . Recall: (IS)=interpolating for Mult $(\mathcal{H}_k, \mathcal{H}_\ell)$.



Main result

Let $\mathcal{H}_k, \mathcal{H}_\ell$ be two RKHS on X such that k is a complete Pick factor of ℓ . Recall: (IS)=interpolating for Mult $(\mathcal{H}_k, \mathcal{H}_\ell)$.

Question (Aleman-Hartz-MCCarthy-Richter)Is it true that
$$(IS) \Leftrightarrow (CM)$$
 for $k + (WS)$ by ℓ ?Theorem (T., 2022) $(IS) \Leftrightarrow (CM)$ for $k + (m-WS)$ by $\ell, \forall m \ge 2$

Main result

Let $\mathcal{H}_k, \mathcal{H}_\ell$ be two RKHS on X such that k is a complete Pick factor of ℓ . Recall: (IS)=interpolating for Mult $(\mathcal{H}_k, \mathcal{H}_\ell)$.

Question (Aleman–Hartz–M^cCarthy–Richter)
Is it true that

$$(IS) \Leftrightarrow (CM) \text{ for } k + (WS) \text{ by } \ell ?$$
Theorem (T., 2022)

(IS)
$$\Leftrightarrow$$
 (CM) for k + (*m*-WS) by ℓ , $\forall m \geq 2$

Theorem (T., 2022) Fix $m \ge 2$. In general, (CM) for k + (m-WS) by $\ell \ne (IS)$.

Definition

Let ℓ be a kernel on X. ℓ is said to have the automatic separation property if every $\{z_n\}$ that is (WS) by ℓ must also be (*m*-WS) by ℓ , for all $m \geq 3$.

Definition

Let ℓ be a kernel on X. ℓ is said to have the automatic separation property if every $\{z_n\}$ that is (WS) by ℓ must also be (*m*-WS) by ℓ , for all $m \geq 3$.

This is equivalent to: for any fixed $m \ge 2$, a kernel $\hat{\ell}_z$ can be "close" to the span of m other kernels $\hat{\ell}_{w_1}, \hat{\ell}_{w_2}, \ldots, \hat{\ell}_{w_m}$ if and only if it is "close" to one of them.

Definition

Let ℓ be a kernel on X. ℓ is said to have the automatic separation property if every $\{z_n\}$ that is (WS) by ℓ must also be (*m*-WS) by ℓ , for all $m \geq 3$.

This is equivalent to: for any fixed $m \ge 2$, a kernel $\hat{\ell}_z$ can be "close" to the span of m other kernels $\hat{\ell}_{w_1}, \hat{\ell}_{w_2}, \ldots, \hat{\ell}_{w_m}$ if and only if it is "close" to one of them.

Example

Let
$$X = \{1, 2, 3\}, v_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T, v_2 = \begin{bmatrix} 0 & 1 \end{bmatrix}^T, v_3 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Definition

Let ℓ be a kernel on X. ℓ is said to have the automatic separation property if every $\{z_n\}$ that is (WS) by ℓ must also be (*m*-WS) by ℓ , for all $m \geq 3$.

This is equivalent to: for any fixed $m \ge 2$, a kernel $\hat{\ell}_z$ can be "close" to the span of m other kernels $\hat{\ell}_{w_1}, \hat{\ell}_{w_2}, \ldots, \hat{\ell}_{w_m}$ if and only if it is "close" to one of them.

Example

Let
$$X = \{1, 2, 3\}, v_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T, v_2 = \begin{bmatrix} 0 & 1 \end{bmatrix}^T, v_3 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}^T$$

Define $\ell : X \times X \to \mathbb{C}$ by

$$\ell(i,j) = \langle \mathbf{v}_i, \mathbf{v}_j \rangle_{\mathbb{C}^2}.$$

Definition

Let ℓ be a kernel on X. ℓ is said to have the automatic separation property if every $\{z_n\}$ that is (WS) by ℓ must also be (*m*-WS) by ℓ , for all $m \geq 3$.

This is equivalent to: for any fixed $m \ge 2$, a kernel $\hat{\ell}_z$ can be "close" to the span of m other kernels $\hat{\ell}_{w_1}, \hat{\ell}_{w_2}, \ldots, \hat{\ell}_{w_m}$ if and only if it is "close" to one of them.

Example

Let
$$X = \{1, 2, 3\}, v_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T, v_2 = \begin{bmatrix} 0 & 1 \end{bmatrix}^T, v_3 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}^T$$

Define $\ell : X \times X \to \mathbb{C}$ by

$$\ell(i,j) = \langle \mathbf{v}_i, \mathbf{v}_j \rangle_{\mathbb{C}^2}.$$

Then, ℓ does not have the automatic separation property.

Let $\mathcal{H}_k, \mathcal{H}_\ell$ be two RKHS on X such that k is a complete Pick factor of ℓ . Recall: (IS)=interpolating for Mult $(\mathcal{H}_k, \mathcal{H}_\ell)$.

Question (Aleman–Hartz–M^cCarthy–Richter) Is it true that $(IS) \Leftrightarrow (CM)$ for k + (WS) by ℓ ?

Definition

Let $\mathcal{H}_k, \mathcal{H}_\ell$ be two RKHS on X such that k is a complete Pick factor of ℓ . Recall: (IS)=interpolating for Mult $(\mathcal{H}_k, \mathcal{H}_\ell)$.

Question (Aleman–Hartz–M^cCarthy–Richter) Is it true that $(IS) \Leftrightarrow (CM)$ for k + (WS) by ℓ ?

Definition

 ℓ is said to have the automatic separation property if every $\{z_n\}$ that is (WS) by ℓ must also be (*m*-WS) by ℓ , for all $m \ge 3$.

Theorem (T., 2022) $(IS) \Leftrightarrow (CM) \text{ for } k + (m-WS) \text{ by } \ell, \forall m \ge 2$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let $\mathcal{H}_k, \mathcal{H}_\ell$ be two RKHS on X such that k is a complete Pick factor of ℓ . Recall: (IS)=interpolating for Mult $(\mathcal{H}_k, \mathcal{H}_\ell)$.

Question (Aleman–Hartz–M^cCarthy–Richter)

Is it true that
$$(IS) \Leftrightarrow (CM)$$
 for $k + (WS)$ by ℓ ?

Theorem (T., 2022)

(IS)
$$\Leftrightarrow$$
 (CM) for k + (*m*-WS) by ℓ , $\forall m \geq 2$

Theorem (T., 2022)

Assume, in addition, that k, ℓ are "regular" kernels. TFAE:

Let $\mathcal{H}_k, \mathcal{H}_\ell$ be two RKHS on X such that k is a complete Pick factor of ℓ . Recall: (IS)=interpolating for Mult $(\mathcal{H}_k, \mathcal{H}_\ell)$.

Question (Aleman–Hartz–M^cCarthy–Richter)

Is it true that
$$(IS) \Leftrightarrow (CM)$$
 for $k + (WS)$ by ℓ ?

(IS)
$$\Leftrightarrow$$
 (CM) for k + (*m*-WS) by ℓ , $\forall m \geq 2$

Theorem (T., 2022)

Assume, in addition, that k, ℓ are "regular" kernels. TFAE:

- The A.−H.−M.−R. question has a positive answer for the pair (k, ℓ).
- ℓ has the automatic separation property.

Definition

Definition

 ℓ is said to have the automatic separation property if every $\{z_n\}$ that is (WS) by ℓ must also be (*m*-WS) by ℓ , for all $m \ge 3$.

• Products of powers of complete Pick kernels (includes Bergman spaces with polynomially decaying weights);

Definition

- Products of powers of complete Pick kernels (includes Bergman spaces with polynomially decaying weights);
- kernels of Hardy spaces on finitely-connected planar domains;

Definition

- Products of powers of complete Pick kernels (includes Bergman spaces with polynomially decaying weights);
- kernels of Hardy spaces on finitely-connected planar domains;
- kernels of Bergman spaces on ${\mathbb D}$ with exponentially decaying weights;

Definition

- Products of powers of complete Pick kernels (includes Bergman spaces with polynomially decaying weights);
- kernels of Hardy spaces on finitely-connected planar domains;
- kernels of Bergman spaces on D with exponentially decaying weights;
- kernels of weighted Bargmann-Fock spaces on \mathbb{C}^n (e.g. $\ell(z, w) = e^{z\overline{w}}$).

Theorem (T., 2022)

Assume, in addition, that k, ℓ are "regular" kernels. TFAE:

3

Theorem (T., 2022)

Assume, in addition, that k, ℓ are "regular" kernels. TFAE:

- The A.–H.–M.–R. question has a positive answer for (k, ℓ) .
- ℓ has the automatic separation property.

< 47 ▶

Theorem (T., 2022)

Assume, in addition, that k, ℓ are "regular" kernels. TFAE:

- The A.–H.–M.–R. question has a positive answer for (k, ℓ) .
- ℓ has the automatic separation property.

Example

Let k be the kernel corresp. to the Bergman space on \mathbb{D} with weight $e^{-\frac{1}{1-|z|^2}}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Theorem (T., 2022)

Assume, in addition, that k, ℓ are "regular" kernels. TFAE:

- The A.–H.–M.–R. question has a positive answer for (k, ℓ) .
- ℓ has the automatic separation property.

Example

Let k be the kernel corresp. to the Bergman space on \mathbb{D} with weight $e^{-\frac{1}{1-|z|^2}}$. For $z = (z_1, z_2), w = (w_1, w_2) \in \mathbb{D}^2$, define

$$\ell(z,w) = rac{k(z_1,w_1) + k(z_2,w_2)}{(1-z_1\overline{w}_1)(1-z_2\overline{w}_2)}$$

 ℓ is "regular", but doesn't have the automatic sep. property.

ヘロト 人間ト 人目ト 人目トー

Let ℓ be a kernel on X and assume that $\{z_n\} \subset X$ is (WS). Then, given $m \ge 3$, $\{z_n\}$ will be (*m*-WS) if and only if there exists $\delta > 0$ (depending on *m*) such that

$$d_{\ell}(z,w;\mu_1,\mu_2,\ldots,\mu_{m-2}) > \delta,$$

for all $z \neq w$ and for any m-2 point subset $\{\mu_1, \ldots, \mu_{m-2}\}$ of $\{z_n\}$ that does not contain either z or w, where $d_{\ell}(\cdot, \cdot; \mu_1, \mu_2, \ldots, \mu_{m-2})$ is the metric associated with the subspace of \mathcal{H}_{ℓ} given by

$$\{f \in \mathcal{H}_{\ell} : f(\mu_1) = \cdots = f(\mu_{m-2}) = 0\}.$$