Interpolating sequences for pairs of kernels

Georgios Tsikalas

Washington University in St. Louis
University of Florida Analysis and Probability Seminar
October 21, 2022

Interpolating sequences for H^{∞}

Let

$$
H^{\infty}=\{f: \mathbb{D} \rightarrow \mathbb{C}: f \text { is analytic and bounded }\}
$$

Interpolating sequences for H^{∞}

Let

$$
H^{\infty}=\{f: \mathbb{D} \rightarrow \mathbb{C}: f \text { is analytic and bounded }\} .
$$

Definition

A sequence $\left\{z_{n}\right\}$ in \mathbb{D} is interpolating for H^{∞} if for every sequence $\left\{w_{n}\right\} \in \ell^{\infty}$, there exists $f \in H^{\infty}$ such that

$$
f\left(z_{n}\right)=w_{n}, \quad \forall n
$$

Write $\left\{z_{n}\right\}$ satisfies (IS).

Carleson's interpolation theorem

A sequence $\left\{z_{n}\right\}$ in \mathbb{D}

Carleson's interpolation theorem

A sequence $\left\{z_{n}\right\}$ in \mathbb{D}
$(W S)$ is weakly separated if there exists $\delta>0$ such that,

$$
d\left(z_{n}, z_{m}\right):=\left|\frac{z_{n}-z_{m}}{1-\overline{z_{n}} z_{m}}\right|>\delta, \quad \text { for all } m \neq n
$$

Carleson's interpolation theorem

A sequence $\left\{z_{n}\right\}$ in \mathbb{D}
$(W S)$ is weakly separated if there exists $\delta>0$ such that,

$$
d\left(z_{n}, z_{m}\right):=\left|\frac{z_{n}-z_{m}}{1-\overline{z_{n}} z_{m}}\right|>\delta, \quad \text { for all } m \neq n
$$

(CM) satisfies the Carleson measure condition if there exists $M>0$ such that

$$
\sum_{j}\left(1-\left|z_{j}\right|^{2}\right)\left|f\left(z_{j}\right)\right|^{2} \leq M \int_{\partial \mathbb{D}}|f|^{2} d m, \quad \forall f \in \mathbb{C}[z]
$$

i.e. $\mu=\sum_{j}\left(1-\left|z_{j}\right|^{2}\right) \delta_{z_{j}}$ is a Carleson measure on \mathbb{D}.

Carleson's interpolation theorem

A sequence $\left\{z_{n}\right\}$ in \mathbb{D}
$(W S)$ is weakly separated if there exists $\delta>0$ such that,

$$
d\left(z_{n}, z_{m}\right):=\left|\frac{z_{n}-z_{m}}{1-\overline{z_{n}} z_{m}}\right|>\delta, \quad \text { for all } m \neq n
$$

(CM) satisfies the Carleson measure condition if there exists $M>0$ such that

$$
\sum_{j}\left(1-\left|z_{j}\right|^{2}\right)\left|f\left(z_{j}\right)\right|^{2} \leq M \int_{\partial \mathbb{D}}|f|^{2} d m, \quad \forall f \in \mathbb{C}[z]
$$

i.e. $\mu=\sum_{j}\left(1-\left|z_{j}\right|^{2}\right) \delta_{z_{j}}$ is a Carleson measure on \mathbb{D}.

Theorem (Carleson, 1958)
For a sequence $\left\{z_{n}\right\}$ in $\mathbb{D},(\mathrm{IS}) \Leftrightarrow(\mathrm{WS})+(\mathrm{CM})$.

H^{∞} as a multiplier algebra

Let

$$
H^{2}=\left\{f=\sum_{n=0}^{\infty} a_{n} z^{n} \in \operatorname{Hol}(\mathbb{D}):\|f\|^{2}=\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty\right\} .
$$

H^{∞} as a multiplier algebra

Let

$$
H^{2}=\left\{f=\sum_{n=0}^{\infty} a_{n} z^{n} \in \operatorname{Hol}(\mathbb{D}):\|f\|^{2}=\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty\right\} .
$$

This is a reproducing kernel Hilbert space on \mathbb{D} : For all $f \in H^{2}$ and $w \in \mathbb{D}$,

$$
f(w)=\left\langle f, k_{w}\right\rangle_{H^{2}},
$$

H^{∞} as a multiplier algebra

Let

$$
H^{2}=\left\{f=\sum_{n=0}^{\infty} a_{n} z^{n} \in \operatorname{Hol}(\mathbb{D}):\|f\|^{2}=\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty\right\} .
$$

This is a reproducing kernel Hilbert space on \mathbb{D} : For all $f \in H^{2}$ and $w \in \mathbb{D}$,

$$
f(w)=\left\langle f, k_{w}\right\rangle_{H^{2}},
$$

where

$$
k(z, w)=k_{w}(z)=\frac{1}{1-z \bar{w}}, \quad z, w \in \mathbb{D} .
$$

H^{∞} as a multiplier algebra

Let

$$
H^{2}=\left\{f=\sum_{n=0}^{\infty} a_{n} z^{n} \in \operatorname{Hol}(\mathbb{D}):\|f\|^{2}=\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty\right\} .
$$

This is a reproducing kernel Hilbert space on \mathbb{D} : For all $f \in H^{2}$ and $w \in \mathbb{D}$,

$$
f(w)=\left\langle f, k_{w}\right\rangle_{H^{2}},
$$

where

$$
k(z, w)=k_{w}(z)=\frac{1}{1-z \bar{w}}, \quad z, w \in \mathbb{D} .
$$

The multiplier algebra of H^{2} is

$$
\operatorname{Mult}\left(H^{2}\right)=\left\{\phi: \mathbb{D} \rightarrow \mathbb{C}: \phi \cdot f \in H^{2} \text { for all } f \in H^{2}\right\}
$$

equipped with $\|\phi\|_{\operatorname{Mult}\left(H^{2}\right)}:=\left\|M_{\phi}\right\|_{B\left(H^{2}\right)}$, where $M_{\phi}(f)=\phi \cdot f$.
H^{∞} as a multiplier algebra
Let

$$
H^{2}=\left\{f=\sum_{n=0}^{\infty} a_{n} z^{n} \in \operatorname{Hol}(\mathbb{D}):\left|\left|f \|^{2}=\sum_{n=0}^{\infty}\right| a_{n}\right|^{2}<\infty\right\} .
$$

This is a reproducing kernel Hilbert space on \mathbb{D} : For all $f \in H^{2}$ and $w \in \mathbb{D}$,

$$
f(w)=\left\langle f, k_{w}\right\rangle_{H^{2}}
$$

where

$$
k(z, w)=k_{w}(z)=\frac{1}{1-z \bar{w}}, \quad z, w \in \mathbb{D}
$$

The multiplier algebra of H^{2} is

$$
\operatorname{Mult}\left(H^{2}\right)=\left\{\phi: \mathbb{D} \rightarrow \mathbb{C}: \phi \cdot f \in H^{2} \text { for all } f \in H^{2}\right\}
$$

equipped with $\|\phi\|_{\operatorname{Mult}\left(H^{2}\right)}:=\left\|M_{\phi}\right\|_{B\left(H^{2}\right)}$, where $M_{\phi}(f)=\phi \cdot f$.

Observation

$\operatorname{Mult}\left(H^{2}\right)=H^{\infty}$ with equality of norms.

Passing to Hilbert spaces

Shapiro-Shields (1962): Different proof of Carleson's theorem, using:

Passing to Hilbert spaces

Shapiro-Shields (1962): Different proof of Carleson's theorem, using:

Lemma (Shapiro-Shields)

A sequence $\left\{z_{n}\right\}$ in \mathbb{D} is interpolating for H^{∞} if and only if the operator

$$
f \mapsto\left\{f\left(z_{n}\right) \sqrt{1-\left|z_{n}\right|^{2}}\right\}_{n}=\left\{\frac{f\left(z_{n}\right)}{\left\|k_{z_{n}}\right\|}\right\}_{n}
$$

maps H^{2} onto ℓ^{2}.

Passing to Hilbert spaces

Shapiro-Shields (1962): Different proof of Carleson's theorem, using:

Lemma (Shapiro-Shields)

A sequence $\left\{z_{n}\right\}$ in \mathbb{D} is interpolating for H^{∞} if and only if the operator

$$
f \mapsto\left\{f\left(z_{n}\right) \sqrt{1-\left|z_{n}\right|^{2}}\right\}_{n}=\left\{\frac{f\left(z_{n}\right)}{\left\|k_{z_{n}}\right\|}\right\}_{n}
$$

maps H^{2} onto ℓ^{2}.
Bishop, Marshall-Sundberg (1994): Used this idea to characterize interpolating sequences for the multiplier algebra of the Dirichlet space

$$
\mathcal{D}=\left\{f \in \operatorname{Hol}(\mathbb{D}): f^{\prime} \in L^{2}(\mathbb{D})\right\} .
$$

Passing to Hilbert spaces

Shapiro-Shields (1962): Different proof of Carleson's theorem, using:

Lemma (Shapiro-Shields)

A sequence $\left\{z_{n}\right\}$ in \mathbb{D} is interpolating for H^{∞} if and only if the operator

$$
f \mapsto\left\{f\left(z_{n}\right) \sqrt{1-\left|z_{n}\right|^{2}}\right\}_{n}=\left\{\frac{f\left(z_{n}\right)}{\left\|k_{z_{n}}\right\|}\right\}_{n}
$$

maps H^{2} onto ℓ^{2}.
Bishop, Marshall-Sundberg (1994): Used this idea to characterize interpolating sequences for the multiplier algebra of the Dirichlet space

$$
\mathcal{D}=\left\{f \in \operatorname{Hol}(\mathbb{D}): f^{\prime} \in L^{2}(\mathbb{D})\right\} .
$$

Key property

H^{2} and \mathcal{D} are complete Pick spaces.

Nevanlinna-Pick Interpolation

Theorem (Pick 1916, Nevanlinna 1919)

Let $z_{1}, z_{2}, \ldots, z_{n} \in \mathbb{D}$ and $w_{1}, w_{2}, \ldots, w_{n} \in \mathbb{C}$. There exists $\phi \in \operatorname{Mult}\left(H^{2}\right)=H^{\infty}$ with

$$
\phi\left(z_{i}\right)=w_{i} \text { for } 1 \leq i \leq n \quad \text { and } \quad\|\phi\|_{M u l t\left(H^{2}\right)} \leq 1
$$

if and only if

Nevanlinna-Pick Interpolation

Theorem (Pick 1916, Nevanlinna 1919)

Let $z_{1}, z_{2}, \ldots, z_{n} \in \mathbb{D}$ and $w_{1}, w_{2}, \ldots, w_{n} \in \mathbb{C}$. There exists $\phi \in \operatorname{Mult}\left(H^{2}\right)=H^{\infty}$ with

$$
\phi\left(z_{i}\right)=w_{i} \text { for } 1 \leq i \leq n \quad \text { and } \quad\|\phi\|_{\text {Mult }\left(H^{2}\right)} \leq 1
$$

if and only if the matrix

$$
\left[\frac{1-w_{i} \bar{w}_{j}}{1-z_{i} \bar{z}_{j}}\right]_{i, j=1}^{n}=\left[\left(1-w_{i} \bar{w}_{j}\right) k\left(z_{i}, z_{j}\right)\right]_{i, j=1}^{n}
$$

is positive semi-definite.

Nevanlinna-Pick Interpolation

Theorem (Pick 1916, Nevanlinna 1919)

Let $z_{1}, z_{2}, \ldots, z_{n} \in \mathbb{D}$ and $w_{1}, w_{2}, \ldots, w_{n} \in \mathbb{C}$. There exists $\phi \in \operatorname{Mult}\left(H^{2}\right)=H^{\infty}$ with

$$
\phi\left(z_{i}\right)=w_{i} \text { for } 1 \leq i \leq n \quad \text { and } \quad\|\phi\|_{\text {Mult }\left(H^{2}\right)} \leq 1
$$

if and only if the matrix

$$
\left[\frac{1-w_{i} \overline{w_{j}}}{1-z_{i} \bar{z}_{j}}\right]_{i, j=1}^{n}=\left[\left(1-w_{i} \bar{w}_{j}\right) k\left(z_{i}, z_{j}\right)\right]_{i, j=1}^{n}
$$

is positive semi-definite. Recall that $k(z, w)=(1-z \bar{w})^{-1}$ is the reproducing kernel of H^{2}.

Complete Pick spaces

Let \mathcal{H}_{k} be a reproducing kernel Hilbert space on a set X with kernel k.

Complete Pick spaces

Let \mathcal{H}_{k} be a reproducing kernel Hilbert space on a set X with kernel k. Given $z_{1}, \ldots, z_{n} \in X$ and $w_{1}, \ldots, w_{n} \in \mathbb{C}$, does there exist $\phi \in \operatorname{Mult}\left(\mathcal{H}_{k}\right)$ with

$$
\phi\left(z_{i}\right)=w_{i} \quad \text { for } 1 \leq i \leq n \quad \text { and } \quad\|\phi\|_{\operatorname{Mult}\left(\mathcal{H}_{k}\right)} \leq 1 ?
$$

Complete Pick spaces

Let \mathcal{H}_{k} be a reproducing kernel Hilbert space on a set X with kernel k. Given $z_{1}, \ldots, z_{n} \in X$ and $w_{1}, \ldots, w_{n} \in \mathbb{C}$, does there exist $\phi \in \operatorname{Mult}\left(\mathcal{H}_{k}\right)$ with

$$
\phi\left(z_{i}\right)=w_{i} \quad \text { for } 1 \leq i \leq n \quad \text { and } \quad\|\phi\|_{\text {Mult }\left(\mathcal{H}_{k}\right)} \leq 1 ?
$$

A necessary condition is that the matrix

$$
\left[\left(1-w_{i} \bar{w}_{j}\right) k\left(z_{i}, z_{j}\right)\right]_{i, j=1}^{n}
$$

is positive semi-definite.

Complete Pick spaces

Let \mathcal{H}_{k} be a reproducing kernel Hilbert space on a set X with kernel k. Given $z_{1}, \ldots, z_{n} \in X$ and $w_{1}, \ldots, w_{n} \in \mathbb{C}$, does there exist $\phi \in \operatorname{Mult}\left(\mathcal{H}_{k}\right)$ with

$$
\phi\left(z_{i}\right)=w_{i} \quad \text { for } 1 \leq i \leq n \quad \text { and } \quad\|\phi\|_{\text {Mult }\left(\mathcal{H}_{k}\right)} \leq 1 ?
$$

A necessary condition is that the matrix

$$
\left[\left(1-w_{i} \bar{w}_{j}\right) k\left(z_{i}, z_{j}\right)\right]_{i, j=1}^{n}
$$

is positive semi-definite.

Definition

- \mathcal{H}_{k} is called a Pick space if this condition is also sufficient.

Complete Pick spaces

Let \mathcal{H}_{k} be a reproducing kernel Hilbert space on a set X with kernel k. Given $z_{1}, \ldots, z_{n} \in X$ and $w_{1}, \ldots, w_{n} \in \mathbb{C}$, does there exist $\phi \in \operatorname{Mult}\left(\mathcal{H}_{k}\right)$ with

$$
\phi\left(z_{i}\right)=w_{i} \quad \text { for } 1 \leq i \leq n \quad \text { and } \quad\|\phi\|_{\operatorname{Mult}\left(\mathcal{H}_{k}\right)} \leq 1 ?
$$

A necessary condition is that the matrix

$$
\left[\left(1-w_{i} \bar{w}_{j}\right) k\left(z_{i}, z_{j}\right)\right]_{i, j=1}^{n}
$$

is positive semi-definite.

Definition

- \mathcal{H}_{k} is called a Pick space if this condition is also sufficient.
- \mathcal{H}_{k} is called a complete Pick space if the analogue of this condition for matrix-valued functions is sufficient.

Examples

- The Hardy space H^{2} on \mathbb{D} is a complete Pick space.

Examples

- The Hardy space H^{2} on \mathbb{D} is a complete Pick space.
- The Bergman space $L_{a}^{2}=\operatorname{Hol}(\mathbb{D}) \cap L^{2}(\mathbb{D})$ is not a Pick space.

Examples

- The Hardy space H^{2} on \mathbb{D} is a complete Pick space.
- The Bergman space $L_{a}^{2}=\operatorname{Hol}(\mathbb{D}) \cap L^{2}(\mathbb{D})$ is not a Pick space.
- (Agler) The Dirichlet space

$$
\mathcal{D}=\left\{f \in \operatorname{Hol}(\mathbb{D}): f^{\prime} \in L^{2}(\mathbb{D})\right\}
$$

with norm $\|f\|_{\mathcal{D}}^{2}=\left\|f^{\prime}\right\|_{L^{2}(\mathbb{D})}^{2}+\|f\|_{H^{2}}^{2}$ is a complete Pick space.

Examples

- The Hardy space H^{2} on \mathbb{D} is a complete Pick space.
- The Bergman space $L_{a}^{2}=\operatorname{Hol}(\mathbb{D}) \cap L^{2}(\mathbb{D})$ is not a Pick space.
- (Agler) The Dirichlet space

$$
\mathcal{D}=\left\{f \in \operatorname{Hol}(\mathbb{D}): f^{\prime} \in L^{2}(\mathbb{D})\right\}
$$

with norm $\|f\|_{\mathcal{D}}^{2}=\left\|f^{\prime}\right\|_{L^{2}(\mathbb{D})}^{2}+\|f\|_{H^{2}}^{2}$ is a complete Pick space.

- The Drury-Arveson space H_{d}^{2} is the RKHS on \mathbb{B}_{d}, the open unit ball in \mathbb{C}^{d}, with reproducing kernel

$$
k(z, w)=\frac{1}{1-\langle z, w\rangle}=\frac{1}{1-\sum_{i=1}^{d} z_{i} \bar{w}_{i}}
$$

H_{d}^{2} is a complete Pick space and is also universal among all complete Pick spaces (McCullough-Quiggin, Agler-McCarthy).

A distance function for RKHS's

Let \mathcal{H}_{k} be a RKHS on a set X with kernel k. Also, let $\hat{k}_{x}:=\frac{k_{x}}{\left\|k_{x}\right\|}$ denote the normalized kernel function at x.

A distance function for RKHS's

Let \mathcal{H}_{k} be a RKHS on a set X with kernel k. Also, let $\hat{k}_{x}:=\frac{k_{x}}{\left\|k_{x}\right\|}$ denote the normalized kernel function at x.

Definition

Define a metric* on X by

$$
d_{k}(z, w)=\sqrt{1-\left|\left\langle\hat{k}_{z}, \hat{k}_{w}\right\rangle\right|^{2}}, \quad z, w \in X .
$$

A distance function for RKHS's

Let \mathcal{H}_{k} be a RKHS on a set X with kernel k. Also, let $\hat{k}_{x}:=\frac{k_{x}}{\left\|k_{x}\right\|}$ denote the normalized kernel function at x.

Definition

Define a metric* on X by

$$
d_{k}(z, w)=\sqrt{1-\left|\left\langle\hat{k}_{z}, \hat{k}_{w}\right\rangle\right|^{2}}, \quad z, w \in X .
$$

d_{k} measures how close the unit vectors \hat{k}_{z}, \hat{k}_{w} are to being parallel.

A distance function for RKHS's

Let \mathcal{H}_{k} be a RKHS on a set X with kernel k. Also, let $\hat{k}_{x}:=\frac{k_{x}}{\left\|k_{x}\right\|}$ denote the normalized kernel function at x.

Definition

Define a metric* on X by

$$
d_{k}(z, w)=\sqrt{1-\left|\left\langle\hat{k}_{z}, \hat{k}_{w}\right\rangle\right|^{2}}, \quad z, w \in X .
$$

d_{k} measures how close the unit vectors \hat{k}_{z}, \hat{k}_{w} are to being parallel.

Example

If $\mathcal{H}_{k}=H^{2}$, then

$$
d_{k}(z, w)=\left|\frac{z-w}{1-\bar{z} w}\right|
$$

is the pseudohyperbolic metric on \mathbb{D}.

Interpolating sequences for $\operatorname{Mult}\left(\mathcal{H}_{k}\right)$

Let \mathcal{H}_{k} be a RKHS on a set X with kernel k. A sequence $\left\{z_{n}\right\} \subset X$

Interpolating sequences for $\operatorname{Mult}\left(\mathcal{H}_{k}\right)$

Let \mathcal{H}_{k} be a RKHS on a set X with kernel k. A sequence $\left\{z_{n}\right\} \subset X$ (IS) is an interpolating sequence for $\operatorname{Mult}\left(\mathcal{H}_{k}\right)$ if for every sequence $\left\{w_{n}\right\} \subset \ell^{\infty}$, there exists $\phi \in \operatorname{Mult}\left(\mathcal{H}_{k}\right)$ with

$$
\phi\left(z_{n}\right)=w_{n}, \quad \text { for all } n \geq 1 .
$$

Interpolating sequences for $\operatorname{Mult}\left(\mathcal{H}_{k}\right)$

Let \mathcal{H}_{k} be a RKHS on a set X with kernel k. A sequence $\left\{z_{n}\right\} \subset X$ (IS) is an interpolating sequence for $\operatorname{Mult}\left(\mathcal{H}_{k}\right)$ if for every sequence $\left\{w_{n}\right\} \subset \ell^{\infty}$, there exists $\phi \in \operatorname{Mult}\left(\mathcal{H}_{k}\right)$ with

$$
\phi\left(z_{n}\right)=w_{n}, \quad \text { for all } n \geq 1 .
$$

(WS) is weakly separated by k if there exists $\delta>0$ such that

$$
d_{k}\left(z_{n}, z_{m}\right)>\delta, \quad \text { for all } n \neq m
$$

Interpolating sequences for $\operatorname{Mult}\left(\mathcal{H}_{k}\right)$

Let \mathcal{H}_{k} be a RKHS on a set X with kernel k. A sequence $\left\{z_{n}\right\} \subset X$ (IS) is an interpolating sequence for $\operatorname{Mult}\left(\mathcal{H}_{k}\right)$ if for every sequence $\left\{w_{n}\right\} \subset \ell^{\infty}$, there exists $\phi \in \operatorname{Mult}\left(\mathcal{H}_{k}\right)$ with

$$
\phi\left(z_{n}\right)=w_{n}, \quad \text { for all } n \geq 1 .
$$

(WS) is weakly separated by k if there exists $\delta>0$ such that

$$
d_{k}\left(z_{n}, z_{m}\right)>\delta, \quad \text { for all } n \neq m .
$$

(CM) satisfies the Carleson measure condition for k if there exists $M>0$ such that

$$
\sum_{j} \frac{\left|f\left(z_{j}\right)\right|^{2}}{k\left(z_{j}, z_{j}\right)} \leq M\|f\|_{\mathcal{H}_{k}}^{2}, \quad \text { for all } f \in \mathcal{H}_{k},
$$

i.e. $\mu:=\sum_{j} \frac{1}{k\left(z_{j}, z_{j}\right)} \delta_{z_{j}}$ is a Carleson measure for \mathcal{H}_{k}.

Old and new developments

Lemma
In every RKHS $\mathcal{H}_{k},(\mathrm{IS}) \Rightarrow(\mathrm{WS})+(\mathrm{CM})$.
The converse assertion $(\mathrm{WS})+(\mathrm{CM}) \Rightarrow(\mathrm{IS})$

Old and new developments

Lemma
In every RKHS $\mathcal{H}_{k},(\mathrm{IS}) \Rightarrow(\mathrm{WS})+(\mathrm{CM})$.
The converse assertion (WS) $+(\mathrm{CM}) \Rightarrow(\mathrm{IS})$

- (Carleson '58, Shapiro-Shields '62) holds in the Hardy space H^{2};

Old and new developments

Lemma
In every RKHS $\mathcal{H}_{k},(\mathrm{IS}) \Rightarrow(\mathrm{WS})+(\mathrm{CM})$.
The converse assertion (WS) $+(\mathrm{CM}) \Rightarrow(\mathrm{IS})$

- (Carleson '58, Shapiro-Shields '62) holds in the Hardy space H^{2};
- fails, in general, in the Bergman space L_{a}^{2};

Old and new developments

Lemma

In every RKHS $\mathcal{H}_{k},(\mathrm{IS}) \Rightarrow(\mathrm{WS})+(\mathrm{CM})$.
The converse assertion (WS) $+(\mathrm{CM}) \Rightarrow(\mathrm{IS})$

- (Carleson '58, Shapiro-Shields '62) holds in the Hardy space H^{2};
- fails, in general, in the Bergman space L_{a}^{2};
- (Bishop, Marshall-Sundberg, '94) holds in the Dirichlet space \mathcal{D};

Old and new developments

Lemma

In every RKHS $\mathcal{H}_{k},(\mathrm{IS}) \Rightarrow(\mathrm{WS})+(\mathrm{CM})$.
The converse assertion (WS) $+(\mathrm{CM}) \Rightarrow(\mathrm{IS})$

- (Carleson '58, Shapiro-Shields '62) holds in the Hardy space H^{2};
- fails, in general, in the Bergman space L_{a}^{2};
- (Bishop, Marshall-Sundberg, '94) holds in the Dirichlet space \mathcal{D};
- (Bøe, 2005) holds in every space on the unit ball \mathbb{B}_{d} with kernel

$$
k(z, w)=\frac{1}{(1-\langle z, w\rangle)^{\alpha}}, \quad \text { where } \alpha \in(0,1)
$$

Old and new developments

Lemma

In every RKHS $\mathcal{H}_{k},(\mathrm{IS}) \Rightarrow(\mathrm{WS})+(\mathrm{CM})$.
The converse assertion (WS) $+(\mathrm{CM}) \Rightarrow(\mathrm{IS})$

- (Carleson '58, Shapiro-Shields '62) holds in the Hardy space H^{2};
- fails, in general, in the Bergman space L_{a}^{2};
- (Bishop, Marshall-Sundberg, '94) holds in the Dirichlet space \mathcal{D};
- (Bøe, 2005) holds in every space on the unit ball \mathbb{B}_{d} with kernel

$$
k(z, w)=\frac{1}{(1-\langle z, w\rangle)^{\alpha}}, \quad \text { where } \alpha \in(0,1)
$$

- (Aleman-Hartz-MCCarthy-Richter, 2017) holds if \mathcal{H}_{k} is a complete Pick space!

Two proofs of the A.-H.-M.-R. characterization

Theorem (Aleman-Hartz-M ${ }^{\text {C Carthy-Richter, 2017) }}$
In every complete Pick space, (IS) \Leftrightarrow (WS) + (CM).

Two proofs of the A.-H.-M.-R. characterization

Theorem (Aleman-Hartz-MCCarthy-Richter, 2017)

In every complete Pick space, (IS) $\Leftrightarrow(\mathrm{WS})+(\mathrm{CM})$.

- Original proof used the solution to the Kadison-Singer problem by Marcus, Spielman and Srivastava (2013), which allows for the splitting of any $\left\{z_{n}\right\}$ which satifies (CM) into a finite union of interpolating sequences.

Two proofs of the A.-H.-M.-R. characterization

Theorem (Aleman-Hartz-MCCarthy-Richter, 2017)

In every complete Pick space, (IS) \Leftrightarrow (WS) + (CM).

- Original proof used the solution to the Kadison-Singer problem by Marcus, Spielman and Srivastava (2013), which allows for the splitting of any $\left\{z_{n}\right\}$ which satifies (CM) into a finite union of interpolating sequences.
- New proof uses the column-row property:

Theorem (Hartz, 2020)

Assume \mathcal{H}_{k} is a complete Pick space and $\left\{\phi_{n}\right\} \subset \operatorname{Mult}\left(\mathcal{H}_{k}\right)$.

Two proofs of the A.-H.-M.-R. characterization

Theorem (Aleman-Hartz-MCCarthy-Richter, 2017)

In every complete Pick space, (IS) \Leftrightarrow (WS) + (CM).

- Original proof used the solution to the Kadison-Singer problem by Marcus, Spielman and Srivastava (2013), which allows for the splitting of any $\left\{z_{n}\right\}$ which satifies (CM) into a finite union of interpolating sequences.
- New proof uses the column-row property:

Theorem (Hartz, 2020)

Assume \mathcal{H}_{k} is a complete Pick space and $\left\{\phi_{n}\right\} \subset \operatorname{Mult}\left(\mathcal{H}_{k}\right)$. Then,

$$
\left\|\left[\begin{array}{lll}
M_{\phi_{1}} & M_{\phi_{2}} & \cdots
\end{array}\right]\right\| \leq\left\|\left[\begin{array}{c}
M_{\phi_{1}} \\
M_{\phi_{2}} \\
\vdots
\end{array}\right]\right\| .
$$

Pairs of spaces

Let \mathcal{H}_{k} and \mathcal{H}_{ℓ} be two RKHS on X with kernels k and ℓ, respectively.

Pairs of spaces

Let \mathcal{H}_{k} and \mathcal{H}_{ℓ} be two RKHS on X with kernels k and ℓ, respectively. Define
$\operatorname{Mult}\left(\mathcal{H}_{k}, \mathcal{H}_{\ell}\right):=\left\{\phi: X \rightarrow \mathbb{C}: \phi \cdot f \in \mathcal{H}_{\ell}, \forall f \in \mathcal{H}_{k}\right\}$.

Pairs of spaces

Let \mathcal{H}_{k} and \mathcal{H}_{ℓ} be two RKHS on X with kernels k and ℓ, respectively. Define

$$
\operatorname{Mult}\left(\mathcal{H}_{k}, \mathcal{H}_{\ell}\right):=\left\{\phi: X \rightarrow \mathbb{C}: \phi \cdot f \in \mathcal{H}_{\ell}, \forall f \in \mathcal{H}_{k}\right\} .
$$

Example

Let $\mathcal{H}_{k}=H^{2}$ (Hardy space) and $\mathcal{H}_{\ell}=L_{a}^{2}$ (Bergman space). Since $H^{2} \subset L_{a}^{2}$, we have

$$
\operatorname{Mult}\left(H^{2}\right)=\operatorname{Mult}\left(H^{2}, H^{2}\right) \subset \operatorname{Mult}\left(H^{2}, L_{\mathrm{a}}^{2}\right) .
$$

Pairs of spaces

Let \mathcal{H}_{k} and \mathcal{H}_{ℓ} be two RKHS on X with kernels k and ℓ, respectively. Define

$$
\operatorname{Mult}\left(\mathcal{H}_{k}, \mathcal{H}_{\ell}\right):=\left\{\phi: X \rightarrow \mathbb{C}: \phi \cdot f \in \mathcal{H}_{\ell}, \forall f \in \mathcal{H}_{k}\right\} .
$$

Example

Let $\mathcal{H}_{k}=H^{2}$ (Hardy space) and $\mathcal{H}_{\ell}=L_{a}^{2}$ (Bergman space). Since $H^{2} \subset L_{a}^{2}$, we have

$$
\operatorname{Mult}\left(H^{2}\right)=\operatorname{Mult}\left(H^{2}, H^{2}\right) \subset \operatorname{Mult}\left(H^{2}, L_{\mathrm{a}}^{2}\right) .
$$

Actually, it is even true that

$$
H^{2} \subset \operatorname{Mult}\left(H^{2}, L_{\mathrm{a}}^{2}\right) .
$$

Mult(H^{2}, L_{a}^{2}) was described by Stegenga (1980).

Pairs of spaces

$$
\operatorname{Mult}\left(\mathcal{H}_{k}, \mathcal{H}_{\ell}\right):=\left\{\phi: X \rightarrow \mathbb{C}: \phi \cdot f \in \mathcal{H}_{\ell}, \forall f \in \mathcal{H}_{k}\right\} .
$$

Example

Let $\mathcal{H}_{k}=H^{2}$ (Hardy space) and $\mathcal{H}_{\ell}=L_{a}^{2}$ (Bergman space). Since $H^{2} \subset L_{a}^{2}$, we have

$$
\operatorname{Mult}\left(H^{2}\right)=\operatorname{Mult}\left(H^{2}, H^{2}\right) \subset \operatorname{Mult}\left(H^{2}, L_{a}^{2}\right) .
$$

Actually, it is even true that

$$
H^{2} \subset \operatorname{Mult}\left(H^{2}, L_{a}^{2}\right) .
$$

$\operatorname{Mult}\left(H^{2}, L_{a}^{2}\right)$ was described by Stegenga (1980).

Observation

If $\phi \in \operatorname{Mult}\left(\mathcal{H}_{k}, \mathcal{H}_{\ell}\right)$, then $|\phi(z)| \leq\|\phi\| \frac{\left\|\ell_{z}\right\|}{\left\|k_{z}\right\|}, \quad$ for all $z \in X$.

Interpolating sequences for pairs of kernels

Let \mathcal{H}_{k} and \mathcal{H}_{ℓ} be two RKHS on X with kernels k and ℓ, respectively.

Observation

If $\phi \in \operatorname{Mult}\left(\mathcal{H}_{k}, \mathcal{H}_{\ell}\right)$, then $|\phi(z)| \leq\|\phi\|_{M} \frac{\left\|\ell_{z}\right\|}{\left\|k_{z}\right\|}, \quad$ for all $z \in X$.

Interpolating sequences for pairs of kernels

Let \mathcal{H}_{k} and \mathcal{H}_{ℓ} be two RKHS on X with kernels k and ℓ, respectively.

Observation

If $\phi \in \operatorname{Mult}\left(\mathcal{H}_{k}, \mathcal{H}_{\ell}\right)$, then $|\phi(z)| \leq\|\phi\|_{M} \frac{\left\|\ell_{z}\right\|}{\left\|k_{z}\right\|}, \quad$ for all $z \in X$.

Definition

A sequence $\left\{z_{n}\right\}$ in X is interpolating for $\operatorname{Mult}\left(\mathcal{H}_{k}, \mathcal{H}_{\ell}\right)$ (write (IS)) if for all $\left\{w_{n}\right\} \in \ell^{\infty}$, there exists $\phi \in \operatorname{Mult}\left(\mathcal{H}_{k}, \mathcal{H}_{\ell}\right)$ such that

$$
\phi\left(z_{n}\right)=\frac{\left\|\ell_{z_{n}}\right\|}{\left\|k_{z_{n}}\right\|} w_{n}, \text { for all } n
$$

Interpolating sequences for pairs of kernels

Let \mathcal{H}_{k} and \mathcal{H}_{ℓ} be two RKHS on X with kernels k and ℓ, respectively.

Observation

If $\phi \in \operatorname{Mult}\left(\mathcal{H}_{k}, \mathcal{H}_{\ell}\right)$, then $|\phi(z)| \leq\|\phi\|_{M} \frac{\left\|\ell_{2}\right\|}{\left\|k_{z}\right\|}, \quad$ for all $z \in X$.

Definition

A sequence $\left\{z_{n}\right\}$ in X is interpolating for $\operatorname{Mult}\left(\mathcal{H}_{k}, \mathcal{H}_{\ell}\right)$ (write (IS)) if for all $\left\{w_{n}\right\} \in \ell^{\infty}$, there exists $\phi \in \operatorname{Mult}\left(\mathcal{H}_{k}, \mathcal{H}_{\ell}\right)$ such that

$$
\phi\left(z_{n}\right)=\frac{\left\|\ell_{z_{n}}\right\|}{\left\|k_{z_{n}}\right\|} w_{n}, \text { for all } n .
$$

Lemma

If $\left\{z_{n}\right\} \subset X$ satisfies (IS), then it also satisfies (CM) for k and is (WS) by ℓ.

Complete Pick factors

Definition

Let k, ℓ be two kernels on X. We say that k is a factor of ℓ if ℓ / k is a kernel.

Complete Pick factors

Definition

Let k, ℓ be two kernels on X. We say that k is a factor of ℓ if ℓ / k is a kernel. If k is also a complete Pick kernel, we say that it is a complete Pick factor of ℓ.

Complete Pick factors

Definition

Let k, ℓ be two kernels on X. We say that k is a factor of ℓ if ℓ / k is a kernel. If k is also a complete Pick kernel, we say that it is a complete Pick factor of ℓ.

Example

Let $\mathcal{H}_{k}=H^{2}$ and $\mathcal{H}_{\ell}=L_{a}^{2}$. Then, k is a complete Pick factor of ℓ.

Complete Pick factors

Definition

Let k, ℓ be two kernels on X. We say that k is a factor of ℓ if ℓ / k is a kernel. If k is also a complete Pick kernel, we say that it is a complete Pick factor of ℓ.

Example

Let $\mathcal{H}_{k}=H^{2}$ and $\mathcal{H}_{\ell}=L_{a}^{2}$. Then, k is a complete Pick factor of ℓ.

Question (Aleman-Hartz-M ${ }^{\mathrm{C}}$ Carthy-Richter)

Suppose that k is a complete Pick factor of ℓ. Is it true that

$$
\text { (IS) wrt } \operatorname{Mult}\left(\mathcal{H}_{k}, \mathcal{H}_{\ell}\right) \Leftrightarrow(\mathrm{CM}) \text { for } k+(\mathrm{WS}) \text { by } \ell \text { ? }
$$

Complete Pick factors

Definition

Let k, ℓ be two kernels on X. We say that k is a factor of ℓ if ℓ / k is a kernel. If k is also a complete Pick kernel, we say that it is a complete Pick factor of ℓ.

Example

Let $\mathcal{H}_{k}=H^{2}$ and $\mathcal{H}_{\ell}=L_{a}^{2}$. Then, k is a complete Pick factor of ℓ.

Question (Aleman-Hartz-M${ }^{\text {C Carthy-Richter) }}$

Suppose that k is a complete Pick factor of ℓ. Is it true that

$$
\text { (IS) wrt } \operatorname{Mult}\left(\mathcal{H}_{k}, \mathcal{H}_{\ell}\right) \Leftrightarrow(\mathrm{CM}) \text { for } k+(\mathrm{WS}) \text { by } \ell \text { ? }
$$

Theorem (Aleman-Hartz-MCCarthy-Richter, 2017)

The answer is yes if ℓ is a power of a complete Pick kernel.

Beyond weak separation

Definition

Let ℓ be a kernel on X and $\left\{z_{n}\right\} \subset X$. Given $m \geq 2$, we say that $\left\{z_{n}\right\}$ is m-weakly separated by ℓ (write (m-WS)) if there exists $\delta>0$ such that for every m-point subset $\left\{\mu_{1}, \ldots, \mu_{m}\right\} \subset\left\{z_{n}\right\}$ we have

Beyond weak separation

Definition

Let ℓ be a kernel on X and $\left\{z_{n}\right\} \subset X$. Given $m \geq 2$, we say that $\left\{z_{n}\right\}$ is m-weakly separated by ℓ (write (m-WS)) if there exists $\delta>0$ such that for every m-point subset $\left\{\mu_{1}, \ldots, \mu_{m}\right\} \subset\left\{z_{n}\right\}$ we have

$$
d=\operatorname{dist}\left(\hat{\ell}_{\mu_{1}}, \operatorname{span}\left\{\hat{\ell}_{\mu_{2}}, \ldots, \hat{\ell}_{\mu_{m}}\right\}\right) \geq \delta .
$$

Beyond weak separation

Definition

Let ℓ be a kernel on X and $\left\{z_{n}\right\} \subset X$. Given $m \geq 2$, we say that $\left\{z_{n}\right\}$ is m-weakly separated by ℓ (write (m-WS)) if there exists $\delta>0$ such that for every m-point subset $\left\{\mu_{1}, \ldots, \mu_{m}\right\} \subset\left\{z_{n}\right\}$ we have

$$
d=\operatorname{dist}\left(\hat{\ell}_{\mu_{1}}, \operatorname{span}\left\{\hat{\ell}_{\mu_{2}}, \ldots, \hat{\ell}_{\mu_{m}}\right\}\right) \geq \delta .
$$

Observation:
 (2-WS) coincides with (WS).

Beyond weak separation

Definition

Let ℓ be a kernel on X and $\left\{z_{n}\right\} \subset X$. Given $m \geq 2$, we say that $\left\{z_{n}\right\}$ is m-weakly separated by ℓ (write (m-WS)) if there exists $\delta>0$ such that for every m-point subset $\left\{\mu_{1}, \ldots, \mu_{m}\right\} \subset\left\{z_{n}\right\}$ we have

$$
d=\operatorname{dist}\left(\hat{\ell}_{\mu_{1}}, \operatorname{span}\left\{\hat{\ell}_{\mu_{2}}, \ldots, \hat{\ell}_{\mu_{m}}\right\}\right) \geq \delta .
$$

Observation:
 (2-WS) coincides with (WS).

Example

$$
\text { Let } X=\{1,2,3\}, v_{1}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]^{T}, v_{2}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]^{T}, v_{3}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]^{T} \text {. }
$$

Beyond weak separation

Definition

Let ℓ be a kernel on X and $\left\{z_{n}\right\} \subset X$. Given $m \geq 2$, we say that $\left\{z_{n}\right\}$ is m-weakly separated by ℓ (write (m-WS)) if there exists $\delta>0$ such that for every m-point subset $\left\{\mu_{1}, \ldots, \mu_{m}\right\} \subset\left\{z_{n}\right\}$ we have

$$
d=\operatorname{dist}\left(\hat{\ell}_{\mu_{1}}, \operatorname{span}\left\{\hat{\ell}_{\mu_{2}}, \ldots, \hat{\ell}_{\mu_{m}}\right\}\right) \geq \delta .
$$

Observa

$$
\text { Let } X=\{1,2,3\}, v_{1}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]^{T}, v_{2}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]^{T}, v_{3}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]^{T} \text {. }
$$

Define $\ell: X \times X \rightarrow \mathbb{C}$ by

$$
\ell(i, j)=\left\langle v_{i}, v_{j}\right\rangle_{\mathbb{C}^{2}} .
$$

Beyond weak separation

Definition

Let ℓ be a kernel on X and $\left\{z_{n}\right\} \subset X$. Given $m \geq 2$, we say that $\left\{z_{n}\right\}$ is m-weakly separated by ℓ (write (m-WS)) if there exists $\delta>0$ such that for every m-point subset $\left\{\mu_{1}, \ldots, \mu_{m}\right\} \subset\left\{z_{n}\right\}$ we have

$$
d=\operatorname{dist}\left(\hat{\ell}_{\mu_{1}}, \operatorname{span}\left\{\hat{\ell}_{\mu_{2}}, \ldots, \hat{\ell}_{\mu_{m}}\right\}\right) \geq \delta .
$$

Observa

$$
\text { Let } X=\{1,2,3\}, v_{1}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]^{T}, v_{2}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]^{T}, v_{3}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]^{T} \text {. }
$$

Define $\ell: X \times X \rightarrow \mathbb{C}$ by

$$
\ell(i, j)=\left\langle v_{i}, v_{j}\right\rangle_{\mathbb{C}^{2}} .
$$

Then, $\{1,2,3\}$ will be (2-WS) but not (3-WS) by ℓ.

Main result

Let $\mathcal{H}_{k}, \mathcal{H}_{\ell}$ be two RKHS on X such that k is a complete Pick factor of ℓ. Recall: (IS)=interpolating for $\operatorname{Mult}\left(\mathcal{H}_{k}, \mathcal{H}_{\ell}\right)$.

Question (Aleman-Hartz-M ${ }^{C}$ Carthy-Richter)

Is it true that

$$
(\mathrm{IS}) \Leftrightarrow(\mathrm{CM}) \text { for } k+(\mathrm{WS}) \text { by } \ell ?
$$

Main result

Let $\mathcal{H}_{k}, \mathcal{H}_{\ell}$ be two RKHS on X such that k is a complete Pick factor of ℓ. Recall: (IS)=interpolating for $\operatorname{Mult}\left(\mathcal{H}_{k}, \mathcal{H}_{\ell}\right)$.

Question (Aleman-Hartz-MCCarthy-Richter)

Is it true that

$$
(\mathrm{IS}) \Leftrightarrow(\mathrm{CM}) \text { for } k+(\mathrm{WS}) \text { by } \ell ?
$$

Theorem (T., 2022)

$$
(\mathrm{IS}) \Leftrightarrow(\mathrm{CM}) \text { for } k+(m-\mathrm{WS}) \text { by } \ell, \quad \forall m \geq 2
$$

Main result

Let $\mathcal{H}_{k}, \mathcal{H}_{\ell}$ be two RKHS on X such that k is a complete Pick factor of ℓ. Recall: (IS)=interpolating for $\operatorname{Mult}\left(\mathcal{H}_{k}, \mathcal{H}_{\ell}\right)$.

Question (Aleman-Hartz-MCCarthy-Richter)

Is it true that

$$
(\mathrm{IS}) \Leftrightarrow(\mathrm{CM}) \text { for } k+(\mathrm{WS}) \text { by } \ell ?
$$

Theorem (T., 2022)

$$
\text { (IS) } \Leftrightarrow(\mathrm{CM}) \text { for } k+(m \text {-WS) by } \ell, \quad \forall m \geq 2
$$

Theorem (T., 2022)

Fix $m \geq 2$. In general,

$$
\text { (CM) for } k+(m-\mathrm{WS}) \text { by } \ell \nRightarrow(\mathrm{IS}) \text {. }
$$

The automatic separation property

Definition

Let ℓ be a kernel on X. ℓ is said to have the automatic separation property if every $\left\{z_{n}\right\}$ that is (WS) by ℓ must also be (m-WS) by ℓ, for all $m \geq 3$.

The automatic separation property

Definition

Let ℓ be a kernel on X. ℓ is said to have the automatic separation property if every $\left\{z_{n}\right\}$ that is (WS) by ℓ must also be (m-WS) by ℓ, for all $m \geq 3$.

This is equivalent to: for any fixed $m \geq 2$, a kernel $\hat{\ell}_{z}$ can be "close" to the span of m other kernels $\hat{\ell}_{w_{1}}, \hat{\ell}_{w_{2}}, \ldots, \hat{\ell}_{w_{m}}$ if and only if it is "close" to one of them.

The automatic separation property

Definition

Let ℓ be a kernel on X. ℓ is said to have the automatic separation property if every $\left\{z_{n}\right\}$ that is (WS) by ℓ must also be (m-WS) by ℓ, for all $m \geq 3$.

This is equivalent to:
for any fixed $m \geq 2$, a kernel $\hat{\ell}_{z}$ can be "close" to the span of m other kernels $\hat{\ell}_{w_{1}}, \hat{\ell}_{w_{2}}, \ldots, \hat{\ell}_{w_{m}}$ if and only if it is "close" to one of them.

Example

$$
\text { Let } X=\{1,2,3\}, v_{1}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]^{T}, v_{2}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]^{T}, v_{3}=\left[\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]^{T} \text {. }
$$

The automatic separation property

Definition

Let ℓ be a kernel on X. ℓ is said to have the automatic separation property if every $\left\{z_{n}\right\}$ that is (WS) by ℓ must also be (m-WS) by ℓ, for all $m \geq 3$.

This is equivalent to:
for any fixed $m \geq 2$, a kernel $\hat{\ell}_{z}$ can be "close" to the span of m other kernels $\hat{\ell}_{w_{1}}, \hat{\ell}_{w_{2}}, \ldots, \hat{\ell}_{w_{m}}$ if and only if it is "close" to one of them.

Example

Let $X=\{1,2,3\}, v_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}, v_{2}=\left[\begin{array}{ll}0 & 1\end{array}\right]^{T}, v_{3}=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]^{T}$.
Define $\ell: X \times X \rightarrow \mathbb{C}$ by

$$
\ell(i, j)=\left\langle v_{i}, v_{j}\right\rangle_{\mathbb{C}^{2}}
$$

The automatic separation property

Definition

Let ℓ be a kernel on X. ℓ is said to have the automatic separation property if every $\left\{z_{n}\right\}$ that is (WS) by ℓ must also be (m-WS) by ℓ, for all $m \geq 3$.

This is equivalent to:
for any fixed $m \geq 2$, a kernel $\hat{\ell}_{z}$ can be "close" to the span of m other kernels $\hat{\ell}_{w_{1}}, \hat{\ell}_{w_{2}}, \ldots, \hat{\ell}_{w_{m}}$ if and only if it is "close" to one of them.

Example

Let $X=\{1,2,3\}, v_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}, v_{2}=\left[\begin{array}{ll}0 & 1\end{array}\right]^{T}, v_{3}=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]^{T}$.
Define $\ell: X \times X \rightarrow \mathbb{C}$ by

$$
\ell(i, j)=\left\langle v_{i}, v_{j}\right\rangle_{\mathbb{C}^{2}}
$$

Then, ℓ does not have the automatic separation property.

The automatic separation property

Let $\mathcal{H}_{k}, \mathcal{H}_{\ell}$ be two RKHS on X such that k is a complete Pick factor of ℓ. Recall: (IS)=interpolating for $\operatorname{Mult}\left(\mathcal{H}_{k}, \mathcal{H}_{\ell}\right)$.

Question (Aleman-Hartz-MCCarthy-Richter)

Is it true that $(\mathrm{IS}) \Leftrightarrow(\mathrm{CM})$ for $k+(\mathrm{WS})$ by ℓ ?

Definition

ℓ is said to have the automatic separation property if every $\left\{z_{n}\right\}$ that is (WS) by ℓ must also be (m-WS) by ℓ, for all $m \geq 3$.

The automatic separation property

Let $\mathcal{H}_{k}, \mathcal{H}_{\ell}$ be two RKHS on X such that k is a complete Pick factor of ℓ. Recall: (IS)=interpolating for $\operatorname{Mult}\left(\mathcal{H}_{k}, \mathcal{H}_{\ell}\right)$.

Question (Aleman-Hartz-MCCarthy-Richter)

Is it true that $(\mathrm{IS}) \Leftrightarrow(\mathrm{CM})$ for $k+(\mathrm{WS})$ by ℓ ?

Definition

ℓ is said to have the automatic separation property if every $\left\{z_{n}\right\}$ that is (WS) by ℓ must also be (m-WS) by ℓ, for all $m \geq 3$.

Theorem (T., 2022)

$$
(\mathrm{IS}) \Leftrightarrow(\mathrm{CM}) \text { for } k+(m-\mathrm{WS}) \text { by } \ell, \quad \forall m \geq 2
$$

The automatic separation property

Let $\mathcal{H}_{k}, \mathcal{H}_{\ell}$ be two RKHS on X such that k is a complete Pick factor of ℓ. Recall: (IS)=interpolating for $\operatorname{Mult}\left(\mathcal{H}_{k}, \mathcal{H}_{\ell}\right)$.

Question (Aleman-Hartz-M${ }^{C}$ Carthy-Richter)

Is it true that (IS) $\Leftrightarrow(\mathrm{CM})$ for $k+(\mathrm{WS})$ by ℓ ?

Theorem (T., 2022)
(IS) $\Leftrightarrow(\mathrm{CM})$ for $k+(m-\mathrm{WS})$ by $\ell, \quad \forall m \geq 2$

Theorem (T., 2022)

Assume, in addition, that k, ℓ are "regular" kernels. TFAE:

The automatic separation property

Let $\mathcal{H}_{k}, \mathcal{H}_{\ell}$ be two RKHS on X such that k is a complete Pick factor of ℓ. Recall: (IS)=interpolating for $\operatorname{Mult}\left(\mathcal{H}_{k}, \mathcal{H}_{\ell}\right)$.

Question (Aleman-Hartz-MCCarthy-Richter)

$$
\text { Is it true that (IS) } \Leftrightarrow(\mathrm{CM}) \text { for } k+(\mathrm{WS}) \text { by } \ell \text { ? }
$$

Theorem (T., 2022)
(IS) $\Leftrightarrow(\mathrm{CM})$ for $k+(m-\mathrm{WS})$ by $\ell, \forall m \geq 2$

Theorem (T., 2022)

Assume, in addition, that k, ℓ are "regular" kernels. TFAE:

- The A.-H.-M.-R. question has a positive answer for the pair (k, ℓ).
- ℓ has the automatic separation property.

Examples

Definition

ℓ is said to have the automatic separation property if every $\left\{z_{n}\right\}$ that is (WS) by ℓ must also be (m-WS) by ℓ, for all $m \geq 3$.

Examples

Definition

ℓ is said to have the automatic separation property if every $\left\{z_{n}\right\}$ that is (WS) by ℓ must also be (m-WS) by ℓ, for all $m \geq 3$.

- Products of powers of complete Pick kernels (includes Bergman spaces with polynomially decaying weights);

Examples

Definition

ℓ is said to have the automatic separation property if every $\left\{z_{n}\right\}$ that is (WS) by ℓ must also be (m-WS) by ℓ, for all $m \geq 3$.

- Products of powers of complete Pick kernels (includes Bergman spaces with polynomially decaying weights);
- kernels of Hardy spaces on finitely-connected planar domains;

Examples

Definition

ℓ is said to have the automatic separation property if every $\left\{z_{n}\right\}$ that is (WS) by ℓ must also be (m-WS) by ℓ, for all $m \geq 3$.

- Products of powers of complete Pick kernels (includes Bergman spaces with polynomially decaying weights);
- kernels of Hardy spaces on finitely-connected planar domains;
- kernels of Bergman spaces on \mathbb{D} with exponentially decaying weights;

Examples

Definition

ℓ is said to have the automatic separation property if every $\left\{z_{n}\right\}$ that is (WS) by ℓ must also be (m-WS) by ℓ, for all $m \geq 3$.

- Products of powers of complete Pick kernels (includes Bergman spaces with polynomially decaying weights);
- kernels of Hardy spaces on finitely-connected planar domains;
- kernels of Bergman spaces on \mathbb{D} with exponentially decaying weights;
- kernels of weighted Bargmann-Fock spaces on \mathbb{C}^{n} (e.g. $\left.\ell(z, w)=e^{z \bar{w}}\right)$.

A non-example

Theorem (T., 2022)

Assume, in addition, that k, ℓ are "regular" kernels. TFAE:

A non-example

Theorem (T., 2022)
Assume, in addition, that k, ℓ are "regular" kernels. TFAE:

- The A.-H.-M.-R. question has a positive answer for (k, ℓ).
- ℓ has the automatic separation property.

A non-example

Theorem (T., 2022)

Assume, in addition, that k, ℓ are "regular" kernels. TFAE:

- The A.-H.-M.-R. question has a positive answer for (k, ℓ).
- ℓ has the automatic separation property.

Example

Let k be the kernel corresp. to the Bergman space on \mathbb{D} with weight $e^{-\frac{1}{1-|z|^{2}}}$.

A non-example

Theorem (T., 2022)

Assume, in addition, that k, ℓ are "regular" kernels. TFAE:

- The A.-H.-M.-R. question has a positive answer for (k, ℓ).
- ℓ has the automatic separation property.

Example

Let k be the kernel corresp. to the Bergman space on \mathbb{D} with weight $e^{-\frac{1}{1-|z|^{2}}}$. For $z=\left(z_{1}, z_{2}\right), w=\left(w_{1}, w_{2}\right) \in \mathbb{D}^{2}$, define

$$
\ell(z, w)=\frac{k\left(z_{1}, w_{1}\right)+k\left(z_{2}, w_{2}\right)}{\left(1-z_{1} \bar{w}_{1}\right)\left(1-z_{2} \bar{w}_{2}\right)} .
$$

ℓ is "regular", but doesn't have the automatic sep. property.

A "metric" description of ($m-\mathrm{WS}$)

Let ℓ be a kernel on X and assume that $\left\{z_{n}\right\} \subset X$ is (WS). Then, given $m \geq 3,\left\{z_{n}\right\}$ will be (m-WS) if and only if there exists $\delta>0$ (depending on m) such that

$$
d_{\ell}\left(z, w ; \mu_{1}, \mu_{2}, \ldots, \mu_{m-2}\right)>\delta,
$$

for all $z \neq w$ and for any $m-2$ point subset $\left\{\mu_{1}, \ldots, \mu_{m-2}\right\}$ of $\left\{z_{n}\right\}$ that does not contain either z or w, where $d_{\ell}\left(\cdot, \cdot ; \mu_{1}, \mu_{2}, \ldots, \mu_{m-2}\right)$ is the metric associated with the subspace of \mathcal{H}_{ℓ} given by

$$
\left\{f \in \mathcal{H}_{\ell}: f\left(\mu_{1}\right)=\cdots=f\left(\mu_{m-2}\right)=0\right\} .
$$

