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Ingredients: Blaschke Products

B(z) = α

n∏
j=1

z − aj
1− ajz

, where aj ∈ D, |α| = 1.

Basic fact: A Blaschke product of degree n maps the unit circle
onto itself n times; the argument is increasing and B(z) = λ has
exactly n distinct solutions for each λ ∈ T.

(a) Degree 4 (b) Degree 5

Blaschke products



One more look at Blaschke products

B(1/z) = 1/B(z).
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It’s true!

Theorem (Daepp, G., Mortini, 2002)

Let B be a Blaschke product with zeros 0, a and b. For λ ∈ T, let
z1, z2 and z3 be the distinct solutions to B(z) = λ. Then the lines
joining zj and zk , for j 6= k, are tangent to the ellipse given by

|w − a|+ |w − b| = |1− ab|.

Conversely, every point on the ellipse is the point of tangency of a
line segment that intersects T at points for which B(z1) = B(z2).



Poncelet’s theorem, 1813

Let E1 and E2 be ellipses with E1 entirely contained in E2. Starting
at a point on E2 draw a tangent to E1:



















Maybe you keep going – never returning to the starting point.
Maybe, though, it does return to the initial point.















Poncelet’s theorem: Following these rules, if the path closes in n
steps, then no matter where you begin it will close in n steps.

2015, Monthly proof Halbeisen and Hungerbühler. Proof relies on
duality (Brianchon’s and Pascal’s theorems)

A Poncelet ellipse is one that can be inscribed in a (convex)
polygon that is itself inscribed in the larger ellipse.
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Higher Degree

  
  
 

  
 

Figure: Poncelet curves

A Poncelet curve is a smooth curve that can be inscribed in a
(convex) polygon that is itself inscribed in the unit circle.

Some
geometric properties remain, but these are no longer ellipses.

References: Gau-Wu, Mirman
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Euclidean model: points, lines, distance is |a− b|

Poincaré model: points are points in D, lines are (open) arcs
orthogonal to T or (open) diameters, hyperbolic distance is

d(z ,w) = log
1 + ρ(z ,w)

1− ρ(z ,w)
, ρ(z ,w) =

∣∣∣∣ z − w

1− wz

∣∣∣∣ .



Polynomials Blaschke
p(z)=w, n solutions in C B(z) = w, n solutions in D

self-maps of Riemann sphere, valency n selfmaps of D, valency n

factor as c(z − z1) . . . (z − zn) factor as λ
∏n

j=1
z−aj
1−ajz

conformal selfmaps of C are az + b conformal selfmaps of D

class of products of class of products of
n conformal selfmaps of C n conformal selfmaps of D

n − 1 critical pts. in C n − 1 critical pts. in D
determine p up to determine B up to
comp. with a selfmap of C comp. with a selfmap of D



Maybe we should be working in the Poincaré disk



Gauss-Lucas and Walsh

Theorem (Gauss-Lucas, Euclid)

If p is a (non-constant) polynomial, then the critical points of p
belong to the convex hull of the zeros of p.

Theorem (Walsh, Poincaré)

Let B be a Blaschke product. Then the critical points of B inside
D in the non-Euclidean convex hull of the zeros of B with respect
to the Poincaré metric.
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1 Hemisphere: Lines in yellow

2 Poincaré disk model: Lines in red (stereographic projection
from south pole)

3 Klein model: Lines in blue (project the hemisphere
orthogonally onto the equator).

Map between Poincaré and Klein model can be found explicity.



Looking at this from another viewpoint

1 We can connect points of like color using geodesics;

2 We can consider the centers of the geodesics;

3 We can ask for the inner and outer boundary of the union of
the geodesics.

Assume: Closed, smooth, strictly convex curve.

We focus on (2, 3) here. Process:

1 Draw a tangent line at a point on the curve.

2 Consider the two points of intersection.

3 Draw the geodesic.

4 Locate its center.

This set of points forms the curve of geodesic centers.



Curve of geodesics:

zc

z1

z2

Polar

O
Pole

Not hard to check that zc is the reflection of the midpoint
(z1 + z2)/2 with respect to T.

Other language you may know: Let P be a point and P? the
inversion with respect to T. The line through P? perpendicular to
the line PP? is the polar and the point P is the pole.
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Duality

Insightful beauty can manifest itself in a flash of insight, or in a
slowly growing appreciation over time. There are many
mathematical ideas that I didn’t appreciate until I had seen them
arise over and over again in disparate places. One recurring theme
throughout mathematics is duality, natural pairings that exist
between mathematical ideas...Recognizing duality is like using a
mirror to see how two creatures that look and behave differently
are really the same. I didn’t appreciate duality until I saw it in
many contexts; now I think it is beautiful.

Mathematics for Human Flourishing, Frances Su



The curve of geometric centers

c(t)

zc(t)

z1

z2







Note that this gives a process that can be continued!



Theorem (Classical)

The curve of geodesic centers of an ellipse E with respect to a
circle is

1 an ellipse, if the origin of the circle lies in the interior of E ;

2 a parabola, if the origin lies on E ;

3 a hyperbola, if the origin lies outside E .

Theorem (Classical)

Let C be a smooth, closed, strictly convex curve in D containing 0
in its interior with parametrization (x(t), y(t)) for t in an open
interval I. Then the curve of geodesic centers of C is smooth,
strictly convex, closed and has parametrization

zc(t) =

(
y ′(t)

y ′(t)x(t)− x ′(t)y(t)
,

−x ′(t)

y ′(t)x(t)− x ′(t)y(t)

)
.
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Putting this together...
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Theorem

There exists an infinite Poncelet dual chain of ellipses symmetric
about the x-axis if and only if they are centered at 0.
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Envelopes



The envelope of the geodesics

Let Z (parametrized (x(t), y(t))) be the curve of geodesic centers,
q(t) = x(t)y ′(t)− y(t)x ′(t) for t ∈ [0, 2π] and

β±(t) :=
q(t)±

√
q2(t)− |z ′(t)|2
|z ′(t)|

.

Theorem

If G is the union of all geodesic circles with centers on Z, then the
boundary of G consists of all points of the form

cext(t) =

(
β+(t)

y ′(t)

|z ′(t)|
,−β+(t)

x ′(t)

|z ′(t)|

)
;

cint(t) =

(
β−(t)

y ′(t)

|z ′(t)|
,−β−(t)

x ′(t)

|z ′(t)|

)
.

So, cint(t) · cext(t) = 1 for all t, points cint(t) are inside T and
points cext(t) are outside T.



Special case of an ellipse

Theorem

The boundary C of R consists of all points in the images of the
parametrizations

cint(t) =

(
ex(t)

1 +
√

1− ex(t)2 − ey (t)2
,

ey (t)

1 +
√

1− ex(t)2 − ey (t)2

)
;

cext(t) =

(
ex(t)

1−
√

1− ex(t)2 − ey (t)2
,

ey (t)

1−
√

1− ex(t)2 − ey (t)2

)
.

Remark: The Klein-Poincaré map is

k−1(x , y) =

(
x

1 +
√

1− x2 − y2
,

y

1 +
√

1− x2 − y2

)
.



Singer, 2006

Theorem

Let B be a Blaschke product and let γ be the envelope of the
non-Euclidean geodesics (with respect to the Poincaré metric)
joining pairs of points that satisfy B(z1) = B(z2). Then γ is part
of an algebraic curve with real foci that are the critical points of B
in D together with their inverses with respect to D.

Remark. For n = 3 the curve is a non-Euclidean ellipse:

“The
ellipse in the hyperbolic plane is the locus of a point the sum of
whose hyperbolic distances from two geometric foci are constant.”
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Hyperbolic ellipse



An application – When is 0 in the numerical range of an
operator?

One of the most important open problems on numerical ranges is
the discovery of necessary and/or sufficient conditions for the
origin to be a point of W (A). More specifically, it would be
interesting to discover conditions for the origin to belong to the
boundary or to the topological interior of W (A). – Psarrakos and
Tsatsomeros 2003



Ingredients: Operator theory

H2 is the Hardy space; f (z) =
∑∞

n=0 anz
n where

∑∞
n=0 |an|2 <∞.

An inner function is a bounded analytic function on D with radial
limits of modulus one almost everywhere.

S is the shift operator S : H2 → H2 defined by [S(f )](z) = zf (z);

The adjoint is [S?(f )](z) = (f (z)− f (0))/z .

Theorem (Beurling’s theorem)

The nontrivial invariant subspaces under S are

UH2 = {Uh : h ∈ H2},

where U is an inner function.

Subspaces invariant under the adjoint, S? are KU := H2 	 UH2.



Our operators and our space

Our operators: compressions of the shift SB : KB → KB defined
by

SB(f ) = PBS(f ),

where PB is the orthogonal projection from H2 onto KB .

Our spaces: KB := H2 	 BH2 where B(z) =
∏n

j=1
z−aj
1−ajz .

Consider the Szegö kernel: ga(z) =
1

1− az
, where B(a) = 0.

• 〈f , ga〉 = f (a) for all f ∈ H2.

• So 〈Bh, gaj 〉 = B(aj)h(aj) = 0 for all h ∈ H2.

So gaj ∈ KB for j = 1, 2, . . . , n.

If aj are distinct, KB = span{gaj : j = 1, . . . , n}.

Applying Gram-Schmidt we get the Takenaka-Malmquist basis.
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Our curves: Boundary of the numerical range of SB

A an n × n matrix.

The numerical range of A is W (A) = {〈Ax , x〉 : ‖x‖ = 1}. We’ll
look at the boundary of W (SB), where B is a finite Blaschke
product.

Why should we look at the numerical range?

Contains eigenvalues of A : 〈Ax , x〉 = 〈λx , x〉 = λ〈x , x〉 = λ.

0 ∈W (A) means 〈Ax , x〉 = 0.
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Compare the zero matrix and the n × n Jordan block: (Here’s the
2× 2)

A1 =

[
0 0
0 0

]
,A2 =

[
0 1
0 0

]
.

W (A1) = {0},W (A2) = {z : |z | ≤ 1/2}.
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Numerical Range

W (A) = {〈Ax , x〉 : ‖x‖ = 1}.

Theorem (Elliptical range theorem)

Let A be a 2× 2 matrix with eigenvalues a and b. Then the
numerical range of A is an elliptical disk with foci at a and b and
minor axis given by (tr(A?A)− |a|2 − |b|2)1/2.

Theorem (The Toeplitz-Hausdorff Theorem; 1918)

The numerical range of an n × n matrix is convex.



For compressed shifts

Gau and Wu show that the boundary is a strictly convex curve
with tangents at all points. In fact, it’s smooth and everything we
have done so far applies.



How we get our curves

Take a finite Blaschke product B.

Let B̂(z) = zB(z).

Form the convex polygons, Pλ, with vertices at the points of T at
which B̂(z) = λ.

The envelope of these polygons is the boundary of W (SB).



Remember these?

Figure: W (SB)



  
 

Figure: W (SB)



Theorem

Let B be a finite Blaschke product of degree n ≥ 2. Then 0 lies in
the interior of W (SB) if and only if the curve of geodesic centers
Z is a compact closed convex curve containing the unit circle.
In this case, the unit circle will be a Poncelet curve relative to Z.

In theory, this gives you a formula for the curve.

In practice, it
gives you a formula for the curve of centers of geodesics. In
general, it shows that it’s easier to find a formula for the dual than
the original curve.
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Application to function theory

Let B be a Blaschke product of degree n − 1 and B̂(z) := zB(z).

Lemma

Let z1, . . . , zn ∈ T be the n points satisfying B̂(zj) = B̂(zk) and
enumerated according to argument on T. With indices considered
modulo n:

• 0 lies in the interior of W (SB) if and only if no set of n points
on T identified by B̂ contains sequential opposite points;

• 0 lies on the boundary of W (SB) if and only if there is exactly
one set of n points on T identified by B̂ and containing two
opposite sequential points.

• 0 lies outside W (SB) if and only if there exist (at least) two
sets of n points on T identified by B̂ each of which contains
two opposite sequential points;



A picture is worth...

Inside, Outside, On
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Further reading

1 Envelopes: Bickel, G., Tran, 2020.

2 Operator theory, Mirman, Gau and Wu, for infinite Blaschke
products: Chalendar+G+Partington, for inner functions and
more general operators: Bercovici+Timotin; for several
variables: Bickel+G.

3 Algebraic/Projective Geometry: Masayo Fujimura, Interior
and Exterior Curves, 2019 (also 2017 and 2013).

4 Geometry, David Singer, 2006

5 Orthogonal Polynomials: Mart́ınez-Finkelshtein, Simanek,
Simon

6 Geometric analysis: Richard Schwartz, Serge Tabachnikov,
Monthly, 2020

7 Halbeisen, Hungerbühler, Closed chains of conics carrying
Poncelet curves, 2017



Books for further reading

http://www.mathe.tu-freiberg.de/fakultaet/

information/math-calendar-2020
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