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The disc algebra

‖f‖∞ = max
z∈D
|f(z)|, f ∈ C(D)

A(D) = C[z]
‖·‖∞

= O(D) ∩ C(D)

This is an infinite-dimensional operator algebra, but it is completely determined by
its finite-dimensional representations.

For z ∈ D, let εz : A(D)→ C be the character of evaluation at z, that is

εz(f) = f(z), f ∈ A(D).

Then,
‖f‖∞ = max

z∈D
|εz(f)|, f ∈ A(D).

In other words, the map ⊕
z∈D

εz : A(D)→
∏
z∈D

C

is a completely isometric homomorphism. This says that A(D) is residually
finite-dimensional (RFD).

Just how much finite-dimensionality does A(D) enjoy?
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R. Clouâtre (University of Manitoba) Finite-dimensional approximations OTWIA 3 / 16



The disc algebra

‖f‖∞ = max
z∈D
|f(z)|, f ∈ C(D)

A(D) = C[z]
‖·‖∞

= O(D) ∩ C(D)

This is an infinite-dimensional operator algebra, but it is completely determined by
its finite-dimensional representations.

For z ∈ D, let εz : A(D)→ C be the character of evaluation at z, that is

εz(f) = f(z), f ∈ A(D).

Then,
‖f‖∞ = max

z∈D
|εz(f)|, f ∈ A(D).

In other words, the map ⊕
z∈D

εz : A(D)→
∏
z∈D

C

is a completely isometric homomorphism.

This says that A(D) is residually
finite-dimensional (RFD).

Just how much finite-dimensionality does A(D) enjoy?
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Some associated C∗-algebras

Example

By definition, we have that A(D) ⊂ C(D). In fact, we have that C∗(A(D)) = C(D).
Moreover,

⊕
z∈D εz : C(D)→

∏
z∈D C is a completely isometric homomorphism.

Example

By the maximum modulus principle, the restriction map ρ : A(D)→ C(T) is
completely isometric. We have that C∗(ρ(A(D))) = C(T) and⊕

z∈T εz : C(T)→
∏
z∈T C is a completely isometric homomorphism.

Example

Consider the Hardy space

H2(D) =

{
∞∑
n=0

anz
n :

∞∑
n=0

|an|2 <∞

}
.

Let Φ : A(D)→ B(H2(D)) be defined as Φ(f) = Mf . Then, T = C∗(Φ(A(D))) is the
Toeplitz algebra and it is not RFD (it contains the ideal of compact operators).
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The maximal C∗-algebra

Let R denote the collection of all completely contractive homomorphisms
θ : A(D)→ B(Hθ) for some Hilbert space Hθ.

The map Θ =
⊕

θ∈R θ is a completely isometric homomorphism.

We define C∗max(A(D)) = C∗(Θ(A(D))). This is a universal C∗-algebra: every
representation of A(D) extends to a ∗-representation of C∗max(A(D)).

Is C∗max(A(D)) residually finite-dimensional? Yes!

Theorem

The disc algebra A(D) is residually finite-dimensional, and so is its maximal
C∗-algebra C∗max(A(D)).

Proof.

Ingredients:

universality of A(D) (von Neumann’s inequality)

if T is a contraction on H and K ⊂ H is a subspace, then PKT |K is a contraction.
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R. Clouâtre (University of Manitoba) Finite-dimensional approximations OTWIA 5 / 16



The maximal C∗-algebra

Let R denote the collection of all completely contractive homomorphisms
θ : A(D)→ B(Hθ) for some Hilbert space Hθ.

The map Θ =
⊕

θ∈R θ is a completely isometric homomorphism.

We define C∗max(A(D)) = C∗(Θ(A(D))). This is a universal C∗-algebra: every
representation of A(D) extends to a ∗-representation of C∗max(A(D)).

Is C∗max(A(D)) residually finite-dimensional? Yes!

Theorem

The disc algebra A(D) is residually finite-dimensional, and so is its maximal
C∗-algebra C∗max(A(D)).

Proof.

Ingredients:

universality of A(D) (von Neumann’s inequality)

if T is a contraction on H and K ⊂ H is a subspace, then PKT |K is a contraction.
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Residual finite-dimensionality of the maximal C∗-algebra

Theorem

The disc algebra A(D) is residually finite-dimensional, and so is its maximal
C∗-algebra C∗max(A(D)).

Main question

The bidisc algebra A(D2) is residually finite-dimensional. Is C∗max(A(D2)) residually
finite-dimensional as well?

By von Neumann’s inequality, C∗max(A(D)) coincides with the universal C∗-algebra
generated by a contraction.
By Ando’s inequality, C∗max(A(D2)) coincides with the universal C∗-algebra generated
by a pair of commuting contractions.

Theorem (Courtney–Sherman 2019, Ji–Natarajan–Vidick–Wright–Yuen 2020)

The universal C∗-algebra generated by a pair of doubly commuting contractions is not
residually finite-dimensional.

Recall: contractions T1 and T2 are doubly commuting if T1T2 = T2T1 and
T1T

∗
2 = T ∗2 T1
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The universal C∗-algebra generated by a pair of doubly commuting contractions is not
residually finite-dimensional.

Recall: contractions T1 and T2 are doubly commuting if T1T2 = T2T1 and
T1T

∗
2 = T ∗2 T1
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Approximation by finite-dimensional representations

Let A be an operator algebra and let θ : A → B(Hθ) be a completely contractive
homomorphism.

Let ϕλ : A → B(Hθ) be a net of completely contractive homomorphisms (acting on
the same Hilbert space as θ) such that dim C∗(ϕλ(A)) <∞.

We say that (ϕλ) is

(i) an Exel–Loring approximation for θ if (ϕλ(a))λ∈Λ converges in SOT to θ(a) for
every a ∈ A;

(ii) an Exel–Loring ∗-approximation for θ if (ϕλ(a)∗)λ∈Λ converges in SOT to θ(a)∗

for every a ∈ A;

(iii) an Exel–Loring C∗-approximation for θ if (ϕλ(a))λ∈Λ converges in SOT* to θ(a)
for every a ∈ A.

Theorem (Exel–Loring 1992)

A C∗-algebra is residually finite-dimensional if and only if every ∗-representation
admits an Exel–Loring approximation (of any kind).
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Some implications

Theorem (C.–Dor On 2020)

Let A be an operator algebra. Then, we have the following implications.

C∗max(A) is residually finite-dimensional.
m

Every completely contractive representation of A
admits an Exel–Loring C∗-approximation.

⇓
Every completely contractive representation of A

admits an Exel–Loring ∗-approximation.
⇓

A is residually finite-dimensional.

Corollary

Every completely contractive representation of A(D) admits an Exel–Loring
C∗-approximation.

Refined question

Does every completely contractive representation of A(D2) admit an Exel–Loring
∗-approximation?
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Examples of Exel–Loring approximations

Example

H reproducing kernel Hilbert space on some set X, A ⊂ Mult(H) subalgebra
θ : A → B(H) identity representation

F ⊂ X finite, KF = span{kx : x ∈ F} ⊂ H finite-dimensional subspace
M∗ϕKF ⊂ KF for every ϕ ∈ Mult(H)

Define θF : A → B(H) as

θF (a) = PKF θ(a)PKF , a ∈ A.

Because ∪FKF is dense in H, this net is an Exel–Loring C∗-approximation for θ.

Example

Kϕ = H2(D)	 ϕH2(D) where ϕ(z) = exp
(
z+1
z−1

)
Kϕ infinite-dimensional and co-invariant for A(D)

The compression θ : A(D)→ B(Kϕ) admits an Exel–Loring C∗-approximation. But
an approximating net must be rather complicated: there is no finite-dimensional
subspace of Kϕ which is semi-invariant for A(D).
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Building new approximations from old ones

Key lemma

Assume that θ : A → B(Hθ) admits an Exel–Loring approximation. Let H ⊂ Hθ be
an invariant subspace for θ(A). Then, the representation

a 7→ θ(a)|H, a ∈ A

admits an Exel–Loring approximation.

What about general compressions to semi-invariant subspaces? What about
C∗-approximations?
Recall that

C∗max(A) is residually finite-dimensional.
m

Every completely contractive representation of A
admits an Exel–Loring C∗-approximation.

⇓ ⇑
Every completely contractive representation of A

admits an Exel–Loring ∗-approximation.
⇓ ⇑

A is residually finite-dimensional.
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Back to functions: the complete Nevanlinna–Pick property

H unitarily invariant complete Nevanlinna–Pick space on Bd with kernel K

K(z, w) = 1 +

∞∑
n=1

an〈z, w〉n and 1− 1

K(z, w)
=

∞∑
n=1

bn〈z, w〉n

where (an), (bn) non-negative sequences

Standing assumption: an > 0 and limn→∞
an
an+1

= 1

Example

Drury–Arveson space, Dirichlet space on D, ...

A(H) = C[z1, . . . , zd] ⊂ Mult(H)

Theorem (C.–Dor On 2020)

Every completely contractive representation of A(H) admits an Exel–Loring
∗-approximation.
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R. Clouâtre (University of Manitoba) Finite-dimensional approximations OTWIA 11 / 16



Back to functions: the complete Nevanlinna–Pick property

H unitarily invariant complete Nevanlinna–Pick space on Bd with kernel K

K(z, w) = 1 +
∞∑
n=1

an〈z, w〉n and 1− 1

K(z, w)
=

∞∑
n=1

bn〈z, w〉n

where (an), (bn) non-negative sequences

Standing assumption: an > 0 and limn→∞
an
an+1

= 1

Example

Drury–Arveson space, Dirichlet space on D, ...

A(H) = C[z1, . . . , zd] ⊂ Mult(H)

Theorem (C.–Dor On 2020)

Every completely contractive representation of A(H) admits an Exel–Loring
∗-approximation.
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Main ingredients of the proof

Let θ : A(H)→ B(Eθ) be a completely contractive homomorphism.

We find a ∗-homomorphism π of C∗(A(H)) such that

θ(a)∗ = π(a)∗|Eθ

for every a ∈ A(H) (Ambrozie–Englǐs–Müller 2002).
The complete Nevanlinna–Pick property is used here (C.–Hartz 2018).

The algebra C∗(A(H)) contains the ideal K of compact operators and
C∗(A(H))/K ∼= C(Sd) (Guo–Hu–Xu 2004).

We can find a unitary operator U along with a ∗-representation σ of
C∗(A(H))/K such that

π(a) = σ(a+ K)⊕ U(a⊗ I)U∗

for every a ∈ A(H). (≈ Wold decomposition of an isometry)
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Facing the bidisc: the good and the bad

Good: 2 < 3 (Ando’s inequality)

Given a pair (T1, T2) of commuting contractions on a Hilbert space H, there is a
completely contractive homomorphism θ : A(D2)→ B(H) such that
θ(z1) = T1, θ(z2) = T2.

Bad: 2 > 1 (commuting pairs of isometries are mysterious)

No perfect analogue of the Wold decomposition.
Known functional representations for pure commuting pairs of isometries are
relatively complicated (Berger–Coburn–Lebow 1975, Bercovici–Douglas–Foias 2006).

Theorem (C.–Dor On 2020)

Any completely contractive representation of A(D2) admits an Exel–Loring
∗-approximation.

Recall: to show that any completely contractive representation of A(D) admits an
Exel–Loring C∗-approximation, we used

von Neumann’s inequality

if T is a contraction on H and K ⊂ H is a subspace, then PKT |K is a contraction.
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R. Clouâtre (University of Manitoba) Finite-dimensional approximations OTWIA 13 / 16



Facing the bidisc: the good and the bad

Good: 2 < 3 (Ando’s inequality)

Given a pair (T1, T2) of commuting contractions on a Hilbert space H, there is a
completely contractive homomorphism θ : A(D2)→ B(H) such that
θ(z1) = T1, θ(z2) = T2.

Bad: 2 > 1 (commuting pairs of isometries are mysterious)

No perfect analogue of the Wold decomposition.

Known functional representations for pure commuting pairs of isometries are
relatively complicated (Berger–Coburn–Lebow 1975, Bercovici–Douglas–Foias 2006).

Theorem (C.–Dor On 2020)

Any completely contractive representation of A(D2) admits an Exel–Loring
∗-approximation.

Recall: to show that any completely contractive representation of A(D) admits an
Exel–Loring C∗-approximation, we used

von Neumann’s inequality

if T is a contraction on H and K ⊂ H is a subspace, then PKT |K is a contraction.
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R. Clouâtre (University of Manitoba) Finite-dimensional approximations OTWIA 13 / 16



Facing the bidisc: the good and the bad

Good: 2 < 3 (Ando’s inequality)

Given a pair (T1, T2) of commuting contractions on a Hilbert space H, there is a
completely contractive homomorphism θ : A(D2)→ B(H) such that
θ(z1) = T1, θ(z2) = T2.

Bad: 2 > 1 (commuting pairs of isometries are mysterious)

No perfect analogue of the Wold decomposition.
Known functional representations for pure commuting pairs of isometries are
relatively complicated (Berger–Coburn–Lebow 1975, Bercovici–Douglas–Foias 2006).

Theorem (C.–Dor On 2020)

Any completely contractive representation of A(D2) admits an Exel–Loring
∗-approximation.

Recall: to show that any completely contractive representation of A(D) admits an
Exel–Loring C∗-approximation, we used

von Neumann’s inequality

if T is a contraction on H and K ⊂ H is a subspace, then PKT |K is a contraction.
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R. Clouâtre (University of Manitoba) Finite-dimensional approximations OTWIA 13 / 16



Facing the bidisc: the good and the bad

Good: 2 < 3 (Ando’s inequality)

Given a pair (T1, T2) of commuting contractions on a Hilbert space H, there is a
completely contractive homomorphism θ : A(D2)→ B(H) such that
θ(z1) = T1, θ(z2) = T2.

Bad: 2 > 1 (commuting pairs of isometries are mysterious)

No perfect analogue of the Wold decomposition.
Known functional representations for pure commuting pairs of isometries are
relatively complicated (Berger–Coburn–Lebow 1975, Bercovici–Douglas–Foias 2006).

Theorem (C.–Dor On 2020)

Any completely contractive representation of A(D2) admits an Exel–Loring
∗-approximation.

Recall: to show that any completely contractive representation of A(D) admits an
Exel–Loring C∗-approximation, we used

von Neumann’s inequality

if T is a contraction on H and K ⊂ H is a subspace, then PKT |K is a contraction.
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A reduction

Start with a completely contractive homomorphism θ : A(D2)→ B(Hθ).

For each 0 < r < 1, let θr : A(D2)→ B(Hθ) be the completely contractive
homomorphism such that θr(z1) = rθ(z1) and θr(z2) = rθ(z2).

Then, (θr(a)) converges to θ(a) in norm for every a ∈ A(D2).

In particular, we may assume that ‖θ(z1)‖ < 1.

Lemma

If ‖θ(z1)‖ < 1, then there is a completely contractive representation ρ of A(D2) such
that ρ(z1) is a unilateral shift and

θ(a)∗ = ρ(a)∗|Hθ , a ∈ A(D2).

It remains to deal with the case where θ(z1) is a unilateral shift.

Claim

Assume that θ(z1) is a unilateral shift. Then, θ admits an Exel–Loring
∗-approximation.
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Proof of the claim

We have that θ(z1) = S ⊗ IE and θ(A(D2)) ⊂ Mult(H2(D)⊗ E).

If E is finite-dimensional, then for every F ⊂ D finite we let

KF = span{kz ⊗ v : z ∈ F, v ∈ E}.

This is co-invariant for θ(A(D2)) and (PKF θ(·)|KF ) is an Exel–Loring
∗-approximation for θ.

If E is infinite-dimensional, write E = ∪Eα where Eα ⊂ E is a finite-dimensional
subspace. Note that S ⊗ PEα and (I ⊗ PEα)θ(z2)(I ⊗ PEα) is a pair of
commuting contractions.

By Ando’s inequality, there is a completely contractive homomorphism
θα : A(D2)→ B(H2(D)⊗ Eα) such that θα(z1) = S ⊗ PEα and
θα(z2) = (I ⊗ PEα)θ(z2)(I ⊗ PEα).

We have that (θα(a)) converges to θ(a) in SOT* for every a ∈ A(D2).
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Thank you!
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