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Background Quantum Isomorphisms Main Results

Non-local games: a primer

We look at two-player non-local games. The referee sends
numbers x, y ∈ I = {1, ...,m} to Alice and Bob.

Alice and Bob respond with numbers a, b ∈ O = {1, ..., k}.
Rule function Λ : I × I ×O ×O → {0, 1}. Alice and Bob win
if Λ(a, b, x, y) = 1, and lose if Λ(a, b, x, y) = 0.

Catch: Alice and Bob can agree upon a strategy before the
game, but cannot communicate once it begins.

Referee

Alice Bob

entanglement!

x y

a

Many miles away

b
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Example: Iso(G,H)

Let G and H be two finite, undirected graphs with
|V (G)| = |V (H)|. (No multiple edges, no loops)

Input set is I = V (G)t V (H). The referee sends vertices x, y
to Alice and Bob, respectively.

Alice and Bob each respond with a vertex a and b,
respectively, from O = V (G) t V (H).

Alice and Bob win the game if:

a and x are in different graphs, and b and y are in different
graphs; and
Writing {a, x} = {gA, hA} and {b, y} = {gB , hB} where
gA, gB ∈ V (G), hA, hB ∈ V (H), we require
rel(gA, gB) = rel(hA, hB), where rel(x, x′) = 1 if x ∼ x′, 0 if
x = x′, and −1 if x 6= x′ and x 6∼ x′.

Recall that Alice and Bob cannot communicate once the game
begins. (But they can share an entanglement resource space!)
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Probabilistic models

There are several different possibilities for modelling the
probability distributions p(a, b|x, y) for an m-input, k-output
system (eg. for the graph isomorphism game.)

We consider when p(a, b|x, y) = 〈Ea,xFb,yψ,ψ〉, where ψ is a
unit vector in a Hilbert space H, {Ea,x}ma=1 and {Fb,y}mb=1 are
projection-valued measures for each x, y, and [Ea,x, Fb,y] = 0
for all a, b, x, y.
We could model (a subset of) these probability distributions
using a finite-dimensional tensor product model (giving
Cq(m, k)), a tensor product model (giving Cqs(m, k)), an
approximate tensor product model (giving Cqa(m, k)), a
commuting model (giving Cqc(m, k)), or a local model (giving
Cloc(m, k)).
By a lot of theorems, we know that

Cloc(m, k) ⊆ Cq(m, k) ⊆ Cqs(m, k) ⊆ Cqa(m, k) ⊆ Cqc(m, k),

and all of these containments are (in general) strict.
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The synchronicity condition

Key property: Iso(G,H) is a synchronous game: if Alice and
Bob receive inputs x, y and x = y, then Alice and Bob’s
outputs a and b must be equal. That is, if they win with
probability 1, then

p(a, b|x, x) = 0 if a 6= b.

For t ∈ {loc, q, qs, qa, qc}, one defines

Cs
t (m, k) = {(p(a, b|x, y)) ∈ Ct(m, k) : p is synchronous}.

Surprisingly, Cs
q (m, k) = Cs

qs(m, k)
(Kim-Paulsen-Schafhauser, ’18), but all the other analogous
containments are (in general) strict.
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Synchronous realizations

Theorem (Paulsen, Severini, Stahlke, Todorov, Winter, ’16)

(p(a, b|x, y)) ∈ Cs
qc(m, k) ⇐⇒ there are projection-valued

measures {Ea,x}ka=1 for each x in a tracial C∗-algebra (A, τ), such
that

p(a, b|x, y) = τ(Ea,xEb,y).

Moreover,

(p(a, b|x, y)) ∈ Cs
loc(m, k) ⇐⇒ A can be taken to be

abelian;

(p(a, b|x, y)) ∈ Cs
q (m, k) ⇐⇒ A can be taken to be

finite-dimensional;

(Kim-Paulsen-Schafhauser, ’18) (p(a, b|x, y)) ∈ Cs
qa(m, k)

⇐⇒ A can be taken to be Rω (ultrapower of hyperfinite
II1-factor).
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Quantum permutations

Let A be a unital C∗-algebra. A matrix U = (Eg,h) ∈Mn(A)
is a quantum permutation if U∗U = UU∗ = In and
Eg,h = E∗g,h = E2

g,h for all g, h.

Equivalently, Eg,h = E∗g,h = E2
g,h and∑

g∈V (G)Eg,h =
∑

h∈V (G)Eg,h = 1 for all g, h.

p = (p(a, b|x, y)) = τ(Ea,xEb,y) ∈
Cs
t (|V (G)t V (H)|, |V (G)t V (H)|) wins the game Iso(G,H)

with probability 1 if and only if U = (Eg,h)g∈V (G), h∈V (H) is a
quantum permutation such that

(AG ⊗ 1)U = U(AH ⊗ 1),

where AG (resp. AH) is the adjacency matrix of G (resp. H).
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Write G 't H if there’s a winning t-strategy for Iso(G,H)
(where t ∈ {loc, q, qa, qc}).

G 'loc H ⇐⇒ G ' H ⇐⇒ there’s a permutation matrix
U ∈Mn with AGU = UAH .

G 'q H ⇐⇒ there’s a quantum permutation U ∈Mn(Md)
for some d, such that (AG ⊗ 1)U = U(AH ⊗ 1).

G 'qa H ⇐⇒ we can take U in Mn(Rω).

G 'qc H ⇐⇒ we can take U ∈Mn(A) for some tracial
C∗-algebra (A, τ).

All of these cases can be thought of as representations of a
universal ∗-algebra for Iso(G,H).
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Algebra of the Game

Definition (Kim-Paulsen-Schafhauser, ’18)

We define A(Iso(G,H)) to be the free (unital) ∗-algebra generated
by entries eg,h (g ∈ V (G), h ∈ V (H)) such that

e2g,h = eg,h = e∗g,h,
∑

g∈V (G)

eg,h =
∑

h∈V (H)

eg,h = 1,

and
eg,heg′,h′ = 0 if rel(g, g′) 6= rel(h, h′).

Say that A(Iso(G,H)) exists if 1 6= 0 in A(Iso(G,H)).

G ' H ⇐⇒ ∃ unital ∗-hom A(Iso(G,H))→ C.
G 'q H ⇐⇒ ∃ unital ∗-hom A(Iso(G,H))→Md.
G 'qa H ⇐⇒ ∃ unital ∗-hom A(Iso(G,H))→ Rω.
G 'qc H ⇐⇒ ∃ unital ∗-hom from A(Iso(G,H))→ (A, τ).
We say that G 'alg H if A(Iso(G,H)) exists.
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Algebraic Isomorphisms, continued

It’s not known if there are any graphs G,H with G 'qc H but
G 'qa H. (It’s possible that Connes’ embedding has a
negative answer and qa/qc isomorphisms are the same for all
G,H!)

What about 'alg =⇒ 'qc? (What could go wrong?)

Eg. There’s a graph homomorphism game, with an associated
∗-algebra A(Hom(G,H)). But A(Hom(K5,K4)) 6= 0
(Helton-Meyer-Paulsen-Satriano ’19), so there’s an (algebraic)
4-coloring of K5!

What’s the problem? In a C∗-algebra, if p1, ..., pn are
self-adjoint idempotents and

∑n
i=1 pi = 1, then pipj = 0 if

i 6= j.

In a unital ∗-algebra, this only works if n ≤ 3, and is
false if n ≥ 4. (In A(Hom(K5,K4)), there are p1, ..., p4 with
p2i = pi = p∗i and

∑
pi = −1.)
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'alg =⇒ 'qc

Theorem (Chirvasitu-Brannan-Eifler-H.-Paulsen-Su-Wasilewski,
’19)

If G and H are graphs with G 'alg H, then G 'qc H.

This also means that if G 'C∗ H (i.e. there’s a
representation A(Iso(G,H))→ B(H) for some Hilbert space
H), then G 'qc H.
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Related: Lovasz’s theorem on homomorphism counts

Theorem (Lovasz, 1967)

If G and H are graphs, then G ' H if and only if
|Hom(Z,G)| = |Hom(Z,H)| for all graphs Z.

Question: can one relax the theorem to planar graphs Z?

Theorem (Mancinska-Roberson, ’19)

Let G and H be graphs. Then G 'qc H if and only if
|Hom(Z,G)| = |Hom(Z,H)| for all planar graphs Z.

Thus, G 'alg H ⇐⇒ G 'qc H ⇐⇒
|Hom(Z,G)| = |Hom(Z,H)| for all planar graphs Z.
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