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@ We look at two-player non-local games. The referee sends
numbers z,y € I = {1,...,m} to Alice and Bob.

@ Alice and Bob respond with numbers a,b € O = {1,...,k}.

@ Rule function A : I x I x O x O — {0,1}. Alice and Bob win
if A(a,b,z,y) =1, and lose if A(a,b,z,y) = 0.

@ Catch: Alice and Bob can agree upon a strategy before the
game, but cannot communicate once it begins.

Referee
T Yy
a b
Alice : Bob
Yo Many miles away Y

entanglement!
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Example: Iso(G, H)

Let G and H be two finite, undirected graphs with
[V(G)| = |V(H)|. (No multiple edges, no loops)
@ Inputsetis I = V(G)UV(H). The referee sends vertices z,y
to Alice and Bob, respectively.

@ Alice and Bob each respond with a vertex a and b,
respectively, from O = V(G) UV (H).
@ Alice and Bob win the game if:
e a and x are in different graphs, and b and y are in different
graphs; and
o Writing {a,z} = {ga,ha} and {b,y} = {9, hp} where
9ga,98 € V(G), ha,hp € V(H), we require
rel(ga, gp) = rel(ha, hg), where rel(z,z’) =1 if x ~ 2/, 0 if
z=2a',and —1ifz # 2’ and z £ 2'.
Recall that Alice and Bob cannot communicate once the game
begins. (But they can share an entanglement resource space!)
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@ There are several different possibilities for modelling the
probability distributions p(a, b|x,y) for an m-input, k-output
system (eg. for the graph isomorphism game.)

o We consider when p(a, bz, y) = (E42Fp 41, 1¥), where ¢ is a
unit vector in a Hilbert space H, {Fy.}neq and {Fy,};" | are
projection-valued measures for each x,y, and [Eq ., Fy, ] = 0
for all a,b,z,y.

@ We could model (a subset of) these probability distributions
using a finite-dimensional tensor product model (giving
Cq(m, k)), a tensor product model (giving Cys(m, k)), an
approximate tensor product model (giving Cyqo(m, k)), a
commuting model (giving Cyc(m, k)), or a local model (giving
Cloc(m, k)).

@ By a lot of theorems, we know that

Cloc(m7 k) - Cq(ma k) - Cqs(ma k) - an(ma k) - ch(ma k)7

and all of these containments are (in general) strict.
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The synchronicity condition

e Key property: Iso(G, H) is a synchronous game: if Alice and
Bob receive inputs x,y and = = y, then Alice and Bob's
outputs a and b must be equal. That is, if they win with
probability 1, then

p(a,blz,z) =0 if a # b.
e For t € {loc, q, qs, qa, qc}, one defines
Ci(m, k) = {(p(a,blz,y)) € Ci(m, k) : p is synchronous}.
o Surprisingly, Cy(m, k) = Cg (m, k)

(Kim-Paulsen-Schafhauser, '18), but all the other analogous
containments are (in general) strict.
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Synchronous realizations

Theorem (Paulsen, Severini, Stahlke, Todorov, Winter, '16)

(p(a,blz,y)) € Cj.(m, k) <= there are projection-valued
measures {E, . }*_, for each x in a tracial C*-algebra (A, T), such
that

pla,blz,y) = T(EaxEpy)-
Moreover,
o (p(a,blz,y)) € C} .(m,k) <= A can be taken to be
abelian;
o (p(a,blz,y)) € Cg(m, k) <= A can be taken to be
finite-dimensional;
© (Kim-Paulsen-Schafhauser, '18) (p(a,b|z,y)) € Cgy(m, k)

<= A can be taken to be R“ (ultrapower of hyperfinite
I1,-factor).
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Quantum permutations

o Let A be a unital C*-algebra. A matrix U = (Eg ) € M,(A)
is a quantum permutation if U*U = UU* = I,, and
Eyp= E;h = E;h for all g, h.

e Equivalently, E,, = E;"h = Eﬁ,h and
deV(G) Eyn = ZheV(G) Eyp =1forall g, h.

e p= (p(a, b|$, y)) = T(Ea,be,y) €
C;(|[V(G)UV(H)|,|V(G)UV(H)|) wins the game Iso(G, H)
with probability 1 if and only if U = (Ey 1) gev (), hev(m) iS 2
quantum permutation such that

(Ag@ 1)U =U(Ag ® 1),

where A (resp. Ap) is the adjacency matrix of G (resp. H).
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e Write G ~; H if there's a winning t-strategy for Iso(G, H)
(where t € {loc, q, qa, qc}).

o G~y H < G ~H <= there's a permutation matrix
U e M, with AqU =UAg.

o G~y H <= there's a quantum permutation U € M, (M)
for some d, such that (A¢ ® 1)U = U(Ag ® 1).

o G~y H < we can take U in M,(R").

o G~y H <= we can take U € M,(A) for some tracial
C*-algebra (A, ).

@ All of these cases can be thought of as representations of a
universal x-algebra for Iso(G, H).
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Definition (Kim-Paulsen-Schafhauser, '18)

We define A(lso(G, H)) to be the free (unital) x-algebra generated
by entries e; 1, (9 € V(G), h € V(H)) such that

2h—eg, Z €g9,h = Z egh = 1,
gGV(G) heV (H)

and
€9,h€q' 0 = 0 if rel(g,g’) 75 rel(h, h/).
Say that A(lso(G, H)) exists if 1 # 0 in A(lso(G, H)).
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G ~ H <= J unital *-hom A(lso(G,H)) — C.
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Definition (Kim-Paulsen-Schafhauser, '18)

We define A(lso(G, H)) to be the free (unital) x-algebra generated
by entries e; 1, (9 € V(G), h € V(H)) such that

2h—eg, Z €g9,h = Z egh = 1,
gGV(G) heV (H)

and
€9,h€q' 0 = 0 if rel(g,g’) 75 rel(h, h/).

Say that A(lso(G, H)) exists if 1 # 0 in A(lso(G, H)).

G ~ H <= J unital *-hom A(lso(G,H)) — C.

G ~; H <= 3 unital x-hom A(lso(G, H)) — M.

G ~¢a H <= 3 unital x-hom A(lso(G, H)) — R“.

G ~4 H <= 3 unital *-hom from A(lso(G, H)) — (A, 7).
We say that G ~, H if A(lso(G, H)) exists.
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Algebraic Isomorphisms

We define A(lso(G, H)) to be the free (unital) x-algebra generated
by entries eg 1, (9 € V(G), h € V(H)) such that

o2
gh—egh—e E €gh = g egn =1,

geV(G) heV (H)

and
€9,h€q" 0 = 0 if rel(g,g’) 75 rel(h, h/).
Say that A(lso(G, H)) exists if 1 # 0 in A(lso(G, H)).

G~H=G~H=G~,H= G~y H=G~y, H
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Algebraic Isomorphisms

We define A(lso(G, H)) to be the free (unital) x-algebra generated
by entries eg 1, (9 € V(G), h € V(H)) such that

o2
gh—egh—e E €gh = g egn =1,

geV(G) heV (H)

and
€9,h€q" 0 = 0 if rel(g,g’) 75 rel(h, h/).
Say that A(lso(G, H)) exists if 1 # 0 in A(lso(G, H)).

o Write G~ H if A(lso(G, H)) exists.

G~H=G~H=G~,H= G~y H=G~y, H
#~ #~ =



Quantum Isomorphisms
ooooe

Algebraic Isomorphisms, continued

@ It's not known if there are any graphs G, H with G ~,. H but
G ~qq H. (It's possible that Connes’ embedding has a
negative answer and ga/qc isomorphisms are the same for all
G,H")
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Algebraic Isomorphisms, continued

@ It's not known if there are any graphs G, H with G ~,. H but
G ~qq H. (It's possible that Connes’ embedding has a
negative answer and ga/qc isomorphisms are the same for all
G,H")

e What about ~,;; = ~.? (What could go wrong?)

@ Eg. There's a graph homomorphism game, with an associated
x-algebra A(Hom(G, H)). But A(Hom (K35, K4)) #0
(Helton-Meyer-Paulsen-Satriano '19), so there's an (algebraic)
4-coloring of K3!

@ What's the problem? In a C*-algebra, if p1,...,p, are
self-adjoint idempotents and )", p; = 1, then p;p; = 0 if
i % j. In a unital x-algebra, this only works if n < 3, and is
false if n > 4. (In A(Hom(K35, K4)), there are py, ..., p4 with

p? =pi=p; and Y} p;=—1.)
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Theorem (Chirvasitu-Brannan-Eifler-H.-Paulsen-Su-Wasilewski,
'19)
If G and H are graphs with G ~y4 H, then G ~,. H.

@ This also means that if G ~¢c+« H (i.e. there's a
representation A(lso(G, H)) — B(#) for some Hilbert space
), then G =~y H.
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Related: Lovasz's theorem on homomorphism counts

Theorem (Lovasz, 1967)

If G and H are graphs, then G ~ H if and only if
|Hom(Z,G)| = |Hom(Z, H)| for all graphs Z.

@ Question: can one relax the theorem to planar graphs Z7?

Theorem (Mancinska-Roberson, '19)

Let G and H be graphs. Then G ~4. H if and only if
|Hom(Z,G)| = |Hom(Z, H)| for all planar graphs Z.

Thus, G ~yy H < G~y H <
[Hom(Z, G)| = |[Hom(Z, H)| for all planar graphs Z.
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