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Prehistory - late 20th century

Solve a Pick problem on bidisk D2 (find function with smallest H∞

norm satisfying finitely many interpolation conditions)
Either solution is unique, or there exists one dimensional variety U
on which all solutions coincide
All solutions satisfy ‖φ‖U = ‖φ‖D2 .

Does this say U is special, or φ|U is special?
Does every function in H∞(U) extend to a function in H∞(D2) of same
norm?
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Ω pseudo-convex domain in Cd , O(Ω) := holomorphic functions on Ω
V analytic subset of Ω
(locally defined as common zero set of functions in O(Ω))

Def: f : V → C is holomorphic if ∀λ ∈ V , ∃ε > 0 and h ∈ O(B(λ, ε))
with h|V∩B(λ,ε) = f |V∩B(λ,ε)

Q1 : Given f ∈ O(V ), is there a single h holomorphic on nbhd of V
extending f? If so, can h be chosen in O(Ω)?

A1: Yes always - H. Cartan, 1950
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Isometric extension property

Q2: Which V ⊆ D2 have isometric extension property (IEP):
∀ f ∈ H∞(V ) ∃ φ ∈ H∞(D2), norm-preserving extension

Example

Ω = D2, V = {z ∈ D2 : z1z2 = 0}
f (z1,0) = z1, f (0, z2) = z2.
‖Dφ(0)‖ = ‖(1,1)‖ =

√
2. Contradicts Schwarz’s Lemma.

Singularities bad

In general, answer to Q2 not known. But for nice sets (eg algebraic
sets)

Thm. [Agler-M 2003]

If V ⊆ D2 is polynomially convex, then it has IEP iff it is a retract.
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∀ f ∈ H∞(V ) ∃ φ ∈ H∞(D2), norm-preserving extension

Thm. [Agler-M 2003]

If V ⊆ D2 is polynomially convex, then it has IEP iff it is a retract.

Retract
Def: V is a retract of Ω if ∃ r : Ω→ V , holomorphic, r |V = id.
If V is retract, φ := f ◦ r gives norm-preserving extension.

Thm. [Heath-Suffridge 1981]

All retracts of Dd are graphs
{(z,Ψ(z)) : z ∈ Dm,Ψ : Dm → Dd−m holomorphic}

Agler Kosinski McCarthy Norm Preserving Extensions 5 / 20



Isometric extension property

Q2: Which V ⊆ D2 have isometric extension property (IEP):
∀ f ∈ H∞(V ) ∃ φ ∈ H∞(D2), norm-preserving extension

Thm. [Agler-M 2003]

If V ⊆ D2 is polynomially convex, then it has IEP iff it is a retract.

Retract
Def: V is a retract of Ω if ∃ r : Ω→ V , holomorphic, r |V = id.
If V is retract, φ := f ◦ r gives norm-preserving extension.

Thm. [Heath-Suffridge 1981]

All retracts of Dd are graphs
{(z,Ψ(z)) : z ∈ Dm,Ψ : Dm → Dd−m holomorphic}

Agler Kosinski McCarthy Norm Preserving Extensions 5 / 20



Question R
If V is a polynomially convex analytic subset of Ω with IEP, is V a
retract?

Ans R: Yes if
Ω = D2

Ω = Bd (Kosinski-M 19)
Ω is strictly convex and 2-dimensional (Kosinski-M 19)

No if
Ω is symmetrized bidisk (not convex) (Agler-Lykova-Young 17)
D = {|z1|+ |z2| < 1} (convex, not strictly convex)

T := D× {0} ∪ {0} × D
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Schwarz lemma for balanced set Ω
Suppose φ : Ω→ D and φ(0) = 0.
Then Dφ(0) : Ω→ D

Ω is balanced if λ ∈ Ω⇒ zλ ∈ Ω ∀ z ∈ D

Schwarz Lemma goes from enemy to friend
f (z1,0) = z1, f (0, z2) = z2 ⇒ Dφ(0) = Df (0) = (1,1)
(1,1) does not map D2 or B2 to D, but does map D to D
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Schwarz Lemma goes from enemy to friend
Thm: (D,T ) has IEP

Let g ∈ H∞(T ), ‖g‖ ≤ 1 and suppose g(0) = 0.

E(g) = φ(z1, z2) := g(z1,0) + g(0, z2)

Win by Schwarz!

|g(z1,0) + g(0, z2)| ≤ |g(z1,0)|+ |g(0, z2)| ≤ |z1|+ |z2| < 1

If f (0) = a, use ma ◦ E(ma ◦ f ), where ma(z) = a−z
1−āz .
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What is this terrifying anomaly?
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https://www.youtube.com/watch?v=sduPnwEl2xo&list=PLx3skbat6Gw1eR0gHIQrnI4IVdc558es_&index=7&t=24s


Shift Perspective
Prob A: Given Ω, find all V s.t. (Ω,V ) has IEP
Prob B: Given V find all Ω s.t. (Ω,V ) has IEP

What conditions must V satisfy for {Ω : (Ω,V ) has IEP} non-empty?
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Thm 1 [Agler-Kosinski-M]
Let V be an analytic subset of some domain of holomorphy. Then ∃
domain of holomorphy Ω s.t. (Ω,V ) has IEP.

If want Ω to be connected, then V must be too (maximum principle).

Most sets (eg T , the two crossed disks) are not retracts of anything.

Absent some form of convexity, retracts seem to have little to do with
Isometric Extension Property
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Analyze T := D× {0} ∪ {0} × D

Thm 2 [Agler-Kosinski-M]

Let Ω be balanced pseudoconvex domain in C2 with T ⊂ Ω.
Then (Ω,T ) has IEP iff Ω ⊆ D = {|z1|+ |z2| < 1}.

Dropping balanced it gets more complicated.

Thm 3 [Agler-Kosinski-M]

Let Ω be pseudoconvex domain in C2 with T ⊂ Ω.
Then (Ω,T ) has IEP iff T is relatively closed in Ω and ∃ pseudoconvex
set G in C2 and a function τ 7→ Cτ from T2 into Hol(G) so that

Ω = ∩τ∈T2{λ ∈ G : |τ · λ+ λ1λ2Cτ (λ)| < 1}.

Says just need to be able to extend each τ · λ = τ1λ1 + τ2λ2
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Thm 3 [Agler-Kosinski-M]

Let Ω be pseudoconvex domain in C2 with T ⊂ Ω.
Then (Ω,T ) has IEP iff T is relatively closed in Ω and ∃ pseudoconvex
set G in C2 and a function τ 7→ Cτ from T2 into Hol(G) so that

Ω = ∩τ∈T2{λ ∈ G : |τ · λ+ λ1λ2Cτ (λ)| < 1}.

Example

Choose G = D2 and Cτ (λ) = τ · λ.

Ω := {z ∈ D2 : (|z1|+ |z2|)|1 + z1z2| < 1}

(Ω,T ) has IEP, Ω 6⊂ D and D 6⊂ Ω.

No maximal domain (without balanced)
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Question (Rudin, 1969)
If (Ω,V ) has bounded extension property (every f ∈ H∞(V ) extends to
H∞(Ω), but with perhaps larger norm), is there a bounded linear
operator?

Don’t know, but no for isometric

Thm 4 [Agler-Kosinski-M]
There is no isometric linear extension operator from H∞(T ) to H∞(D).

Can do it linearly with smaller domain

Thm 5 [Agler-Kosinski-M]
There is a domain Ω containing T and an isometric linear extension
operator from H∞(T ) to H∞(Ω).
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Can, using operator theory, analyze some other sets

Example

V = {z ∈ D3 : z2
3 = z1z2}

This is a branched cover of the bidisk inside the tridisk.
What is an isometric envelope?
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Can, using operator theory, analyze some other sets

Example

V = {z ∈ D3 : z2
3 = z1z2}

G = {|z1z2 − z3|2 < (1− |z3|2) +
√

1− |z1|2
√

1− |z2|2}

Thm 6 [Agler-Kosinski-M]
G is convex, and (G,V) has IEP.

If Ω is balanced, (Ω,V) has IEP iff Ω ⊆ G.

Challenge
Prove Theorem 6 without using operator theory!
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Questions
Question 1 - Linearity
Let V be an analytic set. Does there always exist a domain Ω s.t.
(Ω,V ) has the IEP with a linear extension operator?

Question 2 - Back to retracts
Suppose (D3,V ) has IEP and V is relatively polynomially convex. Is V
a retract?

Question 3 - Rule this out
Suppose

V = {z ∈ D3 : z1 + z2 + z3 = z1z2 + z1z3 + z2z3}

Does (D3,V ) have IEP?
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Thank You!
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What does convexity have to do with retracts?
Thm (KM): If Ω is strictly convex and 2-dimensional, then (Ω,V ) has

IEP iff V is retract.

A geodesic map is a holomorphic k : D→ Ω with a left inverse
c : Ω→ D. (Also called Kobayashi extremal)

A set G ⊆ Ω is geodesically complete if, whenever k is a geodesic map
and k(λ1), k(λ2) ∈ G, then k(D) ⊆ G. (Or k(λ1) and tangent vector)

Step 1: If Ω is strictly convex and V has IEP, then V is geodesically
complete.

Step 2: k(D) is a retract (since r = k ◦ c is retraction)
If V is one dimensional, it is one geodesic. If Ω is 2-dimensional, 0 and

2 dimensional cases are trivial.
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