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Introduction

Free convexity basics in outline

I LMIs and spectrahedra

I Free spectrahedra

I Free and matrix convex sets

I The Effros-Winkler Theorem

I The Linear Gleichstellensatz



LMIs and spectrahedra

I For selfadjoint matrices A1 . . . ,Ag ∈ Sd , the expression

LA(x) = I −
[
A1x1 + · · ·+ Agxg

]
is a (monic) linear pencil of size d .

I LA(x)�0 (LA(x)�0) is a linear matrix inequality (LMI)

I Its (scalar) solution set

DA[1] =
{
x ∈ Rg | LA(x)� 0

}
PA[1] =

{
x ∈ Rg | LA(x)� 0

}
is an LMI domain or a spectrahedron.



LMIs and spectrhahedra

Polyhedra are spectrahedra

LA(x1, x2) = I4 −
[−1

0
−1

0

]
x1 −

[
0
−1

0
1

]
x2.

DA[1] is the square [−1, 1]2 ⊆ R2:

x1

x2

1



LMIs and spectrahedra

Examples of spectrahedra: Balls

LA(x1, x2) = I3 −

0 1 0
1 0 0
0 0 0

 x1 −

0 0 1
0 0 0
1 0 0

 x2 =

[
1 −x1 −x2

−x1 1 0
−x2 0 1

]
.

DA[1] = {x ∈ R2 : x2
1 + x2

2 ≤ 1} is the closed unit ball in R2

1
x1

x2



LMIs and spectrahedra
The interior of an elliptic curve - why real algebraic

geometers care

L(x , y) = I + x

−2 0 0
0 −1 0
0 0 1

+
1√
3
y

 0
√

2 0√
2 0 1

0 1 0



x

y

y2 = (1− 2x)(1− x)(1 + x)

1−1

1

Thank Igor



LMIs and spectrahedra

Spectrahedra in action - a few reasons to care

I Convex optimization and semidefinite

programming (SDP), practical with advances in

interior point methods.

I real algebraic geometry and determinantal

representations.

I Systems engineering and robust control.



Free spectrahedra ...

... relax, go free

For A1, . . . ,Ag ∈ Sd and X = (X1, . . . ,Xg) ∈ Sgn
I The monic linear pencil LA evaluates at X as

LA(X ) = Id ⊗ In −
g∑

j=1

Aj ⊗ Xj ∈ Sd ⊗ Sn = Sdn.

I For each dimension n ∈ N,

DA[n] :=
{
X ∈ Sgn | LA(X )� 0

}
⊆ Sg

are natural relaxations of DA[1].

I Completely relaxed: free spectrahedron is DA := (DA[n])∞n=1 .

I DA is levelwise convex.

I We assume DA is bounded. In fact, everything is bounded.



Free spectrahedra ...

... relax, go free

For A1, . . . ,Ag ∈ Sd and X = (X1, . . . ,Xg) ∈ Sgn
I The monic linear pencil LA evaluates at X as

LA(X ) = Id ⊗ In −
g∑

j=1

Aj ⊗ Xj ∈ Sd ⊗ Sn = Sdn.

I For each dimension n ∈ N,

PA[n] :=
{
X ∈ Sgn | LA(X )� 0

}
⊆ Sg.

are relaxations of PA[1].

I Completely relaxed: free spectrahedron is PA := (PA[n])∞n=1 .

I PA is levelwise convex.



Free spectrahedra ...

... a few of the reasons to care

LA(X ) = I −
∑

Aj ⊗ Xj , DA = {X : LA(X ) � 0} PA = {X : LA(X ) � 0}

I Systems engineering.

I The span of {I ,A1, . . . ,Ag} is an operator system.

I Connected to cp (completely positive) maps

I Quantum Information Theory.

I Spectrahedral inclusions, the matrix cube problem:

DA ⊆ DB is tractable; DA[1] ⊆ DB [1] not so much.



Free sets

DA := (DA[n])∞n=1 ⊆ Sg, PA := (PA[n])∞n=1 ⊆ Sg.

I Let Sg = (Sgn)n, the free universe.
I A free set S ⊆ Sg is a sequence S = (S [n])n satisfying,

(a) S [n] ⊆ Sgn;

(b) closed wrt direct sums: If X ∈ S [n] and and Y ∈ S [m], then

X ⊕ Y =
((X1 0

0 Y1

)
, · · · ,

(
Xg 0
0 Yg

))
∈ S [n + m];

(c) closed wrt unitary similarity: If X ∈ S [n] and U is an n × n
unitary, then

U∗ X U :=
(
U∗X1U, · · · , U∗XgU

)
∈ S [n].

I It is evident that DA (resp PA) is a free set.



Matrix convex sets

I A free set S ⊆ Sg is matrix convex if for each X ∈ S [n] and
isometry V : Cm → Cn,

V ∗XV = (V ∗X1V , . . . ,V
∗XgV ) ∈ S [m];

I Each S [n] is convex: For X ,Y ∈ S [n],

(
I√
2

I√
2

) (X 0
0 Y

) ( I√
2
I√
2

)
=

X + Y

2
;

I Free spectrahedra are matrix convex. They are the free analog
of a half plane in convex analysis.
Proof.

(V ⊗ In)∗L(X )(V ⊗ In) = L(V ∗XV ).



The Effros-Winkler Separation Theorem

The E-W Matricial Hahn-Banach Separation Theorem.

If S ⊆ Sg is closed, matrix convex and contains 0 and if
Y ∈ Sg` \ S [`], then there is a monic linear pencil
L = I` −

∑
Aj ⊗ xj of size ` such that

L(S) � 0, L(Y ) 6� 0.

Thus S ⊆ DA, but Y /∈ DA.

S =
⋂
{DA : S ⊆ DA}.



The Linear Gleichstellensatz

Suppose D is a free spectrahedron. A tuple A ∈ Sgd is minimal for
D if DA = D and if B ∈ Sge and DB = D, then d ≤ e.

The Linear Gleichstellensatz [Helton, Klep, M]. If D is a
free spectrahedron, then there is a minimal A such that D = DA.

If A and B are both minimal for D, then

A = U∗BU.

D determines A; D[1] does not.



Global outline

I Free convexity basics

I Free semialgebraic sets - and matrix inequalities

• Free polynomials

• Motivation

• Convex semialgebraic sets

• Convex polynomials

• Quasiconvexity and Volcic’s Free Bertini Theorem

• The convex positivstellensatz - a side trip.

I Partial convexity and rational functions

I Extreme Points

I Some Analytic Theory.



Free polynomials ...

... and their evaluations

I x = (x1, . . . , xg) freely noncommuting variables;

I α = xi1xi2 · · · xim ∈ 〈x〉 is a word;

I C〈x〉 is the free algebra of noncommutative polynomials; e.g.,

p(x) = 5 + 2x1x2 − 3x2x1 + x2
1x2x1, q(x) = x1x2 − x2x1;

I for X = (X1, . . . ,Xg) ∈ Sgn,

Xα = Xi1 Xi2 · · ·Xim ; p(X ) = 5In + 2X1X2 − 3X2X1 + X 2
1 X2X1;

I p =
∑

pα ⊗ α ∈ Mµ(C〈x〉) is evaluated at X ∈ Mn(C)g by

p(X ) =
∑

pα ⊗ Xα ∈ Mµ(C)⊗Mn(C)

p(X ) =
(
pj,k (X )

)µ
j,k=1

∈ Mµ(Mn(C)).



Free polynomials

The positivity domain - semialgebraic sets

p(X ) =
∑

pα ⊗ Xα =
(
pj,k (X )

)
∈ Mµ(C)⊗Mn(C).

I p ∈ Mµ(C〈x〉) is symmetric if, for X ∈ Sg,

p(X )∗ = p(X );

I The positivity domain Pp of p is the sequence (Pp[n])n,

Pp[n] = {X ∈ Sgn : p(X ) � 0};

I Pp is a free set. It is a (basic) free semialgebraic set;

I For A ∈ Sgd and LA(x) = I −
∑

Ajxj ,

PA = PLA = {X : LA(X ) � 0}.



Motivation

Engineering reality

The system of Matrix Inequalities

AX + XAT + X (γ2 − C )X ≺ 0

BY + YBT + Y (γ2 − D)Y ≺ 0

X ,Y ≺ 0

X − Y−1 ≺ 0

arises in linear systems theory - [Doyle,Glover,Karganakar,Francis].

I X = XT , Y = Y T , C = CT , D = DT ;

I X ,Y are unknowns, A,B,C ,D, γ are knowns (system
parameters);

I the inequalities depend only on the signal flow diagram.

I the sizes depend upon the particular system;



Motivation

Convexity and the Ricatti inequality

The Ricatti inequality is a simple ubiquitous example of a (scalar)
Matrix Inequality,

AX + XAT − XBBTX + CTC � 0.

Its solution set is convex in X (also separately in A and B), since
the Ricatti inequality is equivalent to the Linear Matrix Inequality,(

I BTX
XB AX + XA + CTC

)
� 0.



Motivation

Matrix inequalities

The take away: Some systems engineering problems are modeled
by matrix inequalities:

p(A,X ) � 0.

I p is determined by the signal flow diagram;

I The A are the known unknowns - the plant;

I The X are the unknown unknowns (unc uncs to Rumsfeld);

I Convexity in X – for fixed A is desirable;

I More generally, p could be rational.



Convex Semialgebraic sets ...

... are free spectrahedra

Convex Trivialization Theorem [Helton, M 12] [Kriel 19].
Suppose p ∈ Mµ(C<x>) is symmetric and p(0) � 0.

The basic free semialgebraic set Pp = {X ∈ Sg : p(X ) � 0} is
convex1 if and only if it is a free spectrahedron, PA.

I That Pp is a (possibly infinite) intersection of free
spectrahedra by EW HB separation Theorem;

I Not so easy to see it is in fact a single free spectrahedron;

I True for p a free rational function [HM14].

1Pp is matrix convex iff each Pp[n] is convex as a subset of Sgn.



Convex polynomials

I A symmetric f ∈ C<x> is convex on a free set S ⊆ Sg if

Hf (X ,Y ) :=
f (X ) + f (Y )

2
− f

(
X + Y

2

)
� 0, X ,Y ∈ S [n];

I f (x) = x4 is not convex on any open set in S1
2;

I If f is globally convex, then, {−f (X ) � 0} is convex, in fact

Cτ = {X ∈ Sg : f (X ) ≺ τ I}

is matrix convex for each τ ∈ R; r is quasiconvex.



Convex polynomials ...

... are trivial
I Suppose f ∈ C<x> is selfadjoint:

f (X )∗ = f (X ), X ∈ Sgn

I f is convex on a free set S ⊆ Sg if

Hf (X ,Y ) :=
f (X ) + f (Y )

2
− f

(
X + Y

2

)
� 0, X ,Y ∈ S[n].

Local-Global and SoS [Helton,M] For f ∗ = f ∈ C<x>, TFAE:

I f is convex on some nonempty open free set;

I f is globally convex;

I there exists an linear ` ∈ R〈x〉 and Λj ∈ C〈x〉 such that

f (X ) = f (0) + `(X ) +
∑
j

Λj(X )∗Λj(X ).

In particular, f has degree (at most) two.



Quasiconvex polynomials

Convex positivity domain

f (X ) = λ(X ) +
∑
j

Λj (X )∗Λj (X ), degree two.

If f is globally convex, then, for each τ ∈ R, the set Cτ is convex:

Cτ = {X ∈ Sg(R) : f (X ) ≺ τ I}.

Theorem [Helton, Klep, M, Volčič2] If (1) f ∈ R〈x〉 is irreducible
as an element of C〈x〉, (2) f (0) � 0 and (3)

Pf = {X : f (X ) � 0}

is convex, then f is convex.

2Jurij’s variant.



Quasiconvex polynomials

The Free Bertini Theorem

Volčič’s Free Bertini Theorem. Suppose f ∈ C〈x〉 \ C.

f − τ is not irreducible in C〈x〉 for infinitely many τ ∈ C
if and only if

there exists a p ∈ C[t], deg p > 1, and a q ∈ C〈x〉 such that

f = p ◦ q.

I (⇐) f − τ = (p − τ) ◦ q and thus f − τ factors for all τ ;

I The (entirely nontrivial) converse uses Cohn’s theory of the
free algebra and free skew fields; and Bergman’s centralizer
theorem.



Quasiconvexity

Convexity corollary to Free Bertini

The selfadjoint f ∈ R〈x〉 with f (0) = 0 is locally quasiconvex

Cτ = {X ∈ Sg(R) : f (X ) ≺ τ}

is convex for all τ in some open interval (0, ε).

Corollary. [Volčič] If f is locally quasiconvex, then either

(i) −f =
∑g

j=1 g
∗
j gj (a hermitian SoS); or

(ii) f = p ◦ g , where g ∈ R〈x〉 is globally convex; and p ∈ R[t]
and there is an iff version with more information about p.



The convex positivstellensatz

A bit of free real algebraic geometry

I Positivstellensätze are central to real algebraic geometry.
They are algebraic certificates for a polynomial p to be
positive on a semialgebraic set;

I Free analogs are typically much cleaner. E.g.

The convex positivstellensatz. [Helton, Klep, M] Consider

LA(x) = I −
∑

Ajxj , DA = {X : LA(X ) � 0}

and suppose p ∈ Mµ(C〈x〉) is a symmetric.

p(DA) � 0⇐⇒ p(x) =
∑
j

sj(x)∗sj(x) +
∑

fk(x)∗LA(x)fk(x),

where sj , fk are polynomials of degree at most ddeg p
2 e.



The convex positivstellensatz

Bianalytic maps between free spectrahedra

p(DA) � 0⇐⇒ p =
∑
j

s∗j sj +
∑

f ∗k LAfk ,

The convex positivstellensatz is a point of departure for studying
free bianalytic maps between free spectrahedra:

I f : DA → DB if and only if p(x) = LB(f (x)) � 0 on DA;

I Polynomial approximation uniformly on compact subsets3

[Agler, McCarthy];

I See Nicole Tuovila’s talk at 3:30 today.

3Disclaimer: In the free free setting



Partial Convexity and Rational Functions

Outline

I Free convexity basics

I Free semialgebraic sets

I Partial convexity and rational functions

• Rational functions and realizations

• The domain of a rational function

• Partially convexity

I Extreme points

I Some Analytic Theory.



Rational functions

Realizations

I A symmetric (free) rational function r ∈ Mµ(C (<x )>) that is
regular at 0 has a symmetric descriptor realization

r = c∗

(
J −

g∑
k=1

Tkxk

)−1

c,

where, for some positive integer e, J,Tk ∈ Se , c ∈ Me,µ and
J = J∗ = J−1 is a signature matrix;

I We view r as a function: r evaluates at a tuple X ∈ Sgn as

r(X ) = (c∗ ⊗ In)

(
J ⊗ In −

g∑
k=1

Tk ⊗ Xk

)−1

(c ⊗ In);

I r(X )∗ = r(X ) ∈ S (symmetric);

I r [n] : Sgn 99K Snµ.



Rational functions

Rational Expressions - an example
A rational function is an equivalence class of rational expressions;
e.g.,

r = r(x1, x2) =
(
1− x2 − x1(1− x2)−1x1

)−1

=x−1
1 (1− x2)

[
(1− x2)x−1

1 (1− x2)− x1

]−1
.

I The expressions agree on tuples X where they are both
defined;

I The first, but not the second, is defined at (1, 1);

I The second, but not the first, is defined at (0, 0);

I The realization

r =
(
1 0

) (
I2 − x1

(
0 1
1 0

)
− x2I2

)−1(
1
0

)
is defined at both (1, 1) and (0, 0).



Rational functions

The domain of a rational function

r = c∗

(
J −

g∑
k=1

Tkxk

)−1

c, J,Tk ∈ Se ; c ∈ Me,µ; J = J∗ = J−1.

I If e is the smallest over all realizations, then the realization is minimal;

I The resolvent is

R(X ) =

(
J ⊗ In −

g∑
k=1

Tk ⊗ Xk

)−1

.

I minimal realizations are essentially unique - in particular,
invertibility of R(X ) does not depend upon the choice of
minimal realization.



Rational functions

The domain of a rat function - singularities can’t hide

r = c∗

(
J −

g∑
k=1

Tkxk

)−1

c, J,Tk ∈ Se ; c ∈ Me,µ; J = J∗ = J−1.

I If e is the smallest over all realizations, then the realization is minimal.

I R(x) = (J −
∑

Tkxk )−1 is the resolvent;

The Rational Domain Theorem [Volčič] [KVerbovetskyi-Vinnikov]

justifies calling dom r = (dom r [n])n the domain of r , where

dom r [n] = {X ∈ Sgn : R(X ) exists } ⊆ Sgn.



Rational functions

The domain of a rat function - singularities can’t hide

The Rational Domain Theorem [Volčič] [KVerbovetskyi-Vinnikov]

justifies calling dom r = (dom r [n])n the domain of r , where

dom r [n] = {X ∈ Sgn : R(X ) exists } ⊆ Sgn.

F dom r is the largest free set contained in the ordinary domains
of the r [n].

I In the one variable case, the domain of the resolvent is the
domain of r .



Partially convexity

Partially convex sets

I Given positive integers h and g, write

(A,X ) = (A1, . . . ,Ah,X1, . . . ,Xg) ∈ Shn × Sgn = Sh+g
n ;

I A subset S ⊆ Shn × Sgn is convex (resp. open) in x , or partially
convex if for each A ∈ Shn the slice

S [A] = {X ∈ Sgn : (A,X ) ∈ S} ⊆ Sgn

is convex (resp open).



Partial convexity

Free rational functions in a and x

I Let a = (a1, . . . , ah) and x = (x1, . . . , xg) be collections of
freely noncommuting variables.

I A symmetric (free) rational function r ∈ Mµ(C (<a, x )>) that is
regular at 0 has a symmetric descriptor realization

r = c∗

J −
h∑

j=1

Sjaj −
g∑

k=1

Tkxk

−1

c ,

where, for some positive integer e, J, Sj ,Tk ∈ Se and
J = J∗ = J−1 is a signature matrix and c ∈ Me,µ(C);

I dom r ⊆ Sh × Sg := Sh+g.



Partial convexity

Partially convex functions

r = c∗

J −
h∑

j=1

Sjaj −
g∑

k=1

Tkxk

−1

c = c∗R(a, x)c.

Suppose S ⊆ dom r is convex in x . The function r is convex in x ,
or partially convex on S if, for each A ∈ Sh, the function

S [A] 3 X 7→ r(A,X )

is convex: that is, for each A and X ,Y ∈ S [A],

Hr (A;X ,Y ) =
r(A,X ) + r(A,Y )

2
− r

(
A,

X + Y

2

)
� 0.



Partial convexity

Partially convex rational functions

r = c∗

J −
h∑

j=1

Sjaj −
g∑

k=1

Tkxk

−1

c = c∗R(a, x)c.

I Let VT : rangeT → Ce denote the inclusion;

I Let RT (a, x) = V ∗T (J −
∑

Sjaj −
∑

Tkxk)−1VT ;

RT (A,X ) = (VT ⊗ In)∗R(A,X )(VT ⊗ In);

I Let

dom+ r [n] = {(A,X ) ∈ dom r : RT (A,X ) � 0}.



Partial convexity

The domain of partial convexity

r = c∗

J −
h∑

j=1

Sjaj −
g∑

k=1

Tkxk

−1

c = c∗R(a, x)c,

RT (a, x) = V ∗TR(a, x)V , ΛT [H] =
∑

Tj ⊗ Hj ,

rxx (a, x)[h] = c∗R(A,X )ΛT [H]RT (A,X ) ΛT [H]R(A,X )(c ⊗ In),

dom+ r = {(A,X ) ∈ dom r : RT (A,X ) � 0}.

dom+ r is the domain of partial convexity [JKMMP].

I dom+ r is both open in x and convex in x ;

I r is convex in x on dom+ r ;

I Conversely, if r is convex in x on the free set S ⊆ dom r , then
S ⊆ dom+ r .



Partial convexity

Partially convex rational functions - the fine print

r(A,X ) + r(A,Y )

2
− r
(
A,

X + Y

2

)
� 0, RT (a, x) = V ∗TR(a, x)VT ,

rxx (a, x)[h] =c∗R(A,X )ΛT [H]RT (A,X ) ΛT [H]R(A,X )(c ⊗ In),

dom+ r = {RT (A,X ) � 0}.

Theorem [Jury, Klep, Mancuso, M, Pascoe].

I dom+ r is both open in x and convex in x ;

I If r is convex in x on some free open set, then r is convex in x
on dom+ r ;

I Conversely, if (1) S ⊆ dom r is a free set that is convex in x ;
(2) if S contains a nonempty free open set; and (3) if r is
convex in x on S , then S ⊆ dom+ r .



Partial convexity

An algebraic certificate of partial convexity

The root butterfly realization [Jury, Klep, Mancuso, M, Pascoe].

r ∈ C (<a, x )> is convex in x in a neighborhood of 0 if and only if

r(a, x) = `(a, x) + Σ(a, x)∗
√

w(a)
(
I −

∑
[
√

w(a)T̂j

√
w(a)] xj

)−1 √
w(a)Σ(a, x).

I [Pascoe, Tully-Doyle] [Helton, M, Vinnikov] Free functions,
rational functions, no a variables.

I [Helton, Hay, Lim, M] Polynomials.



Partial convexity
The root butterfly realization: an algebraic certificate

of x-convexity

Theorem [Same suspects]. A symmetric r ∈ C (<a, x )> is convex in
x in a neighborhood of 0 if and only if there exists k ∈ N,

(i) T̂ ∈ Sgk ;

(ii) a symmetric w ∈ C (<a )>k×k ;

(iii) ` ∈ C (<a, x )> and Σ ∈ C (<a, x )>k×1 each of degree at most
one in x and ` is symmetric;

such that w(A) � 0 and I −
∑

[
√
w(a)T̂j

√
w(a)]⊗ Xj � 0 near 0

and

r(a, x) = `(a, x) + Σ(a, x)∗
√

w(a)
(
I −

∑
[
√

w(a)T̂j

√
w(a)] xj

)−1 √
w(a)Σ(a, x).



Extreme points

I Free convexity basics

I Free semialgebraic sets

I Partial convexity and rational functions

I Extreme Points

I Some Analytic Theory.



Extreme points

The Arveson boundary

I The matrix convex hull of E ⊆ Sg is the matrix convex set

matcohull E = {V ∗XV : X ∈ E , V ∗V = I};

I V ∗XV is the free analog of a convex combination;

I A good notion of extreme point for a free spectrahedron DA

produces a small collection E ⊆ DA such that
matcohull E = DA;

I An Arveson boundary point for a free spectrahedron DA is a
tuple X ∈ DA such that if Y ∈ DA has the form

Yj =

(
Xj αj

α∗j βj

)
∈ DA,

then αj = 0.



Extreme points

Arveson boundary points span

DA 3 Y =

(
X α
α∗ β

)
=⇒ α = 0.

I Thus X is an Arveson boundary point if the only dilations of
X are trivial. The analog of a boundary representation. The
nc analog of a peak point (in the Shilov boundary).

I If DA is the matrix convex hull of E , then E contains the
Arveson boundary points.

Theorem.[Evert, Helton] If DA is closed wrt C- conjugation, then

DA = matcohull ∂DArv
A .



Extreme points

Other notions of extreme points

Theorem [Evert, Helton] DA is the matco hull of its Arv points.

I Typically, off the shelf techniques produce operator Arveson
boundary points. In particular:

• False for general compact matrix convex sets K ⊆ Sg [Evert];

• False for DA in free free variables;

I The tension: pass to operators or liberalize the notion of
extreme point;

I There is a highly developed theory involving other notions of
extreme points tailored to matco sets; e.g., matrix extreme
points.



Some Analytic Theory

Outline

I Free convexity basics

I Free semialgebraic sets

I Partial convexity and rational functions

I Extreme Points

I Some Analytic Theory

• Augat’s Free Grothendieck Theorem

• Pseudoconvex sets and free plurisubharmonic

functions



Augat’s Free Grothendieck Theorem

free free variables; aka, free complex analysis

I M(C)g = (Mn(C)g)n, the free free universe;

I p ∈ C<x> evaluates at X ∈ M(C)g in the canonical way;

I E.g.; for X = (X1,X2) ∈ Mn(C)2 and

p(x) = 5 + 2x1x2 − 3x2x1 + x2
1x2x1,

p(X ) = 5In + 2X1X2 − 3X2X1 + X 2
1 X2X1.



Grothendieck’s Theorem

Automorphisms of C[t1, . . . , tg].

Grothendieck’s Theorem. Suppose p : Cg → Cg is a
polynomial mapping; that is, for some pj ∈ C[t1, . . . , tg].

p =
(
p1 . . . pg

)
.

If p is injective, then p is bijective and moreover the inverse of p is
a polynomial.

For instance, p : C2 → C2,

p(t1, t2) =
(
t1, t2 − t2

1

)
,

p−1(t1, t2) =
(
t1, t2 + t2

1

)
.



Augat’s Free Grothendieck Theorem

Automorphisms of the free algebra

Augat’s Free Grothendieck Theorem.

Suppose p : M(C)g → M(C)g is a free polynomial mapping.
The following are equivalent.

(i) p is injective;

(ii) p is bijective;

(iii) p has a (free) polynomial inverse.

I Grothendieck’s Theorem implies p has a free inverse. Showing
that this inverse is in fact a polynomial is the challenge.

I The proof involves a good deal of algebra, but also free
analysis including Pascoe’s free inverse function theorem and
some (new) realization theory.

I Meric will discuss potential generalizations and related
conjectures as part of Wednesday’s 2-3 pm problem session.



Plurisubaharmonic functions - plush

Symmetric rational functions

I x = (x1, . . . , xg) with adjoint variables (x∗1 , . . . , x
∗
g );

I A symmetric rational function r ∈ C〈x , x∗〉 has a descriptor
realization:

r = c∗ (J − ΛA(x)− ΛA(x)∗)−1 c , ΛA(x) =

g∑
j=1

Ajxj ;

I r is symmetric: r(X )∗ = r(X ) for X ∈ dom r [n] ⊆ Mn(C)g .



Plush

The complex Hessian

r = c∗ (J − ΛA(x)− ΛA(x)∗)−1 c, ΛA(x) =

g∑
j=1

Ajxj

I The complex Hessian of r at X in the direction H ∈ Mn(C)g is

∂2r

∂x∗∂x
(X )[H,H];

I For r(x) = x∗2x2,

∂2r

∂x∗∂x
(X )[H] = (XH + HX )∗ (XH + HX )� 0;

I More generally, for g ∈ C<x> and r(x) = g(x)g(x)∗,

∂2r

∂x∗∂x
(X )[H] = Dg(X )[H] (Dg(X )[H])∗� 0;

I r is plush on a set S if ∂2r
∂x∗∂x

(X )[H] � 0 all X ∈ S , all H.



Plush

Rational Functions

Theorem. [Greene] [Greene, Helton, Vinnikov] A symmetric
polynomial r ∈ C〈x , x∗〉 is (1) plush on a free open set; iff (2) it is
globally plush; iff (3)

r(x) = s(x) + s(x)∗ +
∑

pj(x)∗pj(x) +
∑

qk(x)qk(x)∗,

with s, pj , qk ∈ C (<x )>.

Theorem. [Dym, Helton, Klep, M, Volčič] [Pascoe] A symmetric
rational function r is plush in a free neighborhood of 0 iff there
exists a convex symmetric rational function f ∈ C (<y , y∗ )> (in h

variables), and qj ∈ C (<x )> for 1 ≤ j ≤ h, such that

r(x) = f (q1(x), . . . , qh(x)) = f ◦ q(x)

Thus r is plush if and only if r is convex composed with analytic.
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