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Abstract

How did an operator theorist get involved in combinatorics? How do the two fields
interact? Using tools from complex, harmonic, and functional analysis, probability
theory, algebraic combinatorics, and computer-aided design, we answer virtually all
asymptotic questions about factorization lengths in numerical semigroups. This
yields uncannily accurate predictions that agree with numerical computations. We
also present positivity results for certain multivariate polynomials, potential
applications to AF algebras, and generalizations via several complex variables.
Partially supported by NSF Grant DMS-1800123. Joint work with A. Béttcher, M. Omar,

C. O'Neill, and undergraduate students T. Wesley ('21) and S. Yih ('18).



Combinatorics:
What's up with That?
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My background

Function-related operator theory (shift operators, Toeplitz
operators, Hardy spaces, etc.), matrix analysis, and so forth.
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A senior thesis student came back from his junior-year summer
REU and wanted to continue his combinatorics REU research.

New tools from IPAM

In 2018, | attended the semester-long Quantitative Linear Algebra
program at IPAM. Hanging around lots of random-matrix theory
people got me thinking about probabilistic approaches to problems.

Fruitful interplay

We mix techniques and problems from different areas. This leads
to new problems inspired by work in other areas.
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Numerical semigroups
Definition (Numerical semigroup)
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Numerical semigroups

Definition (Numerical semigroup)
Let ny,np,...,nk e N={0,1,2,...} with k > 3 and

O<nm<n<---<ng and gcd(ny,no,...,ng) =1.
Then

S={n,ny,...,nky=1{ain + -+ agng : a; € N}

is the numerical semigroup with generators ni, no, ..., ng.

McNugget Monoid
{6,9,20) = {0,6,9,12,15,18, 20, 21, 24, 26, 27,29, 30,32, .. .}.

Theorem (Frobenius Coin Problem)

Fix S ={n1,ny,...,nky. Then n€ S for sufficiently large n.




Factorizations

Definition (Factorization)

A factorization of n€ S = {(ny, ny, ..., nky is an expression
n=ainy + axny + -+ ang,

in which a = (a1, a0, ..., ax) € Nk, The length of a is

lall = a1 + a2 + -+ - + ax.




Factorizations

Definition (Factorization)

A factorization of n€ S = {(ny, ny, ..., nky is an expression
n=ayny + axny + --- + agng,
in which a = (a1, a0, ..., ax) € Nk, The length of a is

lall = a1 + a2 + -+ - + ax.

The number 42 has exactly three factorizations in S = (6,9, 20):

42=1-6+4-9+0-20 1(1,4,0)] =5
=7-6+0-94+0-20 1(7,0,0)| =7
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multiplicities taken into account) of factorizations of n.
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Definition (Length multiset)

Fix S = {(n1, na, ..., nk). Then L[n] denotes the multiset (set with
multiplicities taken into account) of factorizations of n.

Example

The number 132 € (6,9, 20) has many factorizations:
(2,0,6), (0,8,3), (3,6,3), (6,4,3), (9,2,3), (12,0,3),
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Thus,
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L[132] = {8,11,12,13,14,15,15,16,17,18,19, 20,21, 22}.

Hopelessly general question
Fix S = {(n1, na, ..., nk). Describe the behavior of L[n] as n — .




The numbers are not encouraging
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Histogram of length multiset L[500] in {6, 9, 20).

Lengths (horizontal) versus multiplicities (vertical)



The numbers are not encouraging
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Histogram of length multiset L[500] in {5, 6,18, 45).

Lengths (horizontal) versus multiplicities (vertical)



The numbers are not encouraging
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Histogram of length multiset L[1000] in {11, 34,35, 36).

Lengths (horizontal) versus multiplicities (vertical)



Too much to ask?

We want asymptotics for the following statistics of L[n] as n — oo:
o |L[n]| @ Variance & Std. Dev.
e Min / Max @ pth moments
@ Mean o Skewness
e Median @ Harmonic mean
e Mode o Geometric mean




Too much to ask?

We want asymptotics for the following statistics of L[n] as n — oo:

o |L[n]| @ Variance & Std. Dev.
e Min / Max @ pth moments

@ Mean @ Skewness

@ Median @ Harmonic mean

@ Mode @ Geometric mean

Mission Accomplished

| \

We answer all of these questions very explicitly and do much more.
It just needs a little algebraic combinatorics, complex analysis,
harmonic analysis, functional analysis, and probability theory.




The McNugget triangle
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n = 2,000

Normalized histogram of the length multiset L[n] (blue) and graph of the length
distribution function F(x) (red) for S = {6,9,20). For i € N, a blue dot occurs above
i/n at height equal to the multiplicity of i in L[n].



The McNugget triangle
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n = 5,000

Normalized histogram of the length multiset L[n] (blue) and graph of the length
distribution function F(x) (red) for S = {6,9,20). For i € N, a blue dot occurs above
i/n at height equal to the multiplicity of i in L[n].



The McNugget triangle
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n = 10,000

Normalized histogram of the length multiset L[n] (blue) and graph of the length
distribution function F(x) (red) for S = {6,9,20). For i € N, a blue dot occurs above
i/n at height equal to the multiplicity of i in L[n].



The McNugget triangle

0.06 0.08 0.10 0.12 0.14 0.16

n = 20,000

Normalized histogram of the length multiset L[n] (blue) and graph of the length
distribution function F(x) (red) for S = {6,9,20). For i € N, a blue dot occurs above
i/n at height equal to the multiplicity of i in L[n].



Getting explicit

For S = (11,34,35,36), the length distribution function is

(0 if x < %,
25(36x — 1)? if 3= < x < %,
F(x) = 1413720 { 555 (—15073x? +886x — 13) i 5 < x < 35,

1 2 o1 1
—13800(11X -1) if 37 < x< 57,

\0 |fX>ﬁ




Getting explicit

For S = (11,34,35,36), the length distribution function is

(0 if x < %,
4 (36x — 1)2 if &= < x < %,
F(x) = 1413720 { 555 (—15073x? +886x — 13) i 5 < x < 35,
T30p (11x — 1)2 if & <x <,

L0 if x > 1—11

From this we can deduce things like

1 11
MedianL[n] ~ 11 (1 —4/712) n.
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n = 1,000

Normalized histogram of the length multiset L[n] (blue) and graph of the length
distribution function F(x) (red) for S = (11,34,35,36). For i € N, a blue dot occurs
above i/n at height equal to the multiplicity of i in L[n].
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n = 2,000

Normalized histogram of the length multiset L[n] (blue) and graph of the length
distribution function F(x) (red) for S = (11,34,35,36). For i € N, a blue dot occurs
above i/n at height equal to the multiplicity of i in L[n].



n = 5,000

Normalized histogram of the length multiset L[n] (blue) and graph of the length
distribution function F(x) (red) for S = (11,34,35,36). For i € N, a blue dot occurs
above i/n at height equal to the multiplicity of i in L[n].



n = 10,000

Normalized histogram of the length multiset L[n] (blue) and graph of the length
distribution function F(x) (red) for S = (11,34,35,36). For i € N, a blue dot occurs
above i/n at height equal to the multiplicity of i in L[n].



n = 50,000

Normalized histogram of the length multiset L[n] (blue) and graph of the length
distribution function F(x) (red) for S = (11,34,35,36). For i € N, a blue dot occurs
above i/n at height equal to the multiplicity of i in L[n].



A close call

Statistic

Actual Predicted

Min /Max L[10%]
Mean L[10%]
Median L[10°]
Mode L[10°]
StDev L[10°]
Skew L[10°]
HarMean L[10%]
GeoMean L[10°]

2778/9082 2777.78/9090.91

4417.31 4416.76
4145 4144.69
2939 2939.03

1207.84 1207.14

0.8594802 0.8594804

4130.30 4130.03

4266.46 4266.06

Actual versus predicted statistics (rounded to two decimal places) for L[10°],
the multiset of factorization lengths of 100,000, in S = (11,34, 35, 36).



Quasipolynomiality
and
Moments



Complete homogeneous symmetric polynomials

The complete homogeneous symmetric polynomial of degree p in
the k variables x1,xo, ..., xx is

hp<X17X27"'7Xk) = Z XO!1X052”'XO¢p7
1< <--<ap<k

the sum of all degree p monomials in x1, xo, . .., Xk.




Complete homogeneous symmetric polynomials

The complete homogeneous symmetric polynomial of degree p in
the k variables x1,xo, ..., xx is

hp<X17X27"'7Xk) = Z quxag"'xozp?
1< <--<ap<k

the sum of all degree p monomials in x1, xo, . .., Xk.

A\

Example (CHS polynomials in two variables)

ho(x1,x2) =1,

hi(x1,x2) = x1 + x2,

2 2
ha(x1,x2) = xi + x1x2 + X5.




Quasipolynomality and asymptotics

A quasipolynomial of degree d is a function f : Z — C of the form

nd—l

f(n) = cq(n)n? + cy_1(n) + -+ ca(n)n+ cn),

in which ci(n), c2(n), ..., cq(n) are periodic functions of n. A
quasirational function is a quotient of two quasipolynomials.




Quasipolynomality and asymptotics

A quasipolynomial of degree d is a function f : Z — C of the form

nd—l

f(n) = cq(n)n? + cy_1(n) + -+ ca(n)n+ cn),

in which ci(n), c2(n), ..., cq(n) are periodic functions of n. A
quasirational function is a quotient of two quasipolynomials.

Theorem (G-Omar—-O'Neill-Yih, 2019)

Let S ={ny,ny,...,nky. For peN,

1 1
Z P o— p!hp(ﬁlaév'-')nk)
ten] (k—l—p—l)!(nlng'--nk)

nktP=1 4 wp(n),

in which w,(n) is a quasipolynomial of degree at most k + p — 2
whose coefficients have period dividing lem(ny, na, ..., ng).




Quasirational quantities and large n asymptotics

©® Number of Factorizations.
k—1

Ll ~ =D )

® Moments.

L 3 4 (p+k—1)‘1,,<11 1>np
LIl 2, p ) P\

©® Mean.
1 n(1 1 1
Z£~<++...>
w2 T kT

O Variance.




Quasirational quantities and large n asymptotics

©® Number of Factorizations.

nk—1
Llnl| ~ .
| [[ M (k—l)!(n1n2-~~nk)
® Moments.
1 p+k—1>_1 <1 1 1)
— P~ hol —, —,...,— |nP
|L[”ﬂ|ée§nﬂ < p P ny np ng
© Mean.

1 n/1 1 1
—— (~ S (4=
moe k<n1+,,2+ nk>

LeL[n]

O Variance.




The generating function

Proof. Let S = {ny, ny, ..., nky with ged(ng, na,...,nk) = 1. Let

k

1
glz,w) = Hm

i=1
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The generating function

Proof. Let S = {ny, ny, ..., nky with ged(ng, na,...,nk) = 1. Let

k

1
glz,w) = Hm

i=1

(1+ wz" + w222 4 ...)

Il
NS

[y

Z walTazt+ak jaim+am+--tagng

a1,az,...,ak=0

ag=
Q0
Z # of factorizations of n of length £)w*

LZ

ﬁMéS HMS



From
k

1 o0
g(Z,W):Hm:Zzn w',

i=1 n=0  tel[n]
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it follows that
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(W(;/v> glz,w) = Z z" Z Pwt
Lel[n]

n=0

and hence >, 1) £¥ is the coefficient of 2" in
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From

it follows that

oy = ‘
(Waw> glz,w) = Z z Z Pw
Lel[n]

n=0

and hence >, 1) £¥ is the coefficient of 2" in

(war etz

A long and grueling residue computation yields

w=1

1 1 1)

Z gp _ pth(H’E”Fk
teL[n] (k +p— 1)!(!71[72 cee nk)

nktP= 4wy (n). O



Beyond Vandermonde



Exponential generating function

Theorem (G-Omar-O'Neill-Yih, 2019)

Let x1,x2,...,xx € C\{0} be distinct. For z € C,

k eXrZ

o0
Z hp(X17X27"'7Xk)Zp+k—l _ I —
(p+ k—1)! A e (e = x5)

p=0




Exponential generating function

Theorem (G-Omar-O'Neill-Yih, 2019)

Let x1,x2,...,xx € C\{0} be distinct. For z € C,
0 h k X, Z
Z P(X1’X27"'7Xk)zp+k—1 _ e
p=0 (p +k — 1)' =il Hj;ér(xf - X_I)
Vandermonde determinants
k—1
1L xx X2 - x
k—1
1 x x2 Xy
. = 1_[ (XJ ;)
: 1<i<j<n
k—1
L 1 X Xk veo 54
V(x1,%2,...,Xk)




Being manipulative

Proof. Observe that
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(Hj<r(xr - XJ)) ( l—L‘>r(Xf B X’))

XrZ
el’

k
= 1
=1

r
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Being manipulative

Proof. Observe that

k
det V(x1,x2,...,Xk) Z

k
_ vk—r det V/(x1,x2,...,Xk) oz
2V =) (09— )

1 oxqg x2 - Xf_z e

= det

1 xx XE X,f_z ez
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Since
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Are you Schur?

Since
k exrZ
det V(Xl,XQ,..., 2 :
r=1 ﬁér o XJ)
k—2 +k—1
" 1 x X12 cx Xy
Zp+k 1
Z det|: : = - : :
o (p+ (p+k—1) 1! o ' ' ' ’
= 2 k—2 p+k 1
1 Xie Xk e Xk k



Are you Schur?

Since
k exrZ
det V(Xl,XQ,..., Z
[T — )
r=1 ﬁér J
1 oxg x@ - xk72 xprkt
0 Zp+/< 1 1A 1 1
det : : : .. : :
p—0 _ —1
1 xx x,% x,f 2 ,’f+
it suffices to show that
1 xg - xk72 xprht
det|: . : : = hp(Xx1,...,xk)det V(x1,..., xx).

k—2 p+k 1
1 Xk .. Xk k



Are you Schur?

Since
k exrZ
detV(Xl,XQ,..., 2 :
r=1 J;ér _XJ)
- k—1
o0 p+k—1 1 X12 X1k2 X{H
z
det | : N : :
Z‘ (p+k—1)! S S - ’
1 xx x,% x,ffz x,’f+k_1
it suffices to show that
1 xg - xk72 xprht
det|: . : : = hp(Xx1,...,xk)det V(x1,..., xx).
_ k—1
1 xx - le 2 [(’+

This follows from Jacobi's bialternant formula applied to the
partition A\ = (p,0,...,0). O



A Measured
Approach
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The usual setting

Fix a numerical semigroup S = {(ny, na, ..., nky with k > 3. For
convenience, we sometimes write x; = 1/n; for i =1,2,... n.
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From the discrete to the continuous
The usual setting

Fix a numerical semigroup S = {(ny, na, ..., nky with k > 3. For
convenience, we sometimes write x; = 1/n; for i =1,2,... n.

v

The probability measures v,

Let 0, denotes the point mass at x. For ne N, let

1
Vn:m Z (5%

LeLn]

4

Strategy

We prove that the singular probability measures v,, converge weakly
(in the topology of the dual of C[0,1]) to an absolutely continuous
probability measure v which governs L[n]. The probability density
F of this limit measure is the “length distribution function.”




Diagram chasing

o0 convergence of moments
(molva)) 2y (mp(v)) %o

moment
sequence

moment
sequence

wea k convergence
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convergence in C[0,1]*

. Inverse
Fourier .
Fourier
transform
transform

pointwise convergence on R

Py Pv
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Diagram chasing

o0 convergence of moments
(molva)) 2y (mp(v)) %o

moment
sequence

moment
sequence

weak convergence
Up UV <>

convergence in C[0,1]*

14

A

. Inverse
Fourier .
Fourier
transform
transform

pointwise convergence on R

Spl/n ()OV




Convergence of moments

Lemma

The pth moment

mp(vy) = JR tP du,(t)

of v, = ﬁ DteLn] Ot/n Satisfies

-1
_ p+k—1 11 1
I = ol —s—5-- ., — |-
anOO mp(Vn) < 1% ) = <n1’ n2’ ’ Ny




Convergence of moments

The pth moment

mp(vy) = JR tP du,(t)

of v, = ﬁ Zéel_[[n]] O¢/n satisfies

-1
. p+k—1 1 1 1
| = ol —>—-s— |-
nL)mOO mP(Vn) < p > P <n17 n27 ) ny

Proof.
We have

m”(y")_yL[[ln]]yZE (gp

eL[n]

Now use the asymptotic formulas for 3, 1) ¢7 and [L[n]|. O

V.
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Convergence of characteristic functions

The sequence of characteristic functions
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Convergence of characteristic functions

The sequence of characteristic functions

converges (uniformly on compact sets in C) to
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A measured approach

Lemma (Lévy's Continuity Theorem)

Let v, be probability measures on [0, 1] such that ¢, converges
pointwise on R to a continuous function p. Then

O ¢ = ¢, for some probability measure v on [0, 1];
@ v, — v (weak convergence of measures);

© my(v) = limp_o mp(vp) for all p e N.




A measured approach

Lemma (Lévy's Continuity Theorem)

Let v, be probability measures on [0, 1] such that ¢, converges
pointwise on R to a continuous function p. Then

@ ¢ = p, for some probability measure v on [0, 1];

@ v, — v (weak convergence of measures);

© my(v) = limp_o mp(vp) for all p e N.

Lemma (Inversion theorem)

If §g lou(t)| dt is finite, then F := ¢, is a bounded continuous
function such that

for all Borel sets A < [0, 1].
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Fourier inversion

The desired probability density function is

Fu(x) = ¢u(x)




Life the Universe and
Everything



The ultimate answer to the great question

Theorem (G-Omar-O'Neill-Yih, 2019)
Let S = {ny,ny,...,nky, in which k = 3, gcd(ny, na,...,ng) = 1.
O Forreal o < 3,

. [{¢eLn]:le[an,pn]}| p
nll_)moo T = f F(t)dt,

(e

where F : R — R is the C¥~3 probability density function

(k—1)niny--- ng \1 — an’( x)k*3
2 rzl Hﬁér( — nr) ’

@ For any continuous function g : (0,1) — C,

b i 3, #(5) = [soroa

LeL[n]

F(x) :=




This stuff all works!

Let S =<9,11,13,15,17). The length distribution function is

(0 if x < 1—17,
(17x - 1)3 if L <x<,
109395 |3 — 129x + 1833x2 — 8587x3  if &£ < x < &4,
FO="5%) —3+ 105x — 1209x2 + 4595x3 if & < x < &,
(1-9x)° if L <x<g,
L0 if £ <x




This stuff all works!

Let S =<9,11,13,15,17). The length distribution function is
(0 if x < 1—17,
(17x —1)3 if £ <x< £,
) 109395 |3 — 129x + 1833x% — 8587x%  if % <x < 1—13,
F(x) = <
32| -3+ 105x — 1209x? +4595x3 if & < x < &,
1 1
(1-9x)° if § <x<3,
L0 if & <x
If nis even, then every element of L[n] is even, and if n is odd,
then every element of L[n] is odd.




Another example
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n = 2,000

Normalized histogram of the length multiset L[n] (blue) and graph of the length
distribution function F(x) (red) for S =(9,11,13,15,17). For i € N, a blue dot
occurs above i/n at height equal to the multiplicity of 7 in L[n].



Another example

f \
80 \
60
40

20

0.06 0.07 0.08 0.09 0.10 011
n = 50,000

Normalized histogram of the length multiset L[n] (blue) and graph of the length
distribution function F(x) (red) for S =(9,11,13,15,17). For i € N, a blue dot
occurs above i/n at height equal to the multiplicity of 7 in L[n].




Statistic Actual Predicted
Min /MaxL[10°] | 11110/5884 11111.11/5882.35
Mean L[10%] 8088.80 8088.67
Median L[10°] 8038 8037.53
Mode L[10°] 7904 7904.25
StDev L[10°] 757.14 756.89
Skew L[10°] | 0.32812710  0.32812712
HarMean L[10°] | 8019.043 8018.96
GeoMean L[10°] | 8053.75 8053.64

Actual versus predicted statistics (rounded to two decimal places) for L[10°],
the multiset of factorization lengths of 100,000, in S =<9,11,13,15,17).



Where have | see this before?

My what a strange function!

The length distribution function

(k—1)niny-- - ng |1 — nx|(1 = nx)k=3
O ) I (=)
r=1 J#r r
is piecewise polynomial of degree k — 2 with nodes 1 . —1 and

support [1 It is (k — 3)-times continuously dlfFerentlabIe

ng’ nl]
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My what a strange function!

The length distribution function
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A link to computer-aided design
This is a Curry—Schoenberg B-spline from computer aided design!




Where have | see this before?

My what a strange function!

The length distribution function

k—3

(k—1)niny-- - ng Z |1 — nx|(1— nyx)

F(X) - 2 =il Hﬁ&r( o nr)

is piecewise polynomial of degree k — 2 with nodes i 3 and
It is (k — 3)-times continuously dlfFerentlabIe

support [1

ng’ nl]

A link to computer-aided design
This is a Curry—Schoenberg B-spline from computer aided design!

These interpolate a finite set of values with piecewise polynomials
subject to degree, smoothness, and support requirements.




Positive Thinking



Positivity of CHS polynomials

Theorem (D.B.Hunter, 1977)

Forp=0,1,2,... and all (a1, az,...,a,) € R"\{0},

hgp(a]_, ao, ..., an) > 0.
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Positivity of CHS polynomials

Theorem (D.B.Hunter, 1977)

Forp=0,1,2,... and all (a1, az,...,a,) € R"\{0},

hgp(a]_, ao, ..., an) > 0.

For (X1,X2,X3) € R3\{0},

x12 + X22 + X§ + x1x0 + X0x3 + x1x3 > 0.
A 7

ha(x1,x2,x3)

Tao's Blog

“I was hunting for a probabilistic interpretation of hy (this being
another major way to prove positivity results, besides sum of
squares methods and induction methods).”




CHS polynomials for nonintegral powers

Theorem (Béttcher-G-Omar—O'Neill, 2020)

Letn>2, leta; < a» <---< ap, and let

n—1g |a—x|(a — x)"3

2 j=1 Hk;éj(aj o ak)

F(x;a1,a2,...,a,) =

Then for suitable z € C, define

-1
hy(a1,a2,...,a,) = (z—:n 1 >f x?F(x; a1, az,...,an) dx;
- R

forz=0,1,2,... this agrees with classical CHS polynomials.




CHS polynomials for nonintegral powers

Theorem (Béttcher-G-Omar—O'Neill, 2020)

Letn>2, leta; < a» <---< ap, and let

n—1g |a—x|(a — x)"3

2 j=1 Hk;éj(aj o ak)

F(x;a1,a2,...,a,) =

Then for suitable z € C, define

-1
hy(a1,a2,...,a,) = (z—:n 1 >f x?F(x; a1, az,...,an) dx;
- R

forz=0,1,2,... this agrees with classical CHS polynomials.

Freebie
Apply with z=2p and p=0,1,2,... to obtain Hunter's positivity
theorem as a trivial consequence since F > 0.




CHS polynomials of fractional degree

For three variables,

at2(b—c) + b**2(c — a) + c?T2(a — b)
(a—b)(a—c)(b—c)

h,(a,b,c) =




CHS polynomials of fractional degree

For three variables,

at2(b—c) + b**2(c — a) + c?T2(a — b)

e has (a—b)(a—c)(b—20)
and hence
hi(a, b,c) = 23(b—c) + b3(c—a) + c3(a— b)

(a—b)(a—c)(b—c)

(3.b,c) = Y3Vb+ave+Vbye
o (vVa+vb)(va+ /) (Vb+ /<)

h_s(a, b,c) = (abc) ™,

h

1
2

ab + ac + bc

h74(a7 b, C) = P




New positivity results

Theorem (Bottcher-G-Omar—O'Neill, 2020)

Let .
H(ai,az,...,ap) = Z cjhi(ay, a2,...,an)
j=0

with real coefficients ¢; and let —oc0 < r < s < 0. Then

H(ai,...,an) >0 forall (a1,...,an) € (r,s)"\{0}

if and only if H(a, a,...,a) > 0 for all a € (r,s)\{0}.




New positivity results

Theorem (Bottcher-G-Omar—O'Neill, 2020)
Let

m
H(ai,az,...,ap) = Z cjhi(ay, a2,...,an)
j=0

with real coefficients ¢; and let —oc0 < r < s < 0. Then

H(ai,...,an) >0 forall (a1,...,an) € (r,s)"\{0}

if and only if H(a, a,...,a) > 0 for all a € (r,s)\{0}.

Tip of the iceberg

More elaborate versions are available for expressions like

m

H(a1,...,ap) = 2 cikhj(ai, ..., an)hk(a1, ..., an).
jk=1




Future Work



A host of questions

Let S = {n1, m,...,nk) be a numerical semigroup with length
distribution function F(x).

@ Physical interpretation for the passage to the limit n — o0?




A host of questions

Let S = {n1, m,...,nk) be a numerical semigroup with length
distribution function F(x).

@ Physical interpretation for the passage to the limit n — 00?

@ Properties of the Jacobi matrix and orthogonal polynomials
corresponding to F7




A host of questions

Let S = {n1, m,...,nk) be a numerical semigroup with length
distribution function F(x).

@ Physical interpretation for the passage to the limit n — 00?

@ Properties of the Jacobi matrix and orthogonal polynomials
corresponding to F?

@ What about sequences of semigroups S; € So  S3 < ---7
Can we recover Hardy—-Littlewood—Ramanujan—Rademacher
results for partitions?




A host of questions

Let S = {n1, m,...,nk) be a numerical semigroup with length
distribution function F(x).

@ Physical interpretation for the passage to the limit n — 00?

@ Properties of the Jacobi matrix and orthogonal polynomials
corresponding to F?

@ What about sequences of semigroups Sy c S, € S3 < ---?
Can we recover Hardy—-Littlewood—Ramanujan—Rademacher

results for partitions?

@ Semigroups in higher dimensions? Versions for PSD matrices?




A host of questions

Let S = {n1, m,...,nk) be a numerical semigroup with length
distribution function F(x).

@ Physical interpretation for the passage to the limit n — 00?

@ Properties of the Jacobi matrix and orthogonal polynomials
corresponding to F?

@ What about sequences of semigroups Sy c S, € S3 < ---?
Can we recover Hardy—-Littlewood—Ramanujan—Rademacher
results for partitions?

@ Semigroups in higher dimensions? Versions for PSD matrices?

@ Noncommutative versions of positivity results?
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The building blocks of (unital) AF C*-algebras are (unital)
embeddings of direct sums of matrix algebras.
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Unital homomorphisms
Building blocks

The building blocks of (unital) AF C*-algebras are (unital)
embeddings of direct sums of matrix algebras.

Simplest case

| A\

A unital homomorphism ¢ : M, @ ---@® M,, — M, is determined
up to unitary equivalence in M, by a1, as, ..., ax € N such that

ainy + -+ aghx = n.
For large n, we understand the asymptotic properties of
C=a1+ -+ a

as ¢ ranges over all such unital homomorphisms. Here £ is the
total number of simple matrix algebras in the image of ¢ in M,,.
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AF C*-algebras

Potential application?

Fix S ={ny,na,...,nk) and a large C € N and let

k
U = PMcrp,.
i=1

A unital homomorphism ¢, : U, — U, 1 is determined up to
unitary equivalence in U, ;1 by a;; € N such that

ayitm + - 4+ aiknk = Cm
ainn + -+ 4+ axne = Cm
akim + - + awnk = Cng

We know the asymptotic behavior of > ; ;|a;| = >3;(3; aj). This
may permit us to answer statistical questions about families of AF
algebras generated from embeddings ¢, : U, —> U, 1.




Multivariable combinatorics

Higher-dimensional semigroups

Let ny,ny,...,n, e N? and

5:<n1,n2,...,nk>: {aln1+-'~+aknk : a,-eN}.
The corresponding generating function is
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Singularities are no longer isolated poles, but varieties!




Multivariable combinatorics

Higher-dimensional semigroups

Let ny,ny,...,n, e N? and

5:<n1,n2,...,nk>:{aln1+-'~+aknk:a,-eN}.

The corresponding generating function is

g(Z]_,Zz,...,Zk,W) = H

k
i=1

n;
1—wz; 009

Singularities are no longer isolated poles, but varieties!

New frontiers

There is a rapidly-developing theory of Analytic Combinatorics in
Several Variables (ACSV) whose tools may address these problems.
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