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Overview

L Free sets and free functions

M Differentiation of free functions

N What properties must a derivative satisfy?

O When is a free linear map the derivative of a free function?

Our main results are free analogs of the following well-known
classical results:

H if 𝑓 is twice differentiable then curl(∇𝑓) = 0,

I “conversely”, if 𝐹 is a differentiable vector field on a simply
connected region and curl(𝐹 ) = 0, then 𝐹 = ∇𝑓 .



Main ideas

Without defining anything, the derivative in free analysis is the
noncommutative directional derivative.

That is, 𝐷𝑓(𝑋)[𝐻] is the derivative of a function 𝑓 , at a matrix
point 𝑋, in the direction of 𝐻.

We have the following simple examples of derivatives

𝑝(𝑋1, 𝑋2) = 2𝑋2 + 3𝑋1𝑋2

𝐷𝑝(𝑋1, 𝑋2)[𝐻1, 𝐻2] = 2𝐻2 + 3𝐻1𝑋2 + 3𝑋1𝐻2

𝑞(𝑋1, 𝑋2) = 𝑋1𝑋2𝑋1

𝐷𝑞(𝑋1, 𝑋2)[𝐻1, 𝐻2] = 𝐻1𝑋2𝑋1 +𝑋1𝐻2𝑋1 +𝑋1𝑋2𝐻1



What about these?

Naturally, we can ask when a function that “looks like” a derivative,
is actually a derivative.

For example, are the following functions derivatives?

Ê 2𝑋2
1𝐻2 +𝑋1𝑋2𝐻1

Ë 𝑋1𝐻2 −𝐻1𝑋2

Ì 𝑋2
1𝐻1 −𝐻1𝑋

2
1



Free Sets

Let 𝑀(C) = (𝑀𝑛(C))∞𝑛=1 and let 𝑀(C)g = (𝑀𝑛(C)g)∞𝑛=1.

We say Ω = (Ω[𝑛])∞𝑛=1 ⊂ 𝑀(C)g is a free set if

Ê 𝑋 ∈ Ω[𝑛] and 𝑌 ∈ Ω[𝑚] =⇒ 𝑋 ⊕ 𝑌 ∈ Ω[𝑛+𝑚]

Ë 𝑋 ∈ Ω[𝑛] and 𝑆 ∈ GL𝑛(C) =⇒ 𝑆−1𝑋𝑆 ∈ Ω[𝑛]

where

𝑋 ⊕ 𝑌 = (𝑋1 ⊕ 𝑌1, . . . , 𝑋g ⊕ 𝑌g)

=

(︂(︂
𝑋1 0
0 𝑌1

)︂
, . . . ,

(︂
𝑋g 0
0 𝑌g

)︂)︂
,

and
𝑆−1𝑋𝑆 = (𝑆−1𝑋1𝑆, . . . , 𝑆

−1𝑋g𝑆).



Free Sets II.

Ê 𝑀(C)g is a free set

Ë
(︁
GL𝑛(C)

)︁∞

𝑛=1
is a free set since det(𝑋 ⊕𝑌 ) = det(𝑋) det(𝑌 )

Ì
(︁{︀

(𝐴,𝐵) ∈ 𝑀𝑛(C)2 : det(𝐴𝐵 −𝐵𝐴) ̸= 0
}︀)︁∞

𝑛=1
is a free set

for the same reason (also note this set is empty on C2).

Í
(︁
{𝑋 ∈ 𝑀𝑛(C) : det(𝑋) = 2}

)︁∞

𝑛=1
is not a free set.



Free Functions

Let Ω ⊂ 𝑀(C)g be a free set and let 𝑓 [𝑛] : Ω[𝑛] → 𝑀𝑛(C)h.
Setting 𝑓 = (𝑓 [𝑛])∞𝑛=1 we write 𝑓 : Ω → 𝑀(C)h.

We say 𝑓 is a free function if

Ê 𝑓(𝑋 ⊕ 𝑌 ) = 𝑓(𝑋)⊕ 𝑓(𝑌 ) (𝑓 [𝑛 + 𝑚](𝑋 ⊕ 𝑌 ) = 𝑓 [𝑛](𝑋) ⊕ 𝑓 [𝑚](𝑌 ))

Ë 𝑓(𝑆−1𝑋𝑆) = 𝑆−1𝑓(𝑋)𝑆 (𝑓 [𝑛](𝑆−1𝑋𝑆) = 𝑆−1𝑓 [𝑛](𝑋)𝑆)

whenever 𝑋 ∈ Ω[𝑛], 𝑌 ∈ Ω[𝑚] and 𝑆 ∈ GL𝑛(C).

Ê 𝑋 ↦→ 𝑋2 is a free map on 𝑀(C).

Ë 𝑓(𝑋,𝑌 ) = 𝑋𝑌 −1𝑋 is a free map on
(︁
𝑀𝑛(C)×GL𝑛(C)

)︁∞

𝑛=1
.



Free Functions II

We say a free set Ω is open if each Ω[𝑛] is open.

+ A free domain is an open free set.

Let 𝑓 be a free function on the free domain Ω. If each 𝑓 [𝑛] is
continuous (analytic), then we say 𝑓 is continuous (analytic) .

If 𝑋 ∈ Ω[𝑛] and 𝐻 ∈ 𝑀𝑛(C)g, then 𝐷𝑓(𝑋)[𝐻] is the noncommutative

directional derivative of 𝑓 at 𝑋 in the direction of 𝐻.

Ê 𝑓1(𝑋,𝑌 ) = 𝑋𝑌 +𝑋2 ⇒ 𝐷𝑓1(𝑋,𝑌 )[𝐻,𝐾] = 𝐻𝑌 +𝑋𝐾 +𝐻𝑋 +𝑋𝐻

Ë 𝑓2(𝑋,𝑌 ) = 2𝑋 + 𝑌 −1 ⇒ 𝐷𝑓2(𝑋,𝑌 )[𝐻,𝐾] = 2𝐻 − 𝑌 −1𝐾𝑌 −1



Derivatives of Free Functions

We often use the following standard result in free analysis.

Theorem. Suppose 𝑓 is a free map on the free domain Ω. If 𝑓 is
continuous then 𝑓 is analytic and for all 𝑋 ∈ Ω[𝑛] and (sufficiently
small) 𝐻 ∈ 𝑀𝑛(C),

𝑓

(︂
𝑋 𝐻
0 𝑋

)︂
=

(︂
𝑓(𝑋) 𝐷𝑓(𝑋)[𝐻]
0 𝑓(𝑋)

)︂
.

Specifically, the derivative of an analytic free map can be found via
point evaluation!



Free Curl

A free map 𝑇 on Ω×𝑀(C)g is free demilinear if it is linear in half
of its variables:

𝑇 (𝑋, 𝑐𝐻 +𝐾) = 𝑐𝑇 (𝑋,𝐻) + 𝑇 (𝑋,𝐾).

ï 𝐷𝑓 is free demilinear for all analytic free maps 𝑓

ï 𝑇1(𝑋,𝐻) = 𝑋2𝐻 −𝐻𝑋2 is free demilinear

ï 𝑇2(𝑋,𝑌,𝐻,𝐾) = 𝑌 𝐻 +𝐻𝑌 −𝑋𝐾 −𝐾𝑋 is free demilinear.

If 𝑇 is an analytic free demilinear map, then the free-curl of 𝑇 is
the difference 𝐷𝑇 (𝑋,𝐻)[𝐾, 0]−𝐷𝑇 (𝑋,𝐾)[𝐻, 0].

+ if the free-curl of 𝑇 is always zero, then we say 𝑇 is free-curl free.



Main Results

Theorem (A’ 2020)

Suppose 𝑓 is an analytic free map on Ω. If 𝑇 is the analytic demilinear
free map on Ω×𝑀(C)g defined by 𝑇 (𝑋,𝐻) = 𝐷𝑓(𝑋)[𝐻] then 𝑇 is
free-curl free.

Theorem (A’ 2020)

Suppose Ω is a free domain and each Ω[𝑛] is connected. Suppose 𝑇 is an
analytic free demilinear map defined on Ω×𝑀(C)g. If 𝑇 is free-curl free
then there exists an analytic free map 𝑓 on Ω such that 𝑇 = 𝐷𝑓 .



Consequences

Ê We can now answer the question of “when is a free linear map a
derivative?” with a simple and testable condition.

Ë This pair of theorems plus a little bit of extra work can be used
to prove the existence of free pluriharmonic conjugates

∼ thanks to Rob Martin for pointing this out

∼ the existence of free pluriharmonic conjugates was previously shown in
Pascoe’s Free Monodromy paper

Ì If 𝐷𝑓 is a free rational function, then 𝑓 is a free rational function.

Í It may be possible to adapt the results to the NC operator setting.



Easier Direction

The proof of our first theorem is relatively elementary. We assume 𝑓 is free
analytic and 𝑇 (𝑋,𝐻) = 𝐷𝑓(𝑋)[𝐻].

Consider the following computation

𝑓

⎛⎜⎜⎝
𝑋 𝐾 𝐻 0
0 𝑋 0 𝐻
0 0 𝑋 𝐾
0 0 0 𝑋

⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝑓(𝑋) 𝑇 (𝑋,𝐾)
0 𝑓(𝑋)

0 0
0 0

𝐷𝑓

(︂
𝑋 𝐾
0 𝑋

)︂[︂
𝐻 0
0 𝐻

]︂
𝑓(𝑋) 𝑇 (𝑋,𝐾)
0 𝑓(𝑋)

⎞⎟⎟⎠

=

⎛⎜⎜⎝
𝑓(𝑋) 𝑇 (𝑋,𝐾) 𝑇 (𝑋,𝐻) 𝐷𝑇 (𝑋,𝐻)[𝐾, 0]
0 𝑓(𝑋) 0 𝑇 (𝑋,𝐻)
0 0 𝑓(𝑋) 𝑇 (𝑋,𝐾)
0 0 0 𝑓(𝑋)

⎞⎟⎟⎠ .

Similarly,

𝑓

⎛⎜⎜⎝
𝑋 𝐻 𝐾 0
0 𝑋 0 𝐾
0 0 𝑋 𝐻
0 0 0 𝑋

⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝑓(𝑋) 𝑇 (𝑋,𝐻) 𝑇 (𝑋,𝐾) 𝐷𝑇 (𝑋,𝐾)[𝐻, 0]
0 𝑓(𝑋) 0 𝑇 (𝑋,𝐾)
0 0 𝑓(𝑋) 𝑇 (𝑋,𝐻)
0 0 0 𝑓(𝑋)

⎞⎟⎟⎠ .



Easier Direction II

Let 𝑈 be the block unitary that switches the second and third
rows/columns. Hence

𝑈−1

⎛⎜⎜⎝
𝑋 𝐾 𝐻 0
0 𝑋 0 𝐻
0 0 𝑋 𝐾
0 0 0 𝑋

⎞⎟⎟⎠𝑈 =

⎛⎜⎜⎝
𝑋 𝐻 𝐾 0
0 𝑋 0 𝐾
0 0 𝑋 𝐻
0 0 0 𝑋

⎞⎟⎟⎠ .

Since 𝑓 is free, 𝑓(𝑈−1𝑍𝑈) = 𝑈−1𝑓(𝑍)𝑈 . Thus,

𝑓

⎛⎜⎜⎝
𝑋 𝐻 𝐾 0
0 𝑋 0 𝐾
0 0 𝑋 𝐻
0 0 0 𝑋

⎞⎟⎟⎠ = 𝑈−1𝑓

⎛⎜⎜⎝
𝑋 𝐾 𝐻 0
0 𝑋 0 𝐻
0 0 𝑋 𝐾
0 0 0 𝑋

⎞⎟⎟⎠𝑈

Specifically, switching the rows and columns before evaluation is the same
as switching the rows and columns after evaluation!

+ The (1, 4)-entry is unaffected by the row/column switches.



Easier Direction III

Since

𝑓

⎛⎜⎜⎝
𝑋 𝐾 𝐻 0
0 𝑋 0 𝐻
0 0 𝑋 𝐾
0 0 0 𝑋

⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝑓(𝑋) 𝑇 (𝑋,𝐾) 𝑇 (𝑋,𝐻) 𝐷𝑇 (𝑋,𝐻)[𝐾, 0]
0 𝑓(𝑋) 0 𝑇 (𝑋,𝐻)
0 0 𝑓(𝑋) 𝑇 (𝑋,𝐾)
0 0 0 𝑓(𝑋)

⎞⎟⎟⎠
and

𝑈𝑓

(︂
𝑋 𝐻 𝐾 0
0 𝑋 0 𝐾
0 0 𝑋 𝐻
0 0 0 𝑋

)︂
𝑈−1 = 𝑈

⎛⎜⎜⎝
𝑓(𝑋) 𝑇 (𝑋,𝐻) 𝑇 (𝑋,𝐾) 𝐷𝑇 (𝑋,𝐾)[𝐻, 0]
0 𝑓(𝑋) 0 𝑇 (𝑋,𝐾)
0 0 𝑓(𝑋) 𝑇 (𝑋,𝐻)
0 0 0 𝑓(𝑋)

⎞⎟⎟⎠𝑈−1

=

⎛⎜⎜⎝
𝑓(𝑋) 𝑇 (𝑋,𝐾) 𝑇 (𝑋,𝐻) 𝐷𝑇 (𝑋,𝐾)[𝐻, 0]
0 𝑓(𝑋) 0 𝑇 (𝑋,𝐻)
0 0 𝑓(𝑋) 𝑇 (𝑋,𝐾)
0 0 0 𝑓(𝑋)

⎞⎟⎟⎠ ,

we conclude 𝐷𝐹 (𝑋,𝐻)[𝐾, 0] = 𝐷𝐹 (𝑋,𝐾)[𝐻, 0].



Path Independence

O In the classical setting, if 𝐹 is a vector field on a simply connected
region and curl(𝐹 ) = 0, then 𝐹 is path independent.

O If 𝑇 is an analytic free demilinear map on Ω×𝑀(C)g and
𝛾 : [0, 1] → Ω[𝑛] is a smooth path, then we define∫︁ 1

0

𝑇
(︁
𝛾(𝑡), 𝛾′(𝑡)

)︁
𝑑𝑡

to be the result of entry-wise integration.

O We say 𝑇 is path independent if whenever 𝑛 ∈ Z+,
𝛾1, 𝛾2 : [0, 1] → Ω[𝑛] are smooth, 𝛾1(0) = 𝛾2(0) and 𝛾1(1) = 𝛾2(1), then∫︁ 1

0

𝑇 (𝛾1(𝑡), 𝛾
′
1(𝑡)) 𝑑𝑡 =

∫︁ 1

0

𝑇 (𝛾2(𝑡), 𝛾
′
2(𝑡)) 𝑑𝑡.



Path Independence II

With an expected definition of path independence, we have the
following result:

Proposition

Suppose Ω is a free domain and 𝑇 is an analytic free demilinear map
on Ω×𝑀(C)g. If 𝑇 is free-curl free then 𝑇 is path independent.

Notice that this Proposition makes no mention of geometry!



Converse

Recall our second theorem:

Theorem

Suppose Ω is a free domain and each Ω[𝑛] is connected. Suppose 𝑇 is an
analytic free demilinear map defined on Ω×𝑀(C)g. If 𝑇 is free-curl free
then there exists an analytic free map 𝑓 on Ω such that 𝑇 = 𝐷𝑓 .

N In the classical setting, a potential function is found by choosing an
“anchor point” and integrating from that anchor to each point in the
domain.

O Since we have a graded set Ω, we must choose an “anchor point” at
each 𝑛 and then guarantee that the result is in fact a free map.



Converse II

The proof of the second Theorem is broken down into four main
steps.

Ê For each 𝑛, choose 𝑍𝑛 ∈ Ω[𝑛] and let 𝛼𝑛(𝑋) =
∫︀ 𝑋
𝑍𝑛

𝑇 ,
integrated over any path from 𝑍𝑛 to 𝑋

Ë Define 𝛽𝑛(𝑋) as Haar integral of 𝑈*𝛼𝑛(𝑈𝑋𝑈*)𝑈 over the
unitary group and show it respects conjugation by unitaries

Ì Use the entry-wise analyticity of 𝛽𝑛 to show that 𝛽𝑛 respects
similarities

Í Use level-wise direct sums to find constants 𝑏𝑛 such that
Φ𝑛 = 𝛽𝑛 + 𝑏𝑛 defines an analytic free map.



Thank You.


