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Introduction

Free convexity basics in outline

I LMIs and spectrahedra

I Free spectrahedra

I Free and matrix convex sets

I The Effros-Winkler Theorem

I The Linear Gleichstellensatz



LMIs and spectrahedra

I For selfadjoint matrices A1 . . . ,Ag ∈ Sd , the expression

LA(x) = I −
[
A1x1 + · · ·+ Agxg

]
is a (monic) linear pencil of size d .

I LA(x)�0 (LA(x)�0) is a linear matrix inequality (LMI)

I Its (scalar) solution set

DA[1] =
{
x ∈ Rg | LA(x)� 0

}
PA[1] =

{
x ∈ Rg | LA(x)� 0

}
is an LMI domain or a spectrahedron.



LMIs and spectrhahedra

Polyhedra are spectrahedra

LA(x1, x2) = I4 −
[−1

0
−1

0

]
x1 −

[
0
−1

0
1

]
x2.

DA[1] is the square [−1, 1]2 ⊆ R2:

x1

x2

1



LMIs and spectrahedra

Examples of spectrahedra: Balls

LA(x1, x2) = I3 −

0 1 0
1 0 0
0 0 0

 x1 −

0 0 1
0 0 0
1 0 0

 x2 =

[
1 −x1 −x2

−x1 1 0
−x2 0 1

]
.

DA[1] = {x ∈ R2 : x2
1 + x2

2 ≤ 1} is the closed unit ball in R2

1
x1

x2



LMIs and spectrahedra
The interior of an elliptic curve - why real algebraic

geometers care

L(x , y) = I + x

−2 0 0
0 −1 0
0 0 1

+
1√
3
y

 0
√

2 0√
2 0 1

0 1 0



x

y

y2 = (1− 2x)(1− x)(1 + x)

1−1

1

Thank Igor



LMIs and spectrahedra

Spectrahedra in action - a few reasons to care

I Convex optimization and semidefinite

programming (SDP), practical with advances in

interior point methods.

I real algebraic geometry and determinantal

representations.

I Systems engineering and robust control.



Free spectrahedra ...

... relax, go free

For A1, . . . ,Ag ∈ Sd and X = (X1, . . . ,Xg) ∈ Sgn
I The monic linear pencil LA evaluates at X as

LA(X ) = Id ⊗ In −
g∑

j=1

Aj ⊗ Xj ∈ Sd ⊗ Sn = Sdn.

I For each dimension n ∈ N,

DA[n] :=
{
X ∈ Sgn | LA(X )� 0

}
⊆ Sg

are natural relaxations of DA[1].

I Completely relaxed: free spectrahedron is DA := (DA[n])∞n=1 .

I DA is levelwise convex.

I We assume DA is bounded. In fact, everything is bounded.



Free spectrahedra ...

... relax, go free

For A1, . . . ,Ag ∈ Sd and X = (X1, . . . ,Xg) ∈ Sgn
I The monic linear pencil LA evaluates at X as

LA(X ) = Id ⊗ In −
g∑

j=1

Aj ⊗ Xj ∈ Sd ⊗ Sn = Sdn.

I For each dimension n ∈ N,

PA[n] :=
{
X ∈ Sgn | LA(X )� 0

}
⊆ Sg.

are relaxations of PA[1].

I Completely relaxed: free spectrahedron is PA := (PA[n])∞n=1 .

I PA is levelwise convex.



Free spectrahedra ...

... a few of the reasons to care

LA(X ) = I −
∑

Aj ⊗ Xj , DA = {X : LA(X ) � 0} PA = {X : LA(X ) � 0}

I Systems engineering.

I The span of {I ,A1, . . . ,Ag} is an operator system.

I Connected to cp (completely positive) maps

I Quantum Information Theory.

I Spectrahedral inclusions, the matrix cube problem:

DA ⊆ DB is tractable; DA[1] ⊆ DB [1] not so much.



Free sets

DA := (DA[n])∞n=1 ⊆ Sg, PA := (PA[n])∞n=1 ⊆ Sg.

I Let Sg = (Sgn)n, the free universe.
I A free set S ⊆ Sg is a sequence S = (S [n])n satisfying,

(a) S [n] ⊆ Sgn;

(b) closed wrt direct sums: If X ∈ S [n] and and Y ∈ S [m], then

X ⊕ Y =
((X1 0

0 Y1

)
, · · · ,

(
Xg 0
0 Yg

))
∈ S [n + m];

(c) closed wrt unitary similarity: If X ∈ S [n] and U is an n × n
unitary, then

U∗ X U :=
(
U∗X1U, · · · , U∗XgU

)
∈ S [n].

I It is evident that DA (resp PA) is a free set.



Matrix convex sets

I A free set S ⊆ Sg is matrix convex if for each X ∈ S [n] and
isometry V : Cm → Cn,

V ∗XV = (V ∗X1V , . . . ,V
∗XgV ) ∈ S [m];

I Each S [n] is convex: For X ,Y ∈ S [n],

(
I√
2

I√
2

) (X 0
0 Y

) ( I√
2
I√
2

)
=

X + Y

2
;

I Free spectrahedra are matrix convex. They are the free analog
of a half plane in convex analysis.
Proof.

(V ⊗ In)∗L(X )(V ⊗ In) = L(V ∗XV ).



The Effros-Winkler Separation Theorem

The E-W Matricial Hahn-Banach Separation Theorem.

If S ⊆ Sg is closed, matrix convex and contains 0 and if
Y ∈ Sg` \ S [`], then there is a monic linear pencil
L = I` −

∑
Aj ⊗ xj of size ` such that

L(S) � 0, L(Y ) 6� 0.

Thus S ⊆ DA, but Y /∈ DA.

S =
⋂
{DA : S ⊆ DA}.



The Linear Gleichstellensatz

Suppose D is a free spectrahedron. A tuple A ∈ Sgd is minimal for
D if DA = D and if B ∈ Sge and DB = D, then d ≤ e.

The Linear Gleichstellensatz [Helton, Klep, M]. If D is a
free spectrahedron, then there is a minimal A such that D = DA.

If A and B are both minimal for D, then

A = U∗BU.

D determines A; D[1] does not.



Global outline

I Free convexity basics

I Free semialgebraic sets - and matrix inequalities

• Free polynomials

• Motivation

• Convex semialgebraic sets

• Convex polynomials

• Quasiconvexity and Volcic’s Free Bertini Theorem

• The convex positivstellensatz - a side trip.

I Partial convexity and rational functions

I Extreme Points

I Some Analytic Theory.



Free polynomials ...

... and their evaluations

I x = (x1, . . . , xg) freely noncommuting variables;

I α = xi1xi2 · · · xim ∈ 〈x〉 is a word;

I C〈x〉 is the free algebra of noncommutative polynomials; e.g.,

p(x) = 5 + 2x1x2 − 3x2x1 + x2
1x2x1, q(x) = x1x2 − x2x1;

I for X = (X1, . . . ,Xg) ∈ Sgn,

Xα = Xi1 Xi2 · · ·Xim ; p(X ) = 5In + 2X1X2 − 3X2X1 + X 2
1 X2X1;

I p =
∑

pα ⊗ α ∈ Mµ(C〈x〉) is evaluated at X ∈ Mn(C)g by

p(X ) =
∑

pα ⊗ Xα ∈ Mµ(C)⊗Mn(C)

p(X ) =
(
pj,k (X )

)µ
j,k=1

∈ Mµ(Mn(C)).



Free polynomials

The positivity domain - semialgebraic sets

p(X ) =
∑

pα ⊗ Xα =
(
pj,k (X )

)
∈ Mµ(C)⊗Mn(C).

I p ∈ Mµ(C〈x〉) is symmetric if, for X ∈ Sg,

p(X )∗ = p(X );

I The positivity domain Pp of p is the sequence (Pp[n])n,

Pp[n] = {X ∈ Sgn : p(X ) � 0};

I Pp is a free set. It is a (basic) free semialgebraic set;

I For A ∈ Sgd and LA(x) = I −
∑

Ajxj ,

PA = PLA = {X : LA(X ) � 0}.



Motivation

Engineering reality

The system of Matrix Inequalities

AX + XAT + X (γ2 − C )X ≺ 0

BY + YBT + Y (γ2 − D)Y ≺ 0

X ,Y ≺ 0

X − Y−1 ≺ 0

arises in linear systems theory - [Doyle,Glover,Karganakar,Francis].

I X = XT , Y = Y T , C = CT , D = DT ;

I X ,Y are unknowns, A,B,C ,D, γ are knowns (system
parameters);

I the inequalities depend only on the signal flow diagram.

I the sizes depend upon the particular system;



Motivation

Convexity and the Ricatti inequality

The Ricatti inequality is a simple ubiquitous example of a (scalar)
Matrix Inequality,

AX + XAT − XBBTX + CTC � 0.

Its solution set is convex in X (also separately in A and B), since
the Ricatti inequality is equivalent to the Linear Matrix Inequality,(

I BTX
XB AX + XA + CTC

)
� 0.



Motivation

Matrix inequalities

The take away: Some systems engineering problems are modeled
by matrix inequalities:

p(A,X ) � 0.

I p is determined by the signal flow diagram;

I The A are the known unknowns - the plant;

I The X are the unknown unknowns (unc uncs to Rumsfeld);

I Convexity in X – for fixed A is desirable;

I More generally, p could be rational.



Convex Semialgebraic sets ...

... are free spectrahedra

Convex Trivialization Theorem [Helton, M 12] [Kriel 19].
Suppose p ∈ Mµ(C<x>) is symmetric and p(0) � 0.

The basic free semialgebraic set Pp = {X ∈ Sg : p(X ) � 0} is
convex1 if and only if it is a free spectrahedron, PA.

I That Pp is a (possibly infinite) intersection of free
spectrahedra by EW HB separation Theorem;

I Not so easy to see it is in fact a single free spectrahedron;

I True for p a free rational function [HM14].

1Pp is matrix convex iff each Pp[n] is convex as a subset of Sgn.



Convex polynomials

I A symmetric f ∈ C<x> is convex on a free set S ⊆ Sg if

Hf (X ,Y ) :=
f (X ) + f (Y )

2
− f

(
X + Y

2

)
� 0, X ,Y ∈ S [n];

I f (x) = x4 is not convex on any open set in S1
2;

I If f is globally convex, then, {−f (X ) � 0} is convex, in fact

Cτ = {X ∈ Sg : f (X ) ≺ τ I}

is matrix convex for each τ ∈ R; r is quasiconvex.



Convex polynomials ...

... are trivial
I Suppose f ∈ C<x> is selfadjoint:

f (X )∗ = f (X ), X ∈ Sgn

I f is convex on a free set S ⊆ Sg if

Hf (X ,Y ) :=
f (X ) + f (Y )

2
− f

(
X + Y

2

)
� 0, X ,Y ∈ S[n].

Local-Global and SoS [Helton,M] For f ∗ = f ∈ C<x>, TFAE:

I f is convex on some nonempty open free set;

I f is globally convex;

I there exists an linear ` ∈ R〈x〉 and Λj ∈ C〈x〉 such that

f (X ) = f (0) + `(X ) +
∑
j

Λj(X )∗Λj(X ).

In particular, f has degree (at most) two.



Quasiconvex polynomials

Convex positivity domain

f (X ) = λ(X ) +
∑
j

Λj (X )∗Λj (X ), degree two.

If f is globally convex, then, for each τ ∈ R, the set Cτ is convex:

Cτ = {X ∈ Sg(R) : f (X ) ≺ τ I}.

Theorem [Helton, Klep, M, Volčič2] If (1) f ∈ R〈x〉 is irreducible
as an element of C〈x〉, (2) f (0) � 0 and (3)

Pf = {X : f (X ) � 0}

is convex, then f is convex.

2Jurij’s variant.



Quasiconvex polynomials

The Free Bertini Theorem

Volčič’s Free Bertini Theorem. Suppose f ∈ C〈x〉 \ C.

f − τ is not irreducible in C〈x〉 for infinitely many τ ∈ C
if and only if

there exists a p ∈ C[t], deg p > 1, and a q ∈ C〈x〉 such that

f = p ◦ q.

I (⇐) f − τ = (p − τ) ◦ q and thus f − τ factors for all τ ;

I The (entirely nontrivial) converse uses Cohn’s theory of the
free algebra and free skew fields; and Bergman’s centralizer
theorem.



Quasiconvexity

Convexity corollary to Free Bertini

The selfadjoint f ∈ R〈x〉 with f (0) = 0 is locally quasiconvex

Cτ = {X ∈ Sg(R) : f (X ) ≺ τ}

is convex for all τ in some open interval (0, ε).

Corollary. [Volčič] If f is locally quasiconvex, then either

(i) −f =
∑g

j=1 g
∗
j gj (a hermitian SoS); or

(ii) f = p ◦ g , where g ∈ R〈x〉 is globally convex; and p ∈ R[t]
and there is an iff version with more information about p.



The convex positivstellensatz

A bit of free real algebraic geometry

I Positivstellensätze are central to real algebraic geometry.
They are algebraic certificates for a polynomial p to be
positive on a semialgebraic set;

I Free analogs are typically much cleaner. E.g.

The convex positivstellensatz. [Helton, Klep, M] Consider

LA(x) = I −
∑

Ajxj , DA = {X : LA(X ) � 0}

and suppose p ∈ Mµ(C〈x〉) is a symmetric.

p(DA) � 0⇐⇒ p(x) =
∑
j

sj(x)∗sj(x) +
∑

fk(x)∗LA(x)fk(x),

where sj , fk are polynomials of degree at most ddeg p
2 e.



The convex positivstellensatz

Bianalytic maps between free spectrahedra

p(DA) � 0⇐⇒ p =
∑
j

s∗j sj +
∑

f ∗k LAfk ,

The convex positivstellensatz is a point of departure for studying
free bianalytic maps between free spectrahedra:

I f : DA → DB if and only if p(x) = LB(f (x)) � 0 on DA;

I Polynomial approximation uniformly on compact subsets3

[Agler, McCarthy];

I See Nicole Tuovila’s talk at 3:30 today.

3Disclaimer: In the free free setting



Partial Convexity and Rational Functions

Outline

I Free convexity basics

I Free semialgebraic sets

I Partial convexity and rational functions

• Rational functions and realizations

• The domain of a rational function

• Partially convexity

I Extreme points

I Some Analytic Theory.



Rational functions

Realizations

I A symmetric (free) rational function r ∈ Mµ(C (<x )>) that is
regular at 0 has a symmetric descriptor realization

r = c∗

(
J −

g∑
k=1

Tkxk

)−1

c,

where, for some positive integer e, J,Tk ∈ Se , c ∈ Me,µ and
J = J∗ = J−1 is a signature matrix;

I We view r as a function: r evaluates at a tuple X ∈ Sgn as

r(X ) = (c∗ ⊗ In)

(
J ⊗ In −

g∑
k=1

Tk ⊗ Xk

)−1

(c ⊗ In);

I r(X )∗ = r(X ) ∈ S (symmetric);

I r [n] : Sgn 99K Snµ.



Rational functions

Rational Expressions - an example
A rational function is an equivalence class of rational expressions;
e.g.,

r = r(x1, x2) =
(
1− x2 − x1(1− x2)−1x1

)−1

=x−1
1 (1− x2)

[
(1− x2)x−1

1 (1− x2)− x1

]−1
.

I The expressions agree on tuples X where they are both
defined;

I The first, but not the second, is defined at (1, 1);

I The second, but not the first, is defined at (0, 0);

I The realization

r =
(
1 0

) (
I2 − x1

(
0 1
1 0

)
− x2I2

)−1(
1
0

)
is defined at both (1, 1) and (0, 0).



Rational functions

The domain of a rational function

r = c∗

(
J −

g∑
k=1

Tkxk

)−1

c, J,Tk ∈ Se ; c ∈ Me,µ; J = J∗ = J−1.

I If e is the smallest over all realizations, then the realization is minimal;

I The resolvent is

R(X ) =

(
J ⊗ In −

g∑
k=1

Tk ⊗ Xk

)−1

.

I minimal realizations are essentially unique - in particular,
invertibility of R(X ) does not depend upon the choice of
minimal realization.



Rational functions

The domain of a rat function - singularities can’t hide

r = c∗

(
J −

g∑
k=1

Tkxk

)−1

c, J,Tk ∈ Se ; c ∈ Me,µ; J = J∗ = J−1.

I If e is the smallest over all realizations, then the realization is minimal.

I R(x) = (J −
∑

Tkxk )−1 is the resolvent;

The Rational Domain Theorem [Volčič] [KVerbovetskyi-Vinnikov]

justifies calling dom r = (dom r [n])n the domain of r , where

dom r [n] = {X ∈ Sgn : R(X ) exists } ⊆ Sgn.



Rational functions

The domain of a rat function - singularities can’t hide

The Rational Domain Theorem [Volčič] [KVerbovetskyi-Vinnikov]

justifies calling dom r = (dom r [n])n the domain of r , where

dom r [n] = {X ∈ Sgn : R(X ) exists } ⊆ Sgn.

F dom r is the largest free set contained in the ordinary domains
of the r [n].

I In the one variable case, the domain of the resolvent is the
domain of r .



Partially convexity

Partially convex sets

I Given positive integers h and g, write

(A,X ) = (A1, . . . ,Ah,X1, . . . ,Xg) ∈ Shn × Sgn = Sh+g
n ;

I A subset S ⊆ Shn × Sgn is convex (resp. open) in x , or partially
convex if for each A ∈ Shn the slice

S [A] = {X ∈ Sgn : (A,X ) ∈ S} ⊆ Sgn

is convex (resp open).



Partial convexity

Free rational functions in a and x

I Let a = (a1, . . . , ah) and x = (x1, . . . , xg) be collections of
freely noncommuting variables.

I A symmetric (free) rational function r ∈ Mµ(C (<a, x )>) that is
regular at 0 has a symmetric descriptor realization

r = c∗

J −
h∑

j=1

Sjaj −
g∑

k=1

Tkxk

−1

c ,

where, for some positive integer e, J, Sj ,Tk ∈ Se and
J = J∗ = J−1 is a signature matrix and c ∈ Me,µ(C);

I dom r ⊆ Sh × Sg := Sh+g.



Partial convexity

Partially convex functions

r = c∗

J −
h∑

j=1

Sjaj −
g∑

k=1

Tkxk

−1

c = c∗R(a, x)c.

Suppose S ⊆ dom r is convex in x . The function r is convex in x ,
or partially convex on S if, for each A ∈ Sh, the function

S [A] 3 X 7→ r(A,X )

is convex: that is, for each A and X ,Y ∈ S [A],

Hr (A;X ,Y ) =
r(A,X ) + r(A,Y )

2
− r

(
A,

X + Y

2

)
� 0.



Partial convexity

Partially convex rational functions

r = c∗

J −
h∑

j=1

Sjaj −
g∑

k=1

Tkxk

−1

c = c∗R(a, x)c.

I Let VT : rangeT → Ce denote the inclusion;

I Let RT (a, x) = V ∗T (J −
∑

Sjaj −
∑

Tkxk)−1VT ;

RT (A,X ) = (VT ⊗ In)∗R(A,X )(VT ⊗ In);

I Let

dom+ r [n] = {(A,X ) ∈ dom r : RT (A,X ) � 0}.



Partial convexity

The domain of partial convexity

r = c∗

J −
h∑

j=1

Sjaj −
g∑

k=1

Tkxk

−1

c = c∗R(a, x)c,

RT (a, x) = V ∗TR(a, x)V , ΛT [H] =
∑

Tj ⊗ Hj ,

rxx (a, x)[h] = c∗R(A,X )ΛT [H]RT (A,X ) ΛT [H]R(A,X )(c ⊗ In),

dom+ r = {(A,X ) ∈ dom r : RT (A,X ) � 0}.

dom+ r is the domain of partial convexity [JKMMP].

I dom+ r is both open in x and convex in x ;

I r is convex in x on dom+ r ;

I Conversely, if r is convex in x on the free set S ⊆ dom r , then
S ⊆ dom+ r .



Partial convexity

Partially convex rational functions - the fine print

r(A,X ) + r(A,Y )

2
− r
(
A,

X + Y

2

)
� 0, RT (a, x) = V ∗TR(a, x)VT ,

rxx (a, x)[h] =c∗R(A,X )ΛT [H]RT (A,X ) ΛT [H]R(A,X )(c ⊗ In),

dom+ r = {RT (A,X ) � 0}.

Theorem [Jury, Klep, Mancuso, M, Pascoe].

I dom+ r is both open in x and convex in x ;

I If r is convex in x on some free open set, then r is convex in x
on dom+ r ;

I Conversely, if (1) S ⊆ dom r is a free set that is convex in x ;
(2) if S contains a nonempty free open set; and (3) if r is
convex in x on S , then S ⊆ dom+ r .



Partial convexity

An algebraic certificate of partial convexity

The root butterfly realization [Jury, Klep, Mancuso, M, Pascoe].

r ∈ C (<a, x )> is convex in x in a neighborhood of 0 if and only if

r(a, x) = `(a, x) + Σ(a, x)∗
√

w(a)
(
I −

∑
[
√

w(a)T̂j

√
w(a)] xj

)−1 √
w(a)Σ(a, x).

I [Pascoe, Tully-Doyle] [Helton, M, Vinnikov] Free functions,
rational functions, no a variables.

I [Helton, Hay, Lim, M] Polynomials.



Partial convexity
The root butterfly realization: an algebraic certificate

of x-convexity

Theorem [Same suspects]. A symmetric r ∈ C (<a, x )> is convex in
x in a neighborhood of 0 if and only if there exists k ∈ N,

(i) T̂ ∈ Sgk ;

(ii) a symmetric w ∈ C (<a )>k×k ;

(iii) ` ∈ C (<a, x )> and Σ ∈ C (<a, x )>k×1 each of degree at most
one in x and ` is symmetric;

such that w(A) � 0 and I −
∑

[
√
w(a)T̂j

√
w(a)]⊗ Xj � 0 near 0

and

r(a, x) = `(a, x) + Σ(a, x)∗
√

w(a)
(
I −

∑
[
√

w(a)T̂j

√
w(a)] xj

)−1 √
w(a)Σ(a, x).



Extreme points

I Free convexity basics

I Free semialgebraic sets

I Partial convexity and rational functions

I Extreme Points

I Some Analytic Theory.



Extreme points

The Arveson boundary

I The matrix convex hull of E ⊆ Sg is the matrix convex set

matcohull E = {V ∗XV : X ∈ E , V ∗V = I};

I V ∗XV is the free analog of a convex combination;

I A good notion of extreme point for a free spectrahedron DA

produces a small collection E ⊆ DA such that
matcohull E = DA;

I An Arveson boundary point for a free spectrahedron DA is a
tuple X ∈ DA such that if Y ∈ DA has the form

Yj =

(
Xj αj

α∗j βj

)
∈ DA,

then αj = 0.



Extreme points

Arveson boundary points span

DA 3 Y =

(
X α
α∗ β

)
=⇒ α = 0.

I Thus X is an Arveson boundary point if the only dilations of
X are trivial. The analog of a boundary representation. The
nc analog of a peak point (in the Shilov boundary).

I If DA is the matrix convex hull of E , then E contains the
Arveson boundary points.

Theorem.[Evert, Helton] If DA is closed wrt C- conjugation, then

DA = matcohull ∂DArv
A .



Extreme points

Other notions of extreme points

Theorem [Evert, Helton] DA is the matco hull of its Arv points.

I Typically, off the shelf techniques produce operator Arveson
boundary points. In particular:

• False for general compact matrix convex sets K ⊆ Sg [Evert];

• False for DA in free free variables;

I The tension: pass to operators or liberalize the notion of
extreme point;

I There is a highly developed theory involving other notions of
extreme points tailored to matco sets; e.g., matrix extreme
points.



Some Analytic Theory

Outline

I Free convexity basics

I Free semialgebraic sets

I Partial convexity and rational functions

I Extreme Points

I Some Analytic Theory

• Augat’s Free Grothendieck Theorem

• Pseudoconvex sets and free plurisubharmonic

functions



Augat’s Free Grothendieck Theorem

free free variables; aka, free complex analysis

I M(C)g = (Mn(C)g)n, the free free universe;

I p ∈ C<x> evaluates at X ∈ M(C)g in the canonical way;

I E.g.; for X = (X1,X2) ∈ Mn(C)2 and

p(x) = 5 + 2x1x2 − 3x2x1 + x2
1x2x1,

p(X ) = 5In + 2X1X2 − 3X2X1 + X 2
1 X2X1.



Grothendieck’s Theorem

Automorphisms of C[t1, . . . , tg].

Grothendieck’s Theorem. Suppose p : Cg → Cg is a
polynomial mapping; that is, for some pj ∈ C[t1, . . . , tg].

p =
(
p1 . . . pg

)
.

If p is injective, then p is bijective and moreover the inverse of p is
a polynomial.

For instance, p : C2 → C2,

p(t1, t2) =
(
t1, t2 − t2

1

)
,

p−1(t1, t2) =
(
t1, t2 + t2

1

)
.



Augat’s Free Grothendieck Theorem

Automorphisms of the free algebra

Augat’s Free Grothendieck Theorem.

Suppose p : M(C)g → M(C)g is a free polynomial mapping.
The following are equivalent.

(i) p is injective;

(ii) p is bijective;

(iii) p has a (free) polynomial inverse.

I Grothendieck’s Theorem implies p has a free inverse. Showing
that this inverse is in fact a polynomial is the challenge.

I The proof involves a good deal of algebra, but also free
analysis including Pascoe’s free inverse function theorem and
some (new) realization theory.

I Meric will discuss potential generalizations and related
conjectures as part of Wednesday’s 2-3 pm problem session.



Plurisubaharmonic functions - plush

Symmetric rational functions

I x = (x1, . . . , xg) with adjoint variables (x∗1 , . . . , x
∗
g );

I A symmetric rational function r ∈ C〈x , x∗〉 has a descriptor
realization:

r = c∗ (J − ΛA(x)− ΛA(x)∗)−1 c , ΛA(x) =

g∑
j=1

Ajxj ;

I r is symmetric: r(X )∗ = r(X ) for X ∈ dom r [n] ⊆ Mn(C)g .



Plush

The complex Hessian

r = c∗ (J − ΛA(x)− ΛA(x)∗)−1 c, ΛA(x) =

g∑
j=1

Ajxj

I The complex Hessian of r at X in the direction H ∈ Mn(C)g is

∂2r

∂x∗∂x
(X )[H,H];

I For r(x) = x∗2x2,

∂2r

∂x∗∂x
(X )[H] = (XH + HX )∗ (XH + HX )� 0;

I More generally, for g ∈ C<x> and r(x) = g(x)g(x)∗,

∂2r

∂x∗∂x
(X )[H] = Dg(X )[H] (Dg(X )[H])∗� 0;

I r is plush on a set S if ∂2r
∂x∗∂x

(X )[H] � 0 all X ∈ S , all H.



Plush

Rational Functions

Theorem. [Greene] [Greene, Helton, Vinnikov] A symmetric
polynomial r ∈ C〈x , x∗〉 is (1) plush on a free open set; iff (2) it is
globally plush; iff (3)

r(x) = s(x) + s(x)∗ +
∑

pj(x)∗pj(x) +
∑

qk(x)qk(x)∗,

with s, pj , qk ∈ C (<x )>.

Theorem. [Dym, Helton, Klep, M, Volčič] [Pascoe] A symmetric
rational function r is plush in a free neighborhood of 0 iff there
exists a convex symmetric rational function f ∈ C (<y , y∗ )> (in h

variables), and qj ∈ C (<x )> for 1 ≤ j ≤ h, such that

r(x) = f (q1(x), . . . , qh(x)) = f ◦ q(x)

Thus r is plush if and only if r is convex composed with analytic.


	Topmatter
	Introduction
	LMIs and spectrahedra
	Free spectrahedra
	Free and matrix convex sets
	The EW Theorem
	Gleichstellensatz

	Semialgebraic sets
	Free Polys
	Motivation
	Convex semialgebraic sets
	convex polynomials
	Quasiconvexity
	The convex posstatz

	Rational functions
	Rational functions
	The domain of a rational function
	Partial Convexity

	Extreme points
	Analytic Theory
	Free Grothendieck
	Flush


