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General setting

Given
T ∈ Cn×n

f analytic on spectrum σ(T ) of T (could be matrix valued)
|‖ · |‖ a norm (unitary similarity invariant)

Want
Estimate |‖f (T )|‖ based on information on f and T

Observe
If T = U diag(λi)

n
i=1U∗ normal and a ’diagonal’ norm, then

|‖f (T )|‖ = |‖diag(f (λi))n
i=1|‖ = maxi |f (λi)| =: ‖f‖σ(T ).

Notation
For K ⊂ C denote ‖f‖K = supz∈K ‖f (z)‖

Classical result
[Von Neumann, ’51]: If ‖T‖ ≤ 1 and f analytic on closed
unit disk D, then ‖f (T )‖ ≤ ‖f‖D. Here ‖ · ‖ is spectral norm
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Previous results

W (T ) = {〈Tx , x〉 : ‖x‖ = 1} numerical range of T
w(T ) = supz∈W (T ) |z| numerical radius of T

Theorem ([Drury, ’08])

If W (T ) ⊆ D, f : D→ D analytic, then W (f (T )) ⊂ teardrop(f (0)).

Corollary

w(f (T )) ≤ 5
4
‖f‖D
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Previous results, continued

Theorem ([Crouzeix, ’07])
There is a universal constant C so that

‖f (T )‖ ≤ C‖f‖W (T )

This constant satisfies 2 ≤ C ≤ 11.08

Theorem ([Crouzeix and Palencia, ’17])

2 ≤ C ≤ 1 +
√

2

Conjecture ([Crouzeix, ’07])

C = 2
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Terminology

Let C ≥ 1. K ⊂ C is called a C-spectral set for T if

‖f (T )‖ ≤ C‖f‖K (1)

for all f ∈ R(K ) = uniform closure of all rational functions
with poles off K .
K is called a complete C-spectral set for T if (1) holds for
all matrix valued f with entries in R(K ).

Theorem ([Crouzeix and Palencia, ’17])

W (T ) is a complete (1 +
√

2)-spectral set for T

K is called a (complete) C′-numerical radius set for T if

w(f (T )) ≤ C′‖f‖K (2)

for all (matrix valued) f (with entries) in R(K )
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Main result

Note
Since

w(A) ≤ ‖A‖ ≤ 2w(A),

K is a C-spectral set =⇒ K is a C-numerical radius set
K is a C-numerical radius set =⇒ K is a 2C-spectral set
One can insert ’complete’ everywhere in the above

Theorem ([Davidson, Paulsen, W])
K is a complete C-spectral set for T

⇔

K is a complete 1
2(C + 1

C )-numerical radius set for T

Observe

C′ =
1
2

(C +
1
C

) ⇔ C = C′ +
»

C′2 − 1
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Proof

Since K is complete C-spectral for T , by [Paulsen, ’84] there
exists invertible S with ‖S‖‖S−1‖ = C so that K is 1-spectral for
STS−1. We can choose S so that

1
C

I ≤ S∗S ≤ CI.

Thus
‖f (STS−1)‖ ≤ ‖f‖K .

Scale f so that ‖f‖K = 1. Nowñ
I f (STS−1)

f (STS−1)∗ I

ô
≥ 0 implies

ñ
(S∗S)−1 f (T )

f (T )∗ S∗S

ô
≥ 0.

[Ando, ’73] gives w(f (T )) ≤ 1
2‖(S

∗S)−1 + S∗S‖ ≤ 1
2(C + 1

C ).
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Proof continued

Let f be so that ‖f‖K = 1 and C = ‖f (T )‖ (or close to). Put

g(z) =

 1
C I (1− 1

C2 )f (z)

0 1
C I

 .
Then ‖g‖K = 1

2

(
1− 1

C2 +
√

(1− 1
C2 )2 + 4 1

C2

)
= 1, and

w(g(T )) =
1
C

+
1
2

(C − 1
C

) =
1
2

(C +
1
C

).

Corollary ([Davidson, Paulsen, W])

For matrix valued f analytic on D and w(T ) ≤ 1,

w(f (T )) ≤ 5
4
‖f‖D.

Use [Okubo and Ando, ’75] showing w(T ) ≤ 1 implies
‖STS−1‖ ≤ 1 for S with ‖S‖‖S−1‖ = 2. Note 1

2(2 + 1
2) = 5

4 .
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Reformulation of Crouzeix’s conjecture

Corollary
The following are equivalent

W (T ) is a complete 2-spectral set for T (Crouzeix conj).
W (T ) is a complete 5

4 -numerical radius set for T .

In the paper ’Crouzeix’s Conjecture and Related Problems’ by
Kelly Bickel, Pamela Gorkin, Anne Greenbaum, Thomas
Ransford, Felix Schwenninger, Elias Wegert (arXiv
2006.04901) the authors study properties of extremal functions
and associated vectors in the context of the Crouzeix
conjecture.
Question. Does the alternative viewpoint, replacing the
spectral norm by the numerical radius, provide new insight into
this analysis?
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Operator algebra formulation

Let A be a unital operator algebra and Φ : A → B(H) a
bounded linear map. It induces coordinatewise maps
Φ(n) :Mn(A)→Mn(B(H)) ' B(H(n)); and one defines the
completely bounded norm by

‖Φ‖cb = sup
n≥1
‖Φ(n)‖.

We also define a complete numerical radius norm on such
maps

‖Φ‖wcb := sup
n≥1

sup
A∈Mn(A), ‖A‖≤1

w(Φ(n)(A)).

Our main result in this context is the following:

Theorem ([Davidson, Paulsen, W])
For Φ a unital completely bounded homomorphism

‖Φ‖wcb =
1
2

Ä
‖Φ‖cb + ‖Φ‖−1

cb

ä
.
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C. Badea, M. Crouzeix, and H. Klaja’s follow up result

Let wρ(T ) denote the ρ-operator radius introduced by Sz.-Nagy
and Foias. Let T ∈ B(H). Define T ∈ Cρ if and only if there
exists a unitary U ∈ B(K) with H ⊆ K so that T n = ρPUnP∗,
n ∈ N, where P is the orthogonal projection K → H. Define now

wρ(T ) = inf{λ > 0 : λ−1T ∈ Cρ}.

Then w1(T ) = ‖T‖, w2(T ) = w(T ), limρ→∞wρ(T ) = r(T ).

Theorem
Let K ≥ 1 and ρ ≥ 1, and set

K̃ =
K 2 + 1 +

»
(K 2 + 1)2 − 4ρ(2− ρ)K 2

2ρK
.

For every unital completely bounded homomorphism Φ

‖Φ‖cb = K ⇔ ‖Φ‖wρcb = K̃ .

Their proof is different, and addresses the non-complete case.
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Toeplitz matrix completions

Given Toeplitz real symmetric partial matrix, e.g.

T =


8 4 ? 1
4 8 4 ?
? 4 8 4
1 ? 4 8

 .

We are interested in positive definite completions, e.g.

T =


8 4 0 1
4 8 4 1
0 4 8 4
1 1 4 8

 ,T ? =


8 4 2 1
4 8 4 2
2 4 8 4
1 2 4 8

 =


∗ ∗ 0 ∗
∗ ∗ ∗ 0
0 ∗ ∗ ∗
∗ 0 ∗ ∗


−1

.

Among all positive definite completions there is a unique one
with maximum determinant; it is the unique one with zeroes in
the inverse in positions corresponding to unknowns [Grone,
Johnson, Sa, Wolkowicz, 1984].
Question: For what patterns is this unique completion Toeplitz?
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Previous results

A pattern P ⊆ {1, . . . ,n − 1} indicates the prescribed diagonals
in the lower triangular part. E.g., n = 4,

P = {1,3} ⇔


∗ ∗ ? ∗
∗ ∗ ∗ ?
? ∗ ∗ ∗
∗ ? ∗ ∗

 , P = {1} ⇔


∗ ∗ ? ?
∗ ∗ ∗ ?
? ∗ ∗ ∗
? ? ∗ ∗

 .

[Dym & Gohberg, 1981] Banded Toeplitz partial positive
definite matrices have a Toeplitz maximum determinant
completion. Here P = {1,2, . . . , r}.
[Naevdal, 1997] If the unknown diagonal is one but last one
and a positive semidefinite completion exists, then a
Toeplitz one as well. Here P = {1,2, . . . ,n − 3,n − 1}.
[Ming & Ng, 2005] Conjecture: in the cycle case if a
positive semidefinite completion exists, then a Toeplitz one
as well. Here P = {k ,n − k}.
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Trench ’64, Gohberg-Semencul ’72

if T = (ci−j)
n−1
i,j=0 > 0 then

T−1 =


p0
p1 p0
...

...
. . .

pn−1 pn−2 · · · p0




p0 p1 · · · pn−1
p0 · · · pn−2

. . .
...

p0



−


0

pn−1 0
...

. . . . . .
p1 · · · pn−1 0




0 pn−1 · · · p1

0
. . .

...
. . . pn−1

0

 .

Also, p(z) = p0 + p1z + · · ·+ pn−1zn−1 has no roots in
D = {z ∈ C : |z| ≤ 1} [Szegö, 1920]
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Observation

If P = kP ′, then the partial Toeplitz matrix with pattern P is
permutation similar to a k block diagonal of (almost) the same
partial Toeplitz matrices with pattern P ′.

E.g., n = 7,P = {2,4}, then

a ? b ? c ? ?
? a ? b ? c ?
b ? a ? b ? c
? b ? a ? b ?
c ? b ? a ? b
? c ? b ? a ?
? ? c ? b ? a


∼



a b c ? ? ? ?
b a b c ? ? ?
c b a b ? ? ?
? c b a ? ? ?
? ? ? ? a b c
? ? ? ? b a b
? ? ? ? c b a


.

For the maximum determinant the unknowns outside the block
diagonal are all 0.
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Main result

For a positive definite completable partial Toeplitz matrix T , we
denote the unique maximum determinant positive definite
completion by T ?.

Theorem ([Sremac, Wolkowicz, W])

Let ∅ 6= P ⊆ {1, . . . , n − 1} denote a pattern. The following are
equivalent.

1 For every positive definite completable partial Toeplitz
matrix T with pattern P, the matrix T ? is Toeplitz.

2 There exist r , k ∈ N such that P has one of the three
forms:

P1 := {k ,2k , . . . , rk},
P2 := {k ,2k , . . . , (r − 2)k , rk}, where n = (r + 1)k,
P3 := {k ,n − k}.
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Crucial characteristic of patterns

T ?−1 =


p0
p1 p0
...

...
. . .

pn−1 pn−2 · · · p0




p0 p1 · · · pn−1
p0 · · · pn−2

. . .
...

p0



−


0

pn−1 0
...

. . . . . .
p1 · · · pn−1 0




0 pn−1 · · · p1

0
. . .

...
. . . pn−1

0

 .

can have the correct zero structure⇔

P is one of the three types of patterns.
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Cycle case

Let O ⊂ R++ × R2 consist of all triples (t0, tk , tn−k ) so that
the partial Toeplitz matrix with pattern {k ,n − k} and data
{t0, tk , tn−k} is positive definite completable. Then O is an
open convex set, and thus connected.
Let U ⊆ O consist of those triples (t0, tk , tn−k ) for which the
corresponding maximum determinant completion is
Toeplitz. Clearly U 6= ∅ as (t0,0,0) ∈ U for all t0 > 0.
U is closed in O, as the Toeplitz condition is closed under
taking limits.
To show that U is also open, we introduce the set,

P := {(p,q, r) : p+qzk+rzn−k has all roots satisfying |z| > 1}.

There is a bijective continuous map between U and P.
U is nonempty, open and closed in O, and thus U = O
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Consequence

Theorem ([Sremac, Wolkowicz, W])

Consider the patterns
P1 := {k ,2k , . . . , rk},
P ′2 := {k ,2k , . . . , (r − 2)k , rk},
P ′3 := {k , r} where n ≥ k + r .

If T is an n × n positive semidefinite completable partial
Toeplitz matrix with a pattern in the set {P1,P ′2,P

′
3}, then T has

a Toeplitz positive semidefinite completion.

Idea of proof. Adjusting the size n reduces it to the previous
theorem. Applying the previous theorem leads now to a banded
pattern. Now use [Dym & Gohberg, 1981].
Note. This proves the conjecture of [Ming & Ng, 2005].
Question. Are these all patterns where a positive semidefinite
completion implies the existence of a Toeplitz one?
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THANK YOU!
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