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Motivating Example

Let Ly be a Sturm—Liouville symmetric operator on
L?[(a,b),w] acting via

lo[f1(x) = (=p(2)f'(x))" + q(2) f (x)

Assume Ly requires a single boundary condition at the left
endpoint a.
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Motivating Example

Let Ly be a Sturm—Liouville symmetric operator on
L?[(a,b),w] acting via

lo[f1(x) = (=p(2)f'(x))" + q(2) f (x)

Assume Ly requires a single boundary condition at the left
endpoint a.

The boundary condition can be written as
f(a) cos(0) + fM(a)sin(0) =0 0<0<m,

where fl1(z) = p(z)f'(z) denotes the first “quasi-derivative”
of f(z). Equivalently,

(@) = — cot() f(a).
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Setup of Boundary Conditions

Integrating by parts yields
(1ol /f )7'(@)) + al) f(@)]da

/@ + g(@) f(@)?)dz + fU(a) f(a)
— 7(f, f) — cot(6) f(a)?,

Let A be the § = m/2 Neumann boundary condition operator.
Then,

Ag = A+ aldy, - )a,

where £y = A_ .41(9) and d is the Dirac delta function at x = a.
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Breakout #1: Hilbert Scales

Definition (Albeverio—Kurasov)

For s > 0, define the space Hs(A) to be D(A%/?) with norm equal
to the graph norm of the operator

llells = [1(A + 1)l .

The space Hs equipped with the norm || - ||s is complete, and the
adjoint spaces formed by the linear bounded functionals will be
denoted by H_s = HI. The scale of Hilbert spaces associated with
the self-adjoint operator A is the collection of these Hs(A) spaces
when s € Z.

The spaces also have the following nesting property:

- CHa(A) CHI(A) CH=Ho(A) CH_1(A) CH_2(A) C...
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Classification of Endpoints

The perturbation being well-defined heavily relies on how the
coefficient functions behave at the endpoints.
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Classification of Endpoints

The perturbation being well-defined heavily relies on how the
coefficient functions behave at the endpoints.

There are only two kinds of endpoints that require boundary
conditions, regular and limit circle:

The endpoint a is called regular if
1/p(z), q(z), w(x) € L [(a,c),dz] for all ¢ € (a,b).
The endpoint a is in the limit circle case if for every z € C, all
solutions u of (£ — z)u = 0 are in L?[(a,b), w] near a.
An endpoint a in the /limit point case does not require a
boundary condition at a.
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Can we extend the previous setup for regular boundary
conditions to cover limit-circle endpoints? In particular, can
we write all possible self-adjoint extensions of the minimal
operator as a rank-one perturbation of a self-adjoint
extension?

What about two limit-circle endpoints and writing a rank-two
perturbation?
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The Jacobi Differential Operator

Let 0 < a, 8 < 1, and consider the classical Jacobi differential
expression given by

tapl11@) = ~ =y~ 2 L 2 )

on the maximal domain

DD = {f € L2 4(~1,1) | f, f' € ACwcilaplf] € L2 4(—1,1)},
where the Hilbert space

L?x,ﬁ_(flv 1):=L" _[(—17 1), (1 —2)*(1 + 2)?]. Two boundary
conditions are required.
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The Jacobi Differential Operator

(a,f)

The associated sesquilinear form is defined, for f, g € Do,
via the Greens formula. Integration by parts easily yields the
explicit expression

gD = T (1= 2 (1 +2)" g () f(2)
— f'(2)g(2)].
The minimal domain is

DA — (f e DD | [f, 9|1, = 0Vg € DD}

min max
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Boundary Triples

A boundary triple is comprised of two maps I'g,I'; : Dr(r?a{fz) — C?
and written with the boundary space as {C?, Ty, I';}. Boundary
triples have two properties:

For all f,g € Dr(féf), we have

[f7 ng—l = <F1f7 FOQ) - <F0f7rlg>

The maps I'g, I'; are surjective onto their ranges.

Self-adjoint extensions are in one-to-one correspondence with 2 x 2
self-adjoint relations, 6. Boundary conditions are then given by
Ty =T1.
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Define

1 near x =1
u(@) = {—1 near r = —1}

(L-2)/2)"
o) = (1)

W

(—a, B+ 1;1—a;(1—x)/2) nearl

F(—=B,a+1;1-B;(1+2)/2) near —1
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Define

1 near x =1
u(@) = {—1 near r = —1}

(L-2)/2)"
o) = (1)

W

(—a, B+ 1;1—a;(1—x)/2) nearl

F(—=B,a+1;1-B;(1+2)/2) near —1

Two operations are then generated via these particular solutions:

FO@) = [f,u)(z) and fH(z) = [f,v](2).
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Boundary Triple for Jacobi

Explicitly, we have

-1 = [fu(-1) = lim —(1-2)*"(1+2)" f'(2),

z——1+
) = (1) = T (1= 20+ 2 ),
D = oD = tim —fa) - LD,
) = £,0)0) = Jim 7y - L2ED,

A boundary triple for Dgf‘éf) is given by {(CQ,FO,Fl}, where

Fll(—1 (=1 o
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Key Extensions

The operators Ay and A will act via ¢, [-] on the domains

dom Ay = {f € domD%H . (1) = fl(1) = 0}, and
dom Ay = {f € domD%? . fll(—1) = fl0l(1) = 0},

respectively.

We want to find a compatible boundary pair for our boundary
triple.
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Breakout #2: Semi-bounded Forms

Let S be a semi-bounded self-adjoint operator with lower
bound m(S). Recall that there is a a natural way to identify
S with a closed semi-bounded form t in H with lower bound
m(t) = m(S). Let p,9 € dom(t) and v < m(S), where

dom(ts) = dom(S —~)/2,
tsle, ¥ = (S =)0, (S = )"*0) +7(p, ).

The space dom(tg) endowed with the inner product

<S0’,¢)>t5,7 = t[g@, @Z}] - 7<@a w>a for ‘Pﬂl) € dom(t)a

is a Hilbert space, denoted H <t3_7>.
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Boundary Pairs

A pair {(CQ,A} is called a boundary pair for L(af) corresponding

mi

to Ay if A€ B (H (tA0> ,(CZ) satisfies

ker(A) = dom (t ) and ran(A) = C2.

Ao
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Boundary Pairs

A pair {C?, A} is called a boundary pair for | corresponding
n

mi

to Ay if A€ B (H (tA0> ,(CZ) satisfies

ker(A) = dom (t ) and ran(A) = C2.

Ao

4

A boundary pair is only compatible with a boundary triple if extra
conditions are verified. In our example, it suffices to additionally
require that

Lof = Af forall f e D5

max *
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Form Domain Setup

Choose fixed points ¢ and d so that
—l<c<ag<by<d<l.

We arbitrarily choose ¢ = —4 and d = 7.
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Form Domain Setup

Choose fixed points ¢ and d so that
—l<c<ag<by<d<l.

We arbitrarily choose ¢ = —4 and d = 7.

We introduce the first-order differential operator that acts on
functions f € AC(—1,—3/4] via

N, f = p@)o () ( fz) )

where /p(z) = (1 — :J:)QTH(I + x)%

Michael Bush, Dale Frymark* and Constanze Liaw Boundary Triples and Perturbations



Form Domain

The closed semi-bounded form associated with A is denoted
by to, defined on

D= {f eLi,B(_Ll) : f S AC(_171) 7\/23-]0, € L (_i’i) ’

3
N, felL? (-1,-4) N, f €L (i 1) }

Michael Bush, Dale Frymark* and Constanze Liaw Boundary Triples and Perturbations



Form Domain

The closed semi-bounded form associated with A is denoted
by to, defined on

D= {f eLi,B(_Ll) : f S AC(_171) 7\/23-]0, € L (_i’i) ’

3 3
N, felL? (-1,-4) N, f €L (4, 1) }

The mapping I'y is thus extended to ©:

0l(—1
v (T ) re

so that {C?, A} can be shown to be a boundary pair for Ly,
compatible with the boundary triple {C2,Ty,T';}.
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Perturbation Setup

Define two weighted distributions that mimic the operation A
via

(f,0_1) = lim  —(1—2)* (1 + ) (),
(f,01) = lim (1 —2)°"(1+ )" f'(x),

r—1—

on the domain ©.
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Perturbation Setup

Define two weighted distributions that mimic the operation A
via

(f,0_1) = lim  —(1—2)* (1 + ) (),
(f,01) = lim (1 —2)°"(1+ )" f'(x),

r—1—

on the domain ©.

The coordinate mapping B : C? — Ran(B) C H_1 (Ay) that
acts via multiplication by a column vector and its adjoint
B* : Ran(B) — C? are thus given as

0a cp_ [ (f:8)
(&) o (55)
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Perturbation

Theorem (BFL)

Let © be a linear relation in C2. Define A as the singular
rank-two perturbation:

A, = A, +BOB".

Then every self-adjoint extension of the minimal operator L, can
be written as A@ for some ©.
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Breakout #3: Weyl m-Functions

The Weyl m-function associated with the boundary triple
{C?,Ty,T 1} is given by

p(Ase) 3 A = Moo (X) =T (g | (defect spaces for A)) ™.
For A € p(Acsc) N p(Ag) we have
M@ ()‘) = (@ - Moo()‘))_l'

Explicit Weyl m-functions can be given for a wide variety of
interesting cases, including separated and periodic boundary
conditions along with special self-adjoint extensions.
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Spectral Results

Sturm—Liouville operators with two limit-circle endpoints have only
discrete spectrum. However, we can obtain very detailed
information for our example:

Explicit matrix-valued weights for point masses and the
multiplicity of the eigenvalues, and

Formulas for eigenvectors in L2(1®).

Nuances do exist. Although we can state the formula for an
eigenvector of A in L2(u®), it's precise location involves solving
a transcendental equation.
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