
Optimal approximants and orthogonal polynomials in
several variables

Operator Theory With Its Applications

Meredith Sargent 1

joint with

Alan A. Sola 2

1University of Arkansas

2Stockholm University

August 2020

M. Sargent Multivariable OAs and OGs 1 / 24



What are optimal approximants?

f ∈ H, but 1/f (z) =
∑∞

k=0 akz
k may not be in H

f (z) = 1− z ∈ H2(D) but 1
1−z /∈ H2(D)

Partial Taylor sums give AN approximation in H, but is it the “best” one?

Find a degree n polynomial p∗n that minimizes ‖p · f − 1‖H
I approximating 1/f in H
I approximating 1 in f Pn

Theorem (Bénéteau, Khavinson, Liaw, Seco, and Sola (JLMS 2016))

Let f ∈ H. Using the orthonormal basis {φj} for the weighted space Hf

(〈g , h〉fH = 〈gf , hf 〉H),

p∗n(z) =
n∑

k=0

〈1, f φk〉H φk(z). (1)

This in turn implies that

〈1, f φn〉Hφn(z) = p∗n(z)− p∗n−1(z), n = 1, 2, 3 . . . . (2)
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Theorem (Bénéteau, Khavinson, Liaw, Seco, and Sola (JLMS 2016))

Let f ∈ H. Using the orthonormal basis {φj} for the weighted space Hf

(〈g , h〉fH = 〈gf , hf 〉H),

p∗n(z) =
n∑

k=0

〈1, f φk〉H φk(z). (1)

This in turn implies that

〈1, f φn〉Hφn(z) = p∗n(z)− p∗n−1(z), n = 1, 2, 3 . . . . (2)

M. Sargent Multivariable OAs and OGs 2 / 24



What are optimal approximants?

f ∈ H, but 1/f (z) =
∑∞

k=0 akz
k may not be in H

f (z) = 1− z ∈ H2(D) but 1
1−z /∈ H2(D)

Partial Taylor sums give AN approximation in H, but is it the “best” one?

Find a degree n polynomial p∗n that minimizes ‖p · f − 1‖H
I approximating 1/f in H
I approximating 1 in f Pn
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Flashback to the 1970s!
Electrical Engineers and “Planar Least Squares Inverses”

PLSI are secretly just optimal approximants!

Hardy space of the disk AND the bidisk

Reflections of OG polynomials in weighted spaces, as well as separable
functions

It was about applications to filtering theory:

Filters are stable when the PLSI polynomial has no zeros in the bidisk!
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The Several Variable Case
Questions of Degree

total degree
I total degree 1:

p∗1 = a0 + a1z1 + a2z2

I total degree 2:
p∗2 = b0 + b1z1 + b2z2 + b3z

2
1 + b4z1z2 + b5z

2
2

multidegree
I multidegree (1,1):

p∗1 = a0 + a1z1 + a2z2 + a3z1z2

I multidegree (2,2):
p∗2 = b0 + b1z1 + b2z2 + b3z1z2 + b4z

2
1 + b5z

2
2 + b6z

2
1 z2 + b6z1z

2
2 + b7z

2
1 z

2
2

Both of these are problematic!

Example

f = 2− z1 − z2, note that g(z1, z2) = z1 ∈ H2(D2)f , but it couldn’t be built from
differences of the above
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The Several Variable Case
Monomial Orderings

χ0 = 1, χ1 = z1, χ2 = z2, χ3 = z2
1 , χ4 = z1z2, χ5 = z2

2 , χ6 = z3
1 , . . .

Pn = span{χj : j = 0, . . . , n}, n = 0, 1, 2, . . .

Definition

Let f ∈ H(Ω) be given. The nth-order optimal polynomial approximant to 1/f
with respect to Pn is defined as

p∗n(z) = Projf ·Pn
[1](z),

where Projf ·Pn
: H → f · Pn denotes the orthogonal projection onto the subspace

f · Pn.
In other words, p∗n is the unique polynomial that minimizes ‖p · f − 1‖H among all
p ∈ Pn.
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The Several Variable Case

Matrix method for computing OAs

Let f ∈ H \ {0}. Then the coefficients of the n-order optimal approximant
p∗n =

∑n
j=0 c

∗
j χj are given by solution to the linear system

M~c ∗ = ~b,

where M is an (n + 1)× (n + 1) Grammian matrix with entries given by

Mij = 〈χj f , χi f 〉

and

~b =

 〈1, χ0f 〉
...

〈1, χnf 〉

 .

Reinterpretation of previous results by Bénéteau, Condori, Liaw, Seco, and Sola
(2015), and Fricain, Mashreghi, and Seco (2014)
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Explicit example: f (z1, z2) = 1− 1
2(z1 + z2)

In H2(D2), the first few optimal approximants to 1/f are

p0 =
2

3

p1 =
3

4
+

1

4
z1

p2 =
14

17
+

4

17
z1 +

4

17
z2

p3 =
186

223
+

60

223
z1 +

52

223
z2 +

20

223
z2

1

p4 =
1794

2039
+

684

2039
z1 +

620

2039
z2 +

160

2039
z2

1 +
408

2039
z1z2

p5 =
182

205
+

68

205
z1 +

68

205
z2 +

16

205
z2

1 +
8

41
z1z2 +

16

205
z2

2
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Explicit example: f (z1, z2) = 1− z1z2

In H2(D2), the first few optimal approximants to 1/f are
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p4 =
2

3
+

1

3
z1z2

p12 =
3

4
+

1

2
z1z2 +

1

4
z2

1 z
2
2

??????

In this case, we can’t use the optimal approximants to recover the orthogonal
polynomials! We won’t “get all of them.”

For some functions, we won’t be able to get ANY!
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Weakly inner functions

Definition

We say that g ∈ H(Ω) \ {0} is weakly inner if

〈g , χjg〉 = 0 for all j 6= 0.

Proposition

If g ∈ H(Ω) is weakly inner, then its optimal approximants are all equal to a
single constant: p∗n = p0 for n = 1, 2, . . . .

Lemma

Suppose θ : Dd → C is inner. Then θ is weakly H2-inner.
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Weakly inner functions
Shapiro-Shields functions

Explicit examples!

Constructed using determinants

Example

The Shapiro-Shields function for H2(D2) associated with a point (λ1, λ2) ∈ D2 is

sλ(z) =
1

(1− |λ1|2)(1− |λ2|2)

λ1(λ1 − z1) + λ2(z2 − λ2)− λ1λ2(λ1λ2 − z1z2)

(1− λ1z1)(1− λ2z2)
.

This is weakly inner, but not classically inner.

Shapiro-Shields functions give examples of weakly inner functions in any RKHS!

Still have time? just a little?
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Thank You!
Summary

Things are harder in several variables!
I Must choose a monomial ordering (which one is “best”??)
I Weakly inner doesn’t imply inner!

Other neat stuff
I We actually found a closed form for the OG polynomials for 1− az1z2 (for

spaces on the bidisk and the 2-ball)
I And a closed form for the OG polynomials for 1− a(z1 + z2) for the 2-ball

(bidisk is harder)
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OG polynomials in weighted spaces
f (z1, z2) = 1 − az1z2

Recall: OAs aren’t enough to recover all of the OGs

p0 =
1

2

p4 =
2

3
+

1

3
z1z2

p12 =
3

4
+

1

2
z1z2 +

1

4
z2

1 z
2
2

Do Gram-Schmidt on the monomials with the weighted inner product
〈g , h〉fH = 〈gf , hf 〉H

φ0 = 1

φ1 = z1

φ2 = z2

φ3 = z2
1

φ4 =
1

2
+ z1z2

φ5 = z2
2

φ6 = z3
1

φ7 =
1

2
z1 + z2

1 z2

φ8 =
1

2
z2 + z1z

2
2

φ9 = z3
2

...

φ12 =
1

3
+

2

3
z1z2 + z2

1 z
2
2

φ17 =
1

3
z1 +

2

3
z2

1 z2 + z3
1 z

2
2

φ18 =
1

3
z2 +

2

3
z1z

2
2 + z2

1 z
3
2
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OG polynomials in weighted spaces
f (z1, z2) = 1 − az1z2

Theorem (MS, Sola (2020))

For n = 0, 1, . . ., let

rn(x) =
1

n + 1

n∑
k=0

(k + 1)zk .

Then the polynomials

ϕ
(1)
M,m(z1, z2) = zM1 rm(z1z2) and ϕ

(2)
N,n(z1, z2) = zN2 rn(z1z2),

with M,m,N, n ∈ N0, form an orthogonal basis for H2
1−z1z2

(D2).

STILL have time????
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Thank You!
Summary

Things are harder in several variables!
I Must choose a monomial ordering (which one is “best”??)
I Weakly inner doesn’t imply inner!

Other neat stuff
I We actually found a closed form for the OG polynomials for 1− az1z2 (for

spaces on the bidisk and the 2-ball)
I And a closed form for the OG polynomials for 1− a(z1 + z2) for the 2-ball

(bidisk is harder)
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OG polynomials in the weighted Drury-Arveson space
f (z1, z2) = 1 −

√
2

2
(z1 + z2)

p∗0 =
1

2

p∗1 =
1

12

(
7 + 2

√
2z1

)
p∗2 =

1

6

(
4 +
√

2z1 +
√

2z2

)
p∗3 =

1

48

(
33 + 10

√
2z1 + 8

√
2z2 + 6z2

1

)
p∗4 =

1

48

(
35 + 12

√
2z1 + 10

√
2z2 + 6z2

1 + 12z1z2

)
p∗5 =

1

8

(
6 + 2

√
2z1 + 2

√
2z2 + z2

1 + 2z1z2 + z2
2

)
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OG polynomials in the weighted Drury-Arveson space
Theorem

In Drury-Arveson space of the 2-ball, weighted by f (z1, z2) = 1−
√

2
2 (z1 + z2), let

φj,k(z1, z2) be the first orthogonal polynomial containing z j1z
k
2 . Then

φj,k(z1, z2) =

j∑
m=0

k∑
n=0

φ̂j,k(m, n)zm1 zn2 (3)

where the coefficients φ̂j,k(z1, z2) are given by

φ̂j,k(m, n) =

(√
2

2

)j+k−m−n
(m + n + 1)!

(j + k + 1)!

(
j!k!

m!n!

(j + k −m − n)!

(j −m)! (k − n)!

)
. (4)

We also have that

‖φj,k‖2
f =

j + k + 2

j + k + 1

j!k!

(j + k)!
. (5)

Maybe just stop talking
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Thank You!
Summary

Things are harder in several variables!
I Must choose a monomial ordering (which one is “best”??)
I Weakly inner doesn’t imply inner!

Other neat stuff
I We actually found a closed form for the OG polynomials for 1− az1z2 (for

spaces on the bidisk and the 2-ball)
I And a closed form for the OG polynomials for 1− a(z1 + z2) for the 2-ball

(bidisk is harder)
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The Drury-Arveson space (and friends) are special

The bidisk analog of f (z ,w) = 1−
√

2
2 (z1 + z2) is f (z ,w) = 1− 1

2 (z1 + z2)

φ0 = 1

φ1 =
1

3
+ z1

φ2 =
5

16
− 1

16
z1 + z2

φ3 =
2

17
+

32

85
z1 −

2

85
z2 + z2

1

φ4 =
51

223
+

74

223
z1 +

79

223
z2 −

25

446
z2

1 + z1z2

φ5 =
208

2039
− 98

2039
z1 +

722

2039
z2 −

11

2039
z2

1 −
130

2039
z1z2 + z2

2

...

this one is just for funsies
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Zero sets of Optimal Approximants
The Shanks Conjecture

Theorem (Bénéteau, Khavinson, Liaw, Seco, and Sola (JLMS 2016))

Let f ∈ Dα have f (0) 6= 0 and let (pn) be the optimal approximants to 1/f .

(i) For α ≥ 0, Z (pn) ∩ D = ∅ for all n.

(ii) for α < 0, Z (pn) ∩ D(0, 2α/2) = ∅ for all n.a

aimproved by Beneteau, Khavinson, Liaw, Seco, and Simanek in 2019

The Shanks Conjecture (Shanks, Treitel, and Justice 1972)

Given a polynomial f , the optimal approximants to 1/f in H2(D2) will be
zero-free in the bidisk D2.

Weakest Shanks’ Conjecture

An irreducible polynomial, b, with no zeros in the bidisk, yields OA polynomials
for 1/b that are zero free in the bidisk.
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Theorem (Bénéteau, Khavinson, Liaw, Seco, and Sola (JLMS 2016))

Let f ∈ Dα have f (0) 6= 0 and let (pn) be the optimal approximants to 1/f .

(i) For α ≥ 0, Z (pn) ∩ D = ∅ for all n.

(ii) for α < 0, Z (pn) ∩ D(0, 2α/2) = ∅ for all n.a

aimproved by Beneteau, Khavinson, Liaw, Seco, and Simanek in 2019

The Shanks Conjecture (Shanks, Treitel, and Justice 1972)

Given a polynomial f , the optimal approximants to 1/f in H2(D2) will be
zero-free in the bidisk D2.

Weakest Shanks’ Conjecture

An irreducible polynomial, b, with no zeros in the bidisk, yields OA polynomials
for 1/b that are zero free in the bidisk.

M. Sargent Multivariable OAs and OGs 21 / 24



Counterexamples to the Weakest Shanks’ Conjecture
In the Bergman Space

b(z1, z2) = −4 + 3z1 − z2
1 + 3z2 − 2z1z2 + z2

1 z2 − z2
2 + z1z

2
2 .

(a) Solving b(z1, e
it) = 0 for z1 and

plotting against t ∈ (0, 2π)
(b) Solving b(e it , z2) = 0 for z2 and
plotting against t ∈ (0, 2π)

Figure: Zero sets of b
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Do these counterexamples work in the Hardy space?

b(z1, z2) = −4 + 3z1 − z2
1 + 3z2 − 2z1z2 + z2

1 z2 − z2
2 + z1z

2
2 .

p2 = −14

75
− 2

25
z1 −

2

25
z2

Figure: Solving p2(z1, e
it) = 0 for z1 and plotting against t ∈ (0, 2π). Note that p2 is

symmetric in z1 and z2

M. Sargent Multivariable OAs and OGs 23 / 24



Do these counterexamples work in the Hardy space?

b(z1, z2) = −4 + 3z1 − z2
1 + 3z2 − 2z1z2 + z2

1 z2 − z2
2 + z1z

2
2 .

p2 = −14

75
− 2

25
z1 −

2

25
z2

Figure: Solving p2(z1, e
it) = 0 for z1 and plotting against t ∈ (0, 2π). Note that p2 is

symmetric in z1 and z2

M. Sargent Multivariable OAs and OGs 23 / 24



Thank You!
Summary

Things are harder in several variables!
I Must choose a monomial ordering (which one is “best”??)
I Weakly inner doesn’t imply inner!

Counter examples in the Bergman space; Hardy?? (Is modified Shanks’ true
here?)

Other neat stuff
I We actually found a closed form for the OG polynomials for 1− az1z2 (for

spaces on the bidisk and the 2-ball)
I And a closed form for the OG polynomials for 1− a(z1 + z2) for the 2-ball

(bidisk is harder)

M. Sargent Multivariable OAs and OGs 24 / 24


