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This is an infinite-dimensional operator algebra, but it is completely determined by

its finite-dimensional representations.
For z € D, let €. : A(D) — C be the character of evaluation at z, that is
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This is an infinite-dimensional operator algebra, but it is completely determined by

its finite-dimensional representations.
For z € D, let €. : A(D) — C be the character of evaluation at z, that is

e:(f) = f(z), feAD).
Then,
[fllec = maxle-(f), fe€AD).
zeD

In other words, the map

Pe.:AD) - []C

z€D z€D
is a completely isometric homomorphism. This says that A(D) is residually
finite-dimensional (RFD).

Just how much finite-dimensionality does A (D) enjoy?
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Some associated C*-algebras

Example

By definition, we have that A(D) C C(D). In fact, we have that C*(A(D)) = C(D).
Moreover, B, e~ : C(D) — [],5C is a completely isometric homomorphism.

(University of Manitoba) Finite-dimensional approximations



Some associated C*-algebras

Example

By definition, we have that A(D) C C(D). In fact, we have that C*(A(D)) = C(D).

Moreover, @_ 5= : C(D) — [, 5 C is a completely isometric homomorphism.

Example

By the maximum modulus principle, the restriction map p : A(D) — C(T) is
completely isometric. We have that C*(p(A(D))) = C(T) and
P.cre-: C(T) = [].r C is a completely isometric homomorphism.
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Some associated C*-algebras

Example

By definition, we have that A(D) C C(D). In fact, we have that C*(A(D)) = C(DD).
Moreover, B, e~ : C(D) — [],5C is a completely isometric homomorphism.

Example

By the maximum modulus principle, the restriction map p : A(D) — C(T) is
completely isometric. We have that C*(p(A(D))) = C(T) and
P.cre-: C(T) = [].r C is a completely isometric homomorphism.

Example

Consider the Hardy space

H?*(D) = {i anz" : i lan|® < oo} .
n=0 n=0

Let @ : A(D) — B(H?(D)) be defined as ®(f) = My. Then, T = C*(®(A(D))) is the
Toeplitz algebra and it is not RFD (it contains the ideal of compact operators).
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The maximal C*-algebra

Let R denote the collection of all completely contractive homomorphisms
0 : A(D) — B(Hg) for some Hilbert space Hg.
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The maximal C*-algebra

Let R denote the collection of all completely contractive homomorphisms
0 : A(D) — B(Hg) for some Hilbert space Hg.

The map © = @0672 0 is a completely isometric homomorphism.

We define Cj,,«(A(D)) = C*(O(A(D))).
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The maximal C*-algebra

Let R denote the collection of all completely contractive homomorphisms
0 : A(D) — B(Hg) for some Hilbert space Hg.

The map © = 690672 0 is a completely isometric homomorphism.

We define C;.«(A(D)) = C*(©(A(D))). This is a universal C*-algebra: every
representation of A (D) extends to a x-representation of Cy,.. (A(D)).
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The map © = 690672 0 is a completely isometric homomorphism.

We define C;.«(A(D)) = C*(©(A(D))). This is a universal C*-algebra: every
representation of A (D) extends to a x-representation of Cy,.. (A(D)).

Is Chax(A(D)) residually finite-dimensional? Yes!

Theorem

The disc algebra A(D) is residually finite-dimensional, and so is its maximal
C*-algebra C} .. (A(D)).

Proof.
Ingredients:

e universality of A(D) (von Neumann’s inequality)
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Let R denote the collection of all completely contractive homomorphisms
0 : A(D) — B(Hg) for some Hilbert space Hg.

The map © = 699672 0 is a completely isometric homomorphism.

We define C;.«(A(D)) = C*(©(A(D))). This is a universal C*-algebra: every
representation of A (D) extends to a x-representation of Cy,.. (A(D)).

Is Chax(A(D)) residually finite-dimensional? Yes!

Theorem

The disc algebra A(D) is residually finite-dimensional, and so is its maximal
C*-algebra C} .. (A(D)).

Proof.
Ingredients:
e universality of A(D) (von Neumann’s inequality)
e if T is a contraction on H and K C H is a subspace, then PcT |k is a contraction.

O

v
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Residual finite-dimensionality of the maximal C*-algebra

Theorem

The disc algebra A(D) is residually finite-dimensional, and so is its mazimal

C*-algebra C} . (A(D)).
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Residual finite-dimensionality of the maximal C*-algebra

Theorem

The disc algebra A(D) is residually finite-dimensional, and so is its mazimal
C*-algebra Chax(A(D)).

Main question

The bidisc algebra A(D?) is residually finite-dimensional. Is C},, (A(D?)) residually
finite-dimensional as well?
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Residual finite-dimensionality of the maximal C*-algebra

Theorem

The disc algebra A(D) is residually finite-dimensional, and so is its mazimal
C*-algebra C} . (A(D)).

Main question

The bidisc algebra A(D?) is residually finite-dimensional. Is C},, (A(D?)) residually
finite-dimensional as well?

By von Neumann'’s inequality, C},.(A(D)) coincides with the universal C*-algebra
generated by a contraction.

By Ando’s inequality, Clyax(A(D?)) coincides with the universal C*-algebra generated
by a pair of commuting contractions.

Theorem (Courtney—Sherman 2019, Ji-Natarajan—Vidick—Wright—Yuen 2020)

The universal C*-algebra generated by a pair of doubly commuting contractions is not
residually finite-dimensional.
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Residual finite-dimensionality of the maximal C*-algebra

Theorem

The disc algebra A(D) is residually finite-dimensional, and so is its mazimal
C*-algebra C} . (A(D)).

Main question

The bidisc algebra A(D?) is residually finite-dimensional. Is C},, (A(D?)) residually
finite-dimensional as well?

By von Neumann'’s inequality, C},.(A(D)) coincides with the universal C*-algebra
generated by a contraction.

By Ando’s inequality, Clyax(A(D?)) coincides with the universal C*-algebra generated
by a pair of commuting contractions.

Theorem (Courtney—Sherman 2019, Ji-Natarajan—Vidick—Wright—Yuen 2020)

The universal C*-algebra generated by a pair of doubly commuting contractions is not
residually finite-dimensional.

Recall: contractions 77 and 7> are doubly commuting if 7775 = 1271 and
Ty =T5Th
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Approximation by finite-dimensional representations

Let A be an operator algebra and let 6 : A — B(Hy) be a completely contractive
homomorphism.
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Approximation by finite-dimensional representations

Let A be an operator algebra and let 6 : A — B(Hy) be a completely contractive
homomorphism.

Let ¢y : A — B(Hg) be a net of completely contractive homomorphisms (acting on
the same Hilbert space as 0) such that dim C*(px(A)) < .

R. Clouatre (University of Manitoba) Finite-dimensional approximations OTWIA 7/ 16
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Let A be an operator algebra and let 6 : A — B(Hy) be a completely contractive
homomorphism.

Let ¢y : A — B(Hg) be a net of completely contractive homomorphisms (acting on
the same Hilbert space as 0) such that dim C*(px(A)) < .

We say that (p»a) is

(i) an Ezel-Loring approzimation for 6 if (px(a))aca converges in SOT to 6(a) for
every a € A;
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Let A be an operator algebra and let 6 : A — B(Hy) be a completely contractive
homomorphism.

Let px : A — B(Ho) be a net of completely contractive homomorphisms (acting on
the same Hilbert space as 0) such that dim C*(px(A)) < .
We say that (p»a) is

(i) an Ezel-Loring approzimation for 6 if (px(a))aca converges in SOT to 6(a) for
every a € A;
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for every a € A;
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Approximation by finite-dimensional representations

Let A be an operator algebra and let 6 : A — B(Hy) be a completely contractive
homomorphism.

Let px : A — B(Ho) be a net of completely contractive homomorphisms (acting on
the same Hilbert space as 0) such that dim C*(px(A)) < .
We say that (p»a) is

(i) an Ezel-Loring approzimation for 6 if (px(a))aca converges in SOT to 6(a) for
every a € A;

(ii) an Ezel-Loring x-approximation for 0 if (px(a)*)rea converges in SOT to 6(a)*
for every a € A;

(iii) an Ezel-Loring C*-approzimation for 6 if (px(a))rca converges in SOT* to 0(a)
for every a € A.
Theorem (Exel-Loring 1992)

A C*-algebra is residually finite-dimensional if and only if every *-representation
admits an Exel-Loring approzimation (of any kind).
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Some implications

Theorem (C.—Dor On 2020)

Let A be an operator algebra. Then, we have the following implications.

Chiax (A) is residually finite-dimensional.
(3
Every completely contractive representation of A
admits an Ezel-Loring C*-approximation.
(3
Every completely contractive representation of A
admits an Exel-Loring x-approzimation.

I

A is residually finite-dimensional.
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Corollary
Every completely contractive representation of A(D) admits an Ezel-Loring
C*-approzimation.

.
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Some implications

Theorem (C.—Dor On 2020)

Let A be an operator algebra. Then, we have the following implications.

Chiax (A) is residually finite-dimensional.
(3
Every completely contractive representation of A
admits an Ezel-Loring C*-approximation.
(3
Every completely contractive representation of A
admits an Exel-Loring x-approzimation.

I

A is residually finite-dimensional.

Corollary

Every completely contractive representation of A(D) admits an Ezel-Loring
C*-approzimation.

Refined question

Does every completely contractive representation of A(D?) admit an Exel-Loring
x-approximation?
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Examples of Exel-Loring approximations

Example

‘H reproducing kernel Hilbert space on some set X, A C Mult(#) subalgebra
0 : A — B(H) identity representation
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Example

‘H reproducing kernel Hilbert space on some set X, A C Mult(H) subalgebra
0 : A — B(H) identity representation

F C X finite, Kr = span{k, : € F'} C H finite-dimensional subspace
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Example

‘H reproducing kernel Hilbert space on some set X, A C Mult(H) subalgebra
0 : A — B(H) identity representation

F C X finite, Kr = span{k, : € F'} C H finite-dimensional subspace
M}Kr C Kr for every ¢ € Mult(H)
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Examples of Exel-Loring approximations

Example

‘H reproducing kernel Hilbert space on some set X, A C Mult(H) subalgebra
6 : A — B(H) identity representation

F C X finite, Kr = span{k, : € F'} C H finite-dimensional subspace
M}Kr C Kr for every ¢ € Mult(H)

Define 0r : A — B(H) as
QF(CL):PK;FG(G)PKF, a € A

Because UpKp is dense in H, this net is an Exel-Loring C*-approximation for 6.
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Examples of Exel-Loring approximations

Example

‘H reproducing kernel Hilbert space on some set X, A C Mult(H) subalgebra
6 : A — B(H) identity representation

F C X finite, Kr = span{k, : € F'} C H finite-dimensional subspace
M}Kr C Kr for every ¢ € Mult(H)

Define 0r : A — B(H) as
9F(a) ZPKFH(G)PKF7 a € A

Because UpKp is dense in H, this net is an Exel-Loring C*-approximation for 6.

Example

K, = H*(D) © pH*(D) where p(z) = exp (%)

K, infinite-dimensional and co-invariant for A(ID)

V.
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Examples of Exel-Loring approximations

Example

‘H reproducing kernel Hilbert space on some set X, A C Mult(H) subalgebra
6 : A — B(H) identity representation

F C X finite, Kr = span{k, : € F'} C H finite-dimensional subspace
M}Kr C Kr for every ¢ € Mult(H)

Define 0r : A — B(H) as
QF(CL) = PKFH(CL)PKF, a € A

Because UpKp is dense in H, this net is an Exel-Loring C*-approximation for 6.

Example

K, = H*(D) © pH?(D) where ¢(z) = exp (%)
K, infinite-dimensional and co-invariant for A(ID)
The compression 6 : A(D) — B(K,) admits an Exel-Loring C*-approximation. But

an approximating net must be rather complicated: there is no finite-dimensional
subspace of K, which is semi-invariant for A(D).

V.
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Building new approximations from old ones

Key lemma

Assume that 6 : A — B(He) admits an Exel-Loring approximation. Let H C Ho be
an invariant subspace for 6(.A). Then, the representation

a—0(a)|ln, a€A

admits an Exel-Loring approximation.
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a—0(a)|ln, a€A

admits an Exel-Loring approximation.

What about general compressions to semi-invariant subspaces? What about
C*-approximations?
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Building new approximations from old ones

Key lemma

Assume that 6 : A — B(He) admits an Exel-Loring approximation. Let H C Hg be
an invariant subspace for 6(.A). Then, the representation

a—0(a)|y, acA

admits an Exel-Loring approximation.

What about general compressions to semi-invariant subspaces? What about
C*-approximations?
Recall that

Chax (A) is residually finite-dimensional.
(3
Every completely contractive representation of A4
admits an Exel-Loring C*-approximation.
0
Every completely contractive representation of A
admits an Exel-Loring *-approximation.

)

A is residually finite-dimensional.
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Back to functions: the complete Nevanlinna—Pick property

H unitarily invariant complete Nevanlinna—Pick space on By with kernel K
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Back to functions: the complete Nevanlinna—Pick property

H unitarily invariant complete Nevanlinna—Pick space on By with kernel K

K(z,w) =1+ Zan<z,w)" and 1-— L an<z,w)"
K(z,w)

n=1 n=1

where (an), (bn) non-negative sequences

Standing assumption: a, > 0 and lim,— =1

n
An41
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Back to functions: the complete Nevanlinna—Pick property

H unitarily invariant complete Nevanlinna—Pick space on By with kernel K

K(z,w)=1+ Zan<z,w>" and 1-— m = an<z,w)"

n=1 n=1

where (an), (bn) non-negative sequences

Standing assumption: a, > 0 and lim,_ =1

n
An41
Example

Drury—Arveson space, Dirichlet space on D, ...
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Back to functions: the complete Nevanlinna—Pick property

H unitarily invariant complete Nevanlinna—Pick space on By with kernel K

K(z,w)=1+ Zan<z,w>" and 1-— m = an<z,w)"

n=1 n=1

where (an), (bn) non-negative sequences

Standing assumption: a, > 0 and lim,_ =1

a n:’— 1
Example J

Drury—Arveson space, Dirichlet space on D, ...

A(H) = Clz1, ..., 2z4) C Mult(H)
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Back to functions: the complete Nevanlinna—Pick property

H unitarily invariant complete Nevanlinna—Pick space on By with kernel K

K(z,w)=1+ Zan<z,w>” and 1— m = an<2,w>"

n=1 n=1

where (an), (bn) non-negative sequences

Standing assumption: a, > 0 and lim,— =1

n
An41
Example

Drury—Arveson space, Dirichlet space on D, ...

A(H) = Clz1, ..., 2z4) C Mult(H)

Theorem (C.—Dor On 2020)

Every completely contractive representation of A(H) admits an Exel-Loring
*-approximation.
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Main ingredients of the proof

Let 6 : A(H) — B(&p) be a completely contractive homomorphism.
e We find a *-homomorphism 7 of C*(A(#)) such that

0(a)” = m(a)"le,

for every a € A(H) (Ambrozie-Englis—Miiller 2002).
The complete Nevanlinna—Pick property is used here (C.-Hartz 2018).

o The algebra C*(A(#)) contains the ideal & of compact operators and
C*"(A(H))/R = C(Sq) (Guo—Hu-Xu 2004).

@ We can find a unitary operator U along with a *x-representation o of
C*(A(H))/R such that

m(a) =c(a+RK)BU(ax [)U"

for every a € A(H). (= Wold decomposition of an isometry)
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0(2’1) = Tl, 0(2’2) = TQ.
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Facing the bidisc: the good and the bad
Good: 2 < 3 (Ando’s inequality)

Given a pair (71, 72) of commuting contractions on a Hilbert space H, there is a
completely contractive homomorphism 6 : A(D?) — B(#) such that
0(2’1) = Tl, 0(2’2) = TQ.

Bad: 2 > 1 (commuting pairs of isometries are mysterious)

No perfect analogue of the Wold decomposition.
Known functional representations for pure commuting pairs of isometries are
relatively complicated (Berger-Coburn—Lebow 1975, Bercovici-Douglas—Foias 2006).

Theorem (C.—Dor On 2020)

Any completely contractive representation of A(]D)Q) admits an Ezel-Loring
*-approximation.

Recall: to show that any completely contractive representation of A(ID) admits an
Exel-Loring C*-approximation, we used

e von Neumann’s inequality

e if T'is a contraction on H and I C H is a subspace, then PcT |k is a contraction.
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Start with a completely contractive homomorphism 6 : A(D?) — B(Hy).

For each 0 < r < 1, let 6, : A(D?) — B(Hs) be the completely contractive
homomorphism such that 6,(z1) = 76(z1) and 0, (z2) = 76(22).

Then, (0, (a)) converges to 8(a) in norm for every a € A(D?).
In particular, we may assume that [|6(z1)]| < 1.

Lemma

If |0(z1)|| < 1, then there is a completely contractive representation p of A(D?) such
that p(z1) is a unilateral shift and

6(a)" = p(a) |y, @ € A(D?).

It remains to deal with the case where 6(z1) is a unilateral shift.

Claim

Assume that 0(z1) is a unilateral shift. Then, 6 admits an Exel-Loring
*-approximation.
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Proof of the claim

o We have that 6(z1) = S ® I¢ and 9(A(D?)) C Mult(H?*(D) ® ).

R. Clouatre (University of Manitoba) | Finite-dimensional approximations



Proof of the claim

o We have that 6(z1) = S ® I¢ and 9(A(D?)) C Mult(H?*(D) ® ).

o If £ is finite-dimensional, then for every F' C D finite we let

Kr =span{k. @ v:z € F,v € £}.

This is co-invariant for 8(A(D?)) and (Px,0(-)|x,) is an Exel-Loring
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Proof of the claim

o We have that 0(z1) = S ® I¢ and 6(A(D?)) C Mult(H*(D) ® £).

o If £ is finite-dimensional, then for every F' C D finite we let
Kr =span{k. @ v:z € F,v € £}.

This is co-invariant for 8(A(D?)) and (Px,0(-)|x,) is an Exel-Loring
x-approximation for 6.

o If £ is infinite-dimensional, write £ = UE, where &, C £ is a finite-dimensional
subspace. Note that S ® Pg, and (I ® Pg,)0(22)(I ® Pg,) is a pair of
commuting contractions.
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Kr =span{k. @ v:z € F,v € £}.
This is co-invariant for 8(A(D?)) and (Px,0(-)|x,) is an Exel-Loring
x-approximation for 6.

o If £ is infinite-dimensional, write £ = UE, where &, C £ is a finite-dimensional
subspace. Note that S ® Pg, and (I ® Pg,)0(22)(I ® Pg,) is a pair of
commuting contractions.

e By Ando’s inequality, there is a completely contractive homomorphism

0o : A(D?) — B(H?*(D) ® &) such that 0,(21) = S ® Pe,, and

Oa(22) = (I ® Pe,)0(22)(I ® Pe,,).

We have that (0. (a)) converges to 8(a) in SOT* for every a € A(D?).
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Thank you!




