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Abstract. We classify the ergodic invariant random subgroups of inductive

limits of finite alternating groups.

1. Introduction

A simple locally finite group G is said to be an L(Alt)-group if we can express
G =

⋃
i∈NGi as the union of a strictly increasing chain of finite alternating groups

Gi = Alt(∆i). Here we allow arbitrary embeddings Gi ↪→ Gi+1. In this paper, we
will classify the ergodic invariant random subgroups of the L(Alt)-groups, and we
will consider the relationship between the existence of “nontrivial” ergodic IRSs,
“nontrivial” characters χ : G→ C and “nontrivial” 2-sided ideals I ⊆ CG.

Let G be a countably infinite group and let SubG be the compact space of
subgroups H 6 G. Then a Borel probability measure ν on SubG which is invariant
under the conjugation action of G on SubG is called an invariant random subgroup
or IRS. For example, if N E G is a normal subgroup, then the corresponding
Dirac measure δN is an IRS of G. Further examples of IRSs arise from from the
stabilizer distributions of measure-preserving actions, which are defined as follows.
Suppose that G acts via measure-preserving maps on the Borel probability space
(Z, µ ) and let f : Z → SubG be the G-equivariant map defined by

z 7→ Gz = { g ∈ G | g · z = z }.

Then the corresponding stabilizer distribution ν = f∗µ is an IRS of G. In fact, by
a result of Abért-Glasner-Virag [1], every IRS of G can be realized as the stabilizer
distribution of a suitably chosen measure-preserving action. Moreover, by Creutz-
Peterson [2], if ν is an ergodic IRS of G, then ν is the stabilizer distribution of an
ergodic action Gy (Z, µ ).

Definition 1.1. A countably infinite group G is said to be strongly simple if the
only ergodic IRS of G are δ1 and δG.

In other words, a (necessarily simple) group G is strongly simple if G has no
nontrivial ergodic IRS.

As we pointed out in Thomas-Tucker-Drob [17], if G is a countably infinite
locally finite group and G y (Z, µ ) is an ergodic action, then an application of
the Pointwise Ergodic Theorem for actions of locally finite groups to the associated
character χ(g) = µ( FixZ(g) ) allows us to regard G y (Z, µ ) as the “limit” of
a suitable sequence of finite permutation groups Gn y ( Ωn, µn ), where µn is the
uniform probability measure on Ωn.
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Definition 1.2. If G is a countable group, then the function χ : G → C is a
character if the following conditions are satisfied:

(i) χ(h g h−1) = χ(g) for all g, ∈ G.
(ii)

∑n
i,j=1 λiλ̄jχ(g−1

j gi) ≥ 0 for all λ1, · · · , λn ∈ C and g1, · · · , gn ∈ G.

(iii) χ(1G) = 1.

A character χ is said to be indecomposable or extremal if it is impossible to express
χ = rχ1 + (1− r)χ2, where 0 < r < 1 and χ1 6= χ2 are distinct characters.

The set of characters of G is denoted by F(G) and the set of indecomposable
characters is denoted by E(G). The set F(G) always contains the two “trivial”
characters χcon and χreg, where χcon(g) = 1 for all g ∈ G and χreg(g) = 0 for
all 1 6= g ∈ G. It is well-known that χcon is indecomposable, and that χreg is
indecomposable if and only if G is an i.c.c. group, i.e. the conjugacy class gG of
every nonidentity element g ∈ G is infinite. (For example, see Peterson-Thom [12].)
We will say that F(G) is trivial if every χ ∈ F(G) is a convex combination of χcon

and χreg.

Theorem 1.3. If the countably infinite simple group G is not strongly simple, then
F(G) is nontrivial.

Proof. Suppose that ν 6= δ1, δG is a nontrivial ergodic IRS of G. Then, by Creutz-
Peterson [2, Proposition 3.3.1], we can suppose that ν is the stabilizer distribution of
an ergodic action Gy (Z, µ ). Let χ(g) = µ( FixZ(g) ) be the associated character.
Suppose that there exists 0 ≤ a ≤ 1 such that χ = aχcon + (1 − a)χreg. Then,
since ν 6= δ1, δG, it follows that 0 < a < 1; and so infg∈G µ( FixZ(g) ) = a > 0.
Applying Ioana-Kechris-Tsankov [6, Theorem 1(i)] in the special case when E is
the identity relation, it follows that there exists a G-invariant Borel subset A ⊂ Z
with µ(A) > 0 such that |A| ≤ 1/a; and, since G acts ergodically on (Z, µ ), it
follows that µ(A) = 1. Let a ∈ A. Then, since G is an infinite simple group and
[G : Ga] ≤ |A| < ∞, it follows that Ga = G. Thus A = { a } and ν = δG, which
is a contradiction. Consequently, χ(g) is not a convex combination of χcon and
χreg. �

There exist examples of ergodic actions Gy (Z, µ ) of countably infinite groups
such that the associated character χ is not indecomposable. For example, if the
ergodic action G y (Z, µ ) is essentially free, then χ = χreg, and so χ is inde-
composable if and only if G is an i.c.c. group. There also exist more interesting
examples.

Theorem 1.4. There exists an ergodic action Alt(N) y (Z, µ ) such that the
associated character is not indecomposable.

Proof. Suppose that χ is an indecomposable character of the infinite alternating
group Alt(N). Then, by Thoma [16, Satz 6], there exists an indecomposable char-
acter θ of the group Fin(N) of finitary permutations of the natural numbers such
that χ = θ � Alt(N); and hence, by Thoma [16, Satz 1], we have that

(1.1) χ( ( 1 2 ) ( 3 4 ) ( 5 6 ) ( 7 8 ) ) = χ( ( 1 2 ) ( 3 4 ) )χ( ( 5 6 ) ( 7 8 ) ).

Thus it suffice to find an ergodic action Alt(N) y (Z, µ ) such that the associated
character χ(g) = µ( FixZ(g) ) fails to satisfy the multiplicative property (1.1).

Let m be the usual uniform product probability measure on 2N. Then Alt(N)
acts ergodically on ( 2N,m ) via the shift action ( g · ξ )(n) = ξ(g−1(n)). For each
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ξ ∈ 2N and i = 0, 1, let Bξi = {n ∈ N | ξ(n) = i }. Let f : 2N → SubAlt(N) be

the Alt(N)-equivariant map defined by ξ 7→ Alt(Bξ0)×Alt(Bξ1) and let ν = f∗m be
the corresponding ergodic IRS of Alt(N). Then, by Creutz-Peterson [2], ν is the
stabilizer distribution of an ergodic action Alt(N) y (Z, µ ); and the associated
character χ is given by

χ(g) = µ( FixZ(g) )

= ν( {H ∈ SubAlt(N) | g ∈ H } )

= m( {ξ ∈ 2N | g ∈ Alt(Bξ0)×Alt(Bξ1) } ).

Clearly ( 1 2 ) ( 3 4 ) ∈ Alt(Bξ0) × Alt(Bξ1) if and only if ξ(1) = ξ(2) = ξ(3) = ξ(4);
and it follows that

χ( ( 1 2 ) ( 3 4 ) ) = χ( ( 5 6 ) ( 7 8 ) ) = 1/24 + 1/24 = 1/23.

On the other hand, we have that

χ( ( 1 2 ) ( 3 4 ) ( 5 6 ) ( 7 8 ) ) =

(
4
0

)
+
(

4
2

)
+
(

4
4

)
28

= 1/25.

Since the multiplicative property (1.1) fails, it follows that χ is not indecomposable.
�

Problem 1.5. Find necessary and sufficient conditions for the associated character
of an ergodic action Gy (Z, µ ) to be indecomposable.

Vershik [19] has proved a very interesting sufficient condition; namely, that if
G y (Z, µ ) is ergodic and NG(Gz) = Gz for µ-a.e. z ∈ Z, then the associated
character is indecomposable. Using Vershik’s criterion, together with our classi-
fication of the ergodic IRSs of the L(Alt)-groups G � Alt(N), we will prove the
following result.

Theorem 1.6. If G � Alt(N) is an L(Alt)-group and G y (Z, µ ) is an ergodic
action, then the associated character is indecomposable.

The L(Alt)-groups with a nontrivial ergodic IRS will be classified as follows.
Suppose that G =

⋃
i∈NGi is the union of the strictly increasing chain of finite

alternating groups Gi = Alt(∆i), where |∆1| ≥ 5. For each i ∈ N, let si+1 be
the number of natural orbits of Gi on ∆i+1 and let ei+1 is the number of points
x ∈ ∆i+1 which lie in a nontrivial non-natural Gi-orbit. Also for each i < j, let
sij = si+1si+2 · · · sj . Recall that G =

⋃
i∈NGi is said to be a diagonal limit if

si+1 > 0 and ei+1 = 0 for all i ∈ N; i.e. if for each i ∈ N, every Gi-orbit on ∆i+1 is
either natural or trivial.

Definition 1.7. G =
⋃
i∈NGi is an almost diagonal limit if si+1 > 0 for all i ∈ N

and
∑∞
i=1 ei/s0i <∞.

Theorem 1.8. If G is an L(Alt)-group, then G has a nontrivial ergodic IRS if and
only if G can be expressed as an almost diagonal limit of finite alternating groups.

We will present an explicit classification of the ergodic IRSs of the L(Alt)-groups
G � Alt(N) in Sections 3 and 4. The classification involves a fundamental di-
chotomy which was originally introduced by Leinen-Puglisi [10, 11] in the more
restrictive setting of diagonal limits of alternating groups, i.e. the linear vs sublin-
ear natural orbit growth condition. This dichotomy arose unexpectedly in the work
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of Leinen-Puglisi [10, 11] without any natural explanation. By contrast, in this
paper, it will appear as a natural consequence of the Pointwise Ergodic Theorem
for actions of locally finite groups.

In [20], Vershik showed that the indecomposable characters of the group Fin(N)
of finitary permutations of the natural numbers were very closely connected with
the ergodic IRSs of Fin(N); and in [19], he suggested that this should also be true of
various other locally finite groups. Combining our classification of the ergodic IRSs
of the L(Alt)-groups with the earlier work of Leinen-Puglisi [11], it follows that if
G � Alt(N) is a diagonal limit of finite alternating groups, then the indecomposable
characters of G are precisely the associated characters of the ergodic IRSs of G.

It is clear from Theorems 1.4 and 1.6 that Alt(N) plays an exceptional role within
the class of L(Alt)-groups. In Section 9, adapting and slightly correcting Vershik’s
analysis of the ergodic IRSs of the group Fin(N) of finitary permutations of the
natural numbers, we will state the classification of the ergodic IRSs of Alt(N) and
we will characterize the ergodic actions Alt(N) y (Z, µ ) such that the associated
character χ(g) = µ( FixZ(g) ) is indecomposable.

If G is a countable group and χ ∈ F(G) is a character, then we can extend χ to
a linear function χ : CG→ C and define a corresponding proper 2-sided ideal Iχ of
the group ring CG by

Iχ = {x ∈ C(G) | χ(g x) = 0 for all g ∈ G }.

For example, let ω(CG) be the augmentation ideal , i.e. the kernel of the homomor-
phism CG → C defined by

∑
λigi 7→

∑
λi. Then it is easily checked that if χ is

a character of G, then Iχ = ω(CG) if and only if χ = χcon. It is also easily seen

that Iχreg
= {0}. In [23], Zalesskĭi asked whether there exists a simple locally finite

group G with an indecomposable character χ 6= χreg such that Iχ = {0}; and he
conjectured that if G is a simple locally finite group such that ω(CG) is the only
nontrivial proper 2-sided ideal of CG, then F(G) is trivial. In Section 3, we will
give an example of a simple locally finite group G such that:

(a) the augmentation ideal ω(CG) is the only nontrivial proper 2-sided ideal of
CG; and

(b) G has infinitely many indecomposable characters χ such that Iχ = { 0 }.
In this example, the characters of G will be precisely those associated with the
ergodic IRSs of G. It should be pointed out that Leinen-Puglisi [10] gave the first
examples of simple locally finite groups G with indecomposable characters χ 6= χreg

such that Iχ = {0}. However, in their examples, the corresponding group rings CG
had infinitely many nontrivial proper 2-sided ideals.

This paper is organized as follows. In Section 2, we will briefly discuss the
pointwise ergodicity and weak mixing properties for ergodic actions of countably
infinite locally finite finite groups. In Section 3, we will introduce the notion of an
almost diagonal limit of finite alternating groups and the notions of linear/sublinear
natural orbit growth; and we will discuss the ergodic IRSs of the L(Alt)-groups of
linear natural orbit growth. In Section 4, we will discuss the ergodic IRSs of almost
diagonal limits with sublinear natural orbit growth. In Section 5, we will present
a natural characterization of the almost diagonal limit of finite alternating groups.
In Section 6, we will present a series of lemmas concerning upper bounds for the
values of the normalized permutation characters of various actions Alt(∆) y Ω of
the finite alternating group Alt(∆). In Sections 7 and 8, we will present our proof of
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the classification of the ergodic IRSs of the L(Alt)-groups G � Alt(N). Finally, in
Section 9, we will discuss the ergodic IRSs of the infinite alternating group Alt(N).

2. The ergodic theory of locally finite groups

In this section, we will briefly discuss the pointwise ergodicity and weak mix-
ing properties for ergodic actions of countably infinite locally finite finite groups.
Throughout, let G =

⋃
i∈NGi be the union of the strictly increasing chain of finite

subgroups Gi and let Gy (Z, µ ) be an ergodic action on a Borel probability space.
The following is a special case of more general results of Vershik [18, Theorem 1]
and Lindenstrauss [9, Theorem 1.3].

The Pointwise Ergodic Theorem. With the above hypotheses, if B ⊆ Z is a
µ-measurable subset, then for µ-a.e z ∈ Z,

µ(B) = lim
i→∞

1

|Gi|
|{ g ∈ Gi | g · z ∈ B }|.

In particular, the Pointwise Ergodic Theorem applies whenB is the µ-measurable
subset FixZ(g) = { z ∈ Z | g · z = z } for some g ∈ G. For each z ∈ Z and i ∈ N,
let Ωi(z) = { g · z | g ∈ Gi } be the corresponding Gi-orbit. Then, as pointed out in
Thomas-Tucker-Drob [17, Theorem 2.1], the following result is an easy consequence
of the Pointwise Ergodic Theorem.

Theorem 2.1. With the above hypotheses, for µ-a.e. z ∈ Z, for all g ∈ G,

µ( FixZ(g) ) = lim
i→∞

| FixΩi(z)(g) |/|Ωi(z) |.

The normalized permutation character | FixΩi(z)(g) |/|Ωi(z) | is the probability
that an element of ( Ωi(z), µi ) is fixed by g ∈ Gi, where µi is the uniform probability
measure on Ωi(z); and, in this sense, we can regard G y (Z, µ ) as the “limit”
of the sequence of finite permutation groups Gi y ( Ωi(z), µi ). Of course, the
permutation group Gi y Ωi(z) is isomorphic to Gi y Gi/Hi, where Gi/Hi is the
set of cosets of Hi = {h ∈ Gi | h · z = z } in Gi. The following simple observation
will be used repeatedly in our later applications of Theorem 2.1. (For example, see
Thomas-Tucker-Drob [17, Proposition 2.2].)

Proposition 2.2. If H 6 A are finite groups and θ is the normalized permutation
character corresponding to the action Ay A/H, then

θ(g) =
| gA ∩H |
| gA |

=
| {s ∈ A | sgs−1 ∈ H }|

|A|
.

The following consequence of Proposition 2.2 implies that when computing upper
bounds for the normalized permutation characters of actions A y A/H, we can
restrict our attention to those coming from maximal subgroups H < A.

Corollary 2.3. If H 6 H ′ 6 A are finite groups and θ, θ′ are the normalized
permutation characters corresponding to the actions A y A/H and A y A/H ′,
then θ(g) ≤ θ′(g) for all g ∈ A.

Finally we point out the following straightforward but useful observation.

Theorem 2.4. If G is a countably infinite simple locally finite group, then every
ergodic action Gy (Z, µ ) is weakly mixing.
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Proof. Suppose that the ergodic action Gy (Z, µ ) is not weakly mixing. Then, by
Schmidt [14, Proposition 2.2], it follows that G has a nontrivial finite dimensional
unitary representation; and since G is simple, this representation is necessarily
faithful. However, this is impossible since Schur [15] has proved that every periodic
linear group over the complex field has an abelian subgroup of finite index. (For a
more accessible reference, see Curtis-Reiner [3, Theorem 36.14].) �

Corollary 2.5. If G is a countably infinite simple locally finite group and the action
G y (Z, µ ) is ergodic, then the product action G y (Zr, µ⊗r ) is also ergodic for
each r ≥ 1.

3. Linear natural orbit growth

In this section, we will begin our analysis of the ergodic IRSs of the L(Alt)-
groups G � Alt(N). First we need to introduce some notation. For the remainder
of this paper, suppose that G =

⋃
i∈NGi is the union of the strictly increasing chain

of finite alternating groups Gi = Alt(∆i), where |∆1| ≥ 5. For each i ∈ N, let

• ni = |∆i|;
• si+1 be the number of natural orbits of Gi on ∆i+1;
• fi+1 be the number of trivial orbits of Gi on ∆i+1;
• ei+1 = ni+1 − (si+1ni + fi+1); and
• ti+1 = ei+1 + fi+1.

Thus ei+1 is the number of points x ∈ ∆i+1 which lie in a nontrivial non-natural
Gi-orbit and ti+1 = ni+1 − si+1ni is the number of points x ∈ ∆i+1 which lie in
a (possibly trivial) non-natural Gi-orbit. For each i < j, let sij be the number of
natural orbits of Gi on ∆j and let tij = nj − sijni. Finally let τ =

∑∞
i=1 ei/s0i.

Definition 3.1. G =
⋃
i∈NGi is an almost diagonal limit if si+1 > 0 for all i ∈ N

and τ =
∑∞
i=1 ei/s0i <∞.

Remark 3.2. If si+1 > 0 and ei+1 = 0 for all i ∈ N, then G =
⋃
i∈NGi is a

diagonal limit in the sense of Lavrenyuk-Nekrashevych [8].

Definition 3.3. The L(Alt)-group G has almost diagonal type if G can be expressed
as an almost diagonal limit of finite alternating groups.

We are now in a position to state the first of the main results of this paper.

Theorem 3.4. If G is an L(Alt)-group, then G has a nontrivial ergodic IRS if and
only if G has almost diagonal type.

The classification of the ergodic IRSs of the groups of almost diagonal type
involves a fundamental dichotomy which was introduced by Leinen-Puglisi [10, 11]
in the more restrictive setting of diagonal limits of alternating groups, i.e. the
linear vs sublinear natural orbit growth condition. The following result, which is
an immediate consequence of Zalesskĭi [22, Lemma 10], will allow us to usefully
extend the notion of the linear natural orbit condition to the general setting of
arbitrary L(Alt)-groups.

Lemma 3.5. Let Alt(Ω1) ↪→ Alt(Ω2) ↪→ Alt(Ω3) be proper embeddings of finite
alternating groups with |Ω1| ≥ 5. If Σ is a natural Alt(Ω1)-orbit on Ω3 and Σ′ is
the Alt(Ω2)-orbit on Ω3 such that Σ′ ⊇ Σ, then Σ′ is a natural Alt(Ω2)-orbit.

The following result is an immediate consequence of Lemma 3.5.
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Lemma 3.6. If i < j < k, then sik = sijsjk.

In particular, for each i > 0, we have that s0i = s1s2 · · · si. The following
observation will be used repeatedly throughout this paper.

Proposition 3.7. Suppose that G =
⋃
i∈NGi is an almost diagonal limit of finite

alternating groups Gi = Alt(∆i). If ( ji | i ∈ N ) is a strictly increasing sequence of
natural numbers and G′i = Alt(∆ji), then G =

⋃
i∈NG

′
i is also an almost diagonal

limit.

Proof. For each i < j, let eij be the number of points x ∈ ∆j which lie in a
nontrivial non-natural Gi-orbit. Then an easy induction on j ≥ i+ 1 shows that

eij ≤
j−1∑
k=i+1

skjek + ej .

Since s0j = s0kskj , we obtain that

eij/s0j ≤
j∑

k=i+1

ek/s0k,

and the result follows. �

Remark 3.8. Suppose that G =
⋃
i∈NGi is an almost diagonal limit of finite

alternating groups. If si+1 = 1 for all but finitely many i ∈ N, then ei+1 = 0
for all but finitely many i ∈ N, and it follows that G ∼= Alt(N). Hence, applying
Proposition 3.7, if G � Alt(N), then we can suppose that the almost diagonal limit⋃
i∈NGi has been chosen such that si+1 > 1 for i ∈ N.

The statement and proof of the following lemma are identical to Leinen-Puglisi
[11, Lemma 2.2].

Lemma 3.9. For each i ∈ N, the limit ai = limj→∞ sij/nj exists.

Proof. If i < j < k, then sik = sijsjk and clearly njsjk ≤ nk. Hence
sik
nk

=
sij
nj

.
njsjk
nk

≤ sij
nj

and the sequence ( sij/nj | i < j ∈ N ) converges to infj>i sij/nj . �

Definition 3.10. G is said to have linear natural orbit growth if ai > 0 for some
i ∈ N. Otherwise, G is said to have sublinear natural orbit growth.

Remark 3.11. We will soon see that if G has linear natural orbit growth, then G
has almost diagonal type.

Note that ai = si+1ai+1. Thus G has linear natural orbit growth if and only if
ai > 0 for all but finitely many i ∈ N. It is easily checked that if G =

⋃
i∈NG

′
i

is another expression of G as the union of a strictly increasing chain of finite al-
ternating groups G′i = Alt(∆′i) with corresponding parameters s′ij , n

′
i and a′i, then

ai > 0 for all but finitely many i ∈ N if and only if a′i > 0 for all but finitely many
i ∈ N. (This is clear in the case when G is expressed as the union of a chain of finite
alternating groups G′i = Alt(∆ji) for some strictly increasing sequence ( ji | i ∈ N )
of natural numbers; and the general case follows easily.) Thus the notion of linear
natural orbit growth is independent of the expression of G as a union of a strictly
increasing chain of finite alternating groups.
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Lemma 3.12. If G has linear natural orbit growth, then G has almost diagonal
type.

Proof. Suppose that G has linear natural orbit growth. Then, after passing to after
passing to a suitable subsequence if necessary, we can suppose that si+1 > 0 and
hence ai > 0 for all i ∈ N. Now an easy induction shows that if j > 0, then

nj = s0jn0 +

j−1∑
i=1

sijti + tj

and hence

1 =
s0j

nj
+
s0j

nj

j∑
i=1

ti
s0i

.

Since a0 = infj>0 s0j/nj > 0, this implies that
∑∞
i=1 ti/s0i < ∞; and since each

ei ≤ ti, it follows that τ =
∑∞
i=1 ei/s0i <∞. �

We will next prove that if G has linear natural orbit growth, then G has a
nontrivial ergodic IRS. Note that if G has linear natural orbit growth, then si+1 > 0
for all but finitely many i ∈ N; and hence we can suppose that si+1 > 0 for all
i ∈ N. We will initially work with this strictly weaker hypothesis. As we will see,
the linear vs sublinear natural orbit growth dichotomy will appear naturally in our
analysis via an application of the Pointwise Ergodic Theorem for actions of locally
finite groups. Let t0 = n0 and recall that ti+1 = ei+1 + fi+1 = ni+1 − si+1ni.
Clearly we can suppose that:

• ∆0 = {α0
` | ` < t0 }; and

• ∆i+1 = {σ ̂k | σ ∈ ∆i, 0 ≤ k < si+1 } ∪ {αi+1
` | 0 ≤ ` < ti+1 };

and that the embedding ϕi : Alt(∆i)→ Alt(∆i+1) satisfies

ϕi(g)(σ ̂k) = g(σ)̂k
for each σ ∈ ∆i and 0 ≤ k < si+1. Let ∆ consist of all sequences of the form
(αi`, ki+1, ki+2, ki+3, · · · ), where i ∈ N and kj is an integer such that 0 ≤ kj < sj .
For each i ∈ N and σ ∈ ∆i, let ∆(σ) ⊆ ∆ be the subset of sequences of the
form σ ̂ ( ki+1, ki+2, ki+3, · · · ). Then the sets ∆(σ) form a clopen basis for a
locally compact topology on ∆. (This is a special case of the “space of paths” of
Lavrenyuk-Nekrashevych [8].) Consider the action Gy ∆ defined by

g · (αi`, ki+1, · · · , kj , kj+1 · · · ) = ( g(αi`, ki+1, · · · , kj), kj+1 · · · ), g ∈ Gj .
Then we will show that there exists a G-invariant ergodic probability measure on
∆ if and only if G has linear natural orbit growth; in which case, the action Gy ∆
is uniquely ergodic.

Of course, if m is a G-invariant ergodic probability measure on ∆, then m is
uniquely determined by m � A, where A is the algebra of Borel subsets of ∆
generated by the basic clopen sets {∆(σ) | σ ∈

⋃
i∈N ∆i }.

Lemma 3.13. If m is a G-invariant ergodic probability measure on ∆ and σ ∈ ∆i,
then m(∆(σ)) = ai.

Proof. Applying the Pointwise Ergodic Theorem, choose an element z ∈ ∆ such
that

m(∆(σ)) = lim
j→∞

1

|Gj |
|{ g ∈ Gj | g · z ∈ ∆(σ) }|.
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Suppose that z = (αr` , kr+1, kr+2, · · · ) and for each j > r, let

zj = (αr` , kr+1, · · · , kj ) ∈ ∆j .

For each j > max{ i, r }, let Sj ⊆ ∆j be the set of sequences of the form

s = σ ̂ ( ti+1, · · · , tj ).

Then |Sj | = sij and

{ g ∈ Gj | g · z ∈ ∆(σ) } = { g ∈ Gj | g · zj ∈ Sj };
and it follows that

m(∆(σ)) = lim
j→∞

1

|Gj |
|{ g ∈ Gj | g · zj ∈ Sj }| = lim

j→∞
|Sj |/|∆j | = ai.

�

Corollary 3.14. With the above hypotheses, if G has sublinear natural orbit growth,
then there does not exist a G-invariant ergodic probability measure on ∆.

Proof. If m is a G-invariant ergodic probability measure on ∆, then

1 = m(∆) =
∑
i∈N

∑
0≤`≤ti

m(∆(αi`)) =
∑
i∈N

tiai = 0,

which is a contradiction. �

Recall that if i < j, then tij = nj − sijni. In order to simplify notation, we will
continue to write ti+1 instead of tii+1. Applying Lemma 3.9, it follows that the
limit bi = limj→∞ tij/nj exists and that bi = 1− niai. Thus we obtain:

Lemma 3.15. If m is a G-invariant ergodic probability measure on ∆ and i ∈ N,
then m(

⊔
{∆(αj`) | i < j, ` < tj } ) = bi.

Note that if A ∈ A, then there exists i ∈ N and S ⊆ ∆i such that either

(a) A =
⊔
{∆(σ) | σ ∈ S }; or

(b) A =
⊔
{∆(σ) | σ ∈ S } t

⊔
{∆(αj`) | i < j, ` < tj }.

Furthermore, by Lemmas 3.13 and 3.15, if m is a G-invariant ergodic probability
measure on ∆, then m0 = m � A must be defined by

(3.1) m0(A) =

{
|S| ai, if (a) holds;

|S| ai + bi, if (b) holds.

Since ai+1 = ai/si+1 and bi = ti+1ai+1 + bi+1, it follows that m0 is well-defined. It
is also clear that m0(∆) = 1 and that m0 is G-invariant. The following lemma will
be used to prove that m0 is σ-additive.

Lemma 3.16. If G has linear natural orbit growth, then limi→∞ bi = 0.

Proof. Suppose that G has linear natural orbit growth. Since tij =
∑j−1
k=i+1 skjtk +

tj , it follows that

tij
nj

=
s0j

nj

j∑
k=i+1

tk
s0k

and hence

bi = a0

∞∑
k=i+1

tk
s0k

.
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In the proof of Lemma 3.12, we showed that if G has linear natural orbit growth,
then

∑∞
k=1

tk
s0k

<∞ and it follows that bi = a0

∑∞
k=i+1 tk/s0k → 0 as i→∞. �

Proposition 3.17. If G has linear natural orbit growth, then the action G y ∆
is uniquely ergodic.

Proof. Since any probability measure µ on ∆ is uniquely determined by µ � A, it is
already clear that there exists at most one G-invariant ergodic probability measure
on ∆. Hence it is enough to show that the function m0, defined by (3.1), can be
extended to a G-invariant probability measure on ∆. We have already noted that
bi = ti+1ai+1 + bi+1; and an easy inductive argument shows that if i < j, then

bi = ti+1ai+1 + ti+2ai+2 + · · ·+ tjaj + bj ;

Since limj→∞ bj = 0, it follows that bi =
∑
j>i tjaj . It is now clear that m0 is a

pre-measure on A. By the Carathéodory Extension Theorem, m0 can be extended
to a probability measure m on ∆; and since m0 is G-invariant, it follows that m is
also G-invariant. �

It is easily checked that the stabilizer distribution of the action G y ( ∆,m )
does not depend on the expression of G as the union of a strictly increasing chain of
finite alternating groups. (Once again, this is clear in the case when G is expressed
as the union of a chain of finite alternating groups G′i = Alt(∆ji) for some strictly
increasing sequence ( ji | i ∈ N ) of natural numbers; and the general case follows
easily.) From now on, we will refer to Gy ( ∆,m ) as the canonical ergodic action.
By Corollary 2.5, the action G y ( ∆r,m⊗r ) is ergodic for all r ≥ 1, and hence
the corresponding stabilizer distributions νr are ergodic IRS of G. We are now in
a position to state the second of the main results of this paper.

Theorem 3.18. If G is an L(Alt)-group with linear natural orbit growth, then the
ergodic IRS of G are { δ1, δG } ∪ { νr | r ∈ N+ }.

We are now ready to present the proof of Theorem 1.6. So suppose that G is
an L(Alt)-group with G � Alt(N) and that G y (Z, µ ) is an ergodic action. Let
ν be the corresponding stabilizer distribution and let χ(g) = µ( FixZ(g) ) be the
associated character. By Theorem 3.4, if G does not have almost diagonal type,
then ν ∈ { δ1, δG }, and so χ ∈ {χreg, χcon }, and it follows that χ is indecomposable.
Hence we can suppose that G � Alt(N) has almost diagonal type; and so Theorem
1.6 is a consequence of the following result.

Corollary 3.19. If G � Alt(N) has almost diagonal type and G y (Z, µ ) is an
ergodic action, then the associated character χ(g) = µ( FixZ(g) ) is indecomposable.

Proof. Let ν be the stabilizer distribution of the ergodic action Gy (Z, µ ). Then,
as above, we can suppose that ν 6= δ1, δG.

First suppose that G has linear natural orbit growth. Then ν = νr is the
stabilizer distribution of the ergodic action Gy ( ∆r,m⊗r ) for some r ≥ 1, where
Gy ( ∆,m ) is the canonical ergodic action. Let x̄ = (x1, · · ·xr) ∈ ∆r and let

Gx̄ = { g ∈ G | g · x` = x` for 1 ≤ ` ≤ r }

be the corresponding stabilizer. Then it is easily checked that

Fix∆(Gx̄) = {x` | 1 ≤ ` ≤ r }.
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Suppose that g ∈ NG(Gx̄) r H. Then g permutes the the elements of the set
Fix∆(Gx̄) nontrivially, and hence there exist 1 ≤ ` < m ≤ r such that g · x` = xm,
and this implies that the sequences x`, xm are eventually equal. It follows that Gx̄
is self-normalizing for m⊗r-a.e. x̄ ∈ ∆r, and this implies that Gz is self-normalizing
for µ-a.e. z ∈ Z. Applying Vershik [19], it follows that χ is indecomposable.

Hence we can suppose that G has sublinear natural orbit growth. Express G =⋃
i∈NGi as an almost diagonal limit of finite alternating groups Gi = Alt(∆i). Since

G � Alt(N), we can suppose that si+1 > 1 for all i ∈ N. For each ` ∈ N, define the

subsets Σ`j ⊆ ∆j and subgroups G(`)j = Alt(Σ`j) for j ≥ ` inductively as follows:

• Σ`` = ∆`;
• Σ`j+1 = ∆j+1 r Fix∆j+1

(G(`)j).

LetG(`) =
⋃
`≤j∈NG(`)j . Then it is easily checked that if ` < m, thenG(`) 6 G(m)

and that G =
⋃
`∈NG(`).

Claim 3.20. G(`) has linear natural orbit growth for all ` ∈ N.

Proof. For each i ≥ `, let n`i = |Σ`i |. Note that if i ≥ `, then G(`)i has si+1 natural
orbits on Σ`i+1 and that

n`i+1 ≤ si+1n
`
i + ei+1.

It follows that if ` ≤ i < j, then

n`j ≤ sijn`i + s0j

j∑
k=i+1

ek/s0k ≤ sijn`i + s0jγi = sij(n
`
i + s0iγi ).

Thus n`j/sij ≤ n`i + s0iγi and it follows that limj→∞ sij/n
`
j > 0. �

In particular, it follows that each G(`) is a proper subgroup of G. For each
` ∈ N, let G(`) y ( ∆`,m` ) be the canonical ergodic action and for each r ∈ N+,
let ν(`)r be the stabilizer distribution of G(`) y ( ∆r

` ,m
⊗r
` ). Let νG(`) be the

IRS of G(`) arising from the G(`)-equivariant map SubG → SubG(`) defined by
H 7→ H∩G(`). Then Theorem 3.18 implies that there exist α(`), β(`), γ(`)r ∈ [ 0, 1 ]
with α(`) + β(`) +

∑
r∈N+ γ(`)r = 1 such that

(3.2) νG(`) = α(`)δ1 + β(`)δG(`) +
∑
r∈N+

γ(`)rν(`)r.

Recall that ν 6= δ1, δG. Thus (3.2), together with the analysis in the second
paragraph of this proof, implies that for ν-a.e. H ∈ SubG, there exists an integer
`H such that H ∩G(`) is a (proper) self-normalizing subgroup of G for all ` ≥ `H ,
and this implies thatH is also self-normalizing. It follows thatGz is self-normalizing
for µ-a.e. z ∈ Z; and by Vershik [19], this implies that χ is indecomposable. �

For later use, we record the following recognition theorem, which will play a role
in the proofs of Theorems 3.4 and 3.18.

Theorem 3.21. Suppose that G is an L(Alt)-group with linear natural orbit growth
and that ν is an ergodic IRS of G. If there exists a constant s ≥ 1 and an expression
G =

⋃
i∈NG

′
i of G as a union of finite alternating groups G′i = Alt(∆′i) such that for

ν-a.e. H ∈ SubG, for all but finitely many i ∈ N, there exists an integer 1 ≤ ri ≤ s
and a subset Ui ∈ [ ∆′i ]ri such that Hi = H ∩ G′i = Alt(∆′i r Ui), then ν = νr for
some 1 ≤ r ≤ s.
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Proof. In order to simplify notation, we will write ∆i instead of ∆′i. (This is
harmless, since we have already noted that the stabilizer distribution of the action
G y ( ∆,m ) does not depend on the expression of G as the union of a strictly
increasing chain of finite alternating groups.)

For each i ∈ N and 1 ≤ t ≤ s, let pit be the ν-probability that there exists
Ui ∈ [∆i]

t such that Hi = Alt(∆irUi). By Lemma 3.16, since G has linear natural
orbit growth, we have that limj→∞ bj = 0, where

bj = lim
k→∞

(nk − sjknj)
nk

.

It follows that for all i ∈ N, if j > i is sufficiently large, then bj is sufficiently small
so that there exists k > j such that

t=s∑
t=1

pkt

[
1−

(
sjknj
t

)(
nk
t

) ] ≤ (1

2

)i+1

.

Hence we can inductively define a sequence of integers ki such that

t=s∑
t=1

pki+1t

[
1−

(skiki+1
nki

t

)(nki+1

t

) ]
≤
(

1

2

)i+1

.

Let Φki+1
be the union of the skiki+1

natural Gki-orbits on ∆ki+1
. Then, applying

the Borel-Cantelli Lemma, it follows that for ν-a.e. H ∈ SubG, for all but finitely
many i ∈ N, there exists a subset Uki+1

⊆ Φki+1
of cardinality rki+1

such that
Hki+1 = Alt(∆ki+1 r Uki+1). Furthermore, by ergodicity, there exists a constant
1 ≤ r ≤ s such that r = lim inf rki for ν-a.e. H ∈ SubG. Suppose that H ∈ SubG
is such a ν-generic subgroup and that Uki+1

⊆ Φki+1
is a subset of cardinality

rki+1
= r such that Hki+1

= Alt(∆ki+1
rUki+1

). Using the fact that Uki+1
⊆ Φki+1

,
it follows that there exists a subset U ′ki ⊆ ∆ki such that rki ≤ |U ′ki | ≤ |Uki+1

| = r
and Alt(∆ki r U ′ki) 6 Hki . Consequently, it follows that ki = r for all but finitely
many i ∈ N.

Definition 3.22. Let Sr be the standard Borel space of subgroups H 6 G such
that for all but finitely many i ∈ N, there exists a subset Uki ∈ [ ∆ki ]r such that
Hki = Alt(∆ki r Uki).

Then we have shown that the ergodic IRS ν concentrates on Sr. Since the
stabilizer distribution νr of Gy ( ∆r,m⊗r ) also concentrates on Sr, the following
claim completes the proof of Theorem 3.21.

Claim 3.23. The action Gy Sr is uniquely ergodic.

Proof of Claim 3.23. (The following argument is essentially identical to the proof
of Thomas-Tucker-Drob [17, Proposition 6.8].) It is enough to show that if µ is an
ergodic probability measure on Sr and B ⊆ SubG is a basic clopen subset, then
µ(B) = νr(B). Let B = {H ∈ SubG | H ∩G` = L }, where ` ∈ N and L 6 G` is a
subgroup. By the Pointwise Ergodic Theorem, there exists H ∈ Sr such that

µ(B) = lim
i→∞

| { g ∈ Gi | gHg−1 ∈ B } |/|Gi|

= lim
i→∞

| { g ∈ Gi | gHig
−1 ∩G` = L } |/|Gi|

= lim
i→∞

| { g ∈ Gki | gHkig
−1 ∩G` = L } |/|Gki |.
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Similarly, there exists H ′ ∈ Sr such that

σr(B) = lim
i→∞

| { g ∈ Gki | gH ′kig
−1 ∩G` = L } |/|Gki |.

Since H, H ′ ∈ Sr, there exists i0 ∈ N such that Hki and H ′ki are conjugate in Gki
for all i ≥ i0 and this implies that

lim
i→∞

| { g ∈ Gki | gHkig
−1 ∩G` = L } |/|Gki |

= lim
i→∞

| { g ∈ Gki | gH ′kig
−1 ∩G` = L } |/|Gki |.

�

�

Finally recall that if G is a countable group and χ ∈ F(G) is a character, then
the corresponding proper 2-sided ideal Iχ of the group CG is defined by

Iχ = {x ∈ C(G) | χ(g x) = 0 for all g ∈ G }.

As explained in Section 1, the following result exhibits a counterexample to Zalesskĭi
[23, Conjecture 1.24] and also answers Zalesskĭi [23, Question 5.12].

Proposition 3.24. There exists an L(Alt)-group G such that:

(i) The augmentation ideal ω(CG) is the only nontrivial proper 2-sided ideal
of CG.

(ii) G has a nontrivial ergodic IRS.
(iii) G has infinitely many indecomposable characters χ such that Iχ = { 0 }.

Proof. Define Gi = Alt(∆i) and si+1 inductively as follows.

• ∆0 = { 0, 1, 2, 3, 4 };
• ∆i+1 = {σ ̂k | σ ∈ ∆i, 0 ≤ k < si+1 } tGi, where si+1 = 2i |Gi|;

and the embedding ϕi : Alt(∆i)→ Alt(∆i+1) is defined by

• ϕi(g)(σ ̂k) = g(σ)̂k for each σ ∈ ∆i and 0 ≤ k < si+1;
• ϕi(g)(h) = g h for each h ∈ Gi.

Let G =
⋃
i∈NGi. By construction, if i < j, then Gi has a regular orbit on ∆j .

Hence, by Zalesskĭi [22, Lemma 10], the augmentation ideal is the only nontrivial
proper 2-sided ideal of CG. Also if i < j, then sij is clearly the number of natural
orbits of Gi on ∆j . Furthermore, an easy induction shows that if i < j, then

|∆j | = sij |∆i|+
j−2∑
k=i

sk+1j |Gk|+ |Gj−1|

and hence

nj
sij

= |∆i|+
j−2∑
k=i

sk+1j |Gk|
sij

+
|Gj−1|
sij

≤ |∆i|+
j−1∑
k=i

|Gk|
sk+1

= |∆i|+
j−1∑
k=i

1

2k
< |∆i|+ 2.
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It follows that ai = limj→∞ sij/nj > 0 and thus G has linear natural orbit growth.
Let Gy ( ∆,m ) be the canonical ergodic action. Then for each r ≥ 1,

χr(g) = m⊗r( Fix∆r (g) )

is an indecomposable character of G; and it is easily checked that if r 6= s, then
χr 6= χs. Since χr 6= χcon, it follows that Iχr 6= ω(CG) and so Iχr = { 0 }. �

4. Sublinear natural orbit growth

In this section, we will discuss the ergodic IRSs of the L(Alt)-groups G of almost
diagonal type such that G has sublinear natural orbit growth. Examining the list
of ergodic IRSs in the statement of Theorem 3.18, we see that G =

⋃
i∈NGi is an

L(Alt)-group with linear natural orbit growth and ν 6= δ1, δG is an ergodic IRS,
then ν concentrates on the subspace of subgroups H ∈ SubG such that there exists
a fixed integer r ≥ 1 such that for all but finitely many i ∈ N, there exists a subset
Σi ⊆ ∆i of cardinality r such that:

• H ∩Gi = Alt(∆i r Σi); and
• Σi+1 is contained in the union of the natural Gi-orbits on ∆i.

As is suggested by the proof of Corollary 3.19, a similar result holds if G =
⋃
i∈NGi

is an almost diagonal limit with sublinear natural orbit growth, except that in this
case:

• di = |Σi| → ∞ as i→∞; and
• Σi+1 is contained in the union of the natural and trivial Gi-orbits on ∆i+1.

In order to simplify notation, we will work with the G-invariant probability mea-
sures on the space of corresponding sequences of subsets ( Σi ) rather than directly
with the IRSs on SubG. Of course, such a measure can be identified with a corre-
sponding IRS via the map

( Σi ) 7→ H =
⋃

Alt(∆i r Σi).

Throughout this section, we will suppose that G =
⋃
i∈NGi is an almost diagonal

limit of the finite alternating groups Gi = Alt(∆i). Initially we will not assume
that G has sublinear natural orbit growth. Let Σ consist of the infinite sequences
of sets ( Σi )i≥i0 for some i0 ∈ N such that the following conditions are satisfied for
all i ≥ i0

• Σi ⊆ ∆i;
• Alt(∆i+1 r Σi+1) ∩Gi = Alt(∆i r Σi);
• Σi+1 is contained in the union of the natural and trivial Gi-orbits on ∆i+1;
• if i0 > 0, then Alt(∆i0rΣi0)∩Gi0−1 does not have the form Alt(∆i0−1rU)

for any subset U ⊆ ∆i0−1.

Then the natural action of G on Σ corresponds to the conjugacy action of G on the
subspace of subgroups {

⋃
i≥i0 Alt(∆i r Σi) | ( Σi )i≥i0 ∈ Σ }.

Remark 4.1. For later use, note that if ( Σi )i≥i0 ∈ Σ and i0 ≤ i < j, then
|Σi| ≤ |Σj |; and if |Σi| = |Σj |, then Σj is contained in the union of the natural
Gi-orbits on ∆j .

Fix some β0 ∈ ( 0,∞ ) and let γ0 = β0 τ = β0

∑∞
i=1 ei/s0i. For each i ∈ N, let

• βi+1 = βi/si+1 = β0/s0i+1; and
• γi+1 = γi − βiei+1/si+1 = β0

∑∞
j=i+2 ej/s0j .
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For each i ∈ N and X ⊆ ∆i, let Σ(X) be the set of sequences ( Σj )j≥j0 ∈ Σ for
some j0 ≤ i such that Σi = X. Then the sets Σ(X) form a clopen basis for a locally
compact topology on Σ. First define µβ0

on the basic clopen sets by

(4.1) µβ0
( Σ(X) ) =

1

eβini+γi
( eβi − 1 )|X|.

Note that (4.1) can be rewritten as:

(4.2) µβ0( Σ(X) ) =
1

eγi

(
1− 1

eβi

)|X|(
1

eβi

)ni−|X|
.

Thus, modulo the “correction factor” 1/eγi , the probability that Σi = X is simply
that given by the binomial distribution when the probability of selecting a point
x ∈ ∆i is pi = 1− (1/eβi).

Let A be the algebra of Borel subsets of Σ generated by the basic clopen sets
Σ(X). Note that if A ∈ A, then there exists i ∈ N and S ⊆ P(∆i) such that either:

(a) A =
⊔
{Σ(X) | X ∈ S }, or

(b) A =
⊔
{Σ(X) | X ∈ S } t ( ΣrBi ), where Bi =

⊔
{Σ(X) | X ∈ P(∆i) }.

We next extend µβ0
to the algebra A by defining

µβ0(A) =

{∑
X∈S µβ0

( Σ(X) ), if (a) holds;∑
X∈S µβ0

( Σ(X) ) + ( 1− (1/e)γi), if (b) holds.

We claim that µβ0
is a pre-measure on A. Of course, we must first check that µβ0

is well-defined. To see this, fix some i ∈ N and for each X ⊆ ∆i, let EX be the
collection of subsets Y ⊆ ∆i+1 such that Alt(∆i+1 r Y ) ∩ Gi+1 = Alt(∆i r X)
and Y is contained in the union of the natural and trivial Gi-orbits on ∆i+1. We
will prove by induction on ` = |X| that µβ0(Σ(X)) =

∑
Y ∈EX µβ0(Σ(Y )). First

suppose that ` = 0. Then

µβ0
(Σ(∅)) =

1

eβini+γi
.

Also Y ∈ E∅ if and only if Y is a subset of the trivial Gi-orbits on ∆i+1. Thus

µβ0(E∅) =
1

eβi+1ni+1+γi+1

fi+1∑
t=0

(
fi+1

t

)
( eβi+1 − 1 )t

=
1

eβi+1ni+1+γi+1
eβi+1fi+1

=
1

eβi+1(ni+1−fi+1)+γi+1
.

By definition, we have that

βi+1(ni+1 − fi+1) + γi+1 =
βi
si+1

(si+1ni + ei+1) + γi −
βiei+1

si+1
= βini + γi.

Hence the result holds when ` = 0. Suppose inductively that the result holds for
` ≥ 0 and let X ⊆ ∆i with |X| = `+ 1. Then

µβ0
( Σ(X) ) =

1

eβini+γi
( eβi − 1 )`+1.
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Write X = X0 ∪ {x }, where |X0| = `. Then Y ∈ EX if and only if Y = Y0 t Z,
where Y0 ∈ EX0

and Z ∈ E{ x }. Thus

µβ0
(EX) =

∑
Y0∈EX0

µβ0
(Σ(Y0))

si+1∑
t=1

(
si+1

t

)
( eβi+1 − 1 )t

=
1

eβini+γi
( eβi − 1 )`( eβi+1si+1 − 1 )

=
1

eβini+γi
( eβi − 1 )`+1.

Thus µβ0(A) is well-defined if A =
⊔
{Σ(X) | X ∈ S } for some S ⊆ P(∆i). Also,

since

µβ0
(Bi) =

1

eβini+γi

ni∑
`=0

(
ni
`

)
( eβi − 1 )` =

1

eγi
,

it follows that µβ0(A) is well-defined if A =
⊔
{Σ(X) | X ∈ S } t ( ΣrBi ); and it

also follows that µβ0(Σ) = 1. Finally to check that µβ0 is σ-additive, it is enough
to show that for all i ∈ N,

∞∑
j=i

µβ0
(Bj+1 rBj) = µ(ΣrBi) = 1− (1/e)γi .

To see this, note that if k > i, then

k∑
j=i

µβ0
(Bj+1 rBj) =

k∑
j=i

[ (1/e)γj+1 − (1/e)γj ] = (1/e)γk+1 − (1/e)γi ;

and since γk+1 = β0

∑∞
j=k+1 ej+1/s0j+1 → 0 as k →∞, it follows that

k∑
j=i

µβ0
(Bj+1 rBj)→ 1− (1/e)γi

as k →∞. This completes the proof that µβ0
is a pre-measure on A. Clearly µ is

G-invariant. Hence, by the Carathéodory Extension Theorem, µβ0
can be extended

to a G-invariant probability measure µβ0 on Σ.

Theorem 4.2. If G =
⋃
i∈NGi is an almost diagonal limit of finite alternating

groups and β0 ∈ ( 0,∞ ), then the action Gy ( Σ, µβ0 ) is ergodic if and only if G
has sublinear natural orbit growth.

We will begin with the easy direction in Theorem 4.2.

Proposition 4.3. If G has linear natural orbit growth, then Gy ( Σ, µβ0 ) is not
ergodic.

Proof. If G has linear natural orbit growth, then

lim
i→∞

βini + γi = lim
i→∞

β0
ni
s0i

+ γi =
β0

a0
> 0.

Hence if σ ∈ Σ is the sequence with constant value ∅ and X0 = {σ }, then

µβ0
(X0) = lim

i→∞

1

eβini+γi
=

1

eβ0/a0
.

Since X is a G-invariant Borel subset with 0 < µβ0
(X) < 1, it follows that the

action Gy ( Σ, µβ0
) is not ergodic. �
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Remark 4.4. If G has linear natural orbit growth, then we can calculate the
ergodic decomposition of the action G y ( Σ, µβ0

) as follows. Let λ = β0/a0. For
each r ≥ 0, if Xr ⊆ Σ is the Borel subset consisting of the sequences ( Σj )j≥j0 such
that |Σj | = r for all but finitely many j ≥ j0, then

µβ0
(Xr) =

1

eλ
λr

r!
.

To see this, note that

µβ0
(X1) = lim

j→∞

1

βjnj + γj
· nj(e

β0
nj
s0j

1
nj − 1) =

1

eλ
· λ,

and that if r ≥ 2, then

µβ0
(Xr) = lim

j→∞

1

βjnj + γj

(
nj
r

)
(e
β0

nj
s0j

1
nj − 1)r

= lim
j→∞

1

βjnj + γj

nrj
r!

(e
β0

nj
s0j

1
nj − 1)r

=
1

eλ
λr

r!
.

If we identify µβ0 with the corresponding IRS of G, then Xr corresponds to the IRS
νr of Theorem 3.18. Thus, writing δG = ν0, we obtain the ergodic decomposition:

µβ0
=

1

eλ

∞∑
r=0

λr

r!
νr.

For the remainder of this section, we will suppose that G has sublinear natural
orbit growth. Here the analysis splits into two cases depending on whether or
not G ∼= Alt(N); equivalently, on whether or not si+1 = 1 and ei+1 = 0 for all
but finitely many many i ∈ N. First suppose that G ∼= Alt(N). In order to
simplify notation, we will suppose that si+1 = 1 and ei+1 = 0 for all i ∈ N. And
we can also suppose that G = Alt(N) and that each ∆i = { 0, 1, · · · , ni − 1 }.
Let α0 = 1 − (1/eβ0) and α1 = 1/eβ0 . Let pα be the probability measure on
{ 0, 1 } defined by pα({`}) = α` and let µα be the corresponding product probability
measure on 2N. Then Alt(N) acts ergodically on ( 2N, µα ) via the shift action

( g · ξ )(n) = ξ( g−1(n) ). Let ξ
fα7→ (Σξi )i≥0 be the Alt(N)-equivariant map from 2N

to Σ defined by Σξi = { k ∈ ∆i | ξ(k) = 0 }. Then µβ0 = (fα)∗µα and it follows
that the action Alt(N) y ( Σ, µβ0 ) is ergodic. (Using the notation of Section 9, the
stabilizer distribution corresponding to µβ0

is the ergodic IRS νEαα of Alt(N).)
Hence we can suppose that G � Alt(N) and that limi→∞ βi = 0. In order to

prove that Gy ( Σ, µβ0 ) is ergodic, it is enough to find a G-invariant Borel subset
Σβ0 ⊆ Σ such that µβ0(Σβ0) = 1 and such that if m is an ergodic probability
measure on Σβ0

, then

m(Σ(X) ∩ Σβ0) = µβ0(Σ(X)).

for all X ∈
⋃
i∈N P(∆i). The definition of Σβ0 will involve the following sequence

of random variables.

Definition 4.5. For each i ∈ N, let di be the random variable on Σ defined by

di( (Σj)j≥j0 ) =

{
|Σi|, if i ≥ j0;

0, otherwise.
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In preparation for an application of Chebyshev’s inequality, we will next compute
the expectation E [di] and the variance Var(di) of the random variable di. Here
we will make use of the observation that modulo the “correction factor” 1/eγi ,
the probability that Σi = X is that given by the binomial distribution when the
probability of selecting a point x ∈ ∆i is pi = 1− (1/eβi).

Lemma 4.6. E [di] = e−γi( 1− e−βi )ni.

Proof. Using equation (4.2), we see that

E [di] = e−γinipi = e−γi( 1− e−βi )ni.

�

Lemma 4.7. Var(di) = ( eγi − 1 )E [di]
2 + e−βiE [di].

Proof. Again using equation (4.2), we see that

E [d2
i ] = e−γi [nipi + ni(ni − 1)p2

i ]

and a routine computation shows that

Var(di) = E [d2
i ]− E [di]

2

= ( eγi − 1 )E [di]
2 + e−βiE [di].

�

Proposition 4.8. There exists an increasing sequence I = ( ik | k ∈ N ) such that
limk→∞ dik/βiknik = 1 for µβ0

-a.e. (Σi)i≥i0 ∈ Σ.

Proof. Since βi = β0/s0i → 0, it follows that ( 1 − e−βi )/βi → 1. Since we also
have that γi → 0, it follows from Lemma 4.6 that

(4.3) lim
i→∞

E [di]/βini = 1.

In particular, since G has sublinear natural orbit growth and

E [di] ≈ βini = β0
ni
s0i

,

it follows that E [di] → ∞. Hence, letting σ(di) =
√

Var(di) denote the standard
deviation, applying Lemma 4.7, we see that

(4.4) lim
i→∞

σ(di)/E [di] = 0.

Combining (4.3) and (4.4), there exists an increasing sequence I = ( ik | k ∈ N )
such that for all k ∈ N,

(a) ( 1− 1/2k )βiknik ≤ E [di] ≤ ( 1 + 1/2k )βiknik and
(b) σ(dik) ≤ E [dik ]/4k.

Let Ek be the event that |dik − E [dik ]| ≥ E [dik ]/2k. Applying Chebyshev’s in-
equality, since E [dik ]/2k ≥ 2kσ(dik), it follows that P [Ek] ≤ 1/4k. Applying the
Borel-Cantelli Lemma, for µβ0

-a.e. (Σi)i≥i0 ∈ Σ, for all but finitely many k ∈ N,

( 1− 1/2k)E [dik ] ≤ dik ≤ ( 1 + 1/2k)E [dik ]

and hence
( 1− 1/2k)2 βiknik ≤ dik ≤ ( 1 + 1/2k)2 βiknik .

It follows that limk→∞ dik/βiknik = 1 for µβ0
-a.e. (Σi)i≥i0 ∈ Σ. �

Definition 4.9. Σβ0 is the set of (Σi)i≥i0 ∈ Σ such that limk→∞ dik/βiknik = 1
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Since µβ0(Σβ0) = 1, in order to show that Gy ( Σ, µβ0 ) is ergodic, it is enough
to prove the following result.

Proposition 4.10. If m is an ergodic probability measure on Σβ0
, then

m(Σ(X) ∩ Σβ0
) = µβ0

(Σ(X))

for all X ∈
⋃
i∈N P(∆i).

So suppose that m is an ergodic probability measure on Σβ0
. Then by the

Pointwise Ergodic Theorem, there exists an element (Σk)k≥k0 ∈ Σβ0 such that

(4.5) m(Σ(X) ∩ Σβ0) = lim
j→∞

1

|Gj |
|{ g ∈ Gj | g · (Σk)k≥k0 ∈ Σ(X) }|

for all X ∈
⋃
i∈N P(∆i). Fix some X ⊂ ∆i. For each j > max{ i, k0 }, let dj = |Σj |

and let

mij = sijni +

j−1∑
k=i+1

skjek + ej

= sijni + s0j

j∑
k=i+1

ek/s0k.

Then an easy induction on ` = |X| shows that

1

|Gj |
|{ g ∈ Gj | g · (Σk)k≥k0 ∈ Σ(X) }| =

∑̀
t=0

(−1)`−t
(
`

t

)(nj−mij+tsij
dj

)(
nj
dj

) ;

and a second induction using (4.5) shows that for all 0 ≤ t ≤ ni, the limit

(4.6) lim
j→∞

(
nj−mij+tsij

dj

)(
nj
dj

)
exists. We will make repeated use of the following lemma in the remaining sections
of this paper.

Lemma 4.11. Suppose that (nj)j∈N, (mj)j∈N and (dj)j∈N are sequences of natural
numbers such that the following conditions are satisfied:

(a) mj, dj ≤ nj.
(b) mj/nj → 0 and dj/nj → 0 as j →∞.

(c) limj→∞
(
nj−mj
dj

)
/
(
nj
dj

)
exists.

Then limj→∞ djmj/nj exists and

lim
j→∞

(
nj−mj
dj

)(
nj
dj

) =

(
1

e

)limj→∞ djmj/nj

.

Proof. In order to simply notation, we will write n, d, m instead of nj , dj , mj .
Note that, since(

n−m
d

)(
n
d

) =
(n−m)

n

(n−m− 1)

n− 1
· · · (n−m− d+ 1)

(n− d+ 1)
,

it follows that (
n−m− d+ 1

n− d+ 1

)d
≤
(
n−m
d

)(
n
d

) ≤
(
n−m
n

)d
,
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and hence that

(4.7)

(
1− m

n− d+ 1

)n−d+1
m

dm
n−d+1

≤
(
n−m
d

)(
n
d

) ≤
(

1− m

n

) n
m
dm
n

.

Since m
n → 0 and m

n−d+1 → 0, it follows that

(4.8)
(

1− m

n

) n
m →

(
1

e

)
and

(
1− m

n− d+ 1

)n−d+1
m

→
(

1

e

)
.

Let ε > 0. Since d
n → 0, for all but finitely many j, we have that

n− d+ 1 ≥ n− εn = ( 1− ε )n

and so

(4.9)
dm

n
≤ dm

n− d+ 1
≤ 1

( 1− ε )

dm

n
.

Combining (4.7), (4.8) and (4.9), together with the fact that limj→∞
(
n−m
d

)
/
(
n
d

)
exists, it follows that limj→∞ dm/n exists and that

lim
j→∞

(
n−m
d

)(
n
d

) =

(
1

e

)limj→∞ dm/n

.

�

We next check that Lemma 4.11 can be applied to each of the limits (4.6). First
note that if mj = mij − tsij , then

mj

nj
=
sij
nj

(ni − t) +
s0j

nj

j∑
k=i+1

ek/s0k

≤ sij
nj

(ni − t) +
s0j

nj
γj ;

and since G has sublinear natural orbit growth, this implies that mj/nj → 0. Also
note that

lim
k→∞

djk
njk

= lim
k→∞

djk
βjknjk

βjk = lim
k→∞

βjk = 0.

Hence, applying Lemma 4.11, we obtain that

(4.10) lim
j→∞

(
nj−mij+tsij

dj

)(
nj
dj

) =

(
1

e

)limk→∞ djk (mijk−tsijk )/njk

.

Lemma 4.12. For all i ∈ N and 0 ≤ t ≤ ni,

lim
k→∞

djk(mijk − tsijk)/njk = βi(ni − t) + γi.

Proof. First note that since βjtsij = tβi and

βjmij = βjsijni + βjs0j

j∑
k=i+1

ek/s0k = βini + β0

j∑
k=i+1

ek/s0k,
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it follows that limj→∞ βj(mij − tsij) = βi(ni − t) + γi. Hence, using the fact that
limk→∞ djk/βjknjk = 1, we obtain that

lim
k→∞

djk(mijk − tsijk)/njk = lim
k→∞

djk
βjknjk

βjk(mijk − tsijk)

= βi(ni − t) + γi.

�

Summing up, we have shown that if X ⊆ ∆i with |X| = `, then

m(Σ(X) ∩ Σβ0
) =

∑̀
t=0

(−1)`−t
(
`

t

)
lim
j→∞

(
nj−mij+tsij

dj

)(
nj
dj

)
=
∑̀
t=0

(−1)`−t
(
`

t

)(
1

e

)βi(ni−t)+γi
=

(
1

e

)βini+γi ∑̀
t=0

(−1)`−t
(
`

t

)
eβit(−1)`−t

=

(
1

e

)βini+γi
( eβi − 1 )`

= µβ0
(Σ(X)),

as desired. This completes the proof that the action Gy ( Σ, µβ0
) is ergodic.

Definition 4.13. Let νβ be the stabilizer distribution of the action Gy ( Σ, µβ0
).

We will next prove that the ergodic IRS νβ is independent of the particular
expression of G as an almost diagonal limit of finite alternating groups. Suppose
that K 6 F are finite subgroups of G and consider the basic clopen subset B =
{H ∈ SubG | H ∩ F = K } ⊆ SubG. Suppose that F 6 Gi0 and for every i ≥ i0,
define Si = Si(K,F ) by

Si = {X ⊆ ∆i | Alt(∆i rX) ∩ F = K }.

Then clearly

νβ0
(B) = lim

i→∞

1

eβini+γi

∑
X∈Si

( eβi − 1 )|X|

= lim
i→∞

1

eβini

∑
X∈Si

( eβi − 1 )|X|

In particular, if G is expressed as the union of a subchain of G′i = Alt(∆ji) for
some strictly increasing sequence ( ji | i ∈ N ) of natural numbers, then we obtain
the same stabilizer distribution νβ0

. Now the result follows easily from the following
result.

Lemma 4.14. Suppose that G =
⋃
i∈NG

′
i is a second expression of G as an almost

diagonal limit of finite alternating groups G′i = Alt(∆′i) and that

(4.11) ∆0 ( ∆′0 ( ∆1 ( ∆′1 ( · · · ( ∆i ( ∆′i ( · · ·

Then the chain (4.11) is also an almost diagonal limit.
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Proof. Suppose that the chain G =
⋃
i∈NG

′
i has parameters n′i, s

′
ij , e

′
i, etc. Then

τ ′ =
∑∞
i=1 e

′
i/s
′
0i < ∞. Let ∆′′2i = ∆i, let ∆′′2i+1 = ∆′i and let G′′i = Alt(∆′′i ). Let

the chain G =
⋃
i∈NG

′′
i have parameters n′′i , s′′ij , e

′′
i , etc. Then clearly we have that

s′′02i+2 = s0i+1 and s′′02i+3 = s′′01s
′
0i+1. Also by considering the inclusions

∆i ( ∆′i ( ∆i+1,

we see that ei+1 ≥ s′′2i+2e
′′
2i+1; and similarly e′i+1 ≥ s′′2i+3e

′′
2i+2. It follows that

∞∑
i=1

e′′i /s
′′
0i =

∞∑
i=0

e′′2i+1/s
′′
02i+1 +

∞∑
i=0

e′′2i+2/s
′′
02i+2

≤
∞∑
i=0

ei+1/s
′′
02i+2 +

∞∑
i=0

e′i+1/s
′′
02i+3

=

∞∑
i=0

ei+1/s0i+1 +
1

s′′01

∞∑
i=0

e′i+1/s
′
0i+1

= τ +
1

s′′01

τ ′.

�

We can now state the third of the main results of this paper.

Theorem 4.15. If G � Alt(N) has almost diagonal type and sublinear natural
orbit growth, then the ergodic IRSs of G are { δ1, δG } ∪ { νβ0

| β0 ∈ ( 0,∞ ) }.
In Section 9, we will see that Theorem 4.15 is false if G ∼= Alt(N).

5. Groups of almost diagonal type

In Section 3, we proved that an L(Alt)-group G has linear natural orbit growth
if and only if there exists a G-invariant ergodic probability measure on ∆. In this
section, we will prove a corresponding characterization of the almost diagonal limits
of finite alternating groups. (This characterization will play a key role in our proof
of the classification of the ergodic IRSs of the L(Alt)-group.) Throughout this
section, suppose that G =

⋃
i∈NGi is the union of the strictly increasing chain of

finite alternating groups Gi = Alt(∆i) and that si+1 > 1 for all i ∈ N. Let Σ be
the spaces of sequences defined in Section 4.

Theorem 5.1. With the above hypotheses, the following statements are equivalent:

(i) G =
⋃
i∈NGi is an almost diagonal limit.

(ii) There exists a nonatomic G-invariant ergodic probability measure on Σ.

In Section 4, we saw that if G =
⋃
i∈NGi is an almost diagonal limit, then there

exists a nonatomic G-invariant ergodic on Σ. Conversely, let ν be a nonatomic
G-invariant ergodic probability measure on Σ. Suppose that G is not an almost
diagonal limit; i.e. that τ =

∑∞
i=1 ei/s0i = ∞. Then, applying Lemma 3.12, it

follows that G has sublinear natural orbit growth.
Applying the Pointwise Ergodic Theorem, there exists ( Σj )j≥j0 ∈ Σ such that

for all i ∈ N and X ⊆ ∆i,

(5.1) ν( Σ(X) ) = lim
j→∞

1

|Gj |
|{ g ∈ Gj | g · ( Σi )j≥j0 ∈ Σ(X) }|.

Let |Σj | = dj .
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Claim 5.2. limj→∞ dj =∞.

Proof. Suppose not. Then, by Remark 4.1, there exist integers d ≥ 0 and j1 ≥ j0
such that dj = d for all j ≥ j1. Suppose that X ⊆ ∆i with |X| = ` ≥ 1 and that
ν( Σ(X) ) 6= 0. Let j ≥ max{ i, j1 } and let Φij be the union of the natural orbits
of Gi on ∆j . If g ∈ Gj satisfies g · ( Σi )j≥j0 ∈ Σ(X), then we must have that
|g(Σj) ∩ Φij | ≥ `. Hence (5.1) implies that ` ≤ d and that

ν( Σ(X) ) ≤ lim
j→∞

d∑
t=`

(
sijni
t

)(
nj−mj
d−t

)(
nj
d

)
= lim
j→∞

d∑
t=`

1(
d
t

) (
sijni
t

)(
nj−(d−t)

t

) (nj−mjd−t
)(

nj
d−t
)

≤ lim
j→∞

d∑
t=`

(
sijni
t

)(
nj−(d−t)

t

) .
Since G has sublinear natural orbit growth, it follows that if ` ≤ t ≤ d, then

lim
j→∞

(
sijni
t

)(
nj−(d−t)

t

) = 0.

But this means that ν( Σ(X) ) = 0, which is a contradiction. Thus no such X ⊆ ∆i

exists and it follows that ν concentrates on the G-invariant sequence σ ∈ Σ with
constant value ∅, which is a contradiction. �

Arguing as in Section 4, we see that if X ⊆ ∆i with |X| = `, then

(5.2) ν( Σ(X) ) = lim
j→∞

∑̀
t=0

(−1)`−t
(
`

t

)(nj−mij+tsij
dj

)(
nj
dj

) ;

and that the limit

lim
j→∞

(
nj−mij+tsij

dj

)(
nj
dj

)
exists for all 0 ≤ t ≤ ni. We will now work towards verifying that the hypotheses
of Lemma 4.11 are satisfied. For each 0 ≤ t ≤ ni, let mitj = mij − tsij . Then

lim
j→∞

mitj = lim
j→∞

[ (ni − t)sij + s0j

j∑
k=i+1

ek/s0k ] =∞.

Claim 5.3. If i ∈ N and 0 ≤ t ≤ ni, then limj→∞mitj/nj = 0.

Proof. Suppose that there exist i, t with 0 ≤ t ≤ ni such that limj→∞mitj/nj 6= 0.
Since

mitj

nj
= (ni − t)

sij
nj

+
s0j

nj

j∑
k=i+1

ek/s0k

and limj→∞ sij/nj = 0, it follows that

lim sup
j→∞

mitj

nj
= lim sup

j→∞

s0j

nj

j∑
k=i+1

ek/s0k;
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and hence there exists a constant 0 < c ≤ 1 such that lim supj→∞mitj/nj = c for
all 0 ≤ t ≤ ni. Note that if ` < m, then

s0j

nj

j∑
k=`+1

ek/s0k =
s0j

nj

m∑
k=`+1

ek/s0k +
s0j

nj

j∑
k=m+1

ek/s0k

and that limj→∞
s0j
nj

∑m
k=`+1 ek/s0k = 0. It follows that lim supj→∞mitj/nj = c

for all i, t with 0 ≤ t ≤ ni. Since(
nj−mitj

dj

)(
nj
dj

) ≤
(
nj −mitj

nj

)dj
=

(
1− mitj

nj

)dj
and limj→∞ dj =∞, it follows that

lim
j→∞

(
nj−mitj

dj

)(
nj
dj

) = lim
j→∞

(
nj−mij+tsij

dj

)(
nj
dj

) = 0

for all i, t with 0 ≤ t ≤ ni. But then (5.2) implies that ν( Σ(X) ) = 0 for all
X ∈

⋃
i∈N P(∆i), which is a contradiction. �

Claim 5.4. limj→∞ dj/nj = 0.

Proof. Suppose not. Then there exists a constant 0 < c ≤ 1 and an infinite subset
J ⊆ N such that dj/nj ≥ c for all j ∈ J . Let i, t with 0 ≤ t ≤ ni. Since
limj→∞mitj/nj = 0, there exists an cofinite subset Jit ⊆ J such that(

nj−mitj
dj

)(
nj
dj

) ≤
(

1− mitj

nj

)dj
≤
(

1− mitj

nj

) nj
mitj

dj
nj
mitj

≤
(

1

2

)cmitj
for all j ∈ Jit. Since limj→∞mitj =∞, it follows that

lim
j→∞

(
nj−mitj

dj

)(
nj
dj

) = lim
j→∞

(
nj−mij+tsij

dj

)(
nj
dj

) = 0

for all i, t with 0 ≤ t ≤ ni; and, as in the proof of Claim 5.3, this is impossible. �

Thus the hypotheses of Lemma 4.11 are satisfied; and so for all integers i, t with
0 ≤ t ≤ ni, we have that

lim
j→∞

(
nj−mij+tsij

dj

)(
nj
dj

) =

(
1

e

)λti
,

where λti = limj→∞ dj(mij − tsij)/nj . Since τ =
∑∞
i=1 ei/s0i =∞ and

djmij/nj =
nidjsij
nj

+
djs0j

nj

j∑
k=i+1

ek/s0k

=

[
ni
s0i

+

j∑
k=i+1

ek/s0k

]
djs0j

nj
,

it follows that limj→∞ djs0j/nj = 0 and hence

λ0i = lim
j→∞

djmij/nj = lim
j→∞

djs0j

nj

j∑
k=i+1

ek/s0k.
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Also notice that

λ0i = lim
j→∞

djs0j

nj

[
ei+1/si+1 +

j∑
k=i+2

ek/s0k

]

= lim
j→∞

djs0j

nj

j∑
k=i+2

ek/s0k

= λ0i+1.

Thus there exists a constant λ such that λ0i = λ for all i ∈ N. Next notice that if
0 ≤ t ≤ ni, then

λ`i = lim
j→∞

[
djmij/nj −

t

s0i
djs0j/nj

]
= lim
j→∞

djmij/nj

= λ.

Hence for all i ∈ N and X ⊆ ∆i, if |X| = `, then

ν( Σ(X) ) =
∑̀
t=0

(−1)`−t
(
`

t

)(
1

e

)λ
=

{(
1
e

)λ
, if ` = 0;

0, otherwise.

It follows that λ = 0 and that ν concentrates on the sequence σ ∈ Σ with constant
value ∅, which contradicts the assumption that ν is nonatomic. This completes the
proof of Theorem 5.1.

Finally we record the following recognition theorem, which will be used in the
proof of Theorem 4.15.

Theorem 5.5. If G has sublinear natural orbit growth and µ is a nonatomic G-
invariant ergodic probability measure on Σ, then there exists β0 ∈ ( 0,∞ ) such that
the corresponding stabilizer distribution is νβ0

.

Proof. Applying the Pointwise Ergodic Theorem, there exists ( Σj )j≥j0 ∈ Σ such
that for all i ∈ N and X ⊆ ∆i,

ν( Σ(X) ) = lim
j→∞

1

|Gj |
|{ g ∈ Gj | g · ( Σi )j≥j0 ∈ Σ(X) }|.

Let |Σj | = dj . Then, arguing as in the proof of Theorem 5.1, we see that if if
X ⊆ ∆i with |X| = `, then

ν( Σ(X) ) = lim
j→∞

∑̀
t=0

(−1)`−t
(
`

t

)(nj−mij+tsij
dj

)(
nj
dj

)
= lim
j→∞

∑̀
t=0

(−1)`−t
(
`

t

)(
1

e

)λti
,

where λti = limj→∞ dj(mij − tsij)/nj ; and we also see that

β0 = lim
j→∞

djs0j/nj 6= 0.
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Note that

λti = lim
j→∞

dj [ (ni − t)sij + s0j

j∑
k=i+1

ek/s0k ]/nj

= lim
j→∞

[
1

s0i

djs0j

nj
(ni − t) +

djs0j

nj

j∑
k=i+1

ek/s0k ]

=
1

s0i
β0(ni − t) + β0

∞∑
k=i+1

ek/s0k

= βi(ni − t) + γi,

where βi = β0/s0i and γi = β0

∑∞
k=i+1 ek/s0k. It follows that µ = µβ0

. �

6. Normalized permutation characters of finite alternating groups

In this section, we will present a series of lemmas concerning upper bounds for
the values of the normalized permutation characters of various actions Alt(∆) y Ω
of the finite alternating group Alt(∆). No attempt will be made to prove the best
possible results: we will be content to prove easy results which are good enough to
serve our purposes in the proofs of Theorems 3.4 and 3.18.

Suppose that G � Alt(N) is an L(Alt)-group; say, G =
⋃
i∈NGi is the union

of the increasing chain of finite alternating groups Gi = Alt(∆i). Let ν 6= δ1,
δG is an ergodic IRS of G. By Creutz-Peterson [2, Proposition 3.3.1], we can
suppose that ν is the stabilizer distribution of an ergodic action G y (Z, µ ). Let
χ(g) = µ( FixZ(g) ) be the corresponding character. For each z ∈ Z and i ∈ N, let
Ωi(z) = { g · z | g ∈ Gi }. Then, by Theorem 2.1, for µ-a.e. z ∈ Z, for all g ∈ G, we
have that

µ( FixZ(g) ) = lim
i→∞

| FixΩi(z)(g) |/|Ωi(z) |.

Fix such an element z ∈ Z and let H = {h ∈ G | h · z = z } be the corresponding
point stabilizer. Clearly we can suppose that z has been chosen so that if g ∈ H,
then χ(g) > 0.

For each i ∈ N, let Hi = H ∩ Gi. Then, examining the list of ergodic IRSs in
the statement of Theorem 3.4, we see that it is necessary to show that there exists
a fixed integer r ≥ 1 such that for all but finitely many i ∈ N, there is a subset
Ui ⊆ ∆i of cardinality r such that Hi = Alt(∆i r Ui). We will eventually show
that if this is not the case, then there exists an element g ∈ H such that

µ( FixZ(g) ) = lim
i→∞

| gGi ∩Hi |/| gGi | = | {s ∈ Gi | sgs−1 ∈ Hi }|/|Gn| = 0,

which is a contradiction. For example, Lemma 6.1 will play a key role in the proof
that there do not exist infinitely many i ∈ N such that Hi acts primitively on ∆i;
and Lemmas 6.3 and 6.5 will play key roles in the proof that there do not exist
infinitely many i ∈ N such that Hi acts imprimitively on ∆i.

For the remainder of this section, let ∆ = { 1, 2, · · · , n }.

Lemma 6.1. For each prime p and real number a > 0, there exists np,a ∈ N such
that if n ≥ np,a and

(i) g ∈ Alt(∆) is a product of b ≥ an p-cycles;
(ii) K < Alt(∆) is a proper primitive subgroup;
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then the normalized permutation character of the action Alt(∆) y Ω = Alt(∆)/K
satisfies |FixΩ(g)|/|Ω| < 1

n .

Proof. Clearly we can suppose that n has been chosen so that b ≥ an ≥ 2. In
particular, since g contains at least two p-cycles, this implies that the conjugacy
classes of g in Alt(∆) and Sym(∆) coincide and hence

|gAlt(∆)| = n!

pbb!(n− bp)!
.

Applying Stirling’s Approximation and the fact that b ≥ an, it follows that there
exist constants r, s such that

|gAlt(∆)| > r sn
nn

bb(n− bp)n−bp
> r sn

nn

nbnn−bp
≥ r sn(nn)(p−1)a.

By Praeger-Saxl [13], since K is a proper primitive subgroup of Alt(∆), it follows
that |K| < 4n. By Proposition 2.2, this implies that

|FixΩ(g)|/|Ω| = | gAlt(∆) ∩K |/| gAlt(∆) | ≤ |K |/| gAlt(∆) | ≤ 4n

r sn(nn)(p−1)a
.

The result follows easily. �

Lemma 6.2. Let Ω = [∆]` be the set of `-subsets of ∆ for some 2 ≤ ` ≤ n/2.
Suppose that g ∈ Alt(∆) has prime order p > 2 and that c = |Fix∆(g)| ≤ n/4.
Then the normalized permutation character of the action Alt(∆) y Ω satisfies:

(i) |FixΩ(g)|/|Ω| < 1
2 |Fix∆(g)|/|∆| if c ≥ 16;

(ii) |FixΩ(g)|/|Ω| < 5
n if c < 16.

Proof. First suppose that ` < p. Then FixΩ(g) = [Fix∆(g)]`. Clearly we can
suppose that c ≥ ` and since c ≤ n/4, it follows that

|FixΩ(g)|
|Ω|

=

(
c
`

)(
n
`

) =
c(c− 1) · · · (c− `− 1)

n(n− 1) · · · (n− `− 1)
≤ c(c− 1)

n(n− 1)
<

c

4n
<
|Fix∆(g)|

2|∆|
.

Next suppose that ` ≥ p > 2. Let A = {S ∈ FixΩ(g) | S ⊆ Fix∆(g) } and let
B = FixΩ(g)rA. If A 6= ∅, then

|A|
|Ω|

=

(
c
`

)(
n
`

) ≤ c(c− 1)(c− 2)

n(n− 1)(n− 2)
<

c

16n
.

For each S ∈ B, let α(S) = min{ s ∈ S | g · s 6= s }. Then, since ` > 2, it follows
that the sets

B ∪ { (S r {α(S) }) ∪ { t } | S ∈ B, t ∈ ∆r (S ∪ Fix∆(g)) }

are distinct. Note that if S ∈ B, then |S ∪ Fix∆(g)| ≤ 3n/4; and it follows that
(1 + n

4 )|B| ≤ |Ω| and so |B|/|Ω| < 4/n. If c ≥ 16, then

|FixΩ(g)|
|Ω|

<
c

16n
+

4

n
≤ c

16n
+

c

4n
<
|Fix∆(g)|

2|∆|
;

while if c < 16, then
|FixΩ(g)|
|Ω|

<
c

16n
+

4

n
<

5

n
.

�
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If P is a partition of ∆, then the subsets B ∈ P will be called the blocks of P;
and if s ∈ ∆, then [ s ]P will denote the block of P which contains s.

Lemma 6.3. Let Ω be the set of partitions P of ∆ into `-sets for some fixed divisor
` of n such that 2 ≤ ` ≤ n/2. If g ∈ Alt(∆) has prime order p > 2, then the normal-
ized permutation character of the action Alt(n) y Ω satisfies |FixΩ(g)|/|Ω| < 2/n.

Proof. Let P ∈ FixΩ(g). Then we define the integer α(P) as follows.

(a) If P contains a g-invariant block B such that g � B 6= idB , then α(P) is
the least s ∈ ∆ such that [ s ]P is g-invariant and g · s 6= s.

(b) Otherwise, α(P) is the least s ∈ ∆ such that g · s 6= s.

For each t ∈ ∆r [α(P) ]P , we define P(t) ∈ Ω to be the partition obtained from P
by replacing the block [α(P) ]P by ([α(P) ]P r {α(P) }) ∪ { t } and the block [ t ]P
by ([ t ]P r { t }) ∪ {α(P) }.

Claim 6.4. P(t) /∈ FixΩ(g).

Proof of Claim 6.4. First suppose that P contains a g-invariant block. Then clearly
g · [ t ]P(t) 6= [ t ]P(t). Also, since ` ≥ p > 2, it follows that g · [ t ]P(t) ∩ [ t ]P(t) 6= ∅.
Hence P(t) /∈ FixΩ(g).

Thus we can suppose that P does not contain a g-invariant block. For each
0 ≤ i < p, let Si = gi · [α(P) ]P . Since p > 2, there exists 0 < i < p such that
Si ∈ P(t). Since S0 = gp−i · Si /∈ P(t), it follows that P(t) /∈ FixΩ(g). �

If P, P ′ ∈ FixΩ(g) and P(t) = P ′(t′), then it is easily checked that P = P ′ and
t = t′. Thus (1 + n− `)|FixΩ(g)| ≤ |Ω| and so |FixΩ(g)|/|Ω| < 2/n. �

The following two results are routine generalizations of Lemmas 5.2 and 5.3 of
Thomas-Tucker-Drob [17].

Lemma 6.5. For any ε > 0 and 0 < a ≤ 1 and r ≥ 0, there exists an integer da,r,ε
such that if da,r,ε ≤ d ≤ (n− r)/2 and H < Alt(∆) is any subgroup such that

(i) there exists an H-invariant subset U ⊆ ∆ of cardinality r, and
(ii) H acts imprimitively on ∆r U with a proper system of imprimitivity B of

blocksize d,

then for any element g ∈ Alt(∆) satisfying | supp(g)| ≥ an,

|{ s ∈ Alt(∆) | sgs−1 ∈ H }|
|Alt(∆)|

< ε.

Lemma 6.6. For any ε > 0 and 0 < a ≤ 1, there exists an integer ra,ε such that
if ra,ε ≤ r ≤ n/2 and H < Alt(∆) is a subgroup with an H-invariant set U ⊆ ∆ of
cardinality |U | = r, then for any element g ∈ Alt(∆) satisfying | supp(g)| ≥ an,

|{s ∈ Alt(∆) | sgs−1 ∈ H}|
|Alt(∆)|

< ε.

For the sake of completeness, we will sketch the main points of the proofs of
Lemmas 6.5 and 6.6. As in Thomas-Tucker-Drob [17, Section 5], our approach will
be probabilistic; i.e. we will regard the normalized permutation character

|{s ∈ Alt(∆) | sgs−1 ∈ H}|
|Alt(∆)|
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as the probability that a uniformly random permutation s ∈ Alt(∆) satisfies
sgs−1 ∈ H. Our probability theoretic notation is standard. In particular, if E
is an event, then P [E] denotes the corresponding probability; and if N is a ran-
dom variable, then E [N ] denotes the expectation, Var[N ] denotes the variance and
σ = (Var[N ])1/2 denotes the standard deviation. The proofs of Lemmas 6.5 and
6.6 make use of the following consequence of Chebyshev’s inequality. (See Thomas-
Tucker-Drob [17, Lemma 5.1].)

Lemma 6.7. Suppose that (Nk) is a sequence of non-negative random variables
such that E [Nk] = µk > 0 and Var[Nk] = σ2

k > 0. If limk→∞ µk/σk = ∞, then
P [Nk > 0]→ 1 as k →∞.

In our arguments, it will be convenient to make use of big O notation. Recall
that if (am) and (xm) are sequences of real numbers, then am = O(xm) means
that there exists a constant C > 0 and an integer m0 ∈ N such that |am| ≤ C|xm|
for all m ≥ m0. Also if (cm) is another sequence of real numbers, then we write
am = cm +O(xm) to mean that am − cm = O(xm).

Sketch proof of Lemma 6.5. Suppose that m = r + d`, where ` ≥ 2, and that
H < Alt(∆) has an H-invariant set U ⊆ ∆ of cardinality |U | = r such that H acts
imprimitively on T = ∆r U with a proper system of imprimitivity B of blocksize
d. Let b = a/3 and suppose that g ∈ Alt(∆) satisfies | supp(g)| ≥ an = 3bn.
Then there exists a subset Z ⊆ supp(g) such that g(Z) ∩ Z = ∅ and |Z| = cn for
some b ≤ c ≤ 1/2. Fix an element z0 ∈ Z and let y0 = g(z0). Let s ∈ S be a
uniformly random permutation. If s(z0),s(y0) ∈ T , let B0, C0 ∈ B be the blocks in
B containing s(z0) and s(y0) respectively; otherwise, let B0 = C0 = ∅. Let

J(s) = {z ∈ Z r {z0} | s(z) ∈ B0 and s(g(z)) /∈ C0}.

Note that if J(s) 6= ∅, then sgs−1(B0) intersects at least two of the blocks of B and
thus sgs−1 /∈ H. Hence it is enough to show that P [ |J(s)| > 0 ] > 1 − ε for all
sufficiently large d (depending only on ε, a and r).

Since we wish to apply Lemma 6.7, we need to compute the asymptotics of the
expectation and variance of the random variable |J(s)|. Arguing as in the proof of
Thomas-Tucker-Drob [17, Lemma 5.2], it can be shown that

(6.1) E [ |J(s)| ] = cd(1− d
m ) +O(1);

and that

(6.2) E [ |J(s)| ]2 = [cd(1− d
m )]2 +O(d);

and that

(6.3) E [ |J(s)|2 ] =
[
cd(1− d

m )
]2

+O(d),

where the implied constants needed to witness the big-O inequalities are only de-
pendent on the parameter r. Combining (6.2) and (6.3) we obtain that

Var(|J(s)|) = E [ |J(s)|2 ]− E [ |J(s)| ]2 = O(d),

and hence Var(|J(s)|)1/2 = O(
√
d). Of course, (6.1) implies that d = O(E [ |J(s)| ]).

Thus there exists a constant C > 0 such that σ = Var(|J(s)|)1/2 ≤ C
√
d and

d ≤ C E [ |J(s)| ]) = Cµ for all sufficiently large d. It follows that

µ/σ ≥ C−1d/C
√
d = C−2

√
d→∞ as d→∞.
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Applying Lemma 6.7, we conclude that P [ |J(s)| > 0 ] → 1 as d → ∞. This
completes the proof of Lemma 6.5. �

Sketch proof of Lemma 6.6. Let b = a/3. Suppose that H < Alt(∆) has an H-
invariant set U ⊆ ∆ of cardinality |U | = r ≤ n/2 and that g ∈ Alt(∆) satisfies
| supp(g)| ≥ an = 3bn. Then, once again, there exists a subset Z ⊆ supp(g) such
that g(Z) ∩ Z = ∅ and |Z| = cn for some b ≤ c ≤ 1/2. Let s ∈ Alt(∆) be a
uniformly random permutation and let

I(s) = { z ∈ Z | s(z) ∈ U and s(g(z)) /∈ U }.
If I(s) 6= ∅, then U is not sgs−1-invariant and thus sg s−1 /∈ H. Hence it is enough
to show that P [ |I(s)| > 0 ] > 1− ε for all sufficiently large r (depending only on ε
and a).

Arguing as in the proof of Thomas-Tucker-Drob [17, Lemma 5.2], it can be shown
that

(6.4) E [ |I(s)| ] = cr(1− r
m ) +O(1);

and that

(6.5) E [ |I(s)| ]2 = [cr(1− r
m )]2 +O(r);

and that

(6.6) E [ |I(s)|2 ] =
[
cr(1− r

m )
]2

+O(r),

where the implied constants needed to witness the big-O inequalities are absolute. It
follows that Var(|I(s)|)1/2 = O(

√
r) and r = O(E [ |I(s)| ]); and another application

of Lemma 6.7 shows that P [ |I(s)| > 0 ]→ 1 as r →∞. �

7. Full limits of finite alternating groups

In this section, we will classify the ergodic IRSs of full limits of finite alternating
groups.

Definition 7.1. Suppose that G =
⋃
i∈NGi is the union of the strictly increasing

chain of finite alternating groups Gi = Alt(∆i).
(i) The embedding Alt(∆i) ↪→ Alt(∆i+1) is said to be full if Alt(∆i) has no trivial
orbits on ∆i+1.

(ii) G is the full limit of the finite alternating groups Gi = Alt(∆i) if each embedding
Alt(∆i) ↪→ Alt(∆i+1) is full.

Warning 7.2. A composition of two full embeddings is not necessarily full. Con-
sequently, if G =

⋃
i∈NGi is a full limit and ( ki | i ∈ N ) is a strictly increasing

sequence of natural numbers, then G =
⋃
i∈NGki is not necessarily a full limit.

The notion of a full limit is a purely technical one, introduced in order to formulate
the following special cases of Theorems 3.4 and 3.18, which will be proved in this
section.

Proposition 7.3. If G is a full limit of finite alternating groups, then G has a
nontrivial ergodic IRS if and only if G has linear natural orbit growth.

Proposition 7.4. Suppose that G is a full limit of finite alternating groups and
that G has linear natural orbit growth. Let G y ( ∆,m ) be the canonical ergodic
action; and for each r ≥ 1, let νr be the stabilizer distribution of Gy ( ∆r,m⊗r ).
Then the ergodic IRS of G are { δ1, δG } ∪ { νr | r ∈ N+ }.
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For the rest of this section, let G =
⋃
i∈NGi be the full limit of the finite

alternating groups Gi = Alt(∆i).

Lemma 7.5. Let p > 2 be an odd prime, let a = 1/(p + 1) and let np,a be the
integer given by Lemma 6.1. Suppose that |∆i0 | ≥ max{np,a, 5(p + 1) } and that
g ∈ Alt(∆i0) is an element of order p such that |Fix∆i0

(g)| ≤ |∆i0 |/(p+ 1). Then

|Fix∆i
(g)| ≤ |∆i|/(p+ 1) for all i ≥ i0.

Proof. Let i ≥ i0 and suppose that |Fix∆i
(g)| ≤ |∆i|/(p + 1). It is enough to

show that if Ω is an orbit of Alt(∆i) on ∆i+1, then |FixΩ(g)|/|Ω| ≤ 1/(p+ 1). Let
ω ∈ Ω and let H = {h ∈ Alt(∆i) | h · ω = ω } be the corresponding stablizer.
Let K be a maximal proper subgroup of Alt(∆i) such that H 6 K and let θK be
the normalized permutation character of the action Alt(∆i) y Alt(∆i)/K. Then,
applying Corollary 2.3, we have that |FixΩ(g)|/|Ω| ≤ θK(g).

First suppose that K acts primitively on ∆i. Let g be a product of ai p-cycles
when regarded as an element of Alt(∆i). Since |Fix∆i(g)| ≤ |∆i|/(p+ 1), it follows
that ai ≥ |∆i|/(p+ 1). Hence, by Lemma 6.1, we have that

θK(g) < 1/|∆i| < 1/(p+ 1).

Next suppose that K acts imprimitively on ∆i, preserving a system of imprimitivity
P of blocksize 2 ≤ ` ≤ n/2. Then Alt(∆i) y Alt(∆i)/K is isomorphic to the action
of Alt(∆i) on the set P of partitions of ∆i into `-sets. Applying Lemma 6.3, we
obtain that

θK(g) < 2/|∆i| < 1/(p+ 1).

Finally suppose that K acts intransitively on ∆i, fixing set-wise a subset S ⊆ ∆i

of size 1 ≤ ` ≤ n/2. Then Alt(∆i) y Alt(∆i)/K is isomorphic to the action of
Alt(∆i) on [∆i]

`. If ` = 1, then θK(g) = |Fix∆i(g)|/|∆i| ≤ 1/(p + 1). Hence we
can suppose that ` ≥ 2. Applying Lemma 6.2, either

θK(g) < 5/|∆i| ≤ 1/(p+ 1),

or else

θK(g) <
1

2
|Fix∆i

(g)|/|∆i| ≤ 1/2(p+ 1).

�

Corollary 7.6. lim sup |Fix∆j
(g)|/|∆j | < 1 for all 1 6= g ∈ G.

Proof. Applying Lemma 7.5, it follows that there exists an element g ∈ G of order
3 such that lim sup |Fix∆j (g)|/|∆j | ≤ 1/4. On the other hand, it is easily checked
that if ( kj | j ∈ N ) is a strictly increasing sequence of natural numbers, then
N = { g ∈ G | limj→∞ |Fix∆kj

(g)|/|∆kj | = 1 } is a normal subgroup of G. Since G

is simple, the result follows. �

For the rest of this section, suppose that ν 6= δ1, δG is an ergodic IRS of G.
Applying Creutz-Peterson [2, Proposition 3.3.1], we can suppose that ν is the sta-
bilizer distribution of an ergodic action Gy (Z, µ ). Let χ(g) = µ( FixZ(g) ) be the
corresponding character. For each z ∈ Z and i ∈ N, let Ωi(z) = { g · z | g ∈ Gi }.
Then, by Theorem 2.1, for µ-a.e. z ∈ Z, for all g ∈ G, we have that

µ( FixZ(g) ) = lim
i→∞

| FixΩi(z)(g) |/|Ωi(z) |.

Fix such an element z ∈ Z and let H = {h ∈ G | h · z = z } be the corresponding
point stabilizer. Clearly we can suppose that the element z ∈ Z has been chosen so
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that H 6= 1, G and so that χ(g) > 0 for all g ∈ H. For each i ∈ N, let Hi = H ∩Gi
and let ni = |∆i|. Clearly Gi y Ωi(z) is isomorphic to Gi y Gi/Hi.

Lemma 7.7. There exist only finitely many i ∈ N such that the action Hi y ∆i

is primitive.

Proof. Suppose that I = { i ∈ N | Hi y ∆i is primitive } is infinite. Since H 6= 1,
there exists an element g ∈ H of some prime order p. Let g ∈ Gi0 and for each
i ≥ i0, let g be a product of ai p-cycles when regarded as an element of Gi. Then,
by Corollary 7.6, there exists a constant a > 0 such that ai ≥ ani for all i ≥ i0.
Let np,a be the integer given by Lemma 6.1. Then | FixΩi(z)(g) |/|Ωi(z) | < 1/ni
for all i ∈ I such that ni ≥ np,a and it follows that

χ(g) = lim
i→∞

| FixΩi(z)(g) |/|Ωi(z) | = 0,

which is a contradiction. �

Lemma 7.8. For each integer d > 1, there exist only finitely many i ∈ N such that
Hi acts imprimitively on ∆i preserving a maximal system Bi of imprimitivity of
blocksize d.

Proof. Suppose that there exists a fixed d > 1 and an infinite subset I ⊆ N such
that for all i ∈ I, the subgroup Hi acts imprimitively on ∆i preserving a maximal
system Bi of imprimitivity of blocksize d. Then Hi is isomorphic to a subgroup of
Sym(d) wr Sym(ni/d) for each i ∈ I. Applying Stirling’s Approximation, it follows
that there exist constants c, k such that for all n,

|Sym(d) wr Sym(n/d)| < cknnn/d.

Claim 7.9. For all but finitely many i ∈ I, the induced action of Hi on Bi contains
Alt(Bi).

Proof of Claim 7.9. Suppose not and let g ∈ H be an element of some prime order
p. Let g ∈ Gi0 and for each i ≥ i0, let g be a product of ai p-cycles when regarded
as an element of Gi. Applying Corollary 7.6, there exists a constant a > 0 such
that ai ≥ ani for all i ≥ i0. And arguing as in the proof of Lemma 6.1, it follows
that there are constants r, s such that

|gGi | > r sni(nnii )(p−1)a.

Let i ∈ I and let Γi 6 Sym(Bi) be the group induced by the action of Hi on
Bi. Since Bi is a maximal system of imprimitivity, it follows that Γi is a primitive
subgroup of Sym(Bi). Hence, by Praeger-Saxl [13], if Γi does not contain Alt(Bi),
then |Γi | < 4ni . Since Hi is isomorphic to a subgroup of Sym(d) wr Γi, it follows
that

|Hi | < ( d! )ni/d4ni/d = tni ,

where t = ( d! 4 )1/d, and so

| gGi ∩Hi |
| gGi |

<
|Hi |
| gGi |

<
tni

r sni(nnii )(p−1)a

It follows that

χ(g) = lim
i→∞

| FixΩi(z)(g) |/|Ωi(z) | = lim
i→∞

| gGi ∩Hi |/| gGi | = 0,

which is a contradiction. �
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Let a = 1/6 and let n5,a be the integer given by Lemma 6.1. Let i0 ∈ I be
such that |∆i0 | ≥ max{n5,a, 24d } and such that the induced action of Hi0 on Bi0
contains Alt(Bi0). Then there exists an element g ∈ Hi0 of order 5 such that g
fixes setwise at most 4 blocks of Bi0 and so |Fix∆i0

(g)| ≤ 4 d ≤ |∆i0 |/6. Applying

Lemma 7.5, it follows that |Fix∆i(g)| ≤ |∆i|/6 for all i ≥ i0. For each i ≥ i0, let
g be a product of ai p-cycles when regarded as an element of Gi. Then it is easily
checked that ai ≥ ni/6. Hence, arguing as above, there exist constants r, s such
that

|gGi | > r sni(nnii )4/6.

Hence, if i0 ≤ i ∈ I, we have that

| gGi ∩Hi |
| gGi |

<
|Hi |
| gGi |

<
cknin

ni/d
i

r sni(nnii )4/6
.

Since 4/6 > 1/2 ≥ 1/d, it follows that χ(g) = 0, which is a contradiction. �

Lemma 7.10. There exist only finitely many i ∈ N such that the action Hi y ∆i

is transitive.

Proof. Suppose not. Then, by Lemma 7.7, for all but finitely many i ∈ N, the
subgroup Hi acts imprimitively on ∆i with a maximal system of imprimitivity Bi
of blocksize di. Furthermore, by Lemma 7.8, we have that di →∞ as i→∞. Let
1 6= h ∈ H; say, h ∈ Hi. Then, by Corollary 7.6, there exist a constant a > 0 such
that | supp∆j

(g)| ≥ a|∆j | for all j ≥ i. But then Lemma 6.5 (in the case when

r = 0) implies that

χ(g) = lim
j→∞

| {s ∈ Gj | sgs−1 ∈ Hi }|
|Gj |

= 0,

which is a contradiction. �

Lemma 7.11. There exists a constant s such that for all but finitely many i ∈ N,
there exists a unique Hi-invariant subset Ui ⊆ ∆i of cardinality 1 ≤ ri ≤ s such
that Hi induces at least Alt(Σi) on Σi = ∆i r Ui.

Proof. Combining Lemmas 7.7, 7.8 and 7.10, we see that there exists i0 ∈ N such
that Hi acts intransitively on ∆i for all i ≥ i0. For each such i, let

ri = max{ |U | : U ⊆ ∆i is Hi-invariant and |U | ≤ 1
2 |∆i| }.

Then, applying Lemma 6.6, we see that there exists s such that 1 ≤ ri ≤ s for all
i ≥ i0. Furthermore, choosing i0 so that |∆i0 | ≥ 4s, it follows that for all i ≥ i0,
there exists a unique Hi-invariant subset Ui ⊆ ∆i of cardinality ri and that Hi

acts transitively on Σi = ∆i r Ui. Let H̄i be the subgroup of Sym(Σi) induced
by the action of Hi on Σi. Then, arguing as above, we first see that H̄i must act
primitively on Σi for all but finitely many i ≥ i0, and then that Alt(Σi) 6 H̄i for
all but finitely many i ≥ i0. �

In particular, it follows that for every prime p, there exists arbitarily large i ∈ N
such that there exists an element g ∈ Hi of order p with |Fix∆i(g)| ≤ |∆i|/(p+ 1).

Lemma 7.12. If g ∈ H has prime order p > s, then lim inf |Fix∆i(g)|/|∆i| 6= 0.
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Proof. Suppose that lim inf |Fix∆i(g)|/|∆i| = 0 for some element g ∈ H of prime
order p > s. Let θi, ψi be the normalized permutation characters of the actions
Gi y Gi/Hi and Gi y [∆i]

ri . Since p > s ≥ ri, it follows that

Fix[∆i]ri (g) = [Fix∆i
(g)]ri .

Hence, combining Lemma 7.11 and Corollary 2.3, we obtain that

θi(g) ≤ ψi(g) =
| [Fix∆i

(g)]ri |
| [∆i]ri |

and it follows that χ(g) = limi→∞ θi(g) = 0, which is a contradiction. �

Lemma 7.13. limi→∞ si+1ni/ni+1 = 1.

Proof. Let p be a prime with p > s, let a = 1/(p+1) and let np,a be the integer given
by Lemma 6.1. Then there exists i0 such that |∆i0 | ≥ max{np,a, 5(p+1) } and such
that Hi0 contains an element g of order p such that |Fix∆i0

(g)| ≤ |∆i0 |/(p + 1).

Applying Corollary 7.6, it follows that |Fix∆i(g)| ≤ |∆i|/(p + 1) for all i ≥ i0.
Furthermore, by Lemma 7.12, we can assume that |Fix∆i(g)| ≥ 10 for all i ≥ i0.
Suppose that Ω is a non-natural orbit of Gi = Alt(∆i) on ∆i+1. Then, applying
Corollary 2.3 and Lemmas 6.1, 6.2 and 6.3, it follows that

|FixΩ(g)|
|Ω|

< max

{
5

|∆i|
,
|Fix∆i

(g)|
2|∆i|

}
=
|Fix∆i

(g)|
2|∆i|

;

and it follows that

|Fix∆i+1
(g)| ≤ si+1ni

|Fix∆i(g)|
|∆i|

+ (ni+1 − si+1ni)
|Fix∆i(g)|

2|∆i|

= (si+1ni + ni+1)
|Fix∆i

(g)|
2|∆i|

.

In particular, since si+1ni ≤ |∆i+1|, it follows that for all i ∈ N,

(7.1) |Fix∆i+1
(g)|/|∆i+1| ≤ |Fix∆i

(g)|/|∆i|.
Suppose that limi→∞ si+1ni/ni+1 6= 1. Then there exists a fixed ε > 0 and an
infinite subset I ⊆ N such that for all i ∈ I, we have that si+1ni/ni+1 < 1− ε and
hence

(7.2)
|Fix∆i+1

(g)|
|∆i+1|

≤ (2− ε)
2

|Fix∆i
(g)|

|∆i|
.

Clearly the inequalities (7.1) and (7.2) imply that limi∈N |Fix∆i
(g)|/|∆i| = 0, which

contradicts Lemma 7.12. �

Lemma 7.14. G has linear natural orbit growth.

Proof. Suppose not. Then ai = limj→∞ sij/nj = 0 for all i ∈ N. Hence, for each
` ∈ N, we can choose an increasing sequence ( ki | i ∈ N ) such that:

• k0 ≥ ` is such that |∆k0 | ≥ max{n3,1/4, 20 } and Gk0 contains an element
g of order 3 with |Fix∆k0

(g)| ≤ |∆k0 |/4.

• ki+1 > ki is such that skiki+1nki/nki+1 < 1/2i+1.

Next define the subsets ∆′ki ⊆ ∆ki and subgroups G′ki = Alt(∆′ki) inductively by:

• ∆′k0 = ∆k0 ;
• ∆′ki+1

= ∆ki+1
r Fix∆ki+1

(G′ki).
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Then clearly G′(`) =
⋃
i∈NG

′
ki

is a full limit of finite alternating groups with
associated parameters n′i = |∆′ki | and s′i+1 = skiki+1

. Applying Lemma 7.5, it
follows that |Fix∆j

(g)| ≤ |∆j |/4 for all j ≥ k0 and hence

n′i = |∆′ki | ≥ |∆ki r Fix∆ki
(g)| ≥ 3

4
|∆ki | =

3

4
nki .

It follows that

s′i+1n
′
i/n
′
i+1 ≤

4

3
skiki+1

nki/nki+1
≤ 4

3

(
1

2

)i+1

and so limi→∞ s′i+1n
′
i/n
′
i+1 = 0. Thus, applying Lemma 7.13, it follows that the

only ergodic IRS of G′(`) are δ1 and δG′(`). Let f` : SubG → SubG′(`) be the Borel
map defined by H 7→ H ∩ G′(`). Then the map f` is G′(`)-equivariant and hence
νG′(`) = (f`)∗ν is a (not necessarily ergodic) IRS of G′(`). It follows that for ν-
a.e. H ∈ SubG, for all ` ∈ N, either H ∩ G′(`) = 1 or G′(`) 6 H. Clearly we can
perform the above construction so that if ` < m, then G′(`) 6 G′(m). Furthermore,
since G` 6 G′(`), it follows that G =

⋃
`∈NG

′(`). But this implies that for ν-a.e.
H ∈ SubG, either H = 1 or H = G, which is a contradiction. �

Note that Proposition 7.3 is an immediate consequence of Proposition 3.17 and
Lemma 7.14. Continuing our analysis, suppose that H ∈ SubG be a ν-generic
subgroup. Let i0 be an integer such that for all i ≥ i0, there exists a unique
Hi-invariant subset Ui ⊆ ∆i of cardinality 1 ≤ ri ≤ s such that Hi induces at
least Alt(Σi) on Σi = ∆i r Ui and such that |Alt(Σi0)| � s!. For each i ≥ i0,
let πi : Hi → Sym(Ui) be the homomorphism defined by g 7→ g � Ui and let
Ki = kerπi. Since [Hi : Ki ] ≤ s!, it follows that Ki = Alt(Σi). Also note that since
[Hi+1 : Ki+1 ] ≤ s!, it follows that [Ki : Ki∩Ki+1 ] ≤ s! and hence Ki 6 Ki+1. Let
K =

⋃
i≥i0 Ki. Since Ki is the unique largest factor of the socle of Hi, it follows that

the map H 7→ K is G-equivariant and hence there is a corresponding ergodic IRS
ν̃ which concentrates on the corresponding subgroups K 6 H. Applying Theorem
3.21, it follows that there exists 1 ≤ r ≤ s such that ν̃ is the stabilizer distribution
νr of Gy ( ∆r,m⊗r ), where Gy ( ∆,m ) is the canonical ergodic action. Hence,
in order to complete the proof of Proposition 7.4, it is enough to show that H = K
for ν-a.e. H ∈ SubG. To see this, let H ∈ SubG be such that the corresponding
subgroup K is the stabilizer of the sequence (x1, · · ·xr) ∈ ∆r. For each j ∈ N, let
Uj = {x` � ∆j | 1 ≤ ` ≤ r }. Then

Kj = Alt(∆j r Uj) E Hj 6 Sym(∆j r Uj)× Sym(Uj),

and hence K E H. In the proof of Corollary 3.19, we showed that Gx̄ is self-
normalizing for m⊗r-a.e. x̄ ∈ ∆r and this means that H = K for ν-a.e. H ∈ SubG.

8. Arbitrary limits of finite alternating groups

In this section, we will complete the complete the classification of the ergodic
IRSs of the L(Alt)-groups G such that G � Alt(N). The ergodic IRSs of Alt(N)
will be described in Section 9. Throughout this section, let G =

⋃
i∈NGi be the

(not necessarily full) union of the increasing chain of finite alternating groups Gi =
Alt(∆i) and suppose that G � Alt(N).

Lemma 8.1. For each i ∈ N, the number cij of nontrivial Gi-orbits on ∆j is
unbounded as j →∞.



36 SIMON THOMAS AND ROBIN TUCKER-DROB

Proof. By Hall [5, Theorem 5.1], if there exist i, c ∈ N such that Gi has at most c
nontrivial orbits on ∆j for all j > i, then G ∼= Alt(N), which is a contradiction. �

Hence, after passing to a suitable subsequence, we can suppose that each Gi has
at least 2 nontrivial orbits on ∆i+1. Of course, since Gi is simple, this implies that
if 1 6= G′i 6 Gi, then G′i also has at least 2 nontrivial orbits on ∆i+1. For each
` ∈ N, we can define sequences of subsets Σ`j ⊆ ∆j and subgroups G(`)j = Alt(Σ`j)
for j ≥ ` inductively as follows:

• Σ`` = ∆`;
• Σ`j+1 = ∆j+1 r Fix∆j+1

(G(`)j).

Clearly each G(`)j is strictly contained in G(`)j+1 and G(`) =
⋃
`≤j∈NG(`)j is the

full limit of the G(`)j = Alt(Σ`j). It is also easily checked that if ` < m, then
G(`) 6 G(m) and that G =

⋃
`∈NG(`). For the rest of this section, suppose that

ν 6= δ1, δG is an ergodic IRS of G.

Lemma 8.2. G(`) has linear natural orbit growth for all but finitely many ` ∈ N.

Proof. Otherwise, by Proposition 7.3, there exist infinitely many ` ∈ N such that
the only ergodic IRS of G(`) are δ1 and δG(`). Arguing as in the proof of Lemma
7.14, we easily reach a contradiction. �

Hence we can suppose that G(`) has linear natural orbit growth for all ` ∈ N. Let
G(`) y ( ∆`,m` ) be the canonical ergodic action and for each r ∈ N+, let ν(`)r be
the stabilizer distribution of G(`) y ( ∆r

` ,m
⊗r
` ). Let νG(`) be the (not necessarily

ergodic) IRS of G(`) arising from the G(`)-equivariant map SubG → SubG(`) defined
by H 7→ H ∩ G(`). Then Proposition 7.4 implies that there exist α(`), β(`),
γ(`)r ∈ [ 0, 1 ] with α(`) + β(`) +

∑
r∈N+ γ(`)r = 1 such that

(8.1) νG(`) = α(`)δ1 + β(`)δG(`) +
∑
r∈N+

γ(`)rν(`)r.

Let H ∈ SubG be a ν-generic subgroup and let `0 ∈ N be the least integer such that
1 < H ∩ G(`0) < G(`0). Then equation (8.1) implies that for each ` ≥ `0, there
exist i` ≥ ` and r` ≥ 1 such that for all j ≥ i`, there exists U `j ∈ [Σ`j ]

r` such that

H ∩G(`)j = H ∩Alt(Σ`j) = Alt(Σ`j r U `j )

and such that U `k is contained in the union of the natural G(`)j-orbits on Σ`k for
all k > j. Define i` = ` for 0 ≤ ` < `0 and let fH ∈ NN be the function defined by
fH(`) = i`. Applying the Borel-Cantelli Lemma, it follows easily that there exists
a fixed function f ∈ NN such that for ν-a.e. H ∈ SubG, for all but finitely many
` ∈ N, we have that fH(`) ≤ f(`). Let ( j` | ` ∈ N ) be a strictly increasing sequence
of integers such that j` ≥ max{ f(k) | k ≤ ` }. For each ` ∈ N, let ∆′` = Σ`j` and let
G′` = Alt(∆′`). Then it is easily checked that if k < `, then

G′k = G(k)jk 6 G(`)j` = G′`.

Also, since G` 6 G(`)j` = G′`, it follows that G =
⋃
`∈NG

′
`.

Suppose that H ∈ SubG is a ν-generic subgroup. Then there exists an integer
`H ∈ N such that i` ≤ f(`) and for all ` ≥ `H . Suppose that ` ≥ `H . Then, since

j`+1 ≥ max{ f(`), f(`+ 1) } ≥ max{ i`, i`+1 }
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and Σ`j`+1
⊆ Σ`+1

j`+1
⊆ ∆j`+1

, it follows that there exist subsets U `j`+1
∈ [Σ`j`+1

]r` and

U `+1
j`+1
∈ [Σ`+1

j`+1
]r`+1 such that

Alt(Σ`j`+1
r U `j`+1

) = H ∩Alt(Σ`j`+1
) 6 H ∩Alt(Σ`+1

j`+1
) = Alt(Σ`+1

j`+1
r U `+1

j`+1
).

This implies that U `j`+1
= U `+1

j`+1
∩ Σ`j`+1

. Since j` ≥ f(`) ≥ i`, it follows that

U `j`+1
is contained in the union of the natural G(`)j` -orbits on Σ`j`+1; and since

∆`+1 r Σ`j`+1 ⊆ Fix∆`+1
(G(`)j`), it follows that U `+1

j`+1
is contained in the union of

the natural and trivial G(`)j`-orbits on Σ`+1
j`+1

. In other words, writing U ′` = U `j` ,

we have shown that for all ` ≥ `H ,

(i) H ∩G′` = Alt(∆′` r U ′`); and
(ii) U ′`+1 is contained in the union of the natural G′`-orbits on ∆′`+1.

Applying Theorem 5.1, we obtain that G has almost diagonal type. At this point
in our analysis, we have completed the proof of Theorem 3.4. The next result
completes the proof of Theorem 3.18.

Lemma 8.3. If G has linear natural orbit growth, then there exists r ∈ N+ such
that ν = νr.

Proof. Suppose that G =
⋃
`∈NG

′
` has linear natural orbit growth with parameters

n′`, s
′
`k, etc. Then we can suppose that a′` = limk→∞ s′`k/n

′
k > 0 for all ` ∈ N. If

1 6= g ∈ G′` and k > `, then

| supp∆′k
(g)| ≥ s′`k

n′k
| supp∆′`

(g)|n′k ≥ a′`| supp∆′`
(g)|n′k.

Since 1 6= g ∈ G was arbitrary, Lemma 6.6 implies that there exists a constant s
such that 1 ≤ r` ≤ s for all ` ∈ N. Applying Theorem 3.21, it follows that ν = νr
for some 1 ≤ r ≤ s. �

The next result is an immediate consequence of Theorem 5.5.

Lemma 8.4. If G has sublinear natural orbit growth, then there exists β0 ∈ ( 0,∞ )
such that ν = νβ0 .

9. The ergodic IRS of Alt(N)

In this section, adapting and slightly correcting Vershik’s analysis of the ergodic
IRSs of the group Fin(N) of finitary permutations of the natural numbers, we
will state the classification of the ergodic IRSs of the infinite alternating group
Alt(N) and we will characterize the ergodic actions Alt(N) y (Z, µ ) such that the
associated character χ(g) = µ( FixZ(g) ) is indecomposable.

Recall that Fin(N) = { g ∈ Sym(N) | | supp(g)| <∞}. Throughout this section,
if g ∈ Fin(N), then cn(g) denotes the number of cycles of length n > 1 in the
cyclic decomposition of the permutation g and sgn : Fin(N) → C = {±1 } is the
homomorphism defined by

sgn(g) =

{
1, if g ∈ Alt(N);

−1, otherwise.

Vershik’s analysis of the ergodic IRSs of Fin(N) is based upon the following two
insights.
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(i) If H 6 Fin(N) is a random subgroup, then the corresponding H-orbit
decomposition N =

⊔
i∈I Bi is a random partition of N, and these have

been classified by Kingman [7].
(ii) The induced action of H on an infinite orbit Bi can be determined via an

application of Wielandt’s theorem [21, Satz 9.4], which states that Alt(N)
and Fin(N) are the only primitive subgroups of Fin(N).

With minor modifications, the same ideas apply to the ergodic IRSs of Alt(N), which
can be classified as follows. Suppose that α = (αi )i∈N ∈ [ 0, 1 ]N is a sequence such
that:

• α1 ≥ α2 ≥ · · · ≥ αi ≥ · · · ≥ 0 ; and
•
∑∞
i=0 αi = 1.

Then we can define a probability measure pα on N by pα( { i } ) = αi. Let µα be the
corresponding product probability measure on NN. Then Alt(N) acts ergodically on
(NN, µα ) via the shift action ( γ · ξ )(n) = ξ( γ−1(n) ). For each ξ ∈ NN and i ∈ N,

let Bξi = {n ∈ N | ξ(n) = i }. Then for µα-a.e. ξ ∈ NN, the following statements
are equivalent for all i ∈ N.

(a) αi > 0.

(b) Bξi 6= ∅.
(c) Bξi is infinite.

(d) limn→∞ |Bξi ∩ { 0, 1, · · · , n− 1 }|/n = αi.

In this case, we say that ξ is µα-generic.
First suppose that α0 6= 1, so that I = { i ∈ N+ | αi > 0 } 6= ∅. Let Sα =⊕
i∈I Ci, where each Ci = {±1 } is cyclic of order 2, and let Eα 6 Sα be the

subgroup consisting of the elements ( εi )i∈I such that |{ i ∈ I | εi = −1 }| is even.
Then for each subgroup A 6 Eα, we can define a corresponding Alt(N)-equivariant
Borel map

fAα : NN → SubAlt(N)

ξ 7→ Hξ

as follows. If ξ is µα-generic, then Hξ = s−1
ξ (A), where sξ is the homomorphism

sξ :
⊕
i∈I

Fin(Bξi )→
⊕
i∈I

Ci

(πi ) 7→ ( sgn(πi) ).

Otherwise, if ξ is not µα-generic, then we let Hξ = 1. Let νAα = (fAα )∗µα be the

corresponding ergodic IRS of Alt(N). Finally, if α0 = 1, then we define ν∅α = δ1.

Theorem 9.1. If ν is an ergodic IRS of Alt(N), then there exists α, A as above
such that ν = νAα .

There exist examples of sequences α and distinct subgroups A, A′ 6 Eα such that

νAα = νA
′

α . However, since limn→∞ |Bξi ∩ { 0, 1, · · · , n− 1 }|/n = αi for µα-a.e. ξ ∈
NN, it follows that if α 6= α′ and A, A′ are subgroups of Eα, Eα′ , then νAα 6= νA

′

α′ .
In particular, Alt(N) has uncountably many ergodic IRSs. The remainder of this
section is devoted to the proof of the following result.

Theorem 9.2. If Alt(N) y (Z, µ ) is an nontrivial ergodic action and ν 6= δ1 is
the corresponding stabilizer distribution, then the following are equivalent.
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(i) The associated character χ(g) = µ( FixG(g) ) is indecomposable.
(ii) There exists α such that ν = νEαα .

The proof of Theorem 9.2 makes use of the following results of Thoma [16].

Theorem 9.3. (Thoma [16, Satz 6]) The indecomposable characters of Alt(N) are
precisely the restrictions χ � Alt(N) of the indecomposable characters χ of Fin(N).

Theorem 9.4. (Thoma [16, Satz 1]) If χ is a character of Fin(N), then χ is
indecomposable if and only if there exists a sequence ( sn | n ≥ 2 ) of real numbers

with each |sn| ≤ 1 such that χ(g) =
∏
n≥2 s

cn(g)
n .

Lemma 9.5. If Alt(N) y (Z, µ ) is an ergodic action and there exists α such
that the corresponding stabilizer distribution is νEαα , then the associated character
χ(g) = µ( FixG(g) ) is indecomposable.

Proof. With the above notation, Fin(N) acts ergodically on (NN, µα ) and we can
define a Fin(N)-equivariant Borel map

ϕα : NN → SubFin(N)

ξ 7→
⊕
i∈I

Fin(Bξi ).

Let ν+
α = (ϕα)∗µα be the corresponding ergodic IRS of Fin(N) and let χ+

α be the
character of of Fin(N) defined by

χ+
α (g) = µα( { ξ ∈ NN | g ∈

⊕
i∈I

Fin(Bξi ) } ).

Then it is easily checked that

χ+
α (g) =

∏
n>1

(
∑
i∈I

αni )cn(g).

Hence, by Theorem 9.4, it follows that χ+
α is an indecomposable character of of

Fin(N). Notice that if g ∈ Alt(N), then

χ(g) = µ( FixZ(g) )

= νEαα ( {H ∈ SubAlt(N) | g ∈ H } )

= µα( {ξ ∈ 2N | g ∈ Alt(N) ∩
⊕
i∈I

Fin(Bξi ) } ) = χ+
α (g).

Applying Theorem 9.3, it follows that χ is an indecomposable character of Alt(N).
�

Proof of Theorem 9.2. Suppose that Alt(N) y (Z, µ ) is an nontrivial ergodic ac-
tion such that associated character χ(g) = µ( FixG(g) ) is indecomposable. Let ν
be the corresponding stabilizer distribution and suppose that ν 6= δ1. Then there
exist α, A as above such that ν = νAα and hence

χ(g) = µα( { ξ ∈ NN | g ∈ Hξ } ).

Clearly we can suppose that |I| ≥ 2. For each element a = (εi)i∈I ∈ A, let
σ(a) = { i ∈ I | εi = −1 }. If A 6= 0, let mA be the least integer m such that there
exists an element 0 6= a ∈ I such that |σ(a)| = m. If A = 0, let mA = 0. Let
g = ( 1 2 ) ( 3 4 ) ) and h = ( 1 2 ) ( 3 4 ) ( 5 6 ) ( 7 8 ). Then Theorem 9.4 implies that
χ(h) = χ(g)2.
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Case 1: Suppose that mA > 2. Then it is easily seen that χ(g) =
∑
i∈I α

4
i

and that χ(h) ≥
∑
i∈I α

8
i +

(
4
2

)∑
{i,j}∈[I]2 α

4
iα

4
j . On the other hand, we have that

χ(g)2 =
∑
i∈I α

8
i +2

∑
{i,j}∈[I]2 α

4
iα

4
j and so χ(h) > χ(g)2, which is a contradiction.

Case 2: Suppose that mA ∈ { 0, 2 }. Let Γ = ( I, E ) be the graph with vertex
set I and edge set E such that { j, k } ∈ E if and only if there exists a ∈ A with
σ(a) = { j, k }. Then it is enough to show that E = [ I ]2.

In this case, it is clear that χ(g) =
∑
i∈I α

4
i + 2

∑
{i,j}∈E α

2
iα

2
j and so

χ(g)2 =
∑
i∈I

α8
i + 2

∑
{i,j}∈E

α4
iα

4
j + 4

∑
i∈I

α4
i

∑
{j,k}∈E

α2
jα

2
k + 4

∑
{i,j}∈E
{k,`}∈E

α2
iα

2
jα

2
kα

2
` .

After rearranging the terms, we obtain that

χ(g)2 =
∑
i∈I

α8
i + 6

∑
{i,j}∈E

α4
iα

4
j + 4

∑
{i,j}∈E

α6
iα

2
j + 4

∑
i/∈{j,k}∈E

α4
iα

2
jα

2
k

+ 8
∑
{i,j}∈E
{i,k}∈E

α4
iα

2
jα

2
k + 8

∑
{i,j}∈E
{k,`}∈E

i,j,k,` distinct

α2
iα

2
jα

2
kα

2
` .

On the other hand, we have that

χ(h) =
∑
i∈I

α8
i + 6

∑
{i,j}∈[I]2

α4
iα

4
j + 4

∑
{i,j}∈E

α6
iα

2
j

+ 12
∑

i/∈{j,k}∈E

α4
iα

2
jα

2
k + 24

∑
{i,j,k,`}∈T

α2
iα

2
jα

2
kα

2
` ,

where T is the set of {i, j, k, `} ∈ [ I ]4 such that there exists a ∈ A with σ(a) =
{i, j, k, `}. Note that if {i, j}, {k, `} ∈ E are disjoint edges, then {i, j, k, `} ∈ T .
Also, each {i, j, k, `} ∈ T can be partitioned into two disjoint edges in at most 3
ways. It follows that

(9.1) 8
∑
{i,j}∈E
{k,`}∈E

i,j,k,` distinct

α2
iα

2
jα

2
kα

2
` ≤ 24

∑
{i,j,k,`}∈T

α2
iα

2
jα

2
kα

2
` .

Clearly we also have that

(9.2) 6
∑
{i,j}∈E

α4
iα

4
j ≤ 6

∑
{i,j}∈[I]2

α4
iα

4
j .

Since χ(h) = χ(g)2, inequalities (9.1) and (9.2) must both be equalities and it
follows that E = [ I ]2, as desired. �
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[22] A.E. Zalesskĭi, Group rings of inductive limits of alternating groups, Leningrad Math. J. 2

(1991), 1287–1303.
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