NEW SYMMETRIES FOR OVERPARTITION RANK AND CRANK FUNCTIONS
F. G. GARVAN AND RISHABH SARMA

ABSTRACT. Continuing our study of the symmetry phenomenon in rank and crank of par-
titions, we turn our attention to overpartitions. Building on our previous joint work on the
partition rank generating function and that of the second author on the partition crank generat-
ing function, we investigate the modularity, transformation and symmetry of the overpartition
rank and crank generating functions. Let O (z, ¢) and O¢(z, q) be the two-variable gener-
ating functions of the overpartition rank and the first residual crank statistics respectively and
(p be a primitive p-th root of unity. By considering the action of the group I'y(2p) on the
elements of the p-dissection of O ({p, ¢) and O¢((,, ¢), we discover new symmetries for the
rank and first residual crank functions for overpartitions. In the process, we improve upon
the results of Chris Jennings Shaffer and that of Bringmann and Lovejoy on the modularity
and transformation of the overpartition rank function. We also find lower bounds for the or-
ders of the elements of p-dissection of the said generating functions at the cusps of 'y (2p).
Using these orders, we are working on developing an algorithmic approach comprising of
techniques coming from automorphic forms to find new identities for explicit dissections of
overpartition rank and the first residual crank generating functions modulo 11 in terms of
generalized eta products.

1. INTRODUCTION

The rank statistic for partitions was discovered by Dyson in 1944. The Dyson rank of a
partition is the largest part minus the number of parts. This statistic decomposes the parti-
tions of 5n + 4 and 7n + 5 into 5 and 7 equinumerous classes, as conjectured by Dyson and
proved by Atkin and Swinnerton-Dyer, thus resolving the mod 5 and mod 7 congruences of
Ramanujan. The crank of a partition was introduced by Andrews and Garvan in 1988. It
is defined as the largest part if the partition contains no ones, and otherwise as the number
of parts larger than the number of ones minus the number of ones. In their paper, Andrews
and Garvan show that the crank simultaneously decomposes the partitions of 5n + 4, Tn + 5
and 11n + 6 into 5, 7 and 11 equinumerous classes respectively. The significance of these
two statistics lies not only in the aspect that it renders a partial combinatorial interpretation
to the famous congruences of Ramanujan, but also in the fact that their generating functions
have a rich modular structure. Several mathematicians have worked in this direction to study
the modular structure underlying these two statistics following the seminal work done by
Zwegers in his thesis, where he shows how Ramanujan’s mock theta functions occur as the
holomorphic part of certain real analytic modular forms.
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In 2004, Sylvie Corteel and Jeremy Lovejoy [6] introduced the concept of overpartitions.
An overpartition is a partition in which the first occurrence of a number may be overlined.
For example, the 14 overpartitions of 4 are

4,43+1,3+1,3+1,3+1,2+2,2+2,2+1+1,
24+1+1,2414+1,24+14+1,1+1+14+1,1+1+1+1.

Analogous to the crank of an ordinary partition, Bringmann, Lovejoy and Osburn [4]
introduced the first and second residual crank of an overpartition. In this paper, the au-
thors deduce congruence properties for combinatorial functions which can be expressed in
terms of the second overpartition rank moment and the corresponding residual crank mo-
ment. Several authors have since considered these residual cranks and have worked on their
generalizations, finding and proving inequalities between the moments of these functions in
conjunction with other overpartition statistics, among other problems. The combinatorial
interpretation leading to explicit definitions of these cranks was given by us recently in [12]].

Let M(m,n) denote the number of overpartitions of n with first residual crank equal to
m. Throughout, we assume ¢ = ¢*™" where 7 € H, the upper half complex plane. We let

M (z, q) denote the two-variable generating function for the first residual crank so that

oo
Oc(z,7) = Z Z M(m,n)z"q".

n=0 m
It is the transformation, modularity and symmetry of this function under special congruence
subgroups of SLy(Z), which we hereinafter call the overpartition crank function O¢(z, 7),
when z is a primitive p-th root of unity, that we study in the first half of this paper. This
residual crank can be expressed in terms of a Klein form whose transformation is well known
in literature and helps us establish our results. We summarize our two major results for the
overpartition crank without delving into further details here.

Theorem 1.1. Let p > 3 be prime. Then the function

n(p°r)?
OC C y T
) Ol ™)
is a modular form of weight 1 on To(p*) N T'1(2p).
: N n(p°7)? -
The modularity and symmetry of the elements of the p-dissection of (2 )(DC(CP, T) is
niap°t

our other point of interest in the paper. These elements are defined below.

Definition 1.2. Let p > 3be prime, 0 < m <p—1land1 < /¢ < p — 1. Define

T S~ (g y
(1.1) ORI (¢l 2) = q? ] —5 M(k,p,pn+m n,
pon Gy 2) =1 }_[1(1_921)”); kZ:O (k,p,p )¢ ) a

The result on the modularity of these elements is deferred to Section 4. Below is our
other major result of the paper for the crank of overpartitions. The action of the congruence
subgroup I'y(2p) on these elements leads to our symmetry result, analogous to the symmetry
result for crank of partitions [[18, Theorem 1.6].
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Theorem 1.3. Let p > 3 be prime and 0 < m < p — 1. Then

sin(4m/p)

mak (@) Ld
sin(taryp) * OFopma(G'2)

D p,ma2\>p 7

(1.2) OKS)(G0 2) [[A], =

p,mA\Sps
for

A= (2‘; Z) € To(2p).

In the second half of this paper, we consider the Dyson’s rank of an overpartition. It is
defined as the largest part minus the number of parts, in particular the rank does not depend
on whether or not a part is overlined.

Let N(m,n) denote the number of overpartitions of n with rank m. Let

Or(z,7) = Z Zﬁ(m, n)z"q".

n=0 m

In a fashion similar to the work of Bringmann and Ono [3]] for the rank of partitions,
Bringmann and Lovejoy [3] observed that Og(z, 7) is the holomorphic part of a harmonic
weak Maass form of weight % on when z # —1 is a root of unity. The following theorem
summarizes their main result in the case where z is a p-th root of unity.

Theorem 1.4. Let p > 3 be prime and 0 < a < p. Define
dapir)= Y g,

n=a (mod B)

-
Ouyp (1) =106 (4(1 + p, 2p; 4_p) , and

J (a ) _ %/W (—iT) 5.0, (—1) ir

4p =z —i(1T + 2)

(3 -on (22

. . 1
is a weak Maass form of weight 5 on the congruence subgroup

Then

f:{A:(‘;‘ g)ESLQ(ZHaEéEl (mod 4p),y =0 (mod 16p2)}.

In our study of the overpartition rank function Og((,, 7), we build around the functions
considered by Jennings-Shaffer [[13]. In this paper, Jennings-Shaffer reconsiders the modu-
larity of this function and bypassing the approach of Bringmann and Lovejoy, he constructs a
completion of O ((,, 7) to a harmonic Maass form which is the sum of an easily understood
modular form and a harmonic Maass form of Zwegers. We record this work here.

Foru,v,z € C,7 € H,and u,v ¢ Z + 77 we have
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1
Wz 7) = Z exp (7rin27' + 2min <z + 5)) 7

nGZJr%

exp(miu) i (—1)" exp(min(n + 1)7 4+ 2minv)
I(v;T) 1 — exp(2minT + 2miu) '

Next for u, z € C,y = Im(7), and @ = Im(u)/ Im(7) we define

m@:zﬂzqwﬂmamu

R(u;7) = Y (sgn(n) — B((n +a)/2y))(—1)" % exp (—minr — 2minu)
neZ+1
For a,b € R we set

plu,v;7) =

Gap(T) = Z nexp (m’nQT + 27rmb) .
neZ+a

Finally for u,v ¢ 7Z + 77 we set
i, :7) = e, v:7) + S R — i),

In his revolutionary PhD thesis [20]], Zwegers studied these functions and gave their trans-
formation formulas.

Theorem 1.5. (Jennings-Shaffer, Corollary 2.2, [13]]) Suppose a and c are integers, ¢ > 0
and c 1 2a. Then,

21— (1)

Or((1) = (11 P(a,c;T) (11 N(a,c;T)
(=) [ goa_2e(22)
(-3 +“/§(1 +¢¢) /_r —i(z—i-T)dZ

where

1 (2a (—4; Qoo (6% ¢%)>
N(a,c;7) =q 4,u<—,7;27), P(a,c;7) = x.
( ) c ( ) (¢ 0)oo [C2% %]

Jennings-Shaffer gives explicit and compact transformation formulas to determine a larger
subgroup of SL,(Z) on which the completion of Oz (5, 7) viz.

P Lt ¢ Y a8 S )
M(a,c;7) = Or (¢ 7) Z\/§(1+Cg)/_% —i(z+¢)dz
(1+¢2) (1+¢2)

is a Harmonic Maass form, and reproves the modularity result of Bringmann and Lovejoy.

(1.4) P(a,c;1) — N(a,c;T)

Theorem 1.6. Suppose a and c are integers, ¢ > 0, and ¢ 1 2a, then M (a, c; T) is a harmonic
weak Maass form of weight 1 on T(16¢?) N T (4c).
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The case a = 1 and ¢ = p for prime p > 3 is the result of Bringmann and Lovejoy stated
previously in Theorem

In our work, with the introduction of a simple eta multiplier to Oz ((,, 7), we narrow down
the transformation of all the functions involved in the expression for O%((,, 7) (Theorem
1.5)) to the simpler congruence subgroup I'g(2p?) N T';(p) sans the multipliers appearing in
the results of Jennings-Shaffer (Corollaries 3.3 and 4.1, [13]). This problem also involves
finding the overpartition analogue of the completed rank function R, (z) given by Garvan
[LO].

1(p—1)

— 57 a 3a+3 1 —3a—1(p+1
Ry(2) =g 5 R(Grq) = xia(p) 3 (—1)* (G0 4 720

a=1
2

at+L(p— —3q—L(p— a o\ D7
—CS +5(p—1) —Cp3 5(p 1)) qz(p 3a)—57 (I)M(qp)’

where
, if 0 < 6a < p,
= (0% ) (% 0P)n
(I)p#l(q) = 00 qpn2
-1+ , ifp < 6a < 3p,
; (9% ¢")nt1(g"~% ¢P)n
and

19 1 ifn=+1 (mod 12),
X12(n) = (g) =4q—-1 ifn=45 (mod 12),
0  otherwise.

This in turn involves finding the overpartition rank analogue of the correction factor ®,, ,(¢?).
We find that this correction factor for the overpartition rank function includes a Lambert se-
ries which

i) appears in the dissection elements of the overpartition rank generating function O((,, 7)
of Jennings-Shaffer and Lovejoy and Osburn (Theorem 1.1, [13] & Theorem 1.1, 1.2,
[[16]), and

i1) has a connection with the cancellation of the Mordell integral of the theta function
which is the non-holomorphic part of O((,, 7) (Corollary 2.2, [13]).

We will eventually see in the course of this paper that this factor allows us to complete the
overpartition rank function to a weakly holomorphic modular form on a larger and nicer
congruence subgroup improving the results of Bringmann and Lovejoy [3] and Jennings-
Shaffer [13]]. To that end,

Definition 1.7. Let p > 3 be prime and 1 < k < 1(p — 1). Define
2 (@70 o n @
(1.5) Dpr(q) i=q » N Z (—D)"——

n=—oo
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and
1(p—1)
(1.6) Or(C,7) = Or(Coy7) — llgfp D (=D (G =) Bpula).
p k=1

Thus one of our main results
Theorem 1.8. Let p > 3 be prime. Then the function
n(p°r)?
Or((, T
a2y )
is a weakly holomorphic modular form of weight 1 on T'y(2p?) N T'1(p).
2

n(®’r)’
(2 2 )DR(CIHT)'

These elements feature the functions Oleffn( g; z) defined below into two cases for when m
is a quadratic residue or non-residue modulo p, wherein fragments of the correction factor
above (Equation (1.5)) appears in the quadratic residue case. We study their modularity and
symmetry, akin to the case of rank of partitions (Definition 1.4, [11]).

Definition 1.9. Let p > 3 be prime and 0 < m < p — 1. Define OIC(R) ( ; z) as follows :
(i) Form = 0 or (%) = —1 define

Furthermore, we also define the elements of the p-dissection of

1 — gP" 0 p—1 o
(1.7) ORI (Gpi2) = " ll:[[ El — Zsz) ( N(k,p,pn) C§d> q",
n=1 k=0

n=

where ¢ = exp(27iz).

(i) For (=) = 1 define

(R m/pH (1—qpn > [ kd
(1.8) Ok (¢d2) :=gq T ) Z > N(k,p,pn+m) ) g

k=0
_ pha—a-m 21— G)
1+

where 1 < a < %(p — 1) has been chosen so that

~—m=a* (mod p).

(=1)*(¢ ™ = ¢ “)‘Pp,a(Q)),

The result on the modularity of these elements is deferred to Section 5. Below is our
other major result of the paper for the rank of overpartitions. The action of the congruence
subgroup I'y(2p) on these elements leads to our symmetry result, similar to the symmetry
result for crank of overpartitions Theorem |1.3|and analogous to the symmetry result for rank
of partitions [11, Theorem 1.6].

Theorem 1.10. Let p > 3 be prime and 0 < m < p — 1. Then
1-6 14§

(1.9) OK;%(CW T) ‘ [A] Cd 1+ C
P

Cmak O]Cp a2 (Cp s T)
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A= (2‘; Z) € To(2p).

Remarks :

I. In this paper, we strengthen the results of Bringmann and Lovejoy [3] and Jennings-
Shaffer [13] for the rank of overpartitions. In particular

L.

ii.

For the case p > 3 prime, we strengthen Theorems [I.4]and [[.6] We show that the
group in these results can be enlarged to T'y(2p*) NT'; (p) but with a simple eta mul-
n(p*r)
2p%T

tiplier , on which our completed rank function is a weakly holomorphic

modular form of order 1. The idea for choosing this special congruence subgroup
comes from the work of Jennings-Shaffer which we explain below.

n(r)”
n(2r
involved in the expression for O ((,, 7) gets rid of the multipliers appearing in the
results of Jennings-Shaffer (Corollaries 3.3 and 4.1, [13]), where he is able to sig-
nificantly simplify the transformation of these two functions to the much simpler
congruence subgroup I'o(2p?) N T (p). However, what we realize is that consider-
ing a generalization of Jennings-Shaffer’s function N;(k;7) [13, Page 6] extended
to any prime p leads us to our improved modularity result described in the point
above. The resulting function N, (k; 7) appears in our modified expression (with
the correction factor and eta multipliers) for Oz ((,, 7) in Equation . See
Equation (5.3). The non-holomorphic part of this function helps annihilate the
non-holomorphic part arising from the Mordell integral of the theta function in
Equation and leads us to our completion of the overpartition rank function in
Equation and eventually Theorem Our investigation of the transforma-
n(r)
n(27)
the transformation result of Jennings- Shaffer for N;(k; ) [13], Proposition 5.2] to
any prime p > 3. This is documented in Corollary [5.4]

The introduction of the eta multiplier

to the functions P(a, ¢, 7) and N(a, ¢, T)

tion and modularity of Ny (k;7) = N, (k;T) also generalizes and improves

II. A majority of our modularity and transformation results in this paper are direct analo-
gies of those in [[11]] and [18].

I1I.

The reason behind considering the study of the first residual crank of overpartitions in
this paper is because we observe that the respective modular and transformation prop-
erties in the case of Dyson’s rank of overpartitions hold for the exact same congruence

subgroups of SLy(Z). To be precise, the modularity result for the generating function
of the modified overpartition statistics holds under I'y(2p?) N Ty (p), the modularity and

transformation results for the dissection elements OKC, (¢, 7) under I'(2p) and T'; (2p)

and finally the symmetry result for the dissection elements OKC, . ((,, 7) under I'g(2p),
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for both the first residual crank and the Dyson’s rank of overpartitions. However, the
second residual crank of overpartitions also appears in the hindsight in our study of the
rank. It arises in the formula for the two variable overpatition rank generating function
Ox (¢%;7) due to Jennings-Shaffer in Equation (1.3). This is the function P(a,c,7)
whose modularity and transformation alongwith a simple eta eta multiplier, when (¢ is
a p-th root of unity (,, p > 3 is investigated in Propositions [5.1] and and Corollary
5.2

In the final part of this paper, we find explicit p-dissections of the overpartition rank and
crank functions in terms of generalized eta products. Identities for the dissection elements
of the overpartition rank function for the case p = 7 were found and studied by Jennings-
Shaffer [13]]. However we find that for higher primes p > 7, the computational techniques in
Maple that we employed to find dissections for the partition counterparts in [[11] and [18] fall
short. Consequently, the idea here is to consider the ring of modular/cusp forms for I'; (2p),
and eventually find a simpler basis consisting of Jacobi products which we accomplish us-
ing a combination of Maple and Sage. We present and prove such identities for the cases
p = 7,11 in the last section.

The paper is organized as follows. In Section 2, we review and build a database of the
necessary notations, definitions and fundamental transformation results which we will use in
the course of establishing our main results in the subsequent sections. In Section 3, we give
conditions for the modularity of the generalized eta-quotients analogous to the conditions
developed for the rank of partitions [[11, Section 3]. In Sections 4 and 5, we consider the first
residual crank of overpartitions and Dyson’s rank of overpartitions respectively and deduce
our transformation, modularity and symmetry results. Section 6 is devoted to calculating
lower bounds for the orders of OICI(D%(QP, z) and OIC;%(CP, z) at the cusps of I';(2p) which
we utilize to prove identities for the same in the subsequent section. Section 7, currently
under development, is devoted to developing an algorithm that uses the Valence formula for
proving generalized eta-quotient identities for OIC;%(CP, z) and OIC;?%(CP, z) forp =7,11.

2. PRELIMINARIES

2.1. Theta functions and transformations. We define a class of generalized eta products
and functions that we will use frequently in expressions for our overpartition rank and crank
identities and to study their transformations in the subsequent sections.

Definition 2.1. Following Biagioli (see [2]), define

(2.1) Frp(z) o= (= 1)V =20 BN) (go gN= gN gy .
Then, for a vector 77 = (no,n1,na, -+ ,n,) € ZP, define
p
(2.2) J(z) = j(p, 70, 2) = n(2p2)" [ | faps(2)™.
k=1
We note that

(2.3) Inp(2) = funp(2) = fn—p(2),
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and
(2.4) fnp(2) = n(Nz)nw ()
where )

n(z) =g [ = ¢,
and -

nva(z) = g2 ) I a-e

m>0
m==xk (mod N)

where z € h, Py(t) = {t}? — {t} + ¢ is the second periodic Bernoulli polynomial, and
{t} =t — [t] is the fractional part of ¢.

The transformations for 7(z) due to Knopp [[14, Theorem 2, p.51] and the theta function
fn,p(2) due to Biagioli [2, Lemma 2.1, p.278] are well known and have been used previ-
ously by us to study transformations in [10] and [11].

2.2. Klein forms. Our transformation results for the first residual crank of overpartitions
are realized by writing them in terms of a Klein form which we define here. These functions
are also considered by Jennings-Shaffer in his study of the transformation of the function
P(a,c; ) described in the introduction section. Here we correct a minor mistake in the
definition adopted by him [[13} Section 4] and instead state and use the definition adopted by
Eum, Koo and Shin [9]] as follows.

Definition 2.2. [9, Equation 1.4] For (a;,as) € Q* — Z?* and ¢ = exp(27i(a17 + as)), the
Klein form t(,, 4,)(7) is defined by the following infinite product expansion
(S (N
(9%
The transformation and order of this Klein form necessary for our study is recorded in the
proposition below.

25)  Hapan(7) = exp (wias(ar — 1)) gD (1 - )

Proposition 2.3. [9, Proposition 2.1]
(i) For (ay,as) € Q* — Z? and (by, by) € Z2, we have

_ (_1)b1b2+b1+b2

t(a1+b1,a2+b2)(7—) - exp(_ﬁi(bl(I? - an’l))t(al,az)(T)'

a b

(ii) For (a1,a2) € Q? — Z* and A = (c d) € SLy(Z), we have

t(a1,a2)(7_)|[A]l = t(ahaz)-A(T) = t(ayatasc,arbtazd) (T)
(iii) For (ay,as) € Q* — Z2, we have

oy (7) = 5 (o} (fr} = 1),

where {x} is the fractional part of x € R.
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2.3. A useful permutation.

Definition 2.4. Let p > 3 be prime. For 1 < r < p, we define a permutation 7, : [p] — [p],
where [p] = {1,2,--- ,p} by 7,.(i) = ¢ where ri’ = i (mod 2p).

7, induces a permutation on Z”. For W = (ng,ny,ne,--- ,n,), (1) permutes the
—
components to 7,(17) = (1o, N, (1), Nrp(2), > Moy () )-

Lemma 2.5. Let p > 3 be prime and 7 and j (z) be defined as in Definition Then,

i, m (), 2) = n(pz)™ H Joprie(2)™.

k=1

The proof of the lemma follows as in [11, Lemma 3.5].

2.4. The Atkin operator. We define the (weight k) Atkin U,, operator by

p—1 o p—1
k_
F( >=p2 TR T,
0 n=0

- p

1 r
TT_(O p)’

and the more general U, ,,, is defined as

(2.6) F ), =

1
p

where

2.7)
151 2mirm z+7 P 2wirm
F | Wl i= 5 e (<200 ) p (250) <yt o (<270 1),
p r=0 p p r=0 p
We note that U, = U, o. In addition, if
F(z) = Za(n)q” = Za(n) exp(2mizn),
then
F | [Upml, = ™" Z a(pn +m) ¢" = exp(2wimz/p) Z a(pn +m) exp(2minz).

3. MODULARITY CONDITIONS FOR GENERALIZED ETA-QUOTIENTS

We present a general criteria for an eta-quotient j(p, %), z) in our Definition to be a
weakly holomorphic modular form of weight 1 on I'(2p) in the form of a theorem. This result
is analogous to the criteria for the eta quotients that we had defined to study the partition rank
[11, Theorem 3.1].

Theorem 3.1. Let p > 3 be prime and suppose T = (no,n1,ng, -+ ,n,) € ZPT'. Then

J(p, ﬁ, 2) is a weakly holomorphic modular form of weight 1 on T'(2p) satisfying the modu-
larity condition

j(p, 7, 2) [[Al, = exp(32m)j(p, 7T, z)
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for A = <(é Z) € I'1(2p) provided the following conditions are met :
p
(1) no + an =2,
k=1
p
(2) ng + 3an =0 (mod 24),
k=1

P
(3) Z k*ng, = 4m  (mod 4p).
k=1

Proof. The Dedekind eta function is a modular form of weight % Thus, 77(2pz)™ contributes
% and each of the fy,(2)™ contributes %= to the weight and the weight of j(p, v, z) is

p
0+ 1; “k. Condition (1) implies that this weight is 1.

a b

Let A = (c d) € I'1(2p). Then, by [10, Theorem 6.14, p.243], we have

n(2p2) | [l = va(*A)n(2p2),

where v, (*? A) is the eta-multiplier,

WA a 2bp
P A = (C/Qp g ) € SLy(Z).
Then
1(2pAz) = vy (P A)Vez + d n(2pz)

and using the Biagioli transformation [10, Theorem 6.12, p.243] for f, x(z), we have
kb ka/2p) +k/2p) miab, 5\ 5 o
f2p,k(z) [A]l/Q = (_1) & Pl exp _2p k vy ( pA) f?p,ka(z)

= (it exp (T ) 1 (74) Fale)

assuming 1 < k < p. Therefore

i(.7,2) | [A], = ()" Desp

where
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p
Ly(A) = Kny,
k=1
p
k=1

Now assume conditions (1) — (3) hold, and <Z 2) € I'y(2p). Since L3(A) =0 (mod 24),

b 2b

the modularity condition holds if we can show that L;(A) + ;L—L2<A) — 2™ g an even
p p

integer.

Since a = 1 (mod 2p), we have abLy(A) = bLy(A) (mod 2p).

Also, using (3), we have bLy(A) = 4bm (mod 4p).

b 2b
Combining the two congruences, we can conclude that L, (A)+ g—Lg (A)— 2 s an integer.
p
Now b ; ;
a 2om 1 a
Ly(A) + —Ly(A) — — = —(pL1(A) + — Lo (A) — 2bm).
1()+2p 2(A) p p(p 1(A4) + 7 La(A) = 2bm)

Also, condition (3) also implies that
Ly(A) =0 (mod 4)

%bLQ(A) =0 (mod 2).

b 2b
Thus, to show that L;(A) + ;—LQ(A) — 27 i an even integer, it is sufficient to show that
p

Li(A) =0 (mod 2).

We have a = 1 (mod 2p). Let a = 2pr + 1.

Then k 2k k k
a p?“
- = — = kr+ —.
2p 2p +2p T+2p
So
k
{—aJ = kr.
2p
Thus
b ka
Li(A) = bk + | —
()= 3tk + g1

=(b+r) i kng  (mod 2)
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=(b+r) Z k*n;  (mod 2)

=0 (mod 2),
p
where the last congruence follows because > k?ny = Ly(A) =0 (mod 4). g
k=1

Definition 3.2. Let F(m, p) be the set of functions j(p, 77, z) that satisfy the conditions of
Theorem [3.11

Theorem 3.3. Let p > 3 be prime and 0 < m < p—1. Suppose j(p, 7, z) € F(m,p). Then,

) 4 2miabm
(3.1) j<p,%>,z)|[Ah=<—1>L<””exp( p ) (2pz)" Hfzpka m,

where )
ka
L7 = —
(naaap) ;\\ZPJ N
for
b
Also
(32) i(p,m (), 2) € F(m', p),

2

where 1 < r < pandm' = r*m (mod 2p).

Proof. Following the proof of Theorem [3.1 we use the transformation for 7(z) and f, ()
to get

Lz(A)> v (P A) n(2pz)" Hfzpka

p

Since j(p, 7, 2) € F(m,p), we have that L3(A) = 0 (mod 24) and we can also deduce
from the third modularity condition that

i kng (mod 2) = i E’ng  (mod 2) =0 (mod 2).
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It suffices to prove that

b
%LQ(A) — 2abm

is an even multiple of p, which is easy to see since Ly(A) = 4m (mod 4p). Equation
follows.

Now suppose 1 < r < pso that for 1 < ¢ < p we have 7,.(i) = ¢’ where 1 < ¢ < p and
ri’ = +i (mod 2p). We note that

P P
an = an(k), and

k=1

zp: E* N k) Z Eng =7 Z(k )*ni (mod 2p).
k=1

k=1
Equation (3.2) follows easily. O

4. TRANSFORMATION, MODULARITY AND SYMMETRY OF THE FIRST RESIDUAL
CRANK OF OVERPARTITIONS

The two variable generating function for the first residual crank of an overpartition given
by Bringmann, Lovejoy and Osburn [4] is

T (o (¢ @)oo
_ZZM( SOEATAE q’q)oo(zq;q)oo(z_I%Q)oo

We write this function in terms of the Klein form in Definition

0:(G5.7) = WL 0u(gz.m)
(1) (=49 (¢;9)2
Cn27) (G9)e (€205 @)oo($y 5 @)oo
_ (¢39)5%
(Coa3 1) oo (6 05 @)oo
T —ma 1
N (exp <7> - eXp( p )) to.2)(T)’
where
@) tosy(r) = —oxp (~220) 1 - gy KDy )

4.1. Transformation and modularity of the crank and associated functions.

Theorem 4.1. Let p > 3 be prime. Then O((;, ) is a weakly holomorphic modular form
of weight 1 on T'o(p?) N T'1(2p).
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Proof. Let
o

Using the transformations in Proposition 2.3 we have
to.2) (MI[Al = tax a)(7)

= t(0+%,“7f+o)<7')

2
e (—1>% eXp <_7TZ <ap,;/5 - 0)) t(07a76)(7—>

T ) el ) B (Wp—w) R

Then

since

Theorem 4.2. Let
iry = MT0(20)
n(2p*T)n(T)?

Then X,(7) is a modular function on To(2p?).

X

p

Proof. f(z) = T[] n(¢®)" is a weak modular form of weight k = £ >~ rs on Ty(NV) if it
0<8|N 0<3|N
satisfies the following :

N[

Z drs =0 (mod 24),

0<d|N
N
> <75 =0  (mod 24).
0<8|N

Let 6]2p®. Then for f(z) = X,(7), we have

Y drs=-2+2+2p"—2p* =0,
0<4|2p?
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2 2
Z%7’5:—4p2+p2+4—1=3(1—p2)50 (mod 24).
0<d|N

Thus, X,(7) is a modular function on T'g(2p?). O

The modularity of the overpartition crank function stated in the introduction section as
Theorem|l.1|now deduces easily as a corollary. We restate it here.

Corollary 4.3. Let p > 3 be prime. Then X,,(7) O;((;, T) is a modular form of weight 1 on

Next, we consider the elements of the p-dissection of X,(7) Of((;, 7) defined in Defini-
tion Using the definition of the Atkin operator Equation (2.7)), we can equivalently write
them as

4.2) OKED(¢E,2) = Xp(1) O3(&,7) | Wy, -

The following theorem accounts for the modularity of OICfn)I(Cp, z) under special congru-
ence subgroups of SLy(Z).

Theorem 4.4. Let p > 3 be prime and 0 < m < p — 1. Then

(i) OICZ(,%)(CP, z) is a weakly holomorphic modular form of weight 1 on I'1(2p).
(i) If 1 < m < (p—1) then (’)IC;%(CP, z) is a weakly holomorphic modular form of
weight 1 on I'(2p). In particular,

OKO (¢, 2) | [A], = exp (

2mibm
) OKC) (G 2).

Proof. We let
b

sothata =d =1 (mod 2p) and ¢ =0 (mod 2p). Let 0 < k <p—1. Wetake ¥’ = b+ k
(mod p) so that

Ty A= By Ty,
and
_ a+ck (=K (a+ke)+b+ kd
e G AR B T )
Thus,

O]C;()%(va z) | [A]1

p

1 p! 2mikm .
S (— ) X,(7) 08¢, 7) | [(Th A)),

p

_Lp_lex _ 2mi(K = b)m O ,
-5 p( )Xpuoc(cp, ) (BTl
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_ L (27”[””) T ex (—W'm) X,(r) O5(¢,. ™) | [Ti]
\/ﬁ p D ot p D P c\Spo kK']1

(by Corollary [4.3]since By, € To(p*) N T'1(2p))
2mibm
= exp ( ) > OK;%(CP, z),

as required. Thus each function OK;%(CP, z) has the desired transformation property. It is

clear that each OICZ()?;,)L(CP, z) is holomorphic on H. The cusp conditions follow by a standard
argument. We examine orders at each cusp in more detail in a later section. U

4.2. Overpartition crank symmetry. We finally present a proof of our result on the ob-
servation of symmetry among the elements of the p-dissection of the overpartition crank
function, which was stated in the introduction section in Theorem [I.3] We restate it here.

Theorem 4.5. Let p > 3 be prime and 0 < m < p — 1. Then

sin({m/p)

mak (@) Ld
sntar/p) @ OXrma (G5 2)

P p,maZ\>p

(4.3) OK (¢, 2) | 4], =

p,mASD?
for

A= (2‘; Z) € To(2p).

Proof. We undergo the same matrix transformations as we did in the case of KC, ,,((p, 2)

0 p

1
B - a+2pr S(k+rd—r'(a+2pr))
" 2p? d—2r'p ’

([L1]], Proposition 4.7), and for 0 < r < p—1let T, = (1 r) , and

where 0 < 7/ < p — 1is chosen so that 7’ = rd® + dk (mod p). Then

T,A=B,T., r=ra*—ak (modp), and B, €y (2p?).

G 2) [[Al = Xp(7) O2(Gp7) | (Ul AL

1 . —rm x (0
- %;gp Xp(1) Oz (¢,, ) [TV AL

_ %ng X,(r) Ox(G7) | By | [T),

: I

S | — )2 2

_ \}_ g(d( ;’ ,>) (_1)6(2102) exp (7”6 2p (;l - ZT'p))
. —2r'p) T

P (L02) :
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p—1

DG X () 0G| T),
r=0
(using the second step of the transformation of Op((5, 7)|[A]x

in the proof of Theorem 4.1))

sin (&) p-1
_ LLZ%W X, (1) O ) | [T],

p
\/73 sin <MT“> —0 v
_ sin <%) maki pzlc—r'mcﬂX () O5( £d ) | T3]
sin (42) ™ VREZ T T
since
C;rm _ g;n(fr/aerak) _ C;nakg;mr’az,
and as r runs through a complete residue system mod p so does 7’. The result follows.  [J

5. TRANSFORMATION, MODULARITY AND SYMMETRY OF DYSON’S RANK OF
OVERPARTITIONS

Similar to the transformation, modularity and symmetry of the rank generating function
for partitions, in this section, we establish analogous results for the overpartition rank gener-
ating function.

5.1. Transformation and modularity of the rank and associated functions.

Proposition 5.1. Let p > 3 be prime and 1 < { < (p — 1). Define

N*(l,p;7) = 77(7)21\7(&1?; 7),

n(27)
ey @) _
P, p;T) := 77(27_)]3(6,10, ).

Then

N*(¢,p;7) [[A], = p(A, ) N*(dl,p; ),

Pr(l,p;7) [[A]; = p(A, 0) P*(dl, p;7),
where

(A, 0) = exp (—m' (26(119_ 4 _ 2;? ))

and

A= (‘; Z) € Ty(2p).
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Proof. Knopp’s formula for the eta multiplier gives

7](7')2 - Vn(A>2 7](7')2 — 1 (2A)3(— *(b+'1771)7:ab
BEL AL = B 2O Ay

Using [13, Corollary 3.2] we get

al ac
H exp

V(AL = A0 F e (<ni (254 2D ) )

Therefore,

N*(t, pi )| [A], = exp (-m (26(11; 4 _ 2;‘?)) N*(dl, i 7).

And, writing P(¢,p, ) in terms of the Klein form (Equation (2.3)), we get

_C—Z 77<2T) 1
n(7)? t(o,%f)(%)'

P, p,T)=

Therefore, using the transformations in Proposition [2.3] we get

1
P (t,p;7)|[A; = —¢ —————|[A
(7p77—)|[ ]1 Cp t(072;)(27')|[ ]1
— _nt 1
' (—1)% exp (—m' <%)> t(%ﬂ%)(%—)
1

‘ e . 2€2Cd)>
=—( (—1)» exp <m (
%=1 p? t(o,%) (27)

_ 2
= exp (—m' (%(1 9) — 26? )> P*(dl,p;T).
p p

The following corollary now follows easily.
—1). Then

Corollary 5.2. Let p > 3 be prime and 1 < { < (
N*(&pv 7_) |[A]1 = N*(€7p7 7_)7

Pr(l,p;7) [ [Al, = P*(¢,p;7),

for
A eTy(2p*) NTy(p).
Now, using Theorem [I.5]and Proposition 3.5 [[13]], we have
— (1 + gé) ico gy 1 2(22)
N, pT)=——"2_0 + pr, —dz
P =giga-g e , Ve
— (1 + Czl;) 20 2¢ (1 2) —n?
e L TN Lp( n_cmyr Ly n
S (=0 R (GiT) + < P(piT (G =G T Sidmyn® ) g
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p—1

—(1 4 —€ =
B ﬁ Or (Cﬁ; T) + %P(&p, 2\/_ Z C—Zlk szk) )

(i(—l)"q(p”““)QF (% Ay (pn + k)2> — i(—l)"q(p"’“VF (% dry(pn — k)2)> ,

In Section 2 [13]], the author defines
N:(k;7) = ¢ ¥+ % [i(14kT, 497; 987).
For an arbitrary prime p > 3, we define the generalized function

N, (k;7) = ¢~ %27 [i(2pkr, pPr; 2p°7).

Then
Ny(k; ) = ¢~ 22637 fi(2pkr, pPr; 2p°7)
(5.1) = M (k,p;2p°7),

where M (a,c;7) = q 2(2_5)2,&(%, 7;7) is defined by Jennings-Shaffer in Section 5 [13]].
This helps in determining the transformation of N, (k;7) under matrices in SLy(Z) using

Proposition 5.1 [13].

Also, using Proposition 1.3 and 1.4 [20], we have

( 2p? ,qu qun(n+2)

Z 1 — q2p(pn+k)'

n=—0o0

W(2pkr, 7 2°7) = i

Further, we define

Ny (k;7) = Zgi) N, (k; 7).

We deduce the transformation of this function under I'y(2p?) N T';(p) like the previous two
functions in Corollary [5.2]

Proposition 5.3. Let p > 3 be prime. Then
Ny (6;7) | [A], = N,y (al;7)
for
_[a b 2
A= (C d) S F0(2p )

Proof. We have

NG 0i7) = S olhsT) = T2 = G k)

Knopp’s formula for the eta multiplier gives

LT)Q _ vy(A)? n(1)? — 1 (2A)3(—1) o+ jab
) AT ey e T Y '

1
2 v,



OVERPARTITION RANK-CRANK FUNCTION SYMMETRIES 21

Using the transformation for p(u, v; 7) [20, Theorem 1.1 (1)] due to Zwegers, we get

Ny (ks T)|[A]y = M (K, p; 2p77)|[A] 1
at + b
= M ( k, p; 2p
_ X002 o a  2p%
=M (k,p,A(Qp T)) where A = (c/2p2 f )
~ koo1\? koo1\?
= v, (A) P exp | —mia.2p%b (— — —) — mia® 2p°T (— — —)
p 2 p 2
_ (ka2p*T + k.2p°b a.2p*T + 2p*b 0,2
H D ) 5 7 4p°T
~ 2ab koo1\?
= v, (A) S exp (—2m’abk2 i ]% + 2mipabk — mia®.2p*T (5 - 5) )
i (2kap7' + 2apb, ap*t + p*b; 2p27')
2
= Vn(ﬁ)_:)’(—i)p%b exp <7ria2.2p27' (E - %) ) (1" (2kapr, ap®T; 2p°T)
p
~ 2 k 1 2 2
= v,(A) 3 (—i)" " exp (—m’az.QpQT (]; — 5) > (—1)P®
5 2 a—1_, 2
| 2kapt, p°T + T.Qp T 2p°T
~ . koo1\? >
= I/TI(A)ig(—'L')p ab exp <—7Tia2.2p27 (]—9 — 5) ) (_1)p b
a1 fa—1\" 9 fa—1 9
(—=1) 2z exp | mi ) 2p°T — 2mi 5 (2kapt — p°1)
L (2k‘ap7', P27 2p27')
~ . a— 2(ak_1)2
= vy (A) (=1t e g (50 ) i (opkar, pPr 2p°T)
Combining the two transformation results, we have the statement of the proposition. U

Corollary 5.4. Let p > 3 be prime. Then
Ny (t;7) [[A], = Ny (6 7).
for A € Ty(2p*) NT(p).

Next, following the proof of Proposition 5.4 [13], we can deduce that

]

2T

Ny(k;7) = g~ " u(2pkr, 7 2°T) +
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(i(—l)"q(l’n+k)2r (%, 47ty (pn + k;)2> — i(—l)"q(””’“)QF (%’ dry(pn — k)2>>

n=0 n=1

’ ? b 271 mn
s LT S i
! (47 ¢7°)3 1 — g2(onth)

n=—oo

N (g—nnq—@wr (% dmy(pn + k)z) 3 (g e (% dy(pm — k>>> ,

n=1

Subtracting the expressions for N (¢, p;7) and N, (k; 7) with k summed over 1 to £, the
non-holomorphic parts cancel out and we get

0 < k (—2tk 20k — (1 + Cﬁ) 1
N(Cpm) =6 Y (D (G2 = GF) Nolks 1) = om0 O (G ) + — P (L pi )+
k=1 2i ¢ (1-¢)
¢ —20k kN pk—k> <q2p2§92p2)oo = n qp2n(n+1)
“ Z R b P e
which is weakly holomorphic. Rearranging the terms we get
2 (1-¢) & - 2 (@)« gt
O (4 7) — P )k ((—26k _ 20k pk—k _{)n
R (Gi7) (1+¢) ;( "G &) (@7 q7° )% n_zoo< ) 1 — grntk
G0 200G R oy g 2606
T (1+¢) Nz + (1+¢) ;(_1) (6" = ) Ny(ks m) + (7o) P(L,p;).
Let
t. o —2i§£ (1_C£) ) 1_& & —20k 20k )
j(§77—> T (1+C€) N(éapaT) 1+C€ ; C Cp )Np(kaT)
2G,(1-6)
(5.2) +WP(€ D3 T)-

Definition 5.5. For p > 3 prime and 1 < /¢ < p — 1 define
* g *
(5.3) J (];; T) = X,(T)OR(G7)

nw*7)*n(2r)

where recall X, (7) = ,
A7) n(2p?7)n(T)?

-1

]

—2i¢ (1 —¢) 20 (1-¢0) -
GoT) = N*(tpi7) + F(G 2 = ) N (ks )
(1+¢) 1+ ; )

*

R(
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(5.4)
2G,(1-¢)
(1+¢)

Now, with the correction factor ®,;(q) and the corrected overpartition rank function
O r((p, 7) defined as in Definitions (1.5)) and (1.6) respectively, we can easily see that

nP'r)® o e @) 0N et e (L
) n(2p*T) D( ”’T)_n(2p27)j<p’ ) HMOkG ) =T (p’ )

Thus we rewrite one of our main results, Theorem [I.8] in the equivalent form :

P*(l,p; 7).

Theorem 5.6. Let p > 3 be prime. Then the function J* <§; 7') is a weakly holomorphic
modular form of weight 1 on To(2p*) N T (p).

Proof. This follows easily from combining Theorem [{.2] Corollary [5.2] and Corollary [5.4]
U

Again, the functions (’)IC](,%( ! 7) as in Definition|1.9|can be equivalently written as

Proposition 5.7. Let p > 3 be prime and 0 < m < p — 1. Then
14
(5.6) oK (¢hsm) =T (5;7) | Upml, -
Next, the following theorem accounts for the modularity of OIC(}QL( ¢ 2) under special

b, P’
congruence subgroups of SLy(Z).

Theorem 5.8. Let p > 3 be prime and 0 < m < p — 1. Then

(i) OIC;]B) (2) is a weakly holomorphic modular form of weight 1 on I'1(2p).
(ii) If 1 <m < (p—1) then OIC;%(Z) is a weakly holomorphic modular form of weight
1 on I'(2p). In particular,

0K (¢, 2)

for A = (Ccl Z) e I'v(2p).

Proof. We consider the matrix in I';(2p) and go through the same matrix transformations as
in the proof of Theorem §.4]in the previous section to arrive at our result using Theorem [5.6|
and Proposition O

5.2. Overpartition rank symmetry result. We now investigate how the Atkin operator
and a matrix in T'o(2p) acts on each function of (5.3) to arrive at our symmetry result for the
overpartition rank.

Proposition 5.9. Let p > 3 be prime. Then

X (P) N (L pi7) | Uy 1[A] = G, (1) N (A7) | [0

p,ma2] 1
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for
A=(2 K € I'o(2p)
-\ 2p d 0Lep)-

1 r a+2pr L(k+rd—r'(a+2pr))
o <r<p— = — P
Proof. ForO0 <r < p—1letT, <O p) ,and B, ( op? d—2'p ,
where 0 < 7/ < p — 1is chosen so that ' = rd* + dk (mod p). Then

T,A=B.Ty,, r=ra®>—ak (modp), and B, € Ty(2p?).
We apply Proposition[5.1]and Theorem {.2] We have
* 1 — —rm *
Xp<7)N (LPQ 7') { [U/p,m]l |[A]1 = _ng XP(T)N (1717;7') |[Tr]1 HA]I

\/ﬁ r=0
1 =

= % ;CmeXp(T) N*(1,p;7) | [BT]l | [TT/]l
12

= — ¢ X () (B, 1) N*(d,yp; 1) | [T
75 2 & ) B ) N (i) [Ty
1

p—1
= _C;’Lakerfl Z C;T/masz(T) N*(d,p, 7_) ’ [Tr’]l 7

2(1—d+ 21 Ap?(d — 20"
since pu(B,,1) =exp (_m‘< ( + Tp)_ P ( _ Tp)))’
p p

C];rm — C;n(fr/a +ak) _ <}:nak<—;mr’a
and as r runs through a complete residue system mod p so does 7’. The result follows. [
Proposition 5.10. Let p > 3 be prime. Then

Xp(r) P(Lpi7) | Wl (AL = G X () P (i) | [V ]

for
A= (2‘; Z) € To(2p).

Proof. The proof follows similarly using Proposition O
Proposition 5.11. Let p > 3 be prime. Then

Xy(T) Np(657) | [Wpumly (4] = G X, (7) Ny (ats7) | [UPW]1
for
A— (26; ’;’) € To(2p).
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Proof. The proof follows using Proposition [5.3[and by going through the same series of ma-
trix transformations and steps as it did for the function N*(1, p; 7) in the proof of Proposition
except for the appearance of the root of unity multiplier x(B,., 1) in that proof which does
not appear here due to the exact transformation of N (#;7) as seen in Proposition U

Proposition 5.12. Let p > 3 be prime, 1 < (,0' < p—1, > = —m (mod p), £ = —ma?
(mod p). Then

() (G = &) XM N (67 | Uyl |14,
= (=1 (" = ) G X (r) N3 (€57) | U

A— (262 Z) € To(2p).

Proof. The proof follows from the previous proposition and the fact that ¢ = +al (mod p),
a is odd and ad — 2pk = 1. O

Proposition 5.13. Let 1 < k < (p — 1). Then

. n(p7)” Ny(k,Z) ifk*=—m (mod p)
Xp(T) Ny (b, 7) | [Upan, = § 0(2p7) g
0 otherwise.
Proof.
. 121 o T+ . T+
Xy (T) N3 (k,7) | [Upm), = ];Zgo X, . Ny (&, .
r=0

2
—Z _rm—n (pr + pr)” exp 27rzT+r (k’— E)
n(2pT + 2pr) P 2

(Zka—H" p27+r;2p27+r)

p p p
15 2 2
= — Z gp—rm ’f](pT) exp <—27T’i THT (k _ ]_?) )
p=" n(2p7) p 2

exp(_Tm 2pr + wipr + wi) G(2kT, pT; 2pT)

9 (k—5)? 2
= - Z ¢, R o g((gp)) f(2kT, pT; 2pT)

1 B 2y n(p7)? ( 7')
== r(m-+k%) N, (k2.
P ;Cp n(2pr) "\ p

pT)

The result follows since —r(m + k%) = 0 (mod p) if and only if k> = —m (mod p). O
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We finally present a proof of our result on the observation of symmetry among the ele-
ments of the p-dissection of the overpartition rank function, which was stated in the intro-
duction section Theorem .10l We restate it here.

Theorem 5.14. Let p > 3 be prime and 0 < m < p — 1. Then

I+
(5.7) O (G 7) | [A] = 1_?; i +§” Gt OK e (G 7)
P

for
A= (2 F) cro@p)
Proof. Proposition[5.7] gives
1
OIC(R (Cpa )_ <Z_9;T) | [Up,m]l .
We consider the following two cases.

CASE 1. m = 0 or (=) = —1. In this case
*# —m (modp), and ¢?# —ma® (mod p),
for 1 < ¢,¢' < (p — 1). The result then follows from Proposition|[5.9] and

CASE 2. (ﬂ) = 1. In this case choose 1 < £, ¢ < L(p — 1) such that
P 2
?=-m (modp), and ¢?=-ma®> (mod p).

We have

7 (;) | Uy 114]

_ _QiCp(l_Cp) * .
- p(T)< (1+Cp) N (1,]9, )

Mw\

-2¢0 *
1+Cp ézl HGT =G N6)

+ MP*(LPW’)) | [Up,mh |[A]1

(1+¢)
(=206 (1 =) makrdt (7 . 26 (1= Gp) vmakyd—1 2P (d v T
_( Atey Xp(r) N, pi7) + =Ty 6 X, (1) P*(d, p; )) ‘ {Up,mcﬂ}l
w(—l)e (C;%—C;fe) Ny (6;7) | [Up.m), |[A]; (by Propositions[5.9] [5.10/and [5.13))

(=206 (1= G) mara e 26 (1 = G) makra— (] -

21 (1 —G ) "2t ! ma * ..
(1+—<p)p(—1)£ (Cp 20d_ o d) G X (T)N (5 7) ‘ [Up,W] ) (by Proposition [5.12))
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206G (1= G) cmakrd_t * . M maktd—1 i . )
_( (1+¢) Cb NN pm) + =y e L0 Pdp) | |u

23d ngd) C;’“kXp(T)N;(ﬁ 7) ‘ [Up,m‘f] 1

1—|—Cp

(- 0+@)mk
_(1+Cp) (1—<d)€ T (p ) | Upimacly -

This completes the proof. U

Tﬁ\

6. LOWER BOUNDS FOR ORDER OF AT CUSPS

In this section, we calculate lower bounds for the orders of (’)IC(C) (¢, 2) and (’)IC;% (Cps 2)
at the cusps of I';(2p), which we use in proving the identities for the same in the subsequent
section.

For any cusp ¢ with (a,c) = 1 we define
ord <.F; %) = ord(F | [A]; ; 00),
where A € SLy(Z) and Aoco = ¢
The following result is necessary to calculate ord (Xp(z); %) ,ord (n(p22)2 ; %) ,ord <77(pz)2 ; %)

appearing in our transformations.

Proposition 6.1. [15, Corollary 2.2]. Let N > 1 and
= [[ nimz)~
m|N
where each ry, € Z. Then for (a,c) =1,

ord (F(z), ﬁ) = Z M

c 24m
m|N

We also need the following result in the context of calculating the orders for OICI()@L (Cps 2)
at the cusps of I'1(2p). Using Equation 1b we can write N,(J; é) = M(j,p; 2pz).
Jennings Shaffer gives lower bounds for orders of N(a,c; z), M(a,c;mz) and P(a,c; z) at
cusps ; (see [13} Propositions 6.3, 6.4, 6.5]). We state these orders below for our functions
N(1,p;z), Np(j; 2) and P(1,p; z).

Proposition 6.2. For x € R, let | x| denote the greatest integer less than or equal to x and
{x} the fractional part of x. For non-negative integers o and y with (c«,y) = 1, we have

i)

T A | o2 L iFy i
—r4+r_1,49 <—,—> if v is even,
(6.1) ordpy, (N(l,p; Z)7g> > pz " ! 2 g 22
1) T a2 -2 1 (2a) ifyisodd,

p,

ma?

I,
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where v(u, w) = %(LUJ — Lw))* + (Lu) = [w))({u} = {w}) + k(u, w),

) = { Al fwh) i) - ) £ £
; mlIl( v({u}, {w})) if{u} —{w} = :I:%,

u+w 1 .
viu,w) = s futwsl
’ %—“JFT“’ fu+w>1
ii)
6.2)
2,.2 : 2 2 .

Ao’ gxe (3 1 g . (jr x 2pa
ordp| (N J§—;—) > — <———) —l——l/(—,—) where g = (2p,y) and x = —.
e p(p)v 4p \p 2 2p \p 2 (2p,7) g

iii)
G- i
1L -3 if v is even,
(6.3) ordpoio <P(1,p;2);g> > WP Pl
v }L{%}—}l{%} —1—16 if v is odd.

Proposition 6.3. [/, Corollary 4, p.930] Let p > 3 be prime. Then a set of inequivalent cusps
S, for I'y(2p) is given by

ip-1) 3 5 p—2

9 g ee ey

, 11 2 3
lO0,0 -, — cey g Ty Ty ey T —
273 p—1 pp D 2p 2p 2p

We now calculate lower bounds of the invariant order of OIC(C) ) (Cp, 2) and OICZ()I’?L(CP, z)
at each cusp of I'1(2p).

Theorem 6.4. Let p > 3 be prime and 0 < m < p — 1. Then

(i)
>0 ifp=3,57
d ’C(C) sy Yy by
or ( (G 2); ) {: —Ep(p—l)(p 7) otherwise;
(ii)
. > 0 if nis even,
ord( OK ) (G 2); ) > 0ifnisodd p<T,
Z—@( —1)(p—"7)ifnisodd p>T;
(iii)
2
c n p”—1 p—1,
ord (OIC}(),TI)%(CI??Z)’E) Z ( 16]9 )7 1 S ng T7
(iv)

ord (OK;?,)Z((p,z); %) >0ifnisodd, 3 <n<p-—2.
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Proof. We derive lower bounds for ord (OICI(,%(CP, 2); ¢ ) for each cusp ¢ of I';(2p) not
equivalent to ico. From Equation ({#.2)), we have

1 1 o 1
O’C;,Cw)z@pvz) = Xp(z) Oc(Cp, 2) ‘ [Up,m]l = %(Cﬁ —G° )ZCP_W Xp(2) W | [Tk]l .
k=0 'p
We calculate
1
X — | [T A
P(z) t((),%)(z) |[ k ]1
a b

foreach0 < k <p—1andeach A = <C > € SLy(Z) and then pick A suitably to cover

d
all the cusps in Proposition [6.3]

Then

s
s

1 a 1
ord (Xp(z) t(o,%)(z)’ c) = ord (Xp(z), Z> + ord <t(0 NE} c) :

’p

Following the proof of Theoremd.1] we have

for A = <Z 2) € SLy(Z).

Case 1. a+ kc# 0 (mod p). Choose 0 < k' < p — 1 such that

(a+ke)k' = (b+ kd) (mod p).

Then
Tk-A:Cka/’
where
B a+ck (=K (a+ke)+b+ kd
Ck :TkATkll — ( pe p( ( d—/{)?/C >> EFO(p)
Then
64)  Xp(2) ——— |[TA], = X,(2) —— | [Ce T
. z = z /
g to,1)(2) P g to,1)(2) P

= (X,() | (€L Tely) (ﬁ |mf11) .

(67 p .
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Case 2. a+ kc=0 (mod p). In this case we consider
_(a+kc b+kd
s (o3l bala)
In this case we find that

T, A= D,P,
where
_(p O
(i 1).
D — %(a+kc) b+ kd SLo(Z
ke c pd € SLa(Z).
Then
1 1
65) mewwumm=MWHwﬂwGE@umm>

Now we are ready to examine each cusp ¢ of I';(2p). We choose

A= <(2 Z) € SLy(Z), sothat A(co) = 2 = (.

(i) =0. Let A = <(1) _dl) so that A(oco) = 0. We assume 0 < k£ < p — 1.

If k£ # 0 then applying 1| with C, = <I; d j k;’> we have

k 1 1 K\ 1 1
ord X,,(H ) .0 :—ord<Xp(z);—)+—ord _ 1 ic
p )y <+k> p p) P t(l,d—Tk'C)(Z)
—0+0

where the two orders are calculated using Propositions [6.1] and [2.3] (iii) respectively.

Next applying (6.5) with & = 0 we have
z 1 1 .
ord [ X, |- ) ———=:;0 | =pord (X,(2);0) + pord [ ———;ic0
P/ ton <3> t1 ) (2)
p P p
P 1 2 —1 p1 1
S R ) ST BT O
24( +2+ﬁ+ﬁﬁ)+2p p

=—§%@—n@—w
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again by using Propositions [6.1] and 2.3] (iii). The result (i) follows.

(ii)C:%, wherel <n<p-—1 LetA= sothatA(oo):%.

0
1

If kn # —1 (mod p) then applying lb with C), = (1 —Zi;nk:n 1 —*k’n> we have

k 1 1 1 1+ Ek 1 1
ord [ X, <Z+ ) ;— | = —ord (Xp(z); i n) +—-ord | ——— ;i
p t(O,%)(%) n p pn p t(nqlfk/n)('z)

From Proposition [2.3] we have

|
ord [ ———ico | =0.
i, 12m (2)

And to calculate ord (Xp(z)' 1+"‘”> using Proposition we split the cusps into two cases

9 pn

Case I : When n is odd, we have

1+ kn 1 1 1
X, (2); = —(—2+4+-+2-=)=0.
ord< »(2); p > 24( tot 2) 0

Case II : When n is even, we have

1+ kn 1
d|l X ; = —(—2424+2-2)=0.

Next assuming kn = —1 (mod p) and applying (6.5)), we have

k 1 1 1+ k 1
ord | X, it :— | =pord X];,(Z);M +pord [ ————;i00
)@ AT

75 P

From Proposition 2.3] we have

1 1
ord [ ———;i00 | = - (1 — E) .
tm1)(2) 2'p p

And to calculate ord (Xp(z); %) using Proposition , we split the cusps into two
cases :

Case I : When n is odd, we have

(L+kn)/p\ 1 12 -1\ -1 1
Ord(Xp(z)vT =51 —2+§+E+2—p2 —E 1—; .

Case II : When n is even, we have

ord (Xp(Z);w) -1 <—2+2+]%+ ;—22) =

n
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Combining these results, we have

(p—1)(p=7) :p -
ord [ X, (Z+k> 1 l _ {—% if n is odd,
¢ n

g (1 — %) if n 1s even.

The result (ii) follows.

(iit) ¢ = 2, where 1 < n < +(p — 1). Choose b,d so that A = (Z Z) € SLy(Z) and
A(c0) =n/p.
Since n # 0 (mod p) we apply li for each k£ with C}, = (n —;Qkp d _* k’p)' We have

k 1 1 k 1 1
ord [ X, <Z + ) : ") = Zomd (Xp(z); Lﬂ) +-ord | ———;i00
PoJ tog(=s) P) P b b by, 2= (2)

The result (iii) follows.

n b

(iv) ¢ = o where n is odd and 3 < n < p— 2. Let A = (2p J

A(o0) =n/2p.
. . _(n+2kp *
Since n # 0 (mod p) we apply (6.4) for each k with C}, = ( 0 d— Qk’p)' We have

k 1 1 2k 1 1
ord ( X, <Z+ ) 52 = —ord (Xp(z)§n+ 5 p) +-—ord | ——— ;100
p t(o,%)(zﬂc) 2p p 2p p t(2p’d,ik/p)(z)

P

) € SLy(Z) so that

! (=2+2+2p*—2p°) +0

24

The result (iv) follows. U
Theorem 6.5. Let p > 3 be prime and 0 < m < p — 1. Then

(i)

LL_qy, (ﬂ):1 dp=5
ord <O]C;()I?L<Cp= Z); 0> > 8<2p . )31f D anap
’ —p=D@=3) 1)6(p =3) otherwise:
2
(ii)

0 if n is even,

1
d | oK =) >
or ( p7m(§p72)7 n) = {1—61 lfn is Odd,
P



OVERPARTITION RANK-CRANK FUNCTION SYMMETRIES 33

(iii)

p_ (=D _ (D2 . <ﬂ> _1

ord (O’Cﬁ)@(fpﬂ); E) > {2 4p ¥ P ’

’ p 16— Kp otherwise;
(iv)
(p—1* . <—m> _
n ———1if (=) =1,
ord (OICI()}EA(CP,Z); —) > p it/ e
’ 2p 0 otherwise;

Proof. We derive lower bounds for ord (OICZ()%(CP, 2); ¢ ) for each cusp ¢ of I'1(2p) not
equivalent to ico. From Equation (5.6), we have

1

O}C(R) j* (]—),Z) ‘ [Up,m]l

p’m

(¢5 2)

= i G X (2)0
— Zcfkm ( ?

7 (G

1= 1
N (;z) T,

z) | [Tk, (using Equation (5.3))

(1; z) | [T%], (using Equation (5.5))

77(21922
- —ka/( 2Z 2Z< ( C) .
o ZC n(2p2) [ (1+Cp) N(1,p;z)
2i (1_Cp) & i (2§ 2j
I S 74 _1) j i\ N
070) ;< V(G = G Nl 2)
2 1-—
+ <(p1(_|_—<p)gp)P(1’p; z)| | [Tk], (using Equation (5.2)))
( p— —km (p22)2 -_ 16p(1-Gp p\~"5p . -
\/LﬁZk:é G " (2p22) 2(§+(<1p) )N(1=p5 z) + 2C(1(Ji<pc) )P(lvp7 2)| Tkl
1fm—00r(%):—:1,
= p— —km (p2z)2 —2iG(1-Gp . SU-6 .
\/%5 Ek:é G " (2p22) 2(1+(C1p) )N(l,p, z) + : (1(;‘;) )P(l,p7 2) | Tkl
20(1-¢,) g e n(pz)° 5 _
+ (1+<p) ( 1)8 (gp 2 ]36) n(sz)Np(g’p)’
where 1 < ¢ < 3(p—1),£*=—m (mod p),and () = 1.
We calculate )
N 2SN (L) | [T A,
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n(pz)* an
2 z)NM Z)1[A], and

n(p*2)?
T An P(Lpi2) | [T ]
a b

foreach0 < k <p—1andeach A = <c d

) € SLy(Z) and then pick A suitably to cover
all the cusps in Proposition [6.3]

Case 1. a+ ke # 0 (mod p). Choose 0 < k' < p — 1 such that
(a+ke) k' = (b+ kd) (mod p).

Then
Ty A= Cy Ty,
where 1( ( ) )
B 1 f(a+ck S(—K(a+kc)+b+kd
Ch=Th AT, = ( e P d— ke € L'o(p).
Then
n(p*2)? n(p*z)?
) Y(1,p: T, Al, = Y(1,p: Ty
(66) 77(2])22) ( ,p,Z) |[ k ]1 n(2p2z) ( 7p72) |[Ck k]l
n(p®z)? .
- (W (CTily ) (V(Lp:2) [[CTily) .

where Y = N or P.

Case 2. a+ ke =0 (mod p). In this case we consider
_(a+rc b+rd
)
In this case we find that

T, A= D, P,
where
_(p O
=5 1):
(1(a+/€c) b—i—kd)
D= |7 € SLy(Z).
c pd
Then
n(p?z)? , ~ (n(p*2)? ,
(6.7) —n(QpQZ)Y(Lp, z) |[De Py = (?7(21022) | [Dk P]o) (Y(1,p;2) | [Dx Ply)

where Y = N or P.

Now we are ready to examine each cusp ¢ of I';(2p). We choose

A= <CCZ Z) € SLy(Z), sothat A(co) = ¢ = (.
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(i) =0. Let A = <(1) _01) so that A(co) = 0. Weassume 0 < k < p — 1.

If k£ # 0 then applying with C, = <I; d j k:’> we have

n(p°2)? ) 1 (n(p22')2 k> 1 ( /f)
ord N(1,p,2)|[Tk]1;0 | = —ord i— ) +—ord | N(1,p,2); —
(77(21922) (L. 2l Tich p o \n2%2)'p) p (Lp2)iy

1 1. 1 K21
S N T k1
> 24p(2 2)+p( 1+k 1 + 2u(2,k))

And,

ord (20 (1.2 m10) = Bora (P0EY o (et )

1 1 1
>_" 1 2(0—-0-— —
+-(0-0 16)

where the orders are calculated using Proposition [6.1]and Equations (6.1)) and (6.3)).

If k£ = 0 then applying (6.7) with Dy = <(1) _01> we have

or n(p?z)? ] o) o n(p2z)? N N
o (St 0 NPAc0) = pord (TE2550) + pora (411,20

op (2 1N, -1 12
JEN— S — JE— _V —
=2\ 22) P\ T2\

1—2p
=5z
And,
5 o 2.\2
ord (ngji)])(l,p, 2)|[Dpls; 0) = pord <Z§§p2) ; 0> +pord (P(1,p, 2);0)

1 11 1

“T6p 7 (4_29 T 1_6)
(p—1)(p—3)
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where the orders are calculated using Proposition[6.1]and Equations (6.1)) and (6.3).

Finally

>i<2—i)+(o+ (0,0))
24 \p 2p 2
1

-3

where the orders are calculated using Proposition [6.1] and Equation (6.2) respectively.

(ii)C:%,wherelgngp—l. Let A = 1

If kn # —1 (mod p) then applying with C}, = (1 + kn 1 —*k’n) we have

pn
n(p*z)* 1
ord (nW N(Lp T )

)
2 2 1 k 1+k
_ d( n(p*z) + n) —ord( (1.p.2): + n)
T n(2p%z)’ pn

—241 +2——)—|—%( n +n—z+25(n,%)) if n is even,
( 2+2+2—2)+l( n2+(1+kn)n—Wﬁﬂ(zn,ukn)) if 7 is odd,

O) so that A(co) = £.

|
=}
=

vV
—N—
»*;IH %IH

SR Ll B Lo )

—~

—n*+n—1+20(n,3)) if n is even,
—n? 4 (14 kn)n — HE® 4 15 0 1 k:n)) if n is odd,

I
—

0 if n is even,
=L ifnis odd.

ord (2L p(1.p. 12 1)

n(2p*z

p?z)
p? 2 1 k 1 1+ k&
rd(n(( 2) + n)—i——ord (P(l,p,z); + n)
1
1
P

1

p

> {
if n is even,

B {——1 if n is odd,

16p

n p p p
5 .0 if n is even,

0+
0+ 1.7 ifnisodd,
0

where the orders are calculated using Proposition [6.1] and Equations (6.1)) and (6.3)).
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1+kn
If kn = —1 (mod p) then applying 1i with Dy, = ( ;‘; }lj) we have

ord (ML N 1.9, 21D, )

I
3
@]
=
/N3
33
)
b
[\e)
S~—
[\
£
3
~_
+
b
@]
=
o
VR
=
\:—‘
=
X
N —
<%
3
N~

n
.
p (2 _ 2 - 4 n_ 1 o(n 1
ﬂ(? pg +p(p2 +p 4+2V<p,2>)
> p 9 1 2 Lkn (1+kn)2 1 2n  1+k
p (2 _ 1 —n? G S 1y (2n 1tkn
\24 <p2 2p2>+p p? p 4 +2V<p’ p >
((—n2 | a1 ~(n 1 i
P p_2_|_;_z—|—2y 3 if n is even,
= 1+kn.n (1+kn)2 1~ 9 1tk X .
Lip —p_g_l_‘pp - —|—§1/<?", *;)”) if n is odd,
\
( 2 . .
- +t2n ifnisevenandn < 7,
_T”2—|—p if nisevenandn > £,
B *7"24—% ifnisoddand 1 <n < 21,
—n? 3n 1 : p—1 _
\T—'—? 5 if n is odd and = <n<p-—L

And,
n(p*2)* 1
d( (2p22)P(1ap72)|[Dp]1’
n\p-z
2 2 n _ n? i1
y 2 R _|_p(5_?) if n is even,
- n n2 . .
L z%_#> +p<%,5—}l_p—2—%6> if n is odd,
n n? 1 1
p(; — p_2> if n is even,
Lap(tr-izm— L) ifnisodd,
n2 . .
_n—=" if n is even,
{g — 2 ifnis odd,
P

if n is even,

if n is odd,

where the orders are calculated using Proposition [6.1] and Equations (6.1]) and (6.3)).

Finally

o (s (3 ) o () o (5 (65)

37
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2
2.1.2—2 £ _ 1 25(p P i i
N (: 2>2 +57(5)  ifniseven,
2.11.821)—1 —p (ﬁ _ %) + 2Lpg(%,p) if n is odd,
2
B ﬁp _ (ﬁ — %) + %ﬂ(ﬁ, £)  ifniseven,
= 2
Ly <§ - %) +£0(20,p) if nis odd,
1
_Jw if n is even
0 if n is odd,

where the orders are calculated using Proposition [6.1] and Equation (6.2) respectively.

(iit) ¢ = 2, where 1 < n < +(p — 1). Choose b,d so that A = (Z Z) € SLy(Z) and

A(oo) = 2.
Since n # 0 (mod p) we apply for each & with C, = (n J};fp d _* k:’p) . We have

md(”“P”2N< Sl

(2p%2)
n(p*z)? n—l—k:p) 1 ( n—l—k:p)
——od X + —ord | N(1,p, 2);
(n(p22) P> p ( ) p?
2 2
p 1 2 (n + kp) L
> Lo g ML Z5(2
_24p(p 2)+p<p+(n+k‘p)p 1 +2V(p,n+k‘p)
p 1 , (n+kp)? 1.
e — — o~ -7 _ 2
16+p< p~+ (n+kp)p 1 +2V( p,n+kp) |,
_r 1
16 16p’

And,

n(p*2)* Lo P 1P
d|{ —==P(1 T > —2p"—=)+-0= ==
ord (28 P p )il ) 2 gt = D)+ Lo =&
where the orders are calculated using Proposition [6.1]and Equations (6.1)) and (6.3)).

Finally

(s (:5) )
-l 5) con (5 (65) 1)

(p,p)*2 | (2p,p)*.(—1) L (0 1)’
> _ R
= oy A U "

by (21t
21/ p,n
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L,

2
2 (¢ 1 n? 2n2¢ nf 1 i 2nl
%—pn <5—§) —0—5(7— p+?—§) lf7§1,
= 2 2nl
g (t-4) g (2 () (- ) 0+ 1o ) waes
— %f _ 2 if 2t < 1,
p 9 p
2 (2 1 n? 2n2¢ 7 nt e 2nd
> {5 —pn (;—5) +§(2 p +s—;) if <5 > 1,
>1_1 il <
ﬁQEQ nl e 2nf
= ]—21 — T -3 if > 1,
=D (p-1)
-2 4p 4
where the orders are calculated using Proposition [6.1] and Equation (6.2) respectively.

(iv) ¢ = 2%, where n is odd and 3 < n < p— 2. Let A = (272 Z) € SLy(Z) so that

A(oo) = 5.
. . _ (n+2kp *
Since n #Z 0 (mod p) we apply for each k with C, = ( o d—2 k’p) . We have

ord (”@22)2N<1 p 2

(2p%2)
L »? 2% 1 2%
S (77( ?) n+2p>—|——0rd(N(1,p,z);L2p)
p° n(2p%z)"  2p p 2p
1 (n+kp)? 1.
> 2p? — 2 Z | —p? Ep)p — — 7 (2 k
_24p( p)+p< p”+ (n+kp)p 1 +2V( p,n + kp)
1 —1
_r 22
16 p 16

And,

n(p*z)? n 1 2 2 1
d P(1 Tili; — | = —2p~ — 2 -.0=0

where the orders are calculated using Proposition [6.1] and Equations (6.1]) and (6.3)).

Finally

(o™ () 3)
=ord (ML ) ona (4, (1)o7
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)22 (2p.2p)%.(—1 ¢ 1\? ¢
S 222 @22 (-1) | _pn2<___) +2p,;<"_7ﬁ)
p 2 p 2

¢ 1 2+2 _(nl n
= —DN _— — 1% —_—
p 2 p 02
/ 2
(5= 3) 2 (3057 - - D g ) iry <)
2
o (5-3) +2 (305 P - D+ -5 i <ss<l,
2 (2 1 2 1 nt n—1 2 ntl n—1 nt 1 7 {%}+% nt
|~ (,;—5) +2p §<L;J—T> +<L7J—T>({;}—§)+g— 3 if 25 > 1,
= 2n€ - n2€2 lf% S %7
n2¢? el nl
= » lf§<?§1,
>t (5-8) + (307 PG - DHE-g-) e
(=2n0—=C if 2t < 4
n2¢? el nf
—p— L pl oot o
n2p€2 : ié g
\:p_T lf?>17
—1)4
Zp_(p )
4p

where the orders are calculated using Proposition [6.1|and Equation (6.2)) respectively. U

o

*®

10.

11.

12.

13.
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