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ABSTRACT. Continuing our study of the symmetry phenomenon in rank and crank of par-
titions, we turn our attention to overpartitions. Building on our previous joint work on the
partition rank generating function and that of the second author on the partition crank generat-
ing function, we investigate the modularity, transformation and symmetry of the overpartition
rank and crank generating functions. Let OR(z, q) and OC(z, q) be the two-variable gener-
ating functions of the overpartition rank and the first residual crank statistics respectively and
ζp be a primitive p-th root of unity. By considering the action of the group Γ0(2p) on the
elements of the p-dissection of OR(ζp, q) and OC(ζp, q), we discover new symmetries for the
rank and first residual crank functions for overpartitions. In the process, we improve upon
the results of Chris Jennings Shaffer and that of Bringmann and Lovejoy on the modularity
and transformation of the overpartition rank function. We also find lower bounds for the or-
ders of the elements of p-dissection of the said generating functions at the cusps of Γ1(2p).
Using these orders, we are working on developing an algorithmic approach comprising of
techniques coming from automorphic forms to find new identities for explicit dissections of
overpartition rank and the first residual crank generating functions modulo 11 in terms of
generalized eta products.

1. INTRODUCTION

The rank statistic for partitions was discovered by Dyson in 1944. The Dyson rank of a
partition is the largest part minus the number of parts. This statistic decomposes the parti-
tions of 5n+ 4 and 7n+ 5 into 5 and 7 equinumerous classes, as conjectured by Dyson and
proved by Atkin and Swinnerton-Dyer, thus resolving the mod 5 and mod 7 congruences of
Ramanujan. The crank of a partition was introduced by Andrews and Garvan in 1988. It
is defined as the largest part if the partition contains no ones, and otherwise as the number
of parts larger than the number of ones minus the number of ones. In their paper, Andrews
and Garvan show that the crank simultaneously decomposes the partitions of 5n+ 4, 7n+ 5
and 11n + 6 into 5, 7 and 11 equinumerous classes respectively. The significance of these
two statistics lies not only in the aspect that it renders a partial combinatorial interpretation
to the famous congruences of Ramanujan, but also in the fact that their generating functions
have a rich modular structure. Several mathematicians have worked in this direction to study
the modular structure underlying these two statistics following the seminal work done by
Zwegers in his thesis, where he shows how Ramanujan’s mock theta functions occur as the
holomorphic part of certain real analytic modular forms.
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In 2004, Sylvie Corteel and Jeremy Lovejoy [6] introduced the concept of overpartitions.
An overpartition is a partition in which the first occurrence of a number may be overlined.
For example, the 14 overpartitions of 4 are

4, 4, 3 + 1, 3 + 1, 3 + 1, 3 + 1, 2 + 2, 2 + 2, 2 + 1 + 1,
2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1, 1 + 1 + 1 + 1.

Analogous to the crank of an ordinary partition, Bringmann, Lovejoy and Osburn [4]
introduced the first and second residual crank of an overpartition. In this paper, the au-
thors deduce congruence properties for combinatorial functions which can be expressed in
terms of the second overpartition rank moment and the corresponding residual crank mo-
ment. Several authors have since considered these residual cranks and have worked on their
generalizations, finding and proving inequalities between the moments of these functions in
conjunction with other overpartition statistics, among other problems. The combinatorial
interpretation leading to explicit definitions of these cranks was given by us recently in [12].

Let M(m,n) denote the number of overpartitions of n with first residual crank equal to
m. Throughout, we assume q = e2πiτ where τ ∈ H, the upper half complex plane. We let
M(z, q) denote the two-variable generating function for the first residual crank so that

OC(z, τ) =
∞∑
n=0

∑
m

M(m,n) zm qn.

It is the transformation, modularity and symmetry of this function under special congruence
subgroups of SL2(Z), which we hereinafter call the overpartition crank function OC(z, τ),
when z is a primitive p-th root of unity, that we study in the first half of this paper. This
residual crank can be expressed in terms of a Klein form whose transformation is well known
in literature and helps us establish our results. We summarize our two major results for the
overpartition crank without delving into further details here.

Theorem 1.1. Let p > 3 be prime. Then the function

η(p2τ)2

η(2p2τ)
OC(ζp, τ)

is a modular form of weight 1 on Γ0(p
2) ∩ Γ1(2p).

The modularity and symmetry of the elements of the p-dissection of
η(p2τ)2

η(2p2τ)
OC(ζp, τ) is

our other point of interest in the paper. These elements are defined below.

Definition 1.2. Let p > 3 be prime, 0 ≤ m ≤ p− 1 and 1 ≤ ℓ ≤ p− 1. Define

(1.1) OK(C)
p,m(ζ

ℓ
p, z) := qm/p

∞∏
n=1

(1− qpn)2

(1− q2pn)

∞∑
n=0

(
p−1∑
k=0

M(k, p, pn+m) ζkℓp

)
qn.

The result on the modularity of these elements is deferred to Section 4. Below is our
other major result of the paper for the crank of overpartitions. The action of the congruence
subgroup Γ0(2p) on these elements leads to our symmetry result, analogous to the symmetry
result for crank of partitions [18, Theorem 1.6].
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Theorem 1.3. Let p > 3 be prime and 0 ≤ m ≤ p− 1. Then

(1.2) OK(C)
p,m(ζ

ℓ
p, z) | [A]1 =

sin(ℓπ/p)

sin(ℓdπ/p)
ζmak
p OK(C)

p,ma2(ζ
ℓd
p , z)

for

A =

(
a k
2p d

)
∈ Γ0(2p).

In the second half of this paper, we consider the Dyson’s rank of an overpartition. It is
defined as the largest part minus the number of parts, in particular the rank does not depend
on whether or not a part is overlined.

Let N(m,n) denote the number of overpartitions of n with rank m. Let

OR(z, τ) =
∞∑
n=0

∑
m

N(m,n)zmqn.

In a fashion similar to the work of Bringmann and Ono [5] for the rank of partitions,
Bringmann and Lovejoy [3] observed that OR(z, τ) is the holomorphic part of a harmonic
weak Maass form of weight 1

2
on when z ̸= −1 is a root of unity. The following theorem

summarizes their main result in the case where z is a p-th root of unity.

Theorem 1.4. Let p > 3 be prime and 0 < a < p. Define

θ(α, β; τ) :=
∑

n≡α (mod β)

nqn
2/2β,

Θa,p (τ) := θ

(
4a+ p, 2p;

τ

4p

)
, and

J

(
a

p
; z

)
:=

πi tan
(

πa
p

)
4p

∫ i∞

−z

(−iτ)−
3
2 .Θa,p

(
− 1

τ

)
dτ√

−i(τ + z)
.

Then

M

(
a

p
; z

)
:= OR

(
ζap ; τ

)
− J

(
a

p
; z

)
is a weak Maass form of weight 1

2
on the congruence subgroup

Γ̃ =

{
A =

(
α β
γ δ

)
∈ SL2(Z) | α ≡ δ ≡ 1 (mod 4p), γ ≡ 0 (mod 16p2)

}
.

In our study of the overpartition rank function OR(ζp, τ), we build around the functions
considered by Jennings-Shaffer [13]. In this paper, Jennings-Shaffer reconsiders the modu-
larity of this function and bypassing the approach of Bringmann and Lovejoy, he constructs a
completion of OR(ζp, τ) to a harmonic Maass form which is the sum of an easily understood
modular form and a harmonic Maass form of Zwegers. We record this work here.

For u, v, z ∈ C, τ ∈ H, and u, v /∈ Z+ τZ we have
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ϑ(z; τ) =
∑

n∈Z+ 1
2

exp

(
πin2τ + 2πin

(
z +

1

2

))
,

µ(u, v; τ) =
exp(πiu)

ϑ(v; τ)

∞∑
n=−∞

(−1)n exp(πin(n+ 1)τ + 2πinv)

1− exp(2πinτ + 2πiu)
.

Next for u, z ∈ C, y = Im(τ), and a = Im(u)/ Im(τ) we define

E(z) = 2

∫ z

0

exp
(
−πw2

)
dw

R(u; τ) =
∑

n∈Z+ 1
2

(sgn(n)− E((n+ a)
√

2y))(−1)n−
1
2 exp

(
−πin2τ − 2πinu

)
.

For a, b ∈ R we set

ga,b(τ) =
∑

n∈Z+a

n exp
(
πin2τ + 2πinb

)
.

Finally for u, v /∈ Z+ τZ we set

µ̃(u, v; τ) = µ(u, v; τ) +
i

2
R(u− v; τ).

In his revolutionary PhD thesis [20], Zwegers studied these functions and gave their trans-
formation formulas.

Theorem 1.5. (Jennings-Shaffer, Corollary 2.2, [13]) Suppose a and c are integers, c > 0
and c ∤ 2a. Then,

OR (ζac ; τ) =
2ζac (1− ζac )

(1 + ζac )
P (a, c; τ)− i2ζac (1− ζac )

(1 + ζac )
N(a, c; τ)

+ i
√
2
(1− ζac )

(1 + ζac )

∫ i∞

−τ̄

g0, 1
2
− 2a

c
(2z)√

−i(z + τ)
dz(1.3)

where

N(a, c; τ) = q−
1
4 µ̃

(
2a

c
, τ ; 2τ

)
, P (a, c; τ) =

(−q; q)∞ (q2; q2)
2
∞

(q; q)∞ [ζ2ac ; q2]∞
.

Jennings-Shaffer gives explicit and compact transformation formulas to determine a larger
subgroup of SL2(Z) on which the completion of OR(ζ

a
p , τ) viz.

M(a, c; τ) = OR (ζac ; τ)− i
√
2
(1− ζac )

(1 + ζac )

∫ i∞

−τ̄

g0, 1
2
− 2a

c
(2z)√

−i(z + τ)
dz

=
2ζac (1− ζac )

(1 + ζac )
P (a, c; τ)− i2ζac (1− ζac )

(1 + ζac )
N(a, c; τ)(1.4)

is a Harmonic Maass form, and reproves the modularity result of Bringmann and Lovejoy.

Theorem 1.6. Suppose a and c are integers, c > 0, and c ∤ 2a, then M(a, c; τ) is a harmonic
weak Maass form of weight 1

2
on Γ0(16c

2) ∩ Γ1(4c).
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The case a = 1 and c = p for prime p > 3 is the result of Bringmann and Lovejoy stated
previously in Theorem 1.4.

In our work, with the introduction of a simple eta multiplier to OR(ζp, τ), we narrow down
the transformation of all the functions involved in the expression for OR(ζp, τ) (Theorem
1.5) to the simpler congruence subgroup Γ0(2p

2) ∩ Γ1(p) sans the multipliers appearing in
the results of Jennings-Shaffer (Corollaries 3.3 and 4.1, [13]). This problem also involves
finding the overpartition analogue of the completed rank function Rp(z) given by Garvan
[10].

Rp(z) := q−
1
24R(ζp, q)− χ12(p)

1
2
(p−1)∑
a=1

(−1)a
(
ζ
3a+ 1

2
(p+1)

p + ζ
−3a− 1

2
(p+1)

p

−ζ
3a+ 1

2
(p−1)

p − ζ
−3a− 1

2
(p−1)

p

)
q
a
2
(p−3a)−p2

24 Φp,a(q
p),

where

Φp,a(q) :=


∞∑
n=0

qpn
2

(qa; qp)n+1(qp−a; qp)n
, if 0 < 6a < p,

−1 +
∞∑
n=0

qpn
2

(qa; qp)n+1(qp−a; qp)n
, if p < 6a < 3p,

and

χ12(n) :=

(
12

n

)
=


1 if n ≡ ±1 (mod 12),
−1 if n ≡ ±5 (mod 12),
0 otherwise.

This in turn involves finding the overpartition rank analogue of the correction factor Φp,a(q
p).

We find that this correction factor for the overpartition rank function includes a Lambert se-
ries which

i) appears in the dissection elements of the overpartition rank generating function O(ζp, τ)
of Jennings-Shaffer and Lovejoy and Osburn (Theorem 1.1, [13] & Theorem 1.1, 1.2,
[16]), and

ii) has a connection with the cancellation of the Mordell integral of the theta function
which is the non-holomorphic part of O(ζp, τ) (Corollary 2.2, [13]).

We will eventually see in the course of this paper that this factor allows us to complete the
overpartition rank function to a weakly holomorphic modular form on a larger and nicer
congruence subgroup improving the results of Bringmann and Lovejoy [3] and Jennings-
Shaffer [13]. To that end,

Definition 1.7. Let p > 3 be prime and 1 ≤ k ≤ 1
2
(p− 1). Define

(1.5) Φp,k(q) := qk−
k2

p
(q2p; q2p)∞
(qp; qp)2∞

∞∑
n=−∞

(−1)n
qpn(n+1)

1− qpn+k
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and

(1.6) OR(ζp, τ) := OR(ζp; τ)−
2 (1− ζp)

1 + ζp

1
2
(p−1)∑
k=1

(−1)k
(
ζ−2k
p − ζ2kp

)
Φp,k(q

p).

Thus one of our main results

Theorem 1.8. Let p > 3 be prime. Then the function
η(p2τ)2

η(2p2τ)
OR(ζp, τ)

is a weakly holomorphic modular form of weight 1 on Γ0(2p
2) ∩ Γ1(p).

Furthermore, we also define the elements of the p-dissection of
η(p2τ)2

η(2p2τ)
OR(ζp, τ).

These elements feature the functions OK(R)
p,m(ζ

d
p ; z) defined below into two cases for when m

is a quadratic residue or non-residue modulo p, wherein fragments of the correction factor
above (Equation (1.5)) appears in the quadratic residue case. We study their modularity and
symmetry, akin to the case of rank of partitions (Definition 1.4, [11]).

Definition 1.9. Let p > 3 be prime and 0 ≤ m ≤ p− 1. Define OK(R)
p,m(ζ

d
p ; z) as follows :

(i) For m = 0 or
(−m

p

)
= −1 define

(1.7) OK(R)
p,m(ζ

d
p ; z) := qm/p

∏∞
n=1(1− qpn)2∏∞
n=1(1− q2pn)

∞∑
n=0

(
p−1∑
k=0

N(k, p, pn) ζkdp

)
qn,

where q = exp(2πiz).

(ii) For
(−m

p

)
= 1 define

OK(R)
p,m(ζ

d
p ; z) := qm/p

∏∞
n=1(1− qpn)2∏∞
n=1(1− q2pn)

(
∞∑
n=0

(
p−1∑
k=0

N(k, p, pn+m) ζkdp

)
qn(1.8)

− q
1
p
(a(p−a)−m)2 (1− ζp)

1 + ζp
(−1)a(ζ−2a

p − ζ2ap )Φp,a(q)

)
,

where 1 ≤ a ≤ 1
2
(p− 1) has been chosen so that

−m ≡ a2 (mod p).

The result on the modularity of these elements is deferred to Section 5. Below is our
other major result of the paper for the rank of overpartitions. The action of the congruence
subgroup Γ0(2p) on these elements leads to our symmetry result, similar to the symmetry
result for crank of overpartitions Theorem 1.3 and analogous to the symmetry result for rank
of partitions [11, Theorem 1.6].

Theorem 1.10. Let p > 3 be prime and 0 ≤ m ≤ p− 1. Then

(1.9) OK(R)
p,m(ζp, τ) | [A]1 =

1− ζp
1− ζdp

1 + ζdp
1 + ζp

ζmak
p OK(R)

p,ma2(ζ
d
p , τ)
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for

A =

(
a k
2p d

)
∈ Γ0(2p).

Remarks :

I. In this paper, we strengthen the results of Bringmann and Lovejoy [3] and Jennings-
Shaffer [13] for the rank of overpartitions. In particular

i. For the case p > 3 prime, we strengthen Theorems 1.4 and 1.6. We show that the
group in these results can be enlarged to Γ0(2p

2)∩Γ1(p) but with a simple eta mul-

tiplier
η(p2τ)2

η(2p2τ)
, on which our completed rank function is a weakly holomorphic

modular form of order 1. The idea for choosing this special congruence subgroup
comes from the work of Jennings-Shaffer which we explain below.

ii. The introduction of the eta multiplier
η(τ)2

η(2τ)
to the functions P (a, c, τ) and N(a, c, τ)

involved in the expression for OR(ζp, τ) gets rid of the multipliers appearing in the
results of Jennings-Shaffer (Corollaries 3.3 and 4.1, [13]), where he is able to sig-
nificantly simplify the transformation of these two functions to the much simpler
congruence subgroup Γ0(2p

2) ∩ Γ1(p). However, what we realize is that consider-
ing a generalization of Jennings-Shaffer’s function N7(k; τ) [13, Page 6] extended
to any prime p leads us to our improved modularity result described in the point
above. The resulting function Np(k; τ) appears in our modified expression (with
the correction factor and eta multipliers) for OR(ζp, τ) in Equation (1.3). See
Equation (5.3). The non-holomorphic part of this function helps annihilate the
non-holomorphic part arising from the Mordell integral of the theta function in
Equation (1.3) and leads us to our completion of the overpartition rank function in
Equation (1.6) and eventually Theorem 1.8. Our investigation of the transforma-

tion and modularity of N∗
p (k; τ) =

η(τ)2

η(2τ)
Np(k; τ) also generalizes and improves

the transformation result of Jennings- Shaffer for N7(k; τ) [13, Proposition 5.2] to
any prime p > 3. This is documented in Corollary 5.4.

II. A majority of our modularity and transformation results in this paper are direct analo-
gies of those in [11] and [18].

III. The reason behind considering the study of the first residual crank of overpartitions in
this paper is because we observe that the respective modular and transformation prop-
erties in the case of Dyson’s rank of overpartitions hold for the exact same congruence
subgroups of SL2(Z). To be precise, the modularity result for the generating function
of the modified overpartition statistics holds under Γ0(2p

2)∩Γ1(p), the modularity and
transformation results for the dissection elements OKp,m(ζp, τ) under Γ(2p) and Γ1(2p)
and finally the symmetry result for the dissection elements OKp,m(ζp, τ) under Γ0(2p),
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for both the first residual crank and the Dyson’s rank of overpartitions. However, the
second residual crank of overpartitions also appears in the hindsight in our study of the
rank. It arises in the formula for the two variable overpatition rank generating function
OR (ζac ; τ) due to Jennings-Shaffer in Equation (1.3). This is the function P (a, c, τ)
whose modularity and transformation alongwith a simple eta eta multiplier, when ζac is
a p-th root of unity ζp, p > 3 is investigated in Propositions 5.1 and 5.10 and Corollary
5.2.

In the final part of this paper, we find explicit p-dissections of the overpartition rank and
crank functions in terms of generalized eta products. Identities for the dissection elements
of the overpartition rank function for the case p = 7 were found and studied by Jennings-
Shaffer [13]. However we find that for higher primes p > 7, the computational techniques in
Maple that we employed to find dissections for the partition counterparts in [11] and [18] fall
short. Consequently, the idea here is to consider the ring of modular/cusp forms for Γ1(2p),
and eventually find a simpler basis consisting of Jacobi products which we accomplish us-
ing a combination of Maple and Sage. We present and prove such identities for the cases
p = 7, 11 in the last section.

The paper is organized as follows. In Section 2, we review and build a database of the
necessary notations, definitions and fundamental transformation results which we will use in
the course of establishing our main results in the subsequent sections. In Section 3, we give
conditions for the modularity of the generalized eta-quotients analogous to the conditions
developed for the rank of partitions [11, Section 3]. In Sections 4 and 5, we consider the first
residual crank of overpartitions and Dyson’s rank of overpartitions respectively and deduce
our transformation, modularity and symmetry results. Section 6 is devoted to calculating
lower bounds for the orders of OK(C)

p,m(ζp, z) and OK(R)
p,m(ζp, z) at the cusps of Γ1(2p) which

we utilize to prove identities for the same in the subsequent section. Section 7, currently
under development, is devoted to developing an algorithm that uses the Valence formula for
proving generalized eta-quotient identities for OK(C)

p,m(ζp, z) and OK(R)
p,m(ζp, z) for p = 7, 11.

2. PRELIMINARIES

2.1. Theta functions and transformations. We define a class of generalized eta products
and functions that we will use frequently in expressions for our overpartition rank and crank
identities and to study their transformations in the subsequent sections.

Definition 2.1. Following Biagioli (see [2]), define

(2.1) fN,ρ(z) := (−1)⌊ρ/N⌋q(N−2ρ)2/(8N) (qρ, qN−ρ, qN ; qN)∞.

Then, for a vector −→n = (n0, n1, n2, · · · , np) ∈ Zp+1, define

(2.2) j(z) = j(p,−→n , z) = η(2pz)n0

p∏
k=1

f2p,k(z)
nk .

We note that

(2.3) fN,ρ(z) = fN,N+ρ(z) = fN,−ρ(z),
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and

(2.4) fN,ρ(z) = η(Nz) ηN,ρ(z)

where

η(z) := q
1
24

∞∏
n=1

(1− qn),

and
ηN,k(z) = q

N
2
P2(k/N)

∏
m>0

m≡±k (mod N)

(1− qm)

where z ∈ h, P2(t) = {t}2 − {t} + 1
6

is the second periodic Bernoulli polynomial, and
{t} = t− [t] is the fractional part of t.

The transformations for η(z) due to Knopp [14, Theorem 2, p.51] and the theta function
fN,ρ(z) due to Biagioli [2, Lemma 2.1, p.278] are well known and have been used previ-
ously by us to study transformations in [10] and [11].

2.2. Klein forms. Our transformation results for the first residual crank of overpartitions
are realized by writing them in terms of a Klein form which we define here. These functions
are also considered by Jennings-Shaffer in his study of the transformation of the function
P (a, c; τ) described in the introduction section. Here we correct a minor mistake in the
definition adopted by him [13, Section 4] and instead state and use the definition adopted by
Eum, Koo and Shin [9] as follows.

Definition 2.2. [9, Equation 1.4] For (a1, a2) ∈ Q2 − Z2 and ζ = exp(2πi(a1τ + a2)), the
Klein form t(a1,a2)(τ) is defined by the following infinite product expansion

(2.5) t(a1,a2)(τ) = exp (πia2(a1 − 1)) q
1
2
(a1(a1−1))(1− ζ)

(ζq; q)∞(ζ−1q; q)∞
(q; q)2∞

.

The transformation and order of this Klein form necessary for our study is recorded in the
proposition below.

Proposition 2.3. [9, Proposition 2.1]
(i) For (a1, a2) ∈ Q2 − Z2 and (b1, b2) ∈ Z2, we have

t(a1+b1,a2+b2)(τ) = (−1)b1b2+b1+b2 exp(−πi(b1a2 − b2a1))t(a1,a2)(τ).

(ii) For (a1, a2) ∈ Q2 − Z2 and A =

(
a b
c d

)
∈ SL2(Z), we have

t(a1,a2)(τ)|[A]1 = t(a1,a2).A(τ) = t(a1a+a2c,a1b+a2d)(τ).

(iii) For (a1, a2) ∈ Q2 − Z2, we have

ordqt(a1,a2)(τ) =
1

2
{a1} ({a1} − 1),

where {x} is the fractional part of x ∈ R.
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2.3. A useful permutation.

Definition 2.4. Let p > 3 be prime. For 1 ≤ r ≤ p, we define a permutation πr : [p] → [p],
where [p] = {1, 2, · · · , p} by πr(i) = i′ where ri′ ≡ ±i (mod 2p).

πr induces a permutation on Zp. For −→n = (n0, n1, n2, · · · , np), πr(
−→n ) permutes the

components to πr(
−→n ) = (n0, nπr(1), nπr(2), · · · , nπr(p)).

Lemma 2.5. Let p > 3 be prime and −→n and j(z) be defined as in Definition 2.1. Then,

j(p, πr(
−→n ), z) = η(pz)n0

p∏
k=1

f2p,rk(z)
nk .

The proof of the lemma follows as in [11, Lemma 3.5].

2.4. The Atkin operator. We define the (weight k) Atkin Up operator by

(2.6) F
 [Up]k :=

1

p

p−1∑
r=0

F

(
z + r

p

)
= p

k
2
−1

p−1∑
n=0

F | [Tr]k ,

where

Tr =

(
1 r
0 p

)
,

and the more general Up,m is defined as
(2.7)

F
 [Up,m]k :=

1

p

p−1∑
r=0

exp

(
−2πirm

p

)
F

(
z + r

p

)
= p

k
2
−1

p−1∑
r=0

exp

(
−2πirm

p

)
F | [Tr]k .

We note that Up = Up,0. In addition, if

F (z) =
∑
n

a(n)qn =
∑
n

a(n) exp(2πizn),

then

F
 [Up,m]k = qm/p

∑
n

a(pn+m) qn = exp(2πimz/p)
∑
n

a(pn+m) exp(2πinz).

3. MODULARITY CONDITIONS FOR GENERALIZED ETA-QUOTIENTS

We present a general criteria for an eta-quotient j(p,−→n , z) in our Definition 2.1 to be a
weakly holomorphic modular form of weight 1 on Γ(2p) in the form of a theorem. This result
is analogous to the criteria for the eta quotients that we had defined to study the partition rank
[11, Theorem 3.1].

Theorem 3.1. Let p > 3 be prime and suppose −→n = (n0, n1, n2, · · · , np) ∈ Zp+1. Then
j(p,−→n , z) is a weakly holomorphic modular form of weight 1 on Γ(2p) satisfying the modu-
larity condition

j(p,−→n , z) | [A]1 = exp(2πibm
p

)j(p,−→n , z)
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for A =

(
a b
c d

)
∈ Γ1(2p) provided the following conditions are met :

(1) n0 +

p∑
k=1

nk = 2,

(2) n0 + 3

p∑
k=1

nk ≡ 0 (mod 24),

(3)

p∑
k=1

k2nk ≡ 4m (mod 4p).

Proof. The Dedekind eta function is a modular form of weight 1
2
. Thus, η(2pz)n0 contributes

n0

2
and each of the f2p,k(z)

nk contributes nk

2
to the weight and the weight of j(p,−→n , z) is

n0

2
+

p∑
k=1

nk

2
. Condition (1) implies that this weight is 1.

Let A =

(
a b
c d

)
∈ Γ1(2p). Then, by [10, Theorem 6.14, p.243], we have

η(2pz)
 [A]1/2 = νη(

2pA) η(2pz),

where νη(
2pA) is the eta-multiplier,

2pA =

(
a 2bp

c/2p d

)
∈ SL2(Z).

Then
η(2pAz) = νη(

2pA)
√
cz + d η(2pz)

and using the Biagioli transformation [10, Theorem 6.12, p.243] for fp,k(z), we have

f2p,k(z)
 [A]1/2 = (−1)kb+⌊ka/2p⌋+⌊k/2p⌋ exp

(
πiab

2p
k2

)
ν3
η

(
2pA
)
f2p,ka(z)

= (−1)kb+⌊ka/2p⌋ exp

(
πiab

2p
k2

)
ν3
η

(
2pA
)
f2p,k(z),

assuming 1 ≤ k ≤ p. Therefore

j(p,−→n , z) | [A]1 = (−1)L1(A) exp
(πiab

2p
L2(A)

)
νL3(A)
η

(
2pA
)
j(z)

= exp
(
πiL1(A) +

πiab

2p
L2(A)

)
νL3(A)
η

(
2pA
)
j(z),

where

L1(A) = b

p∑
k=1

knk +

p∑
k=1

⌊
ka

2p

⌋
nk,
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L2(A) =

p∑
k=1

k2nk,

L3(A) = n0 + 3

p∑
k=1

nk.

Now assume conditions (1)− (3) hold, and
(
a b
c d

)
∈ Γ1(2p). Since L3(A) ≡ 0 (mod 24),

the modularity condition holds if we can show that L1(A) +
ab

2p
L2(A) −

2bm

p
is an even

integer.

Since a ≡ 1 (mod 2p), we have abL2(A) ≡ bL2(A) (mod 2p).

Also, using (3), we have bL2(A) ≡ 4bm (mod 4p).

Combining the two congruences, we can conclude that L1(A)+
ab

2p
L2(A)−

2bm

p
is an integer.

Now

L1(A) +
ab

2p
L2(A)−

2bm

p
=

1

p
(pL1(A) +

ab

2
L2(A)− 2bm).

Also, condition (3) also implies that

L2(A) ≡ 0 (mod 4)

ab

2
L2(A) ≡ 0 (mod 2).

Thus, to show that L1(A) +
ab

2p
L2(A)−

2bm

p
is an even integer, it is sufficient to show that

L1(A) ≡ 0 (mod 2).

We have a ≡ 1 (mod 2p). Let a = 2pr + 1.

Then
ka

2p
=

2kpr

2p
+

k

2p
= kr +

k

2p
.

So ⌊
ka

2p

⌋
= kr.

Thus

L1(A) =

p∑
k=1

(bk +

⌊
ka

2p

⌋
)nk

≡ (b+ r)

p∑
k=1

knk (mod 2)
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≡ (b+ r)

p∑
k=1

k2nk (mod 2)

≡ 0 (mod 2),

where the last congruence follows because
p∑

k=1

k2nk = L2(A) ≡ 0 (mod 4). □

Definition 3.2. Let F(m, p) be the set of functions j(p,−→n , z) that satisfy the conditions of
Theorem 3.1.

Theorem 3.3. Let p > 3 be prime and 0 ≤ m ≤ p−1. Suppose j(p,−→n , z) ∈ F(m, p). Then,

(3.1) j(p,−→n , z) | [A]1 = (−1)L(
−→n ,a,p) exp

(
2πiabm

p

)
η(2pz)n0

p∏
k=1

f2p,ka(z)
nk ,

where

L(−→n , a, p) =

p∑
k=1

⌊
ka

2p

⌋
nk.

for

A =

(
a b
2p d

)
∈ Γ0(2p).

Also

(3.2) j(p, πr(
−→n ), z) ∈ F(m′, p),

where 1 ≤ r ≤ p and m′ ≡ r2m (mod 2p).

Proof. Following the proof of Theorem 3.1, we use the transformation for η(z) and fp,k(z)
to get

j(p,−→n , z) | [A]1 = (−1)L1(A) exp
(πiab

2p
L2(A)

)
νL3(A)
η

(
2pA
)
η(2pz)n0

p∏
k=1

f2p,ka(z)
nk

where

L1(A) = b

p∑
k=1

knk +

p∑
k=1

⌊
ka

2p

⌋
nk,

L2(A) =

p∑
k=1

k2nk,

L3(A) = n0 + 3

p∑
k=1

nk.

Since j(p,−→n , z) ∈ F(m, p), we have that L3(A) ≡ 0 (mod 24) and we can also deduce
from the third modularity condition that

p∑
k=1

knk (mod 2) ≡
p∑

k=1

k2nk (mod 2) ≡ 0 (mod 2).
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It suffices to prove that
ab

2
L2(A)− 2abm

is an even multiple of p, which is easy to see since L2(A) ≡ 4m (mod 4p). Equation (3.1)
follows.
Now suppose 1 ≤ r ≤ p so that for 1 ≤ i ≤ p we have πr(i) = i′ where 1 ≤ i′ ≤ p and
ri′ ≡ ±i (mod 2p). We note that

p∑
k=1

nk =

p∑
k=1

nπr(k), and

p∑
k=1

k2nπr(k) =

p∑
k=1

k2nk′ ≡ r2
p∑

k′=1

(k
′
)2nk′ (mod 2p).

Equation (3.2) follows easily. □

4. TRANSFORMATION, MODULARITY AND SYMMETRY OF THE FIRST RESIDUAL
CRANK OF OVERPARTITIONS

The two variable generating function for the first residual crank of an overpartition given
by Bringmann, Lovejoy and Osburn [4] is

OC(z, τ) =
∞∑
n=0

∑
m

M(m,n) zm qn = (−q; q)∞
(q; q)∞

(zq; q)∞(z−1q; q)∞
.

We write this function in terms of the Klein form in Definition 2.2.

O∗
C(ζ

a
p , τ) =

η(τ)2

η(2τ)
OC(ζ

a
p , τ)

=
η(τ)2

η(2τ)

(−q; q)∞
(q; q)∞

(q; q)2∞
(ζap q; q)∞(ζ−a

p q; q)∞

=
(q; q)2∞

(ζap q; q)∞(ζ−a
p q; q)∞

=

(
exp

(
πia

p

)
− exp

(
−πia

p

))
1

t(0,a
p
)(τ)

,

where

(4.1) t(0,a
p
)(τ) = − exp

(
−πia

p

)
(1− ζap )

(ζap q; q)∞(ζ−a
p q; q)∞

(q; q)2∞
.

4.1. Transformation and modularity of the crank and associated functions.

Theorem 4.1. Let p > 3 be prime. Then O∗
C(ζ

a
p , τ) is a weakly holomorphic modular form

of weight 1 on Γ0(p
2) ∩ Γ1(2p).
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Proof. Let

A =

(
α β
γ δ

)
∈ Γ0(p

2) ∩ Γ1(2p).

Using the transformations in Proposition 2.3, we have

t(0,a
p
)(τ)|[A]1 = t(aγ

p
,aδ
p
)(τ)

= t(0+aγ
p
,aδ
p
+0)(τ)

= (−1)
aγ
p exp

(
−πi

(
a2γδ

p2
− 0

))
t(0,aδ

p
)(τ).

Then

O∗
C(ζ

a
p , τ)|[A]1 =

exp
(

πia
p

)
− exp

(
−πia
p

)
exp

(
πiaδ
p

)
− exp

(
−πiaδ

p

)(−1)aγ exp

(
πia2γδ

p2

)
O∗

C(ζ
aδ
p , τ)

=
sin
(

aπ
p

)
sin
(

aδπ
p

)(−1)aγ exp

(
πia2γδ

p2

)
O∗

C(ζ
aδ
p , τ)

= (−1)aγ exp

(
πia2γδ

p2

)
O∗

C(ζ
aδ
p , τ),

since

sin

(
aπ

p

)
= sin

(
aδπ

p

)
when δ ≡ 1 (mod 2p).

□

Theorem 4.2. Let

Xp(τ) =
η(p2τ)2η(2τ)

η(2p2τ)η(τ)2
.

Then Xp(τ) is a modular function on Γ0(2p
2).

Proof. f(z) =
∏

0<δ|N
η(qδ)rδ is a weak modular form of weight k = 1

2

∑
0<δ|N

rδ on Γ0(N) if it

satisfies the following : ∑
0<δ|N

δrδ ≡ 0 (mod 24),

∑
0<δ|N

N

δ
rδ ≡ 0 (mod 24).

Let δ|2p2. Then for f(z) = Xp(τ), we have

∑
0<δ|2p2

δrδ = −2 + 2 + 2p2 − 2p2 = 0,
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0<δ|N

2p2

δ
rδ = −4p2 + p2 + 4− 1 = 3 (1− p2) ≡ 0 (mod 24).

Thus, Xp(τ) is a modular function on Γ0(2p
2). □

The modularity of the overpartition crank function stated in the introduction section as
Theorem 1.1 now deduces easily as a corollary. We restate it here.

Corollary 4.3. Let p > 3 be prime. Then Xp(τ)O∗
C(ζ

a
p , τ) is a modular form of weight 1 on

Γ0(p
2) ∩ Γ1(2p).

Next, we consider the elements of the p-dissection of Xp(τ)O∗
C(ζ

a
p , τ) defined in Defini-

tion 1.2. Using the definition of the Atkin operator Equation (2.7), we can equivalently write
them as

(4.2) OK(C)
p,m(ζ

ℓ
p, z) = Xp(τ)O∗

C(ζ
ℓ
p, τ)

 [Up,m]1 .

The following theorem accounts for the modularity of OK(C)
p,m(ζp, z) under special congru-

ence subgroups of SL2(Z).

Theorem 4.4. Let p > 3 be prime and 0 ≤ m ≤ p− 1. Then

(i) OK(C)
p,0 (ζp, z) is a weakly holomorphic modular form of weight 1 on Γ1(2p).

(ii) If 1 ≤ m ≤ (p − 1) then OK(C)
p,m(ζp, z) is a weakly holomorphic modular form of

weight 1 on Γ(2p). In particular,

OK(C)
p,m(ζp, z) | [A]1 = exp

(
2πibm

p

)
OK(C)

p,m(ζp, z),

for A =

(
a b
c d

)
∈ Γ1(2p).

Proof. We let

A =

(
a b
c d

)
∈ Γ1(2p)

so that a ≡ d ≡ 1 (mod 2p) and c ≡ 0 (mod 2p). Let 0 ≤ k ≤ p− 1. We take k′ ≡ b + k
(mod p) so that

Tk A = Bk Tk′ ,

and

Bk = Tk AT−1
k′ =

(
a+ ck 1

p
(−k′(a+ kc) + b+ kd)

pc d− k′c

)
∈ Γ0(p

2) ∩ Γ1(2p).

Thus,

OK(C)
p,m(ζp, z) | [A]1

=
1
√
p

p−1∑
k=0

exp

(
−2πikm

p

)
Xp(τ)O∗

C(ζp, τ) | [(Tk A)]1

=
1
√
p

p−1∑
k=0

exp

(
−2πi(k′ − b)m

p

)
Xp(τ)O∗

C(ζp, τ) | [(Bk Tk′)]1



OVERPARTITION RANK-CRANK FUNCTION SYMMETRIES 17

=
1
√
p
exp

(
2πibm

p

) p−1∑
k′=0

exp

(
−2πik′m

p

)
Xp(τ)O∗

C(ζp, τ) | [Tk′ ]1

(by Corollary 4.3 since Bk ∈ Γ0(p
2) ∩ Γ1(2p))

= exp

(
2πibm

p

)
OK(C)

p,m(ζp, z),

as required. Thus each function OK(C)
p,m(ζp, z) has the desired transformation property. It is

clear that each OK(C)
p,m(ζp, z) is holomorphic on H. The cusp conditions follow by a standard

argument. We examine orders at each cusp in more detail in a later section. □

4.2. Overpartition crank symmetry. We finally present a proof of our result on the ob-
servation of symmetry among the elements of the p-dissection of the overpartition crank
function, which was stated in the introduction section in Theorem 1.3. We restate it here.

Theorem 4.5. Let p > 3 be prime and 0 ≤ m ≤ p− 1. Then

(4.3) OK(C)
p,m(ζ

ℓ
p, z) | [A]1 =

sin(ℓπ/p)

sin(ℓdπ/p)
ζmak
p OK(C)

p,ma2(ζ
ℓd
p , z)

for

A =

(
a k
2p d

)
∈ Γ0(2p).

Proof. We undergo the same matrix transformations as we did in the case of Kp,m(ζp, z)

([11], Proposition 4.7), and for 0 ≤ r ≤ p− 1 let Tr =

(
1 r
0 p

)
, and

Br =

(
a+ 2pr 1

p
(k + rd− r′(a+ 2pr))

2p2 d− 2r′p

)
,

where 0 ≤ r′ ≤ p− 1 is chosen so that r′ ≡ rd2 + dk (mod p). Then

Tr A = Br Tr′ , r ≡ r′a2 − ak (mod p), and Br ∈ Γ0(2p
2).

OK(C)
p,m(ζ

ℓ
p, z) | [A]1 = Xp(τ)O∗

C(ζ
ℓ
p, τ)

 [Up,m]1 | [A]1

=
1
√
p

p−1∑
r=0

ζ−rm
p Xp(τ)O∗

C(ζ
ℓ
p, τ) | [Tr]1 | [A]1

=
1
√
p

p−1∑
r=0

ζ−rm
p Xp(τ)O∗

C(ζ
ℓ
p, τ) | [Br]1 | [Tr′ ]1

=
1
√
p

sin
(

ℓπ
p

)
sin
(

ℓ (d−2r′p)π
p

)(−1)ℓ (2p
2) exp

(
πiℓ2 2p2 (d− 2r′p)

p2

)
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p−1∑
r=0

ζ−rm
p Xp(τ)O∗

C(ζ
ℓ(d−2r′p)
p , τ) | [Tr′ ]1

(using the second step of the transformation of O∗
C(ζ

a
p , τ)|[A]1

in the proof of Theorem 4.1)

=
1
√
p

sin
(

ℓπ
p

)
sin
(

ℓ d π
p

) p−1∑
r=0

ζ−rm
p Xp(τ)O∗

C(ζ
ℓd
p , τ) | [Tr′ ]1

=
sin
(

ℓπ
p

)
sin
(

ℓ d π
p

)ζmak
p

1
√
p

p−1∑
r′=0

ζ−r′ma2

p Xp(τ)O∗
C(ζ

ℓd
p , τ) | [Tr′ ]1 ,

since

ζ−rm
p = ζm(−r′a2+ak)

p = ζmak
p ζ−mr′a2

p ,

and as r runs through a complete residue system mod p so does r′. The result follows. □

5. TRANSFORMATION, MODULARITY AND SYMMETRY OF DYSON’S RANK OF
OVERPARTITIONS

Similar to the transformation, modularity and symmetry of the rank generating function
for partitions, in this section, we establish analogous results for the overpartition rank gener-
ating function.

5.1. Transformation and modularity of the rank and associated functions.

Proposition 5.1. Let p > 3 be prime and 1 ≤ ℓ ≤ (p− 1). Define

N∗(ℓ, p; τ) :=
η(τ)2

η(2τ)
N(ℓ, p; τ),

P ∗(ℓ, p; τ) :=
η(τ)2

η(2τ)
P (ℓ, p; τ).

Then
N∗(ℓ, p; τ) | [A]1 = µ(A, ℓ)N∗(dℓ, p; τ),

P ∗(ℓ, p; τ) | [A]1 = µ(A, ℓ)P ∗(dℓ, p; τ),

where

µ(A, ℓ) = exp

(
−πi

(
2ℓ(1− d)

p
− 2cdℓ2

p2

))
and

A =

(
a b
c d

)
∈ Γ0(2p).
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Proof. Knopp’s formula for the eta multiplier gives

η(τ)2

η(2τ)
|[A]1 =

νη(A)
2

νη(2A)

η(τ)2

η(2τ)
= νη(

2A)3(−1)−(b+a−1
2

)iab.

Using [13, Corollary 3.2] we get

N(ℓ, p; τ)|[A] 1
2
= νη(

2A)−3(−1)b+
a−1
2

+ac
p exp

(
−πi

(
−2ℓ2cd

p2
+

2ℓ(1− d)

p
+

ab

2

))
N(dℓ, p; τ).

Therefore,

N∗(ℓ, p; τ)|[A] 1
2
= exp

(
−πi

(
2ℓ(1− d)

p
− 2cdℓ2

p2

))
N∗(dℓ, p; τ).

And, writing P (ℓ, p, τ) in terms of the Klein form (Equation (2.5)), we get

P (ℓ, p, τ) = −ζ−ℓ
p

η(2τ)

η(τ)2
1

t(0, 2ℓ
p
)(2τ)

.

Therefore, using the transformations in Proposition 2.3, we get

P ∗(ℓ, p; τ)|[A]1 = −ζℓp
1

t(0, 2ℓ
p
)(2τ)

|[A]1

= −ζℓp
1

(−1)
ℓc
p exp

(
−πi

(
2ℓ2c(d−1)

p2

))
t( ℓc

p
, 2ℓd

p
)(2τ)

= −ζℓp (−1)
ℓc
p exp

(
πi

(
2ℓ2cd

p2

))
1

t(0, 2ℓd
p

)(2τ)

= exp

(
−πi

(
2ℓ(1− d)

p
− 2cdℓ2

p2

))
P ∗(dℓ, p; τ).

□

The following corollary now follows easily.

Corollary 5.2. Let p > 3 be prime and 1 ≤ ℓ ≤ (p− 1). Then

N∗(ℓ, p; τ) | [A]1 = N∗(ℓ, p; τ),

P ∗(ℓ, p; τ) | [A]1 = P ∗(ℓ, p; τ),

for
A ∈ Γ0(2p

2) ∩ Γ1(p).

Now, using Theorem 1.5 and Proposition 3.5 [13], we have

N(ℓ, p; τ) =
−
(
1 + ζℓp

)
2 i ζℓp

(
1− ζℓp

) OR
(
ζℓp; τ

)
+

1

i
P (ℓ, p; τ) +

ζ−ℓ
p√
2

∫ i∞

−τ̄

g0, 1
2
− 2ℓ

p
(2z)√

−i(z + τ)
dz

=
−
(
1 + ζℓp

)
2 i ζℓp

(
1− ζℓp

) OR
(
ζℓp; τ

)
+

1

i
P (ℓ, p; τ) +

iζ−ℓ
p

2
√
π

∞∑
n=1

(−1)n
(
ζ−2ℓn
p − ζ2ℓnp

)
Γ

(
1

2
; 4πyn2

)
q−n2
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=
−
(
1 + ζℓp

)
2 i ζℓp

(
1− ζℓp

) OR
(
ζℓp; τ

)
+

1

i
P (ℓ, p; τ) +

iζ−ℓ
p

2
√
π

p−1
2∑

k=1

(−1)k
(
ζ−2ℓk
p − ζ2ℓkp

)
·(

∞∑
n=0

(−1)nq−(pn+k)2Γ

(
1

2
; 4πy(pn+ k)2

)
−

∞∑
n=1

(−1)nq−(pn−k)2Γ

(
1

2
; 4πy(pn− k)2

))
.

In Section 2 [13], the author defines

N7(k; τ) = q−k2+7k− 49
4 µ̃(14kτ, 49τ ; 98τ).

For an arbitrary prime p > 3, we define the generalized function

Np(k; τ) = q−(k−p/2)2µ̃(2pkτ, p2τ ; 2p2τ).

Then

Np(k; τ) = q−2p2 1
2
( k
p
− 1

2
)2µ̃(2pkτ, p2τ ; 2p2τ)

= M(k, p; 2p2τ),(5.1)

where M(a, c; τ) = q−
1
2
(a
c
− 1

2
)2µ̃(aτ

c
, τ
2
; τ) is defined by Jennings-Shaffer in Section 5 [13].

This helps in determining the transformation of Np(k; τ) under matrices in SL2(Z) using
Proposition 5.1 [13].

Also, using Proposition 1.3 and 1.4 [20], we have

µ(2pkτ, p2τ ; 2p2τ) = iqpk+
p2

4
(q2p

2
; q2p

2
)∞

(qp2 ; qp2)2∞

∞∑
n=−∞

(−1)n
qp

2n(n+2)

1− q2p(pn+k)
.

Further, we define

N∗
p (k; τ) =

η(τ)2

η(2τ)
Np(k; τ).

We deduce the transformation of this function under Γ0(2p
2) ∩ Γ1(p) like the previous two

functions in Corollary 5.2.

Proposition 5.3. Let p > 3 be prime. Then

N∗
p (ℓ; τ) | [A]1 = N∗

p (aℓ; τ)

for

A =

(
a b
c d

)
∈ Γ0(2p

2).

Proof. We have

N∗
p (k; τ) =

η(τ)2

η(2τ)
Np(k; τ) =

η(τ)2

η(2τ)
M(k, p; 2p2τ) =

η(τ)2

η(2τ)
q−(k− p

2
)2µ̃(2pkτ, p2τ ; 2p2τ).

Knopp’s formula for the eta multiplier gives

η(τ)2

η(2τ)
|[A] 1

2
=

νη(A)
2

νη(2A)

η(τ)2

η(2τ)
= νη(

2A)3(−1)−(b+a−1
2

)iab.
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Using the transformation for µ(u, v; τ) [20, Theorem 1.1 (1)] due to Zwegers, we get

Np(k; τ)|[A] 1
2
= M(k, p; 2p2τ)|[A] 1

2

= M

(
k, p; 2p2

aτ + b

cτ + d

)
= M

(
k, p; Ã(2p2τ)

)
where Ã =

(
a 2p2b

c/2p2 d

)
= νη(Ã)

−3 exp

(
−πia.2p2b

(
k

p
− 1

2

)2

− πia2.2p2τ

(
k

p
− 1

2

)2
)

µ̃

(
ka.2p2τ + k.2p2b

p
,
a.2p2τ + 2p2b

2
; 2p2τ

)
= νη(Ã)

−3 exp

(
−2πiabk2 − πi

p2ab

2
+ 2πipabk − πia2.2p2τ

(
k

p
− 1

2

)2
)

µ̃
(
2kapτ + 2apb, ap2τ + p2b; 2p2τ

)
= νη(Ã)

−3(−i)p
2ab exp

(
πia2.2p2τ

(
k

p
− 1

2

)2
)
(−1)p

2b µ̃
(
2kapτ, ap2τ ; 2p2τ

)
= νη(Ã)

−3(−i)p
2ab exp

(
−πia2.2p2τ

(
k

p
− 1

2

)2
)
(−1)p

2b

µ̃

(
2kapτ, p2τ +

a− 1

2
.2p2τ ; 2p2τ

)
= νη(Ã)

−3(−i)p
2ab exp

(
−πia2.2p2τ

(
k

p
− 1

2

)2
)
(−1)p

2b

(−1)
a−1
2 exp

(
πi

(
a− 1

2

)2

.2p2τ − 2πi

(
a− 1

2

)
(2kapτ − p2τ)

)
µ̃
(
2kapτ, p2τ ; 2p2τ

)
= νη(Ã)

−3(−1)b+
a−1
2

+ab ip
2ab q−p2(ak

p
− 1

2)
2

µ̃
(
2pkaτ, p2τ ; 2p2τ

)
.

Combining the two transformation results, we have the statement of the proposition. □

Corollary 5.4. Let p > 3 be prime. Then

N∗
p (ℓ; τ) | [A]1 = N∗

p (ℓ; τ).

for A ∈ Γ0(2p
2) ∩ Γ1(p).

Next, following the proof of Proposition 5.4 [13], we can deduce that

Np(k; τ) = q−(k−p/2)2µ(2pkτ, p2τ ; 2p2τ) +
i

2
√
π
·
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∞∑
n=0

(−1)nq−(pn+k)2Γ

(
1

2
; 4πy(pn+ k)2

)
−

∞∑
n=1

(−1)nq−(pn−k)2Γ

(
1

2
; 4πy(pn− k)2

))

= iq2pk−k2 (q
2p2 ; q2p

2
)∞

(qp2 ; qp2)2∞

∞∑
n=−∞

(−1)n
qp

2n(n+2)

1− q2p(pn+k)
+

i

2
√
π

(
∞∑
n=0

(−1)nq−(pn+k)2Γ

(
1

2
; 4πy(pn+ k)2

)
−

∞∑
n=1

(−1)nq−(pn−k)2Γ

(
1

2
; 4πy(pn− k)2

))
.

Subtracting the expressions for N(ℓ, p; τ) and Np(k; τ) with k summed over 1 to p−1
2

, the
non-holomorphic parts cancel out and we get

N(ℓ, p; τ)− ζ−ℓ
p

p−1
2∑

k=1

(−1)k
(
ζ−2ℓk
p − ζ2ℓkp

)
Np(k; τ) =

−
(
1 + ζℓp

)
2 i ζℓp

(
1− ζℓp

) OR
(
ζℓp; τ

)
+

1

i
P (ℓ, p; τ)+

i ζ−ℓ
p

p−1
2∑

k=1

(−1)k
(
ζ−2ℓk
p − ζ2ℓkp

)
qpk−k2 (q

2p2 ; q2p
2
)∞

(qp2 ; qp2)2∞

∞∑
n=−∞

(−1)n
qp

2n(n+1)

1− qp2n+k
,

which is weakly holomorphic. Rearranging the terms we get

OR
(
ζℓp; τ

)
−

2
(
1− ζℓp

)(
1 + ζℓp

) p−1
2∑

k=1

(−1)k
(
ζ−2ℓk
p − ζ2ℓkp

)
qpk−k2 (q

2p2 ; q2p
2
)∞

(qp2 ; qp2)2∞

∞∑
n=−∞

(−1)n
qp

2n(n+1)

1− qp2n+k

=
−2 i ζℓp

(
1− ζℓp

)(
1 + ζℓp

) N(ℓ, p; τ) +
2 i
(
1− ζℓp

)(
1 + ζℓp

) p−1
2∑

k=1

(−1)k
(
ζ−2ℓk
p − ζ2ℓkp

)
Np(k; τ) +

2 ζℓp
(
1− ζℓp

)(
1 + ζℓp

) P (ℓ, p; τ).

Let

J
(
ℓ

p
; τ

)
:=

−2 i ζℓp
(
1− ζℓp

)(
1 + ζℓp

) N(ℓ, p; τ) +
2 i
(
1− ζℓp

)(
1 + ζℓp

) p−1
2∑

k=1

(−1)k
(
ζ−2ℓk
p − ζ2ℓkp

)
Np(k; τ)

+
2 ζℓp

(
1− ζℓp

)(
1 + ζℓp

) P (ℓ, p; τ).(5.2)

Definition 5.5. For p > 3 prime and 1 ≤ ℓ ≤ p− 1 define

(5.3) J ∗
(
ℓ

p
; τ

)
:= Xp(τ)O

∗
R(ζ

ℓ
p, τ)

where recall Xp(τ) =
η(p2τ)2η(2τ)

η(2p2τ)η(τ)2
, and

O∗
R(ζ

ℓ
p, τ) =

−2 i ζℓp
(
1− ζℓp

)(
1 + ζℓp

) N∗(ℓ, p; τ) +
2 i
(
1− ζℓp

)(
1 + ζℓp

) p−1
2∑

k=1

(−1)k
(
ζ−2ℓk
p − ζ2ℓkp

)
N∗

p (k; τ)



OVERPARTITION RANK-CRANK FUNCTION SYMMETRIES 23

+
2 ζℓp

(
1− ζℓp

)(
1 + ζℓp

) P ∗(ℓ, p; τ).

(5.4)

Now, with the correction factor Φp,k(q) and the corrected overpartition rank function
OR(ζp, τ) defined as in Definitions (1.5) and (1.6) respectively, we can easily see that

(5.5)
η(p2τ)2

η(2p2τ)
OR(ζ

ℓ
p, τ) =

η(p2τ)2

η(2p2τ)
J
(
ℓ

p
; τ

)
= Xp(τ)O

∗
R(ζ

ℓ
p, τ) = J ∗

(
ℓ

p
; τ

)
.

Thus we rewrite one of our main results, Theorem 1.8, in the equivalent form :

Theorem 5.6. Let p > 3 be prime. Then the function J ∗
(

1
p
; τ
)

is a weakly holomorphic

modular form of weight 1 on Γ0(2p
2) ∩ Γ1(p).

Proof. This follows easily from combining Theorem 4.2, Corollary 5.2 and Corollary 5.4.
□

Again, the functions OK(R)
p,m(ζ

ℓ
p; τ) as in Definition 1.9 can be equivalently written as

Proposition 5.7. Let p > 3 be prime and 0 ≤ m ≤ p− 1. Then

(5.6) OK(R)
p,m(ζ

ℓ
p; τ) = J ∗

(
ℓ

p
; τ

)  [Up,m]1 .

Next, the following theorem accounts for the modularity of OK(R)
p,m(ζ

ℓ
p, z) under special

congruence subgroups of SL2(Z).

Theorem 5.8. Let p > 3 be prime and 0 ≤ m ≤ p− 1. Then

(i) OK(R)
p,0 (z) is a weakly holomorphic modular form of weight 1 on Γ1(2p).

(ii) If 1 ≤ m ≤ (p− 1) then OK(R)
p,m(z) is a weakly holomorphic modular form of weight

1 on Γ(2p). In particular,

OK(R)
p,m(z) | [A]1 = exp

(
2πibm

p

)
OK(R)

p,m(ζp, z)

for A =

(
a b
c d

)
∈ Γ1(2p).

Proof. We consider the matrix in Γ1(2p) and go through the same matrix transformations as
in the proof of Theorem 4.4 in the previous section to arrive at our result using Theorem 5.6
and Proposition 5.7. □

5.2. Overpartition rank symmetry result. We now investigate how the Atkin operator
and a matrix in Γ0(2p) acts on each function of (5.3) to arrive at our symmetry result for the
overpartition rank.

Proposition 5.9. Let p > 3 be prime. Then

Xp(τ)N
∗(1, p; τ)

 [Up,m]1 | [A]1 = ζmak+d−1
p Xp(τ)N

∗(d, p; τ)
[Up,ma2

]
1
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for

A =

(
a k
2p d

)
∈ Γ0(2p).

Proof. For 0 ≤ r ≤ p−1 let Tr =

(
1 r
0 p

)
, and Br =

(
a+ 2pr 1

p
(k + rd− r′(a+ 2pr))

2p2 d− 2r′p

)
,

where 0 ≤ r′ ≤ p− 1 is chosen so that r′ ≡ rd2 + dk (mod p). Then

Tr A = Br Tr′ , r ≡ r′a2 − ak (mod p), and Br ∈ Γ0(2p
2).

We apply Proposition 5.1 and Theorem 4.2. We have

Xp(τ)N
∗(1, p; τ)

 [Up,m]1 | [A]1 =
1
√
p

p−1∑
r=0

ζ−rm
p Xp(τ)N

∗(1, p; τ) | [Tr]1 | [A]1

=
1
√
p

p−1∑
r=0

ζ−rm
p Xp(τ)N

∗(1, p; τ) | [Br]1 | [Tr′ ]1

=
1
√
p

p−1∑
r=0

ζ−rm
p Xp(τ)µ(Br, 1)N

∗(d, p; τ) | [Tr′ ]1

=
1
√
p
ζmak+d−1
p

p−1∑
r′=0

ζ−r′ma2

p Xp(τ)N
∗(d, p; τ) | [Tr′ ]1 ,

since µ(Br, 1) = exp

(
−πi

(
2 (1− d+ 2r′p)

p
− 4p2(d− 2r′p)

p2

))
,

ζ−rm
p = ζm(−r′a2+ak)

p = ζmak
p ζ−mr′a2

p ,

and as r runs through a complete residue system mod p so does r′. The result follows. □

Proposition 5.10. Let p > 3 be prime. Then

Xp(τ)P
∗(1, p; τ)

 [Up,m]1 | [A]1 = ζmak+d−1
p Xp(τ)P

∗(d, p; τ)
[Up,ma2

]
1

for

A =

(
a k
2p d

)
∈ Γ0(2p).

Proof. The proof follows similarly using Proposition 5.1. □

Proposition 5.11. Let p > 3 be prime. Then

Xp(τ)N
∗
p (ℓ; τ)

 [Up,m]1 | [A]1 = ζmak
p Xp(τ)N

∗
p (aℓ; τ)

[Up,ma2

]
1

for

A =

(
a k
2p d

)
∈ Γ0(2p).



OVERPARTITION RANK-CRANK FUNCTION SYMMETRIES 25

Proof. The proof follows using Proposition 5.3 and by going through the same series of ma-
trix transformations and steps as it did for the function N∗(1, p; τ) in the proof of Proposition
5.9, except for the appearance of the root of unity multiplier µ(Br, 1) in that proof which does
not appear here due to the exact transformation of N∗

p (ℓ; τ) as seen in Proposition 5.3. □

Proposition 5.12. Let p > 3 be prime, 1 ≤ ℓ, ℓ′ ≤ p − 1, ℓ2 ≡ −m (mod p), ℓ′2 ≡ −ma2

(mod p). Then

(−1)ℓ
(
ζ−2ℓ
p − ζ2ℓp

)
Xp(τ)N

∗
p (ℓ; τ)

 [Up,m]1 | [A]1
= (−1)ℓ

′
(
ζ−2ℓ′d
p − ζ2ℓ

′d
p

)
ζmak
p Xp(τ)N

∗
p (ℓ

′; τ)
[Up,ma2

]
1

for

A =

(
a k
2p d

)
∈ Γ0(2p).

Proof. The proof follows from the previous proposition and the fact that ℓ′ ≡ ±aℓ (mod p),
a is odd and ad− 2pk = 1. □

Proposition 5.13. Let 1 ≤ k ≤ 1
2
(p− 1). Then

Xp(τ)N
∗
p (k, τ)

 [Up,m]1 =


η(pτ)2

η(2pτ)
Np(k,

τ
p
) if k2 ≡ −m (mod p)

0 otherwise.

Proof.

Xp(τ)N
∗
p (k, τ)

 [Up,m]1 =
1

p

p−1∑
r=0

ζ−rm
p Xp

(
τ + r

p

)
N∗

p

(
k,

τ + r

p

)

=
1

p

p−1∑
r=0

ζ−rm
p

η(pτ + pr)2

η(2pτ + 2pr)
exp

(
−2πi

τ + r

p

(
k − p

2

)2)
µ̃

(
2pk

τ + r

p
, p2

τ + r

p
; 2p2

τ + r

p

)
=

1

p

p−1∑
r=0

ζ−rm
p

η(pτ)2

η(2pτ)
exp

(
−2πi

τ + r

p

(
k − p

2

)2)
exp(

−πi

4
.2pr + πipr + πi) µ̃(2kτ, pτ ; 2pτ)

=
1

p

p−1∑
r=0

ζ−rm−rk2+2rkp
p q−

(k− p
2 )2

p
η(pτ)2

η(2pτ)
µ̃(2kτ, pτ ; 2pτ)

=
1

p

p−1∑
r=0

ζ−r(m+k2)
p

η(pτ)2

η(2pτ)
Np

(
k,

τ

p

)
.

The result follows since −r(m+ k2) ≡ 0 (mod p) if and only if k2 ≡ −m (mod p). □
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We finally present a proof of our result on the observation of symmetry among the ele-
ments of the p-dissection of the overpartition rank function, which was stated in the intro-
duction section Theorem 1.10. We restate it here.

Theorem 5.14. Let p > 3 be prime and 0 ≤ m ≤ p− 1. Then

(5.7) OK(R)
p,m(ζp, τ) | [A]1 =

1− ζp
1− ζdp

1 + ζdp
1 + ζp

ζmak
p OK(R)

p,ma2(ζ
d
p , τ)

for

A =

(
a k
2p d

)
∈ Γ0(2p).

Proof. Proposition 5.7 gives

OK(R)
p,m(ζp; τ) = J

(
1

p
; τ

)  [Up,m]1 .

We consider the following two cases.

CASE 1. m = 0 or
(−m

p

)
= −1. In this case

ℓ2 ̸≡ −m (mod p), and ℓ′2 ̸≡ −ma2 (mod p),

for 1 ≤ ℓ, ℓ′ ≤ 1
2
(p− 1). The result then follows from Proposition 5.9, 5.10 and 5.13.

CASE 2.
(−m

p

)
= 1. In this case choose 1 ≤ ℓ, ℓ′ ≤ 1

2
(p− 1) such that

ℓ2 ≡ −m (mod p), and ℓ′2 ≡ −ma2 (mod p).

We have

J ∗
(
1

p
; τ

)  [Up,m]1 | [A]1

= Xp(τ)

(
−2 i ζp (1− ζp)

(1 + ζp)
N∗(1, p; τ) +

2 i (1− ζp)

(1 + ζp)

p−1
2∑

ℓ=1

(−1)ℓ
(
ζ−2ℓ
p − ζ2ℓp

)
N∗

p (ℓ; τ)

+
2 ζp (1− ζp)

(1 + ζp)
P ∗(1, p; τ)

)  [Up,m]1 | [A]1

=

(
−2 i ζp (1− ζp)

(1 + ζp)
ζmak+d−1
p Xp(τ)N

∗(d, p; τ) +
2 ζp (1− ζp)

(1 + ζp)
ζmak+d−1
p Xp(τ)P

∗(d, p; τ)

) [Up,ma2

]
1

+
2 i (1− ζp)

(1 + ζp)
(−1)ℓ

(
ζ−2ℓ
p − ζ2ℓp

)
N∗

p (ℓ; τ)
 [Up,m]1 | [A]1 (by Propositions 5.9, 5.10 and 5.13)

=

(
−2 i ζp (1− ζp)

(1 + ζp)
ζmak+d−1
p Xp(τ)N

∗(d, p; τ) +
2 ζp (1− ζp)

(1 + ζp)
ζmak+d−1
p Xp(τ)P

∗(d, p; τ)

) [Up,ma2

]
1

+
2 i (1− ζp)

(1 + ζp)
(−1)ℓ

′
(
ζ−2ℓ′d
p − ζ2ℓ

′d
p

)
ζmak
p Xp(τ)N

∗
p (ℓ

′; τ)
[Up,ma2

]
1

(by Proposition 5.12)
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=

(
−2 i ζp (1− ζp)

(1 + ζp)
ζmak+d−1
p Xp(τ)N

∗(d, p; τ) +
2 ζp (1− ζp)

(1 + ζp)
ζmak+d−1
p Xp(τ)P

∗(d, p; τ)

) [Up,ma2

]
1

+
2 i (1− ζp)

(1 + ζp)

p−1
2∑

j=1

(−1)j
(
ζ−2jd
p − ζ2jdp

)
ζmak
p Xp(τ)N

∗
p (j; τ)

[Up,ma2

]
1

=
(1− ζp)

(1 + ζp)

(
1 + ζdp

)(
1− ζdp

) ζmak
p J ∗

(
d

p
; τ

)  [Up,ma2 ]1 .

This completes the proof. □

6. LOWER BOUNDS FOR ORDER OF AT CUSPS

In this section, we calculate lower bounds for the orders of OK(C)
p,m(ζp, z) and OK(R)

p,m(ζp, z)
at the cusps of Γ1(2p), which we use in proving the identities for the same in the subsequent
section.

For any cusp a
c

with (a, c) = 1 we define

ord
(
F ;

a

c

)
:= ord(F | [A]1 ;∞),

where A ∈ SL2(Z) and A∞ = a
c
.

The following result is necessary to calculate ord
(
Xp(z);

a
c

)
, ord

(
η(p2z)2

η(2p2z)
; a
c

)
, ord

(
η(pz)2

η(2pz)
; a
c

)
appearing in our transformations.

Proposition 6.1. [15, Corollary 2.2]. Let N ≥ 1 and

F (z) =
∏
m|N

η(mz)rm ,

where each rm ∈ Z. Then for (a, c) = 1,

ord
(
F (z);

a

c

)
=
∑
m|N

(m, c)2rm
24m

.

We also need the following result in the context of calculating the orders for OK(R)
p,m(ζp, z)

at the cusps of Γ1(2p). Using Equation (5.1), we can write Np(j;
z
p
) = M(j, p; 2pz).

Jennings-Shaffer gives lower bounds for orders of N(a, c; z), M(a, c;mz) and P (a, c; z) at
cusps α

γ
(see [13, Propositions 6.3, 6.4, 6.5]). We state these orders below for our functions

N(1, p; z), Np(j; z) and P (1, p; z).

Proposition 6.2. For x ∈ R, let ⌊x⌋ denote the greatest integer less than or equal to x and
{x} the fractional part of x. For non-negative integers α and γ with (α, γ) = 1, we have

i)

ordholo

(
N(1, p; z);

α

γ

)
≥

−γ2

p2
+ γ

p
− 1

4
+ 2ν̃

(
γ
p
, 1
2

)
if γ is even,

−γ2

p2
+ αγ

p
− α2

4
+ 1

2
ν̃
(

2γ
p
, α
)

if γ is odd,
(6.1)
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where ν̃(u,w) =
1

2
(⌊u⌋ − ⌊w⌋)2 + (⌊u⌋ − ⌊w⌋)({u} − {w}) + k(u,w),

k(u,w) =

{
ν({u}, {w}) if {u} − {w} ≠ ±1

2
,

min(1
8
, ν({u}, {w})) if {u} − {w} = ±1

2
,

ν(u,w) =

{
u+w
2

− 1
8

if u+ w ≤ 1,
7
8
− u+w

2
if u+ w > 1.

ii)

ordholo

(
Np(j;

z

p
);
α

γ

)
≥ −g2x2

4p

(
j

p
− 1

2

)2

+
g2

2p
ν̃

(
jx

p
,
x

2

)
where g = (2p, γ) and x =

2pα

g
.

(6.2)

iii)

ordholo

(
P (1, p; z);

α

γ

)
≥


{

γ
p

}
−
{

γ
p

}2

if γ is even,

1
4

{
γ
p

}
− 1

4

{
γ
p

}2

− 1
16

if γ is odd.
(6.3)

Proposition 6.3. [7, Corollary 4, p.930] Let p > 3 be prime. Then a set of inequivalent cusps
Sp for Γ1(2p) is given by

i∞, 0,
1

2
,
1

3
, . . . ,

1

p− 1
,
2

p
,
3

p
, . . . ,

1
2
(p− 1)

p
,
3

2p
,
5

2p
, . . . ,

p− 2

2p
.

We now calculate lower bounds of the invariant order of OK(C)
p,m(ζp, z) and OK(R)

p,m(ζp, z)
at each cusp of Γ1(2p).

Theorem 6.4. Let p > 3 be prime and 0 ≤ m ≤ p− 1. Then

(i)

ord
(
OK(C)

p,m(ζp, z); 0
) {

≥ 0 if p = 3, 5, 7,

= − 1
16p

(p− 1)(p− 7) otherwise;

(ii)

ord
(
OK(C)

p,m(ζp, z);
1

n

) 
≥ 0 if n is even,
≥ 0 if n is odd, p ≤ 7,

≥ − 1
16p

(p− 1)(p− 7) if n is odd, p > 7;

(iii)

ord
(
OK(C)

p,m(ζp, z);
n

p

)
≥
(
p2 − 1

16p

)
, 1 ≤ n ≤ p− 1

2
;

(iv)

ord
(
OK(C)

p,m(ζp, z);
n

p

)
≥ 0 if n is odd, 3 ≤ n ≤ p− 2.
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Proof. We derive lower bounds for ord
(
OK(C)

p,m(ζp, z); ζ
)

for each cusp ζ of Γ1(2p) not
equivalent to i∞. From Equation (4.2), we have

OK(C)
p,m(ζp, z) = Xp(z)O∗

C(ζp, z)
 [Up,m]1 =

1
√
p
(ζ

1
2
p − ζ

−1
2

p )

p−1∑
k=0

ζ−rm
p Xp(z)

1

t(0, 1
p
)(z)

| [Tk]1 .

We calculate

Xp(z)
1

t(0, 1
p
)(z)

| [Tk A]1

for each 0 ≤ k ≤ p− 1 and each A =

(
a b
c d

)
∈ SL2(Z) and then pick A suitably to cover

all the cusps in Proposition 6.3.

Then

ord

(
Xp(z)

1

t(0, 1
p
)(z)

;
a

c

)
= ord

(
Xp(z);

a

c

)
+ ord

(
1

t(0, 1
p
)(z)

;
a

c

)
.

Following the proof of Theorem 4.1, we have

t(0, 1
p
)(z)|[A]1 = t( c

p
, d
p
)(z)

for A =

(
a b
c d

)
∈ SL2(Z).

Case 1. a+ kc ̸≡ 0 (mod p). Choose 0 ≤ k′ ≤ p− 1 such that

(a+ kc) k′ ≡ (b+ kd) (mod p).

Then

Tk A = Ck Tk′ ,

where

Ck = Tk AT−1
k′ =

(
a+ ck 1

p
(−k′(a+ kc) + b+ kd)

pc d− k′c

)
∈ Γ0(p).

Then

Xp(z)
1

t(0, 1
p
)(z)

| [Tk A]1 = Xp(z)
1

t(0, 1
p
)(z)

| [Ck Tk′ ]1(6.4)

= (Xp(z) | [Ck Tk′ ]0 )

(
1

t
(c, d−k′c

p
)
(z)

| [Tk′ ]1

)
.
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Case 2. a+ kc ≡ 0 (mod p). In this case we consider

Tk A =

(
a+ kc b+ kd
pc pd

)
.

In this case we find that
Tk A = Dk P,

where

P =

(
p 0
0 1

)
,

Dk =

(
1
p
(a+ kc) b+ kd

c pd

)
∈ SL2(Z).

Then

Xp(z)
1

t(0, 1
p
)(z)

| [Dk P ]1 = (Xp(z) | [Dk P ]0 )

(
1

t(0, 1
p
)(z)

| [Dk P ]1

)
(6.5)

= (Xp(z) | [Dk P ]0 )

(
1

t( c
p
,d)(z)

)
|[P ]1.

Now we are ready to examine each cusp ζ of Γ1(2p). We choose

A =

(
a b
c d

)
∈ SL2(Z), so that A(∞) = a

c
= ζ .

(i) ζ = 0. Let A =

(
0 −1
1 d

)
so that A(∞) = 0. We assume 0 ≤ k ≤ p− 1.

If k ̸= 0 then applying (6.4) with Ck =

(
k ∗
p d− k′

)
we have

ord

Xp

(
z + k

p

)
1

t(0, 1
p
)

(
z+k
p

) ; 0
 =

1

p
ord
(
Xp(z);

k

p

)
+

1

p
ord

(
1

t
(1, d−k′c

p
)
(z)

; i∞

)
= 0 + 0

= 0,

where the two orders are calculated using Propositions 6.1 and 2.3 (iii) respectively.

Next applying (6.5) with k = 0 we have

ord

Xp

(
z

p

)
1

t(0, 1
p
)

(
z
p

) ; 0
 = p ord (Xp(z); 0) + p ord

(
1

t( 1
p
,d)(z)

; i∞

)

=
p

24

(
−2 +

1

2
+

2

p2
+

−1

2p2

)
+

p

2
.
1

p

(
1− 1

p

)
= − 1

16p
(p− 1)(p− 7)
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again by using Propositions 6.1 and 2.3 (iii). The result (i) follows.

(ii) ζ = 1
n

, where 1 ≤ n ≤ p− 1. Let A =

(
1 0
n 1

)
so that A(∞) = 1

n
.

If kn ̸≡ −1 (mod p) then applying (6.4) with Ck =

(
1 + kn ∗
pn 1− k′n

)
we have

ord

(
Xp

(
z + k

p

)
1

t(0, 1
p
)( z+k

p )
;
1

n

)
=

1

p
ord
(
Xp(z);

1 + kn

pn

)
+

1

p
ord

(
1

t
(n, 1−k′n

p
)
(z)

; i∞

)
From Proposition 2.3, we have

ord

(
1

t
(n, 1−k′n

p
)
(z)

; i∞

)
= 0.

And to calculate ord
(
Xp(z);

1+kn
pn

)
using Proposition 6.1, we split the cusps into two cases

:

Case I : When n is odd, we have

ord
(
Xp(z);

1 + kn

pn

)
=

1

24

(
−2 +

1

2
+ 2− 1

2

)
= 0.

Case II : When n is even, we have

ord
(
Xp(z);

1 + kn

pn

)
=

1

24
(−2 + 2 + 2− 2) = 0.

Next assuming kn ≡ −1 (mod p) and applying (6.5), we have

ord

Xp

(
z + k

p

)
1

t(0, 1
p
)

(
z+k
p

) ; 1
n

 = p ord
(
Xp(z);

(1 + kn)/p

n

)
+ p ord

(
1

t(n
p
,1)(z)

; i∞

)
From Proposition 2.3, we have

ord

(
1

t(n
p
,1)(z)

; i∞

)
=

1

2
.
n

p

(
1− n

p

)
.

And to calculate ord
(
Xp(z);

(1+kn)/p
n

)
using Proposition 6.1, we split the cusps into two

cases :

Case I : When n is odd, we have

ord
(
Xp(z);

(1 + kn)/p

n

)
=

1

24

(
−2 +

1

2
+

2

p2
+

−1

2p2

)
=

−1

16

(
1− 1

p2

)
.

Case II : When n is even, we have

ord
(
Xp(z);

(1 + kn)/p

n

)
=

1

24

(
−2 + 2 +

2

p2
+

−2

p2

)
= 0.
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Combining these results, we have

ord

Xp

(
z + k

p

)
1

t(0, 1
p
)

(
z+k
p

) ; 1
n

 =

{
− (p−1)(p−7)

16p
if n is odd,

n
2

(
1− n

2

)
if n is even.

The result (ii) follows.

(iii) ζ = n
p
, where 1 ≤ n ≤ 1

2
(p − 1). Choose b,d so that A =

(
n b
p d

)
∈ SL2(Z) and

A(∞) = n/p.

Since n ̸≡ 0 (mod p) we apply (6.4) for each k with Ck =

(
n+ kp ∗
p2 d− k′p

)
. We have

ord

(
Xp

(
z + k

p

)
1

t(0, 1
p
)( z+k

p )
;
n

p

)
=

1

p
ord
(
Xp(z);

n+ kp

p2

)
+

1

p
ord

 1

t
(p, d−k′p

p
)
(z)

; i∞


=

1

24p

(
−2 +

1

2
+ 2p2 +

−1

2
p2
)
+ 0

=
p2 − 1

16p
.

The result (iii) follows.

(iv) ζ = n
2p

, where n is odd and 3 ≤ n ≤ p − 2. Let A =

(
n b
2p d

)
∈ SL2(Z) so that

A(∞) = n/2p.

Since n ̸≡ 0 (mod p) we apply (6.4) for each k with Ck =

(
n+ 2kp ∗
2p2 d− 2k′p

)
. We have

ord

(
Xp

(
z + k

p

)
1

t(0, 1
p
)( z+k

p )
;
n

2p

)
=

1

p
ord
(
Xp(z);

n+ 2kp

2p2

)
+

1

p
ord

 1

t
(2p, d−2k′p

p
)
(z)

; i∞


=

1

24

(
−2 + 2 + 2p2 − 2p2

)
+ 0

= 0.

The result (iv) follows. □

Theorem 6.5. Let p > 3 be prime and 0 ≤ m ≤ p− 1. Then
(i)

ord
(
OK(R)

p,m(ζp, z); 0
)
≥

{
1
8
( 1
2p

− 1) if
(

−m
p

)
= 1 and p = 5,

− (p−1)(p−3)
16p

otherwise;

(ii)

ord
(
OK(R)

p,m(ζp, z);
1

n

)
≥

{
0 if n is even,
−1
16p

if n is odd;
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(iii)

ord
(
OK(R)

p,m(ζp, z);
n

p

)
≥

{
p
2
− (p−1)4

4p
− (p−1)2

4
if
(

−m
p

)
= 1,

p
16

− 1
16p

otherwise;

(iv)

ord
(
OK(R)

p,m(ζp, z);
n

2p

)
≥

{
p− (p−1)4

4p
if
(

−m
p

)
= 1,

0 otherwise;

Proof. We derive lower bounds for ord
(
OK(R)

p,m(ζp, z); ζ
)

for each cusp ζ of Γ1(2p) not
equivalent to i∞. From Equation (5.6), we have

OK(R)
p,m(ζp; z) = J ∗

(
1

p
; z

)  [Up,m]1

=
1
√
p

p−1∑
k=0

ζ−km
p J ∗

(
1

p
; z

)
| [Tk]1

=
1
√
p

p−1∑
k=0

ζ−km
p Xp(z)O

∗
R(ζp, z) | [Tk]1 (using Equation (5.3))

=
1
√
p

p−1∑
k=0

ζ−km
p

η(p2z)2

η(2p2z)
J
(
1

p
; z

)
| [Tk]1 (using Equation (5.5))

=
1
√
p

p−1∑
k=0

ζ−km
p

η(p2z)2

η(2p2z)

[
−2 i ζp

(
1− ζp

)(
1 + ζp

) N(1, p; z)

+
2 i
(
1− ζp

)(
1 + ζp

) p−1
2∑

j=1

(−1)j
(
ζ−2j
p − ζ2jp

)
Np(j; z)

+
2 ζp

(
1− ζp

)(
1 + ζp

) P (1, p; z)

]
| [Tk]1 (using Equation (5.2))

=



1√
p

∑p−1
k=0 ζ

−km
p

η(p2z)2

η(2p2z)

[
−2 i ζp(1−ζp)

(1+ζp)
N(1, p; z) +

2 ζp(1−ζp)
(1+ζp)

P (1, p; z)

]
| [Tk]1

if m = 0 or
(−m

p

)
= −1,

1√
p

∑p−1
k=0 ζ

−km
p

η(p2z)2

η(2p2z)

[
−2 i ζp(1−ζp)

(1+ζp)
N(1, p; z) +

2 ζp(1−ζp)
(1+ζp)

P (1, p; z)

]
| [Tk]1

+
2 i (1−ζp)
(1+ζp)

(−1)ℓ
(
ζ−2ℓ
p − ζ2ℓp

) η(pz)2
η(2pz)

Np(ℓ;
z
p
),

where 1 ≤ ℓ ≤ 1
2
(p− 1), ℓ2 ≡ −m (mod p), and

(−m
p

)
= 1.

.

We calculate
η(p2z)2

η(2p2z)
N(1, p; z) | [Tk A]1 ,
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η(pz)2

η(2pz)
Np(ℓ;

z

p
) | [A]1 and

η(p2z)2

η(2p2z)
P (1, p; z) | [Tk A]1

for each 0 ≤ k ≤ p− 1 and each A =

(
a b
c d

)
∈ SL2(Z) and then pick A suitably to cover

all the cusps in Proposition 6.3.

Case 1. a+ kc ̸≡ 0 (mod p). Choose 0 ≤ k′ ≤ p− 1 such that

(a+ kc) k′ ≡ (b+ kd) (mod p).

Then
Tk A = Ck Tk′ ,

where

Ck = Tk AT−1
k′ =

(
a+ ck 1

p
(−k′(a+ kc) + b+ kd)

pc d− k′c

)
∈ Γ0(p).

Then
η(p2z)2

η(2p2z)
Y (1, p; z) | [Tk A]1 =

η(p2z)2

η(2p2z)
Y (1, p; z) | [Ck Tk′ ]1(6.6)

=

(
η(p2z)2

η(2p2z)
| [Ck Tk′ ]0

)
(Y (1, p; z) | [Ck Tk′ ]1 ) .

where Y = N or P .

Case 2. a+ kc ≡ 0 (mod p). In this case we consider

Tk A =

(
a+ rc b+ rd
pc pd

)
.

In this case we find that
Tk A = Dk P,

where

P =

(
p 0
0 1

)
,

Dk =

(
1
p
(a+ kc) b+ kd

c pd

)
∈ SL2(Z).

Then
η(p2z)2

η(2p2z)
Y (1, p; z) | [Dk P ]1 =

(
η(p2z)2

η(2p2z)
| [Dk P ]0

)
(Y (1, p; z) | [Dk P ]1 )(6.7)

where Y = N or P .

Now we are ready to examine each cusp ζ of Γ1(2p). We choose

A =

(
a b
c d

)
∈ SL2(Z), so that A(∞) = a

c
= ζ .
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(i) ζ = 0. Let A =

(
0 −1
1 0

)
so that A(∞) = 0. We assume 0 ≤ k ≤ p− 1.

If k ̸= 0 then applying (6.6) with Ck =

(
k ∗
p d− k′

)
we have

ord
(
η(p2z)2

η(2p2z)
N(1, p, z)|[Tk]1; 0

)
=

1

p
ord
(
η(p2z)2

η(2p2z)
;
k

p

)
+

1

p
ord
(
N(1, p, z);

k

p

)
≥ 1

24p
(2− 1

2
) +

1

p
(−1 + k − k2

4
+

1

2
ν̃(2, k))

=
1

16p
+

1

p
(−1 + k − k2

4
+

1

2
ν̃(2, k))

= 0.

And,

ord
(
η(p2z)2

η(2p2z)
P (1, p, z)|[Tk]1; 0

)
=

1

p
ord
(
η(p2z)2

η(2p2z)
;
k

p

)
+

1

p
ord
(
P (1, p, z);

k

p

)
≥ 1

16p
+

1

p
(0− 0− 1

16
)

= 0,

where the orders are calculated using Proposition 6.1 and Equations (6.1) and (6.3).

If k = 0 then applying (6.7) with D0 =

(
0 −1
1 0

)
we have

ord
(
η(p2z)2

η(2p2z)
N(1, p, z)|[Dp]1; 0

)
= p ord

(
η(p2z)2

η(2p2z)
; 0

)
+ p ord (N(1, p, z); 0)

≥ p

24

(
2

p2
− 1

2p2

)
+ p

(
−1

p2
+

1

2
ν̃

(
2

p
, 0

))
=

1

16p
+ p

(
−1

p2
+

1

2
ν

(
2

p
, 0

))
=

1

16p
+ p

(
−1

p2
+

1

2

(
1

p
− 1

8

))
=

1− 2p

2p2
.

And,

ord
(
η(p2z)2

η(2p2z)
P (1, p, z)|[Dp]1; 0

)
= p ord

(
η(p2z)2

η(2p2z)
; 0

)
+ p ord (P (1, p, z); 0)

≥ 1

16p
+ p

(
1

4p
− 1

4p2
− 1

16

)
= −(p− 1)(p− 3)

16p
,
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where the orders are calculated using Proposition 6.1 and Equations (6.1) and (6.3).

Finally

ord
(
η(pz)2

η(2pz)
Np

(
ℓ,
z

p

)
; 0

)
= ord

(
η(pz)2

η(2pz)
; 0

)
+ ord

(
Np

(
ℓ,
z

p

)
; 0

)
≥ 1

24

(
2

p
− 1

2p

)
+ (0 +

1

2p
ν̃(0, 0))

=
1

16p
− 1

8
,

where the orders are calculated using Proposition 6.1 and Equation (6.2) respectively.

(ii) ζ = 1
n

, where 1 ≤ n ≤ p− 1. Let A =

(
1 0
n 1

)
so that A(∞) = 1

n
.

If kn ̸≡ −1 (mod p) then applying (6.6) with Ck =

(
1 + kn ∗
pn 1− k′n

)
we have

ord
(
η(p2z)2

η(2p2z)
N(1, p, z)|[Tk]1;

1

n

)
=

1

p
ord
(
η(p2z)2

η(2p2z)
;
1 + kn

pn

)
+

1

p
ord
(
N(1, p, z);

1 + kn

pn

)
≥

{
1

24p
(−2 + 1

2
+ 2− 1

2
) + 1

p

(
−n2 + n− 1

4
+ 2ν̃

(
n, 1

2

))
if n is even,

1
24p

(−2 + 2 + 2− 2) + 1
p

(
−n2 + (1 + kn)n− (1+kn)2

4
+ 1

2
ν̃ (2n, 1 + kn)

)
if n is odd,

=

{
1
p

(
−n2 + n− 1

4
+ 2ν̃

(
n, 1

2

))
if n is even,

1
p

(
−n2 + (1 + kn)n− (1+kn)2

4
+ 1

2
ν̃ (2n, 1 + kn)

)
if n is odd,

=

{
0 if n is even,
−1
16p

if n is odd.

And,

ord
(
η(p2z)2

η(2p2z)
P (1, p, z)|[Tk]1;

1

n

)
=

1

p
ord
(
η(p2z)2

η(2p2z)
;
1 + kn

p

)
+

1

p
ord
(
P (1, p, z);

1 + kn

pn

)
≥

{
0 + 1

p
.0 if n is even,

0 + 1
p
.−1
16

if n is odd,

=

{
0 if n is even,
−1
16p

if n is odd,

where the orders are calculated using Proposition 6.1 and Equations (6.1) and (6.3).
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If kn ≡ −1 (mod p) then applying (6.7) with Dk =

(
1+kn

p
k

n p

)
we have

ord
(
η(p2z)2

η(2p2z)
N(1, p, z)|[Dp]1;

1

n

)
= p ord

(
η(p2z)2

η(2p2z)
;

1+kn
p

n

)
+ p ord

(
N(1, p, z);

1+kn
p

n

)

≥


p
24

(
2
p2

− 2
p2

)
+ p

(
−n2

p2
+ n

p
− 1

4
+ 2ν̃

(
n
p
, 1
2

))
if n is even,

p
24

(
2
p2

− 1
2p2

)
+ p

(
−n2

p2
+

1+kn
p

.n

p
− ( 1+kn

p
)2

4
+ 1

2
ν̃
(

2n
p
, 1+kn

p

))
if n is odd,

=


p
(

−n2

p2
+ n

p
− 1

4
+ 2ν̃

(
n
p
, 1
2

))
if n is even,

p
16

+ p

(
−n2

p2
+

1+kn
p

.n

p
− ( 1+kn

p
)2

4
+ 1

2
ν̃
(

2n
p
, 1+kn

p

))
if n is odd,

=


−n2

p
+ 2n if n is even and n ≤ p

2
,

−n2

p
+ p if n is even and n > p

2
,

−n2

p
+ n

2
if n is odd and 1 ≤ n ≤ p−1

2
,

−n2

p
+ 3n

2
− 1

2p
if n is odd and p−1

2
< n ≤ p− 1.

And,

ord
(
η(p2z)2

η(2p2z)
P (1, p, z)|[Dp]1;

1

n

)
= p ord

(
η(p2z)2

η(2p2z)
;

1+kn
p

n

)
+ p ord

(
P (1, p, z);

1+kn
p

n

)

≥


p
24

(
2
p2

− 2
p2

)
+ p

(
n
p
− n2

p2

)
if n is even,

p
24

(
2
p2

− 1
2p2

)
+ p

(
1
4
.n
p
− 1

4
.n

2

p2
− 1

16

)
if n is odd,

=

p
(

n
p
− n2

p2

)
if n is even,

p
16

+ p
(

1
4
.n
p
− 1

4
.n

2

p2
− 1

16

)
if n is odd,

=

{
n− n2

p
if n is even,

n
4
− n2

4p
if n is odd,

where the orders are calculated using Proposition 6.1 and Equations (6.1) and (6.3).

Finally

ord
(
η(pz)2

η(2pz)
Np

(
ℓ,
z

p

)
;
1

n

)
= ord

(
η(pz)2

η(2pz)
;
1

n

)
+ ord

(
Np

(
ℓ,
z

p

)
;
1

n

)
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≥


2.1.2−2
48p

− p
(

ℓ
p
− 1

2

)2
+ 2

p
ν̃(ℓ, p

2
) if n is even,

2.1.2−1
48p

− p
(

ℓ
p
− 1

2

)2
+ 1

2p
ν̃(2ℓ, p) if n is odd,

=


1

24p
− p

(
ℓ
p
− 1

2

)2
+ 2

p
ν̃(ℓ, p

2
) if n is even,

1
16p

− p
(

ℓ
p
− 1

2

)2
+ 1

2p
ν̃(2ℓ, p) if n is odd,

=

{
1

24p
if n is even,

0 if n is odd,

where the orders are calculated using Proposition 6.1 and Equation (6.2) respectively.

(iii) ζ = n
p
, where 1 ≤ n ≤ 1

2
(p − 1). Choose b,d so that A =

(
n b
p d

)
∈ SL2(Z) and

A(∞) = n
p
.

Since n ̸≡ 0 (mod p) we apply (6.6) for each k with Ck =

(
n+ kp ∗
p2 d− k′p

)
. We have

ord
(
η(p2z)2

η(2p2z)
N(1, p, z)|[Tk]1;

n

p

)
=

1

p
ord
(
η(p2z)2

η(2p2z)
;
n+ kp

p2

)
+

1

p
ord
(
N(1, p, z);

n+ kp

p2

)
≥ 1

24p
(2p2 − p2

2
) +

1

p

(
−p2 + (n+ kp)p− (n+ kp)2

4
+

1

2
ν̃(2p, n+ kp)

)
=

p

16
+

1

p

(
−p2 + (n+ kp)p− (n+ kp)2

4
+

1

2
ν̃(2p, n+ kp)

)
,

=
p

16
− 1

16p
.

And,

ord
(
η(p2z)2

η(2p2z)
P (1, p, z)|[Tk]1;

n

p

)
≥ 1

24p
(2p2 − p2

2
) +

1

p
.0 =

p

16
,

where the orders are calculated using Proposition 6.1 and Equations (6.1) and (6.3).

Finally

ord
(
η(pz)2

η(2pz)
Np

(
ℓ,
z

p

)
;
n

p

)
= ord

(
η(pz)2

η(2pz)
;
n

p

)
+ ord

(
Np

(
ℓ,
z

p

)
;
n

p

)
≥ (p, p)2.2

24p
+

(2p, p)2.(−1)

48p
+

(
−pn2

(
ℓ

p
− 1

2

)2

+
p

2
ν̃

(
2nℓ

p
, n

))
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=
p

16
− pn2

(
ℓ

p
− 1

2

)2

+
p

2
ν̃

(
2nℓ

p
, n

)

=


p
16

− pn2
(

ℓ
p
− 1

2

)2
+ p

2

(
n2

2
− 2n2ℓ

p
+ nℓ

p
− 1

8

)
if 2nℓ

p
≤ 1,

p
16

− pn2
(

ℓ
p
− 1

2

)2
+ p

2

(
1
2

(
⌊2nℓ

p
⌋ − n

)2
+
(
⌊2nℓ

p
⌋ − n

)
{2nℓ

p
}+ 7

8
− { 2nℓ

p
}

2

)
if 2nℓ

p
> 1,= nℓ

2
− n2ℓ2

p
if 2nℓ

p
≤ 1,

≥ p
16

− pn2
(

ℓ
p
− 1

2

)2
+ p

2

(
n2

2
− 2n2ℓ

p
+ 7

8
− nℓ

p

)
if 2nℓ

p
> 1,{

≥ 1
2
− 1

p
if 2nℓ

p
≤ 1,

= p
2
− n2ℓ2

p
− nℓ

2
if 2nℓ

p
> 1,

≥ p

2
− (p− 1)4

4p
− (p− 1)2

4

where the orders are calculated using Proposition 6.1 and Equation (6.2) respectively.

(iv) ζ = n
2p

, where n is odd and 3 ≤ n ≤ p − 2. Let A =

(
n b
2p d

)
∈ SL2(Z) so that

A(∞) = n
2p

.

Since n ̸≡ 0 (mod p) we apply (6.6) for each k with Ck =

(
n+ 2kp ∗
2p2 d− 2k′p

)
. We have

ord
(
η(p2z)2

η(2p2z)
N(1, p, z)|[Tk]1;

n

2p

)
=

1

p
ord
(
η(p2z)2

η(2p2z)
;
n+ 2kp

2p2

)
+

1

p
ord
(
N(1, p, z);

n+ 2kp

2p2

)
≥ 1

24p
(2p2 − 2p2) +

1

p

(
−p2 + (n+ kp)p− (n+ kp)2

4
+

1

2
ν̃(2p, n+ kp)

)
=

p

16
+

1

p
.
−1

16

= 0.

And,

ord
(
η(p2z)2

η(2p2z)
P (1, p, z)|[Tk]1;

n

2p

)
=

1

24p
(2p2 − 2p2) +

1

p
.0 = 0,

where the orders are calculated using Proposition 6.1 and Equations (6.1) and (6.3).

Finally

ord
(
η(pz)2

η(2pz)
Np

(
ℓ,
z

p

)
;
n

2p

)
= ord

(
η(pz)2

η(2pz)
;
n

2p

)
+ ord

(
Np

(
ℓ,
z

p

)
;
n

2p

)



40 F. G. GARVAN AND RISHABH SARMA

≥ (p, 2p)2.2

24p
+

(2p, 2p)2.(−1)

48p
+

(
−pn2

(
ℓ

p
− 1

2

)2

+ 2pν̃

(
nℓ

p
,
n

2

))

= −pn2

(
ℓ

p
− 1

2

)2

+ 2pν̃

(
nℓ

p
,
n

2

)

=


−pn2

(
ℓ
p
− 1

2

)2
+ 2p

(
1
2
(n−1

2
)2 − n−1

2
(nℓ
p
− 1

2
) + nℓ

2p
+ 1

8

)
if nℓ

p
≤ 1

2
,

−pn2
(

ℓ
p
− 1

2

)2
+ 2p

(
1
2
(n−1

2
)2 − n−1

2
(nℓ
p
− 1

2
) + 5

8
− nℓ

2p

)
if 1

2
< nℓ

p
≤ 1,

−pn2
(

ℓ
p
− 1

2

)2
+ 2p

(
1
2

(
⌊nℓ

p
⌋ − n−1

2

)2
+
(
⌊nℓ

p
⌋ − n−1

2

)
({nℓ

p
} − 1

2
) + 7

8
− {nℓ

p
}+ 1

2

2

)
if nℓ

p
> 1,

= 2nℓ− n2ℓ2

p
if nℓ

p
≤ 1

2
,

= p− n2ℓ2

p
if 1

2
< nℓ

p
≤ 1,

≥ −pn2
(

ℓ
p
− 1

2

)2
+ 2p

(
1
2
(n−1

2
)2 − n−1

2
(nℓ
p
− 1

2
) + 7

8
− nℓ

2p
− 1

4

)
if nℓ

p
> 1,

= 2nℓ− n2ℓ2

p
if nℓ

p
≤ 1

2
,

= p− n2ℓ2

p
if 1

2
< nℓ

p
≤ 1,

= p− n2ℓ2

p
if nℓ

p
> 1,

≥ p− (p− 1)4

4p

where the orders are calculated using Proposition 6.1 and Equation (6.2) respectively. □
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Theory 129 (2009), 922–947.
8. F. J. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944), 10–15.
9. I. S. Eum, J. K. Koo, D. H. Shin, A modularity criterion for Klein forms, with an application to modular

forms of level 13, J. Math. Anal. Appl. 375 (2011), 28–41.
10. F. G. Garvan, Transformation properties for Dyson’s rank function, Trans. Amer. Math. Soc. 371 (2019),

199–248.
11. F. G. Garvan, and R. Sarma, New symmetries for Dyson’s rank function, Ramanujan Journal (2024),

https://doi.org/10.1007/s11139-023-00799-x
12. F. G. Garvan, and R. Sarma, Combinatorial interpretations of two residual cranks of overpartitions, sub-

mitted.
13. C. Jennings-Shaffer, Overpartition rank differences modulo 7 by Maass forms, J. Number Theory 163

(2016), 331–358.



OVERPARTITION RANK-CRANK FUNCTION SYMMETRIES 41

14. M. I. Knopp, “Modular Functions in Analytic Number Theory,” Markham Publishing Co., Chicago, Illi-
nois, 1970.
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