The Cyclic Behavior of Cosubnormal Operators

Nathan S. Feldman
Washington & Lee University
Lexington, VA

John Conway Day
SEAM 27
University of Florida
March 17, 2011
1950: Paul Halmos introduces subnormal operators.
Some History

- 1950: Paul Halmos introduces subnormal operators.
- 1955: J. Bram: **Theorem:** $N_\mu = M_z$ on $L^2(\mu)$ is cyclic.

Nathan S. Feldman
Washington & Lee University
www.wlu.edu/~feldmann
Some History

- 1950: Paul Halmos introduces subnormal operators.
- 1955: J. Bram: Theorem: $N_\mu = M_z$ on $L^2(\mu)$ is cyclic.
 Corollary: Normal ops are cyclic \iff they are \ast-cyclic.
Some History

- 1950: Paul Halmos introduces subnormal operators.
- 1955: J. Bram: **Theorem:** \(N_\mu = M_z\) on \(L^2(\mu)\) is cyclic.
 - **Corollary:** Normal ops are cyclic \(\iff\) they are \(*\)-cyclic.
 - **Corollary:** If \(S = M_z\) on \(\mathcal{H} \subseteq L^2(\mu)\), then \(S^*\) is cyclic.
1950: Paul Halmos introduces subnormal operators.

1955: J. Bram: Theorem: $N_{\mu} = M_z$ on $L^2(\mu)$ is cyclic.
Corollary: Normal ops are cyclic \iff they are \ast-cyclic.
Corollary: If $S = M_z$ on $\mathcal{H} \subseteq L^2(\mu)$, then S^\ast is cyclic.

19??: D. Sarason: Pure Isometries have cyclic adjoints.
1950: Paul Halmos introduces subnormal operators.

1955: J. Bram: Theorem: $N_{\mu} = M_z$ on $L^2(\mu)$ is cyclic.

- Corollary: Normal ops are cyclic \iff they are \ast-cyclic.
- Corollary: If $S = M_z$ on $\mathcal{H} \subseteq L^2(\mu)$, then S^\ast is cyclic.

19??: D. Sarason: Pure Isometries have cyclic adjoints.

1976: J. Deddens & W. Wogen:

- Q: Does every pure subnormal operator have a cyclic adjoint?

1978: Clancey & Rogers span $\left\{ \ker(T - \lambda)^\ast : \lambda \in \sigma(T) \setminus \sigma_{ap}(T) \right\} = \mathcal{H} \Rightarrow T^\ast$ is cyclic.

- \exists Common cyclic vectors for $\left\{ M_{\ast}f : f \in H^\infty(\mathcal{D}) \setminus C \right\}$ on H, where $H \subseteq \text{Hol}(\mathcal{G})$ & $\mathcal{G} \subseteq \mathbb{C}^n$.

1998: Feldman: All pure SNOs have cyclic adjoints!
Some History

- 1950: Paul Halmos introduces subnormal operators.
- 1955: J. Bram: Theorem: $N_\mu = M_\tau$ on $L^2(\mu)$ is cyclic.
Corollary: Normal ops are cyclic \iff they are \ast-cyclic.
Corollary: If $S = M_\tau$ on $\mathcal{H} \subseteq L^2(\mu)$, then S^\ast is cyclic.
- 19???: D. Sarason: Pure Isometries have cyclic adjoints.
- 1976: J. Deddens & W. Wogen:
 Q: Does every pure subnormal operator have a cyclic adjoint?
Test Q: If $S = M_\tau$ on $L^2_a(\mathbb{D})^\perp$, then is $(S \oplus S)^\ast$ cyclic?
Some History

- **1950**: Paul Halmos introduces subnormal operators.
- **1955**: J. Bram: **Theorem**: $N_\mu = M_z$ on $L^2(\mu)$ is cyclic.

 Corollary: Normal ops are cyclic \iff they are \ast-cyclic.

 Corollary: If $S = M_z$ on $\mathcal{H} \subseteq L^2(\mu)$, then S^\ast is cyclic.

- **19??**: D. Sarason: Pure Isometries have cyclic adjoints.

- **1976**: J. Deddens & W. Wogen:

 Q: Does every pure subnormal operator have a cyclic adjoint?

 Test Q: If $S = M_z$ on $L^2_a(\mathbb{D}) \perp$, then is $(S \oplus S)^\ast$ cyclic?

- **1978**: W. Wogen: M_f^\ast on $H^2(\mathbb{D})$ is cyclic $\forall f \in H^\infty(\mathbb{D})$.

 There are common cyclic vectors for $\{M_f^\ast : f \in H^\infty(\mathbb{D}) \setminus \mathbb{C}\}$.

1998: Feldman: All pure SNOs have cyclic adjoints!
Some History

- 1950: Paul Halmos introduces subnormal operators.
- 1955: J. Bram: **Theorem:** $N_\mu = M_z$ on $L^2(\mu)$ is cyclic.
 - **Corollary:** Normal ops are cyclic \iff they are \ast-cyclic.
 - **Corollary:** If $S = M_z$ on $\mathcal{H} \subseteq L^2(\mu)$, then S^\ast is cyclic.
- 19???: D. Sarason: Pure Isometries have cyclic adjoints.
- 1976: J. Deddens & W. Wogen:
 - **Q:** Does every pure subnormal operator have a cyclic adjoint?
 - **Test Q:** If $S = M_z$ on $L^2_a(\mathbb{D})^\perp$, then is $(S \oplus S)^\ast$ cyclic?
- 1978: W. Wogen: M_f^\ast on $H^2(\mathbb{D})$ is cyclic $\forall f \in H^\infty(\mathbb{D})$.
 - There are common cyclic vectors for $\{M_f^\ast : f \in H^\infty(\mathbb{D}) \setminus \mathbb{C}\}$.
- 1978: Clancey & Rogers
 - $\text{span}\{\ker(T - \lambda)^\ast : \lambda \in \sigma(T) \setminus \sigma_{ap}(T)\} = \mathcal{H} \Rightarrow T^\ast$ is cyclic.
Some History

- 1950: Paul Halmos introduces subnormal operators.
- 1955: J. Bram: **Theorem:** $N_\mu = M_z$ on $L^2(\mu)$ is cyclic.
 Corollary: Normal ops are cyclic \iff they are \ast-cyclic.
 Corollary: If $S = M_z$ on $\mathcal{H} \subseteq L^2(\mu)$, then S^* is cyclic.
- 19??: D. Sarason: Pure Isometries have cyclic adjoints.
- 1976: J. Deddens & W. Wogen:
 Q: Does every pure subnormal operator have a cyclic adjoint?
 Test Q: If $S = M_z$ on $L^2_\alpha(\mathbb{D})^\perp$, then is $(S \oplus S)^*$ cyclic?
- 1978: W. Wogen: M_f^* on $H^2(\mathbb{D})$ is cyclic $\forall f \in H^\infty(\mathbb{D})$.
 There are common cyclic vectors for $\{M_f^* : f \in H^\infty(\mathbb{D}) \setminus \mathbb{C}\}$.
- 1978: Clancey & Rogers
 span$\{\ker(T - \lambda)^* : \lambda \in \sigma(T) \setminus \sigma_{ap}(T)\} = \mathcal{H} \Rightarrow T^*$ is cyclic.
 \exists Common cyclic vectors for $\{M_f^* : f \in H^\infty(G) \setminus \mathbb{C}\}$ on \mathcal{H}
 where $\mathcal{H} \subseteq Hol(G)$ & $G \subseteq \mathbb{C}^n$.
Some History

- 1950: Paul Halmos introduces subnormal operators.
- 1955: J. Bram: **Theorem:** \(N_\mu = M_z \) on \(L^2(\mu) \) is cyclic.
 Corollary: Normal ops are cyclic \(\iff \) they are \(*\)-cyclic.
 Corollary: If \(S = M_z \) on \(\mathcal{H} \subseteq L^2(\mu) \), then \(S^* \) is cyclic.
- 19??: D. Sarason: Pure Isometries have cyclic adjoints.
- 1976: J. Deddens & W. Wogen:
 Q: Does every pure subnormal operator have a cyclic adjoint?
 Test Q: If \(S = M_z \) on \(L^2_a(\mathbb{D}) \perp \), then is \((S \oplus S)^*\) cyclic?
- 1978: W. Wogen: \(M_f^* \) on \(H^2(\mathbb{D}) \) is cyclic \(\forall \ f \in H^\infty(\mathbb{D}) \).
 There are common cyclic vectors for \(\{ M_f^* : f \in H^\infty(\mathbb{D}) \setminus \mathbb{C} \} \).
- 1978: Clancey & Rogers
 \[\text{span}\{ \ker(T - \lambda)^* : \lambda \in \sigma(T) \setminus \sigma_{ap}(T) \} = \mathcal{H} \Rightarrow T^* \text{ is cyclic.} \]
 \(\exists \) Common cyclic vectors for \(\{ M_f^* : f \in H^\infty(G) \setminus \mathbb{C} \} \) on \(\mathcal{H} \)
 where \(\mathcal{H} \subseteq \text{Hol}(G) \) & \(G \subseteq \mathbb{C}^n \).
- 1998: Feldman: All pure SNOs have cyclic adjoints!
Theorem (Feldman ’98) Every Pure SNO has a cyclic adjoint.

Strategy of Proof:
Theorem (Feldman ’98) Every Pure SNO has a cyclic adjoint.

Strategy of Proof: Show \exists a one-to-one linear map $A : \mathcal{H} \rightarrow L^2(\mu)$ s.t.

$$AS = N_\mu A$$
Theorem (Feldman '98) Every Pure SNO has a cyclic adjoint.

Strategy of Proof: Show \exists a one-to-one linear map $A : \mathcal{H} \rightarrow L^2(\mu)$ s.t.

$$AS = N_\mu A$$

then

$$S^* A^* = A^* N^*_\mu$$
Theorem (Feldman ’98) Every Pure SNO has a cyclic adjoint.

Strategy of Proof: Show \(\exists \) a one-to-one linear map

\[
A : \mathcal{H} \rightarrow L^2(\mu) \text{ s.t.} \quad AS = N_\mu A
\]

then

\[
S^* A^* = A^* N^*_\mu
\] &

\(A^* \) maps cyclic vectors for \(N^*_\mu \) to cyclic vectors for \(S^* \).
The Proof: How do we find $A : \mathcal{H} \rightarrow L^2(\mu)$?

If S is a pure SNO on \mathcal{H}, then there exist pure SNOs $S_n = M_z$ on $\mathcal{H}_n \subseteq L^2(\mu_n)$.

One-to-one intertwining maps A_1 and A_2 such that:

$H \xrightarrow{A_1} \bigoplus_{n=1}^{\infty} \mathcal{H}_n \xrightarrow{A_2} L^2(\mu)$

Is every pure SNO quasi-similar to $(N \bigoplus_{n=1}^{\infty} M_z)$ on $(N \bigoplus_{n=1}^{\infty} \mathcal{H}_n)$?

A Multiplicity Theory?

If S is a pure SNO, does there exist a 1-1 map A such that $(S, \mathcal{H}) \xrightarrow{A} (M_z, \mathcal{H}_1 \subseteq \text{pure } L^2(\mu_1))$?
The Proof: How do we find $A : \mathcal{H} \rightarrow L^2(\mu)$?

If S is a pure SNO on $\mathcal{H} \Rightarrow \exists$ pure SNOs $S_n = M_z$ on $\mathcal{H}_n \subseteq L^2(\mu_n)$ and one-to-one intertwining maps A_1 and A_2 s.t.
The Proof: How do we find $A : \mathcal{H} \rightarrow L^2(\mu)$?

If S is a pure SNO on $\mathcal{H} \Rightarrow \exists$ pure SNOs $S_n = M_z$ on $\mathcal{H}_n \subseteq L^2(\mu_n)$

and one-to-one intertwining maps A_1 and A_2 s.t.

$$
\begin{align*}
\mathcal{H} &\overset{A_1}{\underset{1-1}{\longrightarrow}} \bigoplus_{n=1}^{\infty} \mathcal{H}_n \\
S &\overset{A_1}{\underset{1-1}{\longrightarrow}} \bigoplus_{n=1}^{\infty} M_z
\end{align*}

\bigoplus_{n=1}^{\infty} M_z \overset{A_2}{\underset{1-1}{\longrightarrow}} N_\mu \overset{A_2}{\underset{1-1}{\longrightarrow}} L^2(\mu)
$$
The Proof: How do we find $A : \mathcal{H} \rightarrow L^2(\mu)$?

If S is a pure SNO on $\mathcal{H} \Rightarrow \exists$ pure SNOs $S_n = M_z$ on $\mathcal{H}_n \subseteq L^2(\mu_n)$ and one-to-one intertwining maps A_1 and A_2 s.t.

$$
\begin{align*}
\mathcal{H} & \xrightarrow{A_1} \bigoplus_{n=1}^{\infty} \mathcal{H}_n & \xrightarrow{A_2} L^2(\mu) \\
S & \xrightarrow{A_1} \bigoplus_{n=1}^{\infty} M_z & \xrightarrow{A_2} N_\mu
\end{align*}
$$
The Proof: How do we find $A : \mathcal{H} \rightarrow L^2(\mu)$?

If S is a pure SNO on $\mathcal{H} \Rightarrow \exists$ pure SNOs $S_n = M_z$ on $\mathcal{H}_n \subseteq L^2(\mu_n)$ and one-to-one intertwining maps A_1 and A_2 s.t.

$$
\begin{align*}
\mathcal{H} & \xrightarrow{A_1} \bigoplus_{n=1}^{\infty} \mathcal{H}_n & \xrightarrow{A_2} L^2(\mu) \\
S & \xrightarrow{A_1} \bigoplus_{n=1}^{\infty} M_z & \xrightarrow{A_2} N_\mu
\end{align*}
$$

A Model Theory for Subnormal Operators?
The Proof: How do we find $A : \mathcal{H} \rightarrow L^2(\mu)$?

If S is a pure SNO on $\mathcal{H} \Rightarrow \exists$ pure SNOs $S_n = M_z$ on $\mathcal{H}_n \subseteq L^2(\mu_n)$

and one-to-one intertwining maps A_1 and A_2 s.t.

$$
\begin{align*}
\mathcal{H} & \xrightarrow{A_1} \bigoplus_{n=1}^{\infty} \mathcal{H}_n \xrightarrow{A_2} L^2(\mu) \\
S & \xrightarrow{A_1} \bigoplus_{n=1}^{\infty} M_z \xrightarrow{A_2} N_\mu
\end{align*}
$$

A Model Theory for Subnormal Operators?

Is every pure SNO quasi-similar to $\left(\bigoplus_{n=1}^{N} M_z \right)$ on $\left(\bigoplus_{n=1}^{N} \mathcal{H}_n \right)$?
The Proof: How do we find $A : \mathcal{H} \rightarrow L^2(\mu)$?

If S is a pure SNO on $\mathcal{H} \Rightarrow \exists$ pure SNOs $S_n = M_z$ on $\mathcal{H}_n \subseteq L^2(\mu_n)$

and one-to-one intertwining maps A_1 and A_2 s.t.

\[
\begin{align*}
\mathcal{H} &\xrightarrow{A_1 \quad 1-1} \bigoplus_{n=1}^{\infty} \mathcal{H}_n \xrightarrow{A_2 \quad 1-1} L^2(\mu) \\
S &\xrightarrow{A_1 \quad 1-1} \bigoplus_{n=1}^{\infty} M_z \xrightarrow{A_2 \quad 1-1} N_\mu
\end{align*}
\]

A Model Theory for Subnormal Operators?

Is every pure SNO quasi-similar to $\left(\bigoplus_{n=1}^{N} M_z \right)$ on $\left(\bigoplus_{n=1}^{N} \mathcal{H}_n \right)$?

A Multiplicity Theory?
The Proof: How do we find $A : \mathcal{H} \rightarrow L^2(\mu)$?

If S is a pure SNO on $\mathcal{H} \Rightarrow \exists$ pure SNOs $S_n = M_z$ on $\mathcal{H}_n \subseteq L^2(\mu_n)$

and one-to-one intertwining maps A_1 and A_2 s.t.

$$\mathcal{H} \xrightarrow{A_1 \ 1-1} \bigoplus_{n=1}^{\infty} \mathcal{H}_n \xrightarrow{A_2 \ 1-1} L^2(\mu)$$

$$S \xrightarrow{A_1 \ 1-1} \bigoplus_{n=1}^{\infty} M_z \xrightarrow{A_2 \ 1-1} N_\mu$$

A Model Theory for Subnormal Operators?

Is every pure SNO quasi-similar to $\left(\bigoplus_{n=1}^{N} M_z \right)$ on $\left(\bigoplus_{n=1}^{N} \mathcal{H}_n \right)$?

A Multiplicity Theory? If S is a pure SNO, does \exists a 1-1 map A s.t.

$$(S, \mathcal{H}) \xrightarrow{A \ 1-1} (M_z, \mathcal{H}_1 \subseteq_{\text{pure}} L^2(\mu_1))?$$
Non Pure SNOs

- What if S is not pure?

Theorem: If $S = S^p \oplus N$, then S^* is cyclic if and only if N is cyclic.

Corollary: If $S = \text{SNO}$, then S^* is cyclic $\iff S^*$ is \ast-cyclic.

Some Open Questions

1. If S is a pure SNO, is there a common cyclic vector for the pure operators in $P_\infty(S^*)$?

2. If $S = (S_1, S_2, \ldots, S_n)$ is a pure subnormal tuple, then is $S^* = (S_1^*, S_2^*, \ldots, S_n^*)$ cyclic?

3. If T is a pure hyponormal operator, then is T^* cyclic?

Nathan S. Feldman
Washington & Lee University
www.wlu.edu/~feldmann
What if S is not pure?

Theorem: If $S = S_p \oplus N$, then S^* is cyclic if and only if N is cyclic.
What if S is not pure?

Theorem: If $S = S_p \oplus N$, then S^* is cyclic if and only if N is cyclic.

Corollary: If $S = SNO$, then S^* is cyclic $\iff S^*$ is $*$-cyclic.
Non Pure SNOs

- What if S is not pure?

Theorem: If $S = S_p \oplus N$, then S^* is cyclic if and only if N is cyclic.

Corollary: If $S = \text{SNO}$, then S^* is cyclic $\iff S^*$ is \ast-cyclic.

Some Open Questions

1. If S is a pure SNO, is there a common cyclic vector for the pure operators in $P^\infty(S^*)$?
What if S is not pure?

Theorem: If $S = S_p \oplus N$, then S^* is cyclic if and only if N is cyclic.

Corollary: If $S = \text{SNO}$, then S^* is cyclic $\iff S^*$ is \dagger-cyclic.

Some Open Questions

1. If S is a pure SNO, is there a common cyclic vector for the pure operators in $P^\infty(S^*)$?

2. If $S = (S_1, S_2, \ldots, S_n)$ is a pure subnormal tuple, then is $S^* = (S_1^*, S_2^*, \ldots, S_n^*)$ cyclic?
Non Pure SNOs

- **What if** S **is not pure?**

 Theorem: If $S = S_p \oplus N$, then S^* is cyclic if and only if N is cyclic.

 Corollary: If $S = \text{SNO}$, then S^* is cyclic $\iff S^*$ is \ast-cyclic.

Some Open Questions

1. If S is a pure SNO, is there a common cyclic vector for the pure operators in $P^\infty(S^*)$?

2. If $S = (S_1, S_2, \ldots, S_n)$ is a pure subnormal tuple, then is $S^* = (S_1^*, S_2^*, \ldots, S_n^*)$ cyclic?

3. If T is a pure hyponormal operator, then is T^* cyclic?
Stronger Forms of Cyclicity

Definition

If \(x \in \mathcal{H} \) and \(T \in \mathcal{B}(\mathcal{H}) \), then the orbit of \(x \) under \(T \) is

\[
\text{Orb}(x, T) = \{ T^n x : n \geq 0 \} = \{ x, Tx, T^2 x, \ldots \}.
\]
Stronger Forms of Cyclicity

Definition
If \(x \in \mathcal{H} \) and \(T \in \mathcal{B}(\mathcal{H}) \), then the orbit of \(x \) under \(T \) is

\[
Orb(x, T) = \{ T^n x : n \geq 0 \} = \{ x, Tx, T^2 x, \ldots \}.
\]

Definition
1. Let \(T \in \mathcal{B}(\mathcal{H}) \), then \(T \) is (weakly) hypercyclic if there is an \(x \in \mathcal{H} \) such that \(Orb(x, T) \) is (weakly) dense in \(\mathcal{H} \).
Stronger Forms of Cyclicity

Definition

If \(x \in \mathcal{H} \) and \(T \in \mathcal{B}(\mathcal{H}) \), then the orbit of \(x \) under \(T \) is

\[
\text{Orb}(x, T) = \{ T^n x : n \geq 0 \} = \{ x, Tx, T^2 x, \ldots \}.
\]

Definition

1. Let \(T \in \mathcal{B}(\mathcal{H}) \), then \(T \) is (weakly) hypercyclic if there is an \(x \in \mathcal{H} \) such that \(\text{Orb}(x, T) \) is (weakly) dense in \(\mathcal{H} \).
2. \(T \) is (weakly) supercyclic if there is an \(x \in \mathcal{H} \) such that \(\mathbb{C} \cdot \text{Orb}(x, T) \) is (weakly) dense in \(\mathcal{H} \).
Theorem (G. Godefrey & J. Shapiro (1991))

If \(G \) is a bounded region in \(\mathbb{C} \), then \(M^*_z \) is hypercyclic on \(H^2(G) \) or \(L^2_a(G) \) if and only if \(G \cap \partial \mathbb{D} \neq \emptyset \).
Some Hypercyclic Operators

Theorem (G. Godefrey & J. Shapiro (1991))

If G is a bounded region in \mathbb{C}, then M_z^* is hypercyclic on $H^2(G)$ or $L^2_a(G)$ if and only if $G \cap \partial \mathbb{D} \neq \emptyset$.

Corollary

If G is any bounded region in \mathbb{C}, then M_z^* is supercyclic on $H^2(G)$ or $L^2_a(G)$.
Theorem (K. Chan & R. Sanders (2002))

If $G = \{z \in \mathbb{C} : 1 < |z| < r\}$, then M_z^* on $H^2(G)$ is weakly hypercyclic, but not norm hypercyclic.
Corollary

If \(\{ z \in \mathbb{C} : 1 < |z| < r \} \subseteq G \) and \(G \cap \mathbb{D} = \emptyset \), then \(M_z^* \) on \(H^2(G) \) is weakly hypercyclic, but not norm hypercyclic.

Open Question

For which open sets \(G \) is \(M_z^* \) weakly hypercyclic on \(H^2(G) \)?
Corollary

If \(\{ z \in \mathbb{C} : 1 < |z| < r \} \subseteq G \) and \(G \cap \mathbb{D} = \emptyset \), then \(M^*_z \) on \(H^2(G) \) is weakly hypercyclic, but not norm hypercyclic.

Open Question

For which open sets \(G \) is \(M^*_z \) weakly hypercyclic on \(H^2(G) \)?
What if...

Is M^*_z weakly hypercyclic on $H^2(G)$?
$X = \text{Banach Space}$

A basis for the weak topology on X

$$N(x_0, \mathcal{F}, \epsilon) = \{x \in X : |f(x - x_0)| < \epsilon \text{ for all } f \in \mathcal{F}\}$$

where $\mathcal{F} \subseteq X^*$ is a finite set
$X = $ Banach Space

A basis for the weak topology on X

$$N(x_0, \mathcal{F}, \epsilon) = \{ x \in X : |f(x - x_0)| < \epsilon \text{ for all } f \in \mathcal{F} \}$$

where $\mathcal{F} \subseteq X^*$ is a finite set

A set $E \subseteq X$ is \textit{n-weakly dense} in X if $E \cap N(x_0, \mathcal{F}, \epsilon) \neq \emptyset$

$\forall x_0 \in X, \epsilon > 0, \text{ and all finite sets } \mathcal{F} \subseteq X^* \text{ with } |\mathcal{F}| \leq n$
Theorem

If \mathcal{H} is a Hilbert space and $E \subseteq \mathcal{H}$, then the following are equivalent:

1. E is n-weakly dense in \mathcal{H}.

Definition

1. An operator T is n-weakly hypercyclic if $\exists x \in \mathcal{H}$ such that $\text{Orb}(x, T)$ is n-weakly dense in \mathcal{H}.

2. T is n-weakly supercyclic if $\exists x \in \mathcal{H}$ such that $C \cdot \text{Orb}(x, T)$ is n-weakly dense in \mathcal{H}.
Theorem

If \mathcal{H} is a Hilbert space and $E \subseteq \mathcal{H}$, then the following are equivalent:

1. E is n-weakly dense in \mathcal{H}.
2. $F(E)$ is dense in \mathbb{C}^n for every onto continuous linear map $F : \mathcal{H} \rightarrow \mathbb{C}^n$.

Definition

1. An operator T is n-weakly hypercyclic if $\exists x \in \mathcal{H}$ such that $\text{Orb}(x, T)$ is n-weakly dense in \mathcal{H}.
2. T is n-weakly supercyclic if $\exists x \in \mathcal{H}$ such that $C \cdot \text{Orb}(x, T)$ is n-weakly dense in \mathcal{H}.

Nathan S. Feldman
Washington & Lee University
www.wlu.edu/~feldmann
Theorem

If \mathcal{H} is a Hilbert space and $E \subseteq \mathcal{H}$, then the following are equivalent:

1. E is n-weakly dense in \mathcal{H}.
2. $F(E)$ is dense in \mathbb{C}^n for every onto continuous linear map $F: \mathcal{H} \to \mathbb{C}^n$.
3. E has a dense orthogonal projection onto every subspace with dimension at most n.
Theorem

If \mathcal{H} is a Hilbert space and $E \subseteq \mathcal{H}$, then the following are equivalent:

1. E is n-weakly dense in \mathcal{H}.
2. $F(E)$ is dense in \mathbb{C}^n for every onto continuous linear map $F : \mathcal{H} \to \mathbb{C}^n$.
3. E has a dense orthogonal projection onto every subspace with dimension at most n.

Definition

1. An operator T is n-weakly hypercyclic if $\exists \ x \in \mathcal{H}$ such that $\text{Orb}(x, T)$ is n-weakly dense in \mathcal{H}.
2. T is n-weakly supercyclic if $\exists \ x \in \mathcal{H}$ such that $\mathbb{C} \cdot \text{Orb}(x, T)$ is n-weakly dense in \mathcal{H}.
Theorem (Feldman 2010)

Suppose that B_1, B_2, \ldots, B_m are each hypercyclic backward weighted shifts and $1 \leq n \leq m$. Then $B_1 \oplus \cdots \oplus B_n$ is n-weakly hypercyclic if and only if the direct sum of any n of the operators $\{B_1, \ldots, B_m\}$ is hypercyclic.

Corollary (Feldman 2010)

There exist operators that are n-weakly hypercyclic, but not $(n+1)$-weakly hypercyclic, for any $n \geq 1$.
Theorem (Feldman 2010)

Suppose that \(B_1, B_2, \ldots, B_m \) are each hypercyclic backward weighted shifts and \(1 \leq n \leq m \).
Then \(B = \bigoplus_{k=1}^{m} B_k \) is \(n \)-weakly hypercyclic if and only if the direct sum of any \(n \) of the operators \(\{ B_1, \ldots, B_m \} \) is hypercyclic.

Corollary (Feldman 2010)
There exist operators that are \(n \)-weakly hypercyclic, but not \((n+1)\)-weakly hypercyclic, for any \(n \geq 1 \).
Theorem (Feldman 2010)

Suppose that B_1, B_2, \ldots, B_m are each hypercyclic backward weighted shifts and $1 \leq n \leq m$. Then $B = \bigoplus_{k=1}^{m} B_k$ is n-weakly hypercyclic if and only if the direct sum of any n of the operators $\{B_1, \ldots, B_m\}$ is hypercyclic.
Theorem (Feldman 2010)

Suppose that B_1, B_2, \ldots, B_m are each hypercyclic backward weighted shifts and $1 \leq n \leq m$. Then $B = \bigoplus_{k=1}^{m} B_k$ is n-weakly hypercyclic if and only if the direct sum of any n of the operators $\{B_1, \ldots, B_m\}$ is hypercyclic.

Corollary (Feldman 2010)

There exist operators that are n-weakly hypercyclic, but not $(n + 1)$-weakly hypercyclic, for any $n \geq 1$.
The Matrix Case

Theorem (Feldman 2010)

There are matrices that are 2-weakly supercyclic on \mathbb{R}^n if and only if n is even.
The Matrix Case

Theorem (Feldman 2010)

There are matrices that are 2-weakly supercyclic on \mathbb{R}^n if and only if n is even.

Theorem (Feldman 2010)

If $\{\pi, \theta_1, \theta_2, \ldots, \theta_n\}$ are linearly independent over \mathbb{Q}, then $T = R(\theta_1) \oplus R(\theta_2) \oplus \cdots \oplus R(\theta_n)$ is 2-weakly supercyclic on \mathbb{R}^{2n}, where $R(\theta)$ is the 2×2 matrix that rotates by θ.
1-Weakly Hypercyclic?

Open Question

Is M_z^* 1-weakly hypercyclic on $H^2(G)$?
Thanks for your Time!
Nathan Feldman

Best wishes to John!