Final Practice

TA: Sroyon Sengupta

- 1. Write down the coordinates of the all points that mark either the maximum or the minimum of the function $f(x) = -3\cos(\frac{1}{4}x) + 8$, such that the *x*-coordinate lies between -5π and 5π . **Answer:** Points of maxima: $(4\pi, 13), (-4\pi, 13)$, and Points of minima: (0, 5).
- 2. Let $g(x) = 2x^3 5$ and f be given by the following table:

x	f(x)	
0	2	
1	3	
-2	-1	
3	0	
-4	1	

Find $g \circ f$. Answer:

x	$g \circ f(x)$
0	11
1	49
-2	-7
3	-5
-4	-3

- 3. Find the absolute value of the difference between the solutions of the equation $\log_2(x+1) + \log_2(x-6) = 3$. Answer: 9
- 4. Find the doubling time of a compound that grows with a continuous growth rate of 13% per year. Answer: $\frac{\ln 2}{0.13}$.
- 5. Find the equation of the line that passes through (3,4) and is perpendicular to the line passing through (-1,1) and (2,-4).
 - **Answer:** 3x 5y + 11 = 0.
- 6. Find the interval in which the function $p(x) = x^3 2x^2 x + 2$ is both increasing and concave down. The point of local maxima is $x = \frac{4-2\sqrt{7}}{6}$ and the point of local minima is $x = \frac{4+2\sqrt{7}}{6}$. Answer: $\left(-\infty, \frac{4-2\sqrt{7}}{6}\right)$.
- 7. For which value of t does the equation $\sec^2(x) = t$ has only one solution in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. What is the solution for that particular t? Answer: t = 1, x = 0.
- 8. The function L is denoted in the graph below. Find $f^{-1}(4)$.

Answer: 5

- 9. Find the horizontal asymptote of the function: $I(x) = \frac{2x^3 + 10x^2 7x}{5x^3 9x^2 + x 11}$. Answer: 2/5.
- 10. If xy = 10 and x y = 3, find all the possible values of x + y. Answer: ± 7 .
- 11. In which quadrants do the solutions of the equation $(x 5)^2 + (y + 2)^2 = 9$ lie? Answer: I, IV.
- 12. How many zeros does the following function have? If any, find them.

Answer: 2 zeros; $1 \pm \sqrt{2}i$.

- 13. An angle of measure 300° at the centre of a circle makes an arc of length 10π units. Find the diameter of the circle. Answer: 12 units.
- 14. Find the vertical asymptotes of $2 \cot \left(x + \frac{\pi}{3}\right) 5$. **Answer:** $-\frac{\pi}{3} + \pi k$, where k is an integer.
- 15. Find the value of $\cos(75^\circ)$.

Answer:
$$\sqrt{\frac{2-\sqrt{3}}{4}}$$
.

- 16. Find the value of $\sin(2 \operatorname{arccsc}(5/3))$. Answer: $\frac{24}{25}$.
- 17. Find the interval where the following is true:

$$\frac{x^2 - 25}{3 - x} \le 0$$

Answer: $[-5,3) \cup [5,\infty)$.