
Oral Examination - March 19th, 2024

Inversions and Graphs
Sean Mandrick

3 1 4 5 8 2 6 9 7

Preliminaries

• For a permutation , an inversion is a pair , , such that
 and .

π ∈ Sn (i, j) i, j ∈ [n]
i < j π(i) > π(j)

2

• Further, the inversion graph of the permutation , denoted , is the
graph with vertices and edges given by the inversions of , i.e.

.

π ∈ Sn Gπ
V(Gπ) = [n] π

E(Gπ) = {π(i)π(j) : (i, j) is an inversion of π}

3

An inversion graph example
• For a permutation , if we plot each vertex at in the

plane, we obtain the inversion graph by connecting each vertex to every
vertex that is below and to its right. See below:

π ∈ Sn π(i) ∈ [n] (i, π(i))
Gπ

G361425

1

2

3

4

5

6

Graph Theory

Permutations

4

The map

Inversion Graphs

Lettericity Graphical
Transpositions

Part 1 Part 2

Geometric
Grid Classes Transpositions

Part 1

5

Results on maximum lettericity

Letter graphs

• For a finite alphabet , we consider a set of ordered pairs which we
refer to as a decoder.

Σ D ⊆ Σ2

6

• Then for a word with each , we define the letter
graph of to be the graph with and for
each pair , we have if and only if

w = w1w2…wn wi ∈ Σ
w ΓD(w) V(ΓD(w)) = {1,2,…, n}
i < j ij ∈ E(ΓD(w)) (wi, wj) ∈ D .

A visual example
• Let’s consider the word , and the decoder with the tuples

, and . Then we can draw the graph as follows:
w = abcab D

(a, a) (a, b) (c, b) ΓD(w)

7

a ab bc

A visual example
• Let’s consider the word , and the decoder with the tuples

, and . Then we can draw the graph as follows:
w = abcab D

(a, a) (a, b) (c, b) ΓD(w)

7

a ab bc

A visual example
• Let’s consider the word , and the decoder with the tuples

, and . Then we can draw the graph as follows:
w = abcab D

(a, a) (a, b) (c, b) ΓD(w)

7

a ab bc

A visual example
• Let’s consider the word , and the decoder with the tuples

, and . Then we can draw the graph as follows:
w = abcab D

(a, a) (a, b) (c, b) ΓD(w)

7

a ab bc

Lettericity
• If , then we say that is a -letter graph. |Σ | = k ΓD(w) k

8

• Then, for any graph , the least integer such that is isomorphic to a
-letter graph is called the lettericity of , denoted .

G k G
k G ℓ(G)

• This graph statistic, as well as the letter graph construction, were introduced
by M. Petkovšek in the paper Letter graphs and well-quasi-order by
induced subgraphs (2002).

• That is, the least size of an alphabet that admits the graph for some word
and decoder on that alphabet.

G

Graphs with lettericity one
• If , then there are only two possibilities:Σ = {a}

9

1. Γ{(a,a)}(aa…a) = Kn

2. Γ∅(aa…a) = Kn

a a a a

a a a a

Threshold graphs have lettericity two
• A threshold graph is constructed by iteratively adding either dominating

vertices (adjacent to all previously added vertices) or isolated vertices
(adjacent to none of the previously added vertices).

10

• So with alphabet and decoder , we can think
of the correspondences:

Σ = {i, d} D = {(i, d), (d, d)}

isolated verticesi →
dominating verticesd →

• That is, we draw by reading the word from left to right:ΓD(iddiid)

Threshold graphs have lettericity two
• A threshold graph is constructed by iteratively adding either dominating

vertices (adjacent to all previously added vertices) or isolated vertices
(adjacent to none of the previously added vertices).

10

• So with alphabet and decoder , we can think
of the correspondences:

Σ = {i, d} D = {(i, d), (d, d)}

isolated verticesi →
dominating verticesd →

• That is, we draw by reading the word from left to right:ΓD(iddiid)

i

Threshold graphs have lettericity two
• A threshold graph is constructed by iteratively adding either dominating

vertices (adjacent to all previously added vertices) or isolated vertices
(adjacent to none of the previously added vertices).

10

• So with alphabet and decoder , we can think
of the correspondences:

Σ = {i, d} D = {(i, d), (d, d)}

isolated verticesi →
dominating verticesd →

• That is, we draw by reading the word from left to right:ΓD(iddiid)

di

Threshold graphs have lettericity two
• A threshold graph is constructed by iteratively adding either dominating

vertices (adjacent to all previously added vertices) or isolated vertices
(adjacent to none of the previously added vertices).

10

d

• So with alphabet and decoder , we can think
of the correspondences:

Σ = {i, d} D = {(i, d), (d, d)}

isolated verticesi →
dominating verticesd →

• That is, we draw by reading the word from left to right:ΓD(iddiid)

di

Threshold graphs have lettericity two
• A threshold graph is constructed by iteratively adding either dominating

vertices (adjacent to all previously added vertices) or isolated vertices
(adjacent to none of the previously added vertices).

10

d

• So with alphabet and decoder , we can think
of the correspondences:

Σ = {i, d} D = {(i, d), (d, d)}

isolated verticesi →
dominating verticesd →

• That is, we draw by reading the word from left to right:ΓD(iddiid)

di i

Threshold graphs have lettericity two
• A threshold graph is constructed by iteratively adding either dominating

vertices (adjacent to all previously added vertices) or isolated vertices
(adjacent to none of the previously added vertices).

10

d

• So with alphabet and decoder , we can think
of the correspondences:

Σ = {i, d} D = {(i, d), (d, d)}

isolated verticesi →
dominating verticesd →

• That is, we draw by reading the word from left to right:ΓD(iddiid)

di i i

Threshold graphs have lettericity two
• A threshold graph is constructed by iteratively adding either dominating

vertices (adjacent to all previously added vertices) or isolated vertices
(adjacent to none of the previously added vertices).

10

d

• So with alphabet and decoder , we can think
of the correspondences:

Σ = {i, d} D = {(i, d), (d, d)}

isolated verticesi →
dominating verticesd →

• That is, we draw by reading the word from left to right:ΓD(iddiid)

di i i d

Geometric grid class preliminaries
• The standard figure of a matrix is the point set in

consisting of

- the increasing open line segment from to if or

- the decreasing open line segment from to if .

0/ ± 1 M = (mi,j) ℝ2

(i − 1, j − 1) (i, j) mi,j = 1

(i − 1, j) (i, j − 1) mi,j = − 1

11

0

1

2

0 1 2

 For example, has standard figure: ∙ M = (1 0
−1 1)

Geometric grid classes
• The geometric grid class of , denoted , is the class of all

permutations that can be ‘properly’ drawn on the standard figure of .
M Geom(M)

M

0

1

0 1 2

5
6

4
3

2 1

12

• By ‘properly’, we mean that for each pair of entries of the permutation, they
are in the same relative positions as they are in the inversion graph.

• For example, we see that :542136 ∈ Geom (−1 1)

Geometric grid classes and lettericity
• In the paper Letter Graphs and Geometric Grid Classes of Permutations

(2022), Alecu, Ferguson, Kanté, Lozin, Vatter and Zamaraev showed that

13

“… the concepts of lettericity and geometric griddability capture the same
structural data of their respective combinatorial objects…”

Theorem: The permutation class is geometrically griddable if and
only if the corresponding graph class has bounded lettericity.

𝒞
G𝒞

• More specifically, they proved the following:

• We will return to these ideas later…

The problem
• In Petkovšek’s paper introducing lettericity, he posed the following:

Problem 3: Find the maximum possible lettericity of an -vertex graph,
and the corresponding extremal graphs.

n

• In the paper Bounds on the Lettericity of
Graphs (2023) with V. Vatter, we significantly
improve the known results pertaining to the
maximum possible lettericity of an -vertex
graph.

n

14

Previously known results
• The previously known bounds on maximum lettericity of an n-vertex graph are

from Petkovšek’s original paper:

Upper bound:

Lower bound:

15

For all graphs on vertices, we have G n ℓ(G) ≤ n − 1.

 For each , there is an such that for all ,
there are -vertex graphs with .

α < 1/ 2 N n > N
n G ℓ(G) ≥ αn ≈ 0.7071n

Proof of previous upper bound
• Upper bound: For all graphs on vertices, we have G n ℓ(G) ≤ n − 1.

16

Proof: It is clear that we can encode any -vertex with the word by
adding the appropriate elements to the decoder .

n G a1a2…an
D

We can then swap all instances of with in this word and decoder, and the new
word and decoder will still encode the graph , (with letters).

an a1
G n − 1

Word Decoder Elements
a1a2…an−1an

a1a2…an−1a1

(ak, an)

(ak, a1) ∎

The key observation
• We will expand on the main idea of this proof to obtain both the improved

upper and lower bounds.

17

• That is, suppose we encode two vertices, and , with the same letter .
Then we can encode other vertices to the left or the right of both of the ’s
only if they agree on and :

u v a
a

u v

w = … a ab … … …

Both dashed edges are
decided by presence of

 in the decoder.(b, a)ux v

The key observation (2)

• But we can always encode other vertices between the two instances of : a

18

• This is exactly what we did in the last proof… we saw that we can encode
every graph with the word

xu v
w = … b aa … … …

The left and right dashed
edges are decided by
and , respectively.

(a, b)
(b, a)

.a1 a2 a3 … an−1 a1

Construction for improved upper bound

• We will use the following construction to take advantage of this observation
and obtain the improved upper bound.

19

• Proposition: For every and each graph on
vertices, has an induced subgraph with vertices that is a -letter graph
on the word

k G n ≥ 2(k − 1) + 22(k−1) + 1
G 2k k

.w = l1 l2…lk lk…l2 l1

Proof of proposition (1)

Proof: Induction on . Base case is just any two vertices. So we suppose
has at least vertices, and given the result holds for we have:

k k = 1 G
2k + 22k + 1 k

20

• Proposition: For every and each graph on
vertices, has an induced subgraph with vertices that is a -letter graph
on the word .

k G n ≥ 2(k − 1) + 22(k−1) + 1
G 2k k

w = l1 l2…lk lk…l2 l1

……:H l1 l2 lk lk l2 l1

:G

Proof of proposition (1)

Proof: Induction on . Base case is just any two vertices. So we suppose
has at least vertices, and given the result holds for we have:

k k = 1 G
2k + 22k + 1 k

20

• Proposition: For every and each graph on
vertices, has an induced subgraph with vertices that is a -letter graph
on the word .

k G n ≥ 2(k − 1) + 22(k−1) + 1
G 2k k

w = l1 l2…lk lk…l2 l1

……:H l1 l2 lk lk l2 l1

:G
vertices
22k + 1

Proof of proposition (1)

Proof: Induction on . Base case is just any two vertices. So we suppose
has at least vertices, and given the result holds for we have:

k k = 1 G
2k + 22k + 1 k

20

• Proposition: For every and each graph on
vertices, has an induced subgraph with vertices that is a -letter graph
on the word .

k G n ≥ 2(k − 1) + 22(k−1) + 1
G 2k k

w = l1 l2…lk lk…l2 l1

……:H l1 l2 lk lk l2 l1

:G
vertices
22k + 1

u v

Proof of proposition (1)

Proof: Induction on . Base case is just any two vertices. So we suppose
has at least vertices, and given the result holds for we have:

k k = 1 G
2k + 22k + 1 k

20

• Proposition: For every and each graph on
vertices, has an induced subgraph with vertices that is a -letter graph
on the word .

k G n ≥ 2(k − 1) + 22(k−1) + 1
G 2k k

w = l1 l2…lk lk…l2 l1

……:H l1 l2 lk lk l2 l1

:G
vertices
22k + 1

u v

Proof of proposition (2)

Proof: (Continued) We can then safely extend and the word using these
vertices and to obtain the desired construction:

H w
u v

21

• Proposition: For every and each graph on
vertices, has an induced subgraph with vertices that is a -letter graph
on the word .

k G n ≥ 2(k − 1) + 22(k−1) + 1
G 2k k

w = l1 l2…lk lk…l2 l1

……
l1 l2 lk lk l2 l1lk+1 lk+1

u v

∎

The improved upper bound
• Theorem: For every and each graph on

vertices, we have
k G n ≥ 2(k − 1) + 22(k−1) + 1

22

.ℓ(G) ≤ n − k

• Essentially, we can ‘save’ about letters when encoding any graph
 on vertices.

(1/2)log2 n
G n

Proof: We can encode the rest of the vertices in the middle of this construction,
each with its own letter:

l1 l2…lk a1 a2 … an−2k lk…l2 l1

From the proposition

∎

Previous lower bound

• Recall, the previously known lower bound on maximum lettericity of a graph
says that there exists -vertex graphs with lettericity at least for large
enough .

n 0.707n
n

23

Proof: Some not so enlightening inequalities…

• It turns out we can do much better than this result, as we are able to show
that essentially all graphs are actually somewhat close to the new upper
bound.

First fact for lower bound
• Fact 1: For almost all graphs , no three vertices can be encoded by the

same letter in a lettering of .
G

G

24

Proof: Let . Suppose we wish to encode three vertices , and with
the same letter in a lettering of :

G = G(n,1/2) x y z
G

w = … a aa … … …
Vertices encoded here must

agree on at least and y z
Vertices encoded here must

agree on at least and x y

Letting denote the event that this is possible, we have .A(x,y,z) ℙ[A(x,y,z)] ≤ (3/4)n−3

x y z

Then the probability that we can encode any three vertices with the same letter is

 as . ℙ [⋃A(x,y,z)] ≤ ∑
(x,y,z)

ℙ[A(x,y,z)] ≤ (n)3 ⋅ (3/4)n−3 → 0 n → ∞ ∎

Second fact for lower bound

• Fact 2: For almost all graphs , if two letters appear twice in a lettering of ,
they must appear in a crossing or nested pattern.

G G

25

• We can now assume that at most two vertices can be encoded with one letter.

• Given this, if two letters, say and , each appear twice in a word, we define
the following patterns for their possible relative positions:

a b

- Crossing: … … … … …a b a b
- Nested: … … … … …a b b a
- Separated: … … … … …a a b b

Second fact for lower bound (2)
• Fact 2: For almost all graphs , if two letters appear twice in a lettering of ,

they must appear in a crossing or nested pattern.
G G

26

Proof: We make almost the exact same argument. That is, suppose we try to
encode in a word with a separated pattern:G = G(n,1/2)

w = … a … a … b … b …
Then to encode a vertex somewhere in this word, it must either agree on the
vertices encoded by or the vertices encoded by . a b

The probability that we can encode with a word containing a separated pattern
goes to 0 as .

G
n → ∞ ∎

How else can we save letters?
• In summary, for almost all graphs on vertices, if has a lettering with

 letters, then it will have letters that appear twice and letters
that appear once.

G n G w
n − k k n − 2k

27

• Furthermore, there exists a permutation such that π ∈ Sk
ω = l1 l2…lk lπ(1) lπ(2)… lπ(k)

is the subword of containing all of the letters that appear twice, (i.e. this
accounts for all the ways for each pair of letters to be crossing or nested).

w

• It remains to analyze how small we can make this (as a function of) so that
the probability that contains an induced subgraph that can be encoded by
a word goes to 0.

k n
G

ω

How else can we save letters? (2)

• So for some vertices of and a permutation
, we calculate the probability that these vertices can be encoded in this

order by the word

(vi)2k
i=1 = (v1, v2, …, v2k) G(n,1/2)

π ∈ Sk

28

… …v1 v2 vk vk+1 vk+2 v2k

l1 l2 lk lπ(1) lπ(2) lπ(k)… …

• Letting denote this event, it turns out that .C(vi),π ℙ[C(vi),π] = (1/4)(k
2)

.ℙ [⋃C(vi),π] ≤ ∑
(vi),π

ℙ[C(vi),π] = (n)2k ⋅ k! ⋅ 2−k(k−1)

• We again appeal to the union bound, this time to get an upper bound on the
probability that any such construction is possible:

The improved lower bound
• Theorem: For almost all graphs on vertices, we haveG n

29

.ℓ(G) ≥ n − (2 log2 n + 2 log2 log2 n)

Proof: Since we have , plugging in

 for , we have goes to 0 as .

ℙ [⋃C(vi),π] ≤ (n)2k ⋅ k! ⋅ 2−k(k−1)

2 log2 n + 2 log2 log2 n k ℙ [⋃C(vi),π] n → ∞

The result then follows from this and facts 1 and 2. ∎

Summary of bounds on lettericity

30

 = number of verticesn

upper bound

lower bound

old lower bound

n

We now know almost
all graphs have

lettericity in here

()≈ n − 0.5 ⋅ log2 n
()≈ n − 2 ⋅ log2 n
()≈ 0.7071 ⋅ n

Previously, all we
knew was that there

existed graphs above
this line

Le
tte

ric
ity

A natural question

31

• Question: Can we obtain similar results pertaining to the maximal lettericity of
inversion graphs?

• Because of the correspondence between lettericity and geometric grid
classes, we can!

Returning to inversion graphs

32

π ∈ Geom (0 −1 1
1 0 −1) ⟹ ℓ(Gπ) ≤ ∑

i,j
|mi,j | = 4

• For our needs, the correspondence can be summarized in an example:

0

1

2

0 1 2 3

This drawing of a permutation on the
standard figure maps to a lettering of its
inversion graph in which the vertices in
each cell are all encoded with the same
letter.

Maximal lettericity of inversion graphs

33

• We can draw every permutation on the standard figure of a row matrix with
at most entries:

±1
⌈n/2⌉

0

1

0 1 2 3 4 5

• Immediately, this shows that for all .ℓ(Gπ) ≤ ⌈n/2⌉ π ∈ Sn

Expected lettericity of inversion graphs

34

• In using this row matrix approach, we can ask how many ‘bars’ do we need to
write on a permutation so that the runs between the bars are monotone?

π = 6 4 3 1 2 9 5 7 8

0

1

0 1 2 3

• Thus we have that .ℓ(Gπ) ≤ 3

Expected lettericity of inversion graphs (2)

35

• By drawing a bar between the two entries of each descent, we partition a
permutation into its ascending runs. It is known that

. 𝔼[# of ascending runs] = n + 1
2

• We can, of course, delete a lot of these bars drawn at the descents:

We can delete these and still have the
permutation partitioned into monotone runs.

• These bars correspond exactly to descending runs of length 4, so we can
subtract off . 𝔼[# of length 4 descending runs] = (n − 3)/24

Expected lettericity of inversion graphs (3)

36

• Using other similar pattern counting arguments, one can obtain

𝔼[ℓ(Gπ)] ≤ 0.41n + C

• (Note, this can likely be lowered a bit further). 0.41

for some constant . C

Part 2

37

Graphical Tranpositions

Transpositions in permutations
• For two integers , a transposition is a permutation given by the

-cycle .
i, j ∈ [n] Ti,j

2 (i j)

38

• For a permutation , the application of a transposition on the
left swaps the entries and :

π ∈ Sn Tπ(k),π(l)
π(k) π(l)

π(1) π(2) … π(k) … π(l) … π(n)

π(1) π(2) … π(l) … π(k) … π(n)

π =

Tπ(k),π(l) ∘ π =
One-line notation

Transpositions and inversion graphs

39

Applying to .T2,6 3164725

Transpositions and inversion graphs

39

Applying to .T2,6 3164725

Transpositions and inversion graphs

39

Applying to .T2,6 3164725

Transpositions and inversion graphs

39

Applying to .T2,6 3164725

Transpositions and inversion graphs

39

Applying to .T2,6 3164725

Transpositions and inversion graphs

39

Applying to .T2,6 3164725

Transpositions and inversion graphs (2)

40

• In summary, by transposing the vertices (entries) of the edge (inversion) ,
we saw that:

uv

Some of the nodes adjacent to exactly one of and were kept adjacent
to that node, and some others were ‘passed’ to the other node.

u v

For some of the nodes that were adjacent to both and , both the
incident edges were deleted.

u v

The edge was deleted.uv

1.

2.

3.

Graphical transpositions
• These observations suggest the following graph operation.

41

• A transposition in a graph consists of the following steps:G

1. Choose an edge .uv ∈ E(G)

2. Choose a subset containing and .X ⊆ N(u) ∪ N(v) u v

3. Toggle all edges between and , including the edge .{u, v} X uv

• We will denote this transposition by .TX
uv

Graphical transposition example

42

1. Choose an
edge uv ∈ E(G)

u v

(Only edges incident to and are drawn)u v

2. Choose
X ⊆ N(u) ∪ N(v)

u v

3. Toggle edges
between and {u, v} X

u v

a
c

d

b

a
c

d

b

Our motivation
• Using this operation, we ask:

Can we turn questions about permutations into interesting graph
theory problems?

Might problems concerning permutations have simpler solutions from
this graph-theoretic perspective?

1.

2.

43

Absolute length
• For a permutation , we will think of its absolute length as the least

number of transpositions that can be applied to to reach the identity
permutation.

π ∈ Sn
π

44

• Theorem: For a permutation with cycles, the absolute length of is
given by .

π ∈ Sn c π
n − c

• Equivalently, the absolute length of is the least such that for
transpositions .

π k π = t1t2…tk
ti

Proof: This follows from the fact that the absolute length of a -cycle is :k k − 1
(1 2 3 … k) = (1 k) … (1 3)(1 2) . ∎

A first observation
• Fact: In a graph , we can isolate any vertex with a single transposition.G

45

Proof: For any , we can isolate it with the transposition , where
is the closed neighborhood of , and is any neighbor of .

u ∈ V(G) TN[u]
uv N[u]

u v u

u v u v

∎

A first theorem
• Theorem: A graph can be transformed into the edgeless graph with

or fewer transpositions.
G n − 1

46

Proof: We repeatedly isolate at least one vertex with a transposition, and we always
get the last vertex for free.

A first theorem
• Theorem: A graph can be transformed into the edgeless graph with

or fewer transpositions.
G n − 1

46

Proof: We repeatedly isolate at least one vertex with a transposition, and we always
get the last vertex for free.

A first theorem
• Theorem: A graph can be transformed into the edgeless graph with

or fewer transpositions.
G n − 1

46

Proof: We repeatedly isolate at least one vertex with a transposition, and we always
get the last vertex for free.

A first theorem
• Theorem: A graph can be transformed into the edgeless graph with

or fewer transpositions.
G n − 1

46

Proof: We repeatedly isolate at least one vertex with a transposition, and we always
get the last vertex for free.

A first theorem
• Theorem: A graph can be transformed into the edgeless graph with

or fewer transpositions.
G n − 1

46

Proof: We repeatedly isolate at least one vertex with a transposition, and we always
get the last vertex for free.

∎

Extremal graphs
• So for which graphs are these bounds tight to the minimum number of

transpositions needed to reach the edgeless graph?

47

• Proposition: Applying any single transposition to a forest results in a forest
with one fewer edge.

Proof: In applying any transposition to a forest, only the edge is deleted, and
no cycles can be formed.

TX
uv uv

u v u v

w wT{u,v,w}
uv

∎

Extremal graphs (2)

48

• Corollary: For a tree on vertices, exactly transpositions are required
to transform it into the edgeless graph.

n n − 1

• Further, for a forest with edges, exactly transpositions are required to
transform it into the edgeless graph.

m m

• But are there other extremal graphs?

Extremal graphs (3)

49

• Theorem: A graph on vertices requires exactly transpositions to
reach the edgeless graph if and only if it is a tree.

n n − 1

Proof: All that remains to show is that if a graph on vertices has a cycle, we can
reach the edgeless graph with fewer than transpositions.

n
n − 1

This takes a quite a bit of work. Essentially, we can
reach a graph that looks like:

And then there are a couple cases to deal with. ∎

Returning to permutations

50

• The permutations whose inversions graphs are forests are referred to as
boolean permutations, and are exactly those that avoid both the patterns

 and .321 3412
To see this, we note that is the only length 3 pattern that yields a triangle, and

 is the only length 4 pattern that yields an induced 4-cycle:
321

3412

Then, using some geometric reasoning in the plane, one can show that it is
impossible to find a length 5+ pattern that yields an induced cycle as its inversion
graph.

Returning to permutations (2)

51

• Theorem: (Edelman 1987, Petersen and Tenner 2014) The length (number of
inversions) and absolute length of a permutation coincide if and only if it is a
boolean permutation.
Proof: For a boolean permutation , its inversion graph is a forest, and thus the
correspondence of length and absolute length is clear from the graph-theoretic
perspective.

π

If is not boolean then it contains either a or pattern:π 321 3412

-3 edges with 1 transposition

-4 edges with 2 transpositions
∎

Some natural unanswered questions

52

• Can we find other bounds on the number of transpositions required to reach
the edgeless graph in terms of other graph invariants?

e.g. diameter, connectivity, girth, chromatic number, etc…

• Can we characterize the minimum number of transpositions required to reach
the edgeless graph for some other well-known families of graphs?

e.g. complete -partite graphs, threshold graphs, etc…k

Graphs requiring one transposition

53

• It is not difficult to see that the connected graphs requiring exactly one
transposition to reach the empty graph are given by

…Nk :=

 verticesk

• Note that is the single edge graph .N0 K2

• We will call these graphs nested triangles.

A problem

54

• Problem: For which graphs is it possible to consider only transpositions
with so that the minimal number of these transpositions
required to reach the edgeless graph is the same as with any transpositions?

TX
uv

X ⊆ N(u) ∩ N(v)

• Equivalently, we can ask for which graphs do we only have to concern
ourselves with partitioning its edges into nested triangles?

 is such a graph.Kn
For , is not.n ≥ 4 Cn

A conjecture

55

• Conjecture: For the graphs in which all induced cycles are triangles, often
referred to as chordal graphs, we need only consider such transpositions.

• Note, these would not be the only such graphs.

This graph has an induced 4-cycle, and
requires four arbitrary transpositions to reach

the empty graph, corresponding with the
minimum size of a partition of its edges into

nested triangles.

• After proving this conjecture, we would next ask: ‘can we relate this result to
permutations that have chordal inversion graphs?’ These are -avoiders.3412

Other future directions

56

• Can we generalize results concerning adjacent block transpositions of
permutations to the setting of arbitrary simple graphs and obtain other
interesting results?

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11 π12

π1 π2 π3 π4 π5π6 π7 π8 π9 π10 π11 π12

• This operation would be equivalent to taking the symmetric difference with a
complete bipartite graph on a subset of vertices.

