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Preliminaries 

• For a permutation , an inversion is a pair ,  , such that 
 and .

π ∈ Sn (i, j) i, j ∈ [n]
i < j π(i) > π( j)
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• Further, the inversion graph of the permutation , denoted , is the 
graph with vertices  and edges given by the inversions of , i.e. 

.

π ∈ Sn Gπ
V(Gπ) = [n] π

E(Gπ) = {π(i)π( j) : (i, j) is an inversion of π}
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An inversion graph example
• For a permutation , if we plot each vertex  at  in the 

plane, we obtain the inversion graph  by connecting each vertex to every 
vertex that is below and to its right. See  below:

π ∈ Sn π(i) ∈ [n] (i, π(i))
Gπ
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Results on maximum lettericity



Letter graphs

• For a finite alphabet , we consider a set of ordered pairs  which we 
refer to as a decoder.

Σ D ⊆ Σ2
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• Then for a word  with each , we define the letter 
graph of  to be the graph   with  and for 
each pair , we have  if and only if 

w = w1w2…wn wi ∈ Σ
w ΓD(w) V(ΓD(w)) = {1,2,…, n}
i < j ij ∈ E(ΓD(w)) (wi, wj) ∈ D .



A visual example
• Let’s consider the word , and the decoder  with the tuples 

,  and . Then we can draw the graph  as follows:
w = abcab D

(a, a) (a, b) (c, b) ΓD(w)
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a ab bc
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Lettericity
• If , then we say that  is a -letter graph. |Σ | = k ΓD(w) k
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• Then, for any graph , the least integer  such that  is isomorphic to a        
-letter graph is called the lettericity of , denoted .

G k G
k G ℓ(G)

• This graph statistic, as well as the letter graph construction, were introduced 
by M. Petkovšek in the paper Letter graphs and well-quasi-order by 
induced subgraphs (2002).

• That is, the least size of an alphabet that admits the graph  for some word 
and decoder on that alphabet.

G



Graphs with lettericity one
• If , then there are only two possibilities:Σ = {a}
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1. Γ{(a,a)}(aa…a)  =  Kn

2. Γ∅(aa…a)  =  Kn

a a a a

a a a a



Threshold graphs have lettericity two
• A threshold graph is constructed by iteratively adding either dominating 

vertices (adjacent to all previously added vertices) or isolated vertices 
(adjacent to none of the previously added vertices).

10

• So with alphabet  and decoder , we can think 
of the correspondences:

Σ = {i, d} D = {(i, d), (d, d)}

isolated verticesi  →
dominating verticesd  →

• That is, we draw  by reading the word from left to right:ΓD(iddiid)
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Geometric grid class preliminaries
• The standard figure of a  matrix  is the point set in  

consisting of


- the increasing open line segment from  to  if  or


- the decreasing open line segment from  to  if .

0/ ± 1 M = (mi,j) ℝ2

(i − 1, j − 1) (i, j) mi,j = 1

(i − 1, j) (i, j − 1) mi,j = − 1

11

0

1

2

0 1 2

  For example,  has standard figure: ∙ M = ( 1 0
−1 1)



Geometric grid classes
• The geometric grid class of , denoted , is the class of all 

permutations that can be ‘properly’ drawn on the standard figure of .
M Geom(M)

M

0

1

0 1 2

5
6

4
3

2 1
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• By ‘properly’, we mean that for each pair of entries of the permutation, they 
are in the same relative positions as they are in the inversion graph.

• For example, we see that :542136 ∈ Geom (−1 1)



Geometric grid classes and lettericity
• In the paper Letter Graphs and Geometric Grid Classes of Permutations 

(2022), Alecu, Ferguson, Kanté, Lozin, Vatter and Zamaraev showed that

13

“… the concepts of lettericity and geometric griddability capture the same 
structural data of their respective combinatorial objects…”

Theorem: The permutation class  is geometrically griddable if and 
only if the corresponding graph class  has bounded lettericity.

𝒞
G𝒞

• More specifically, they proved the following:

• We will return to these ideas later…



The problem
• In Petkovšek’s paper introducing lettericity, he posed the following:

Problem 3: Find the maximum possible lettericity of an -vertex graph, 
and the corresponding extremal graphs.

n

• In the paper Bounds on the Lettericity of 
Graphs (2023) with V. Vatter, we significantly 
improve the known results pertaining to the 
maximum possible lettericity of an -vertex 
graph.

n

14



Previously known results
• The previously known bounds on maximum lettericity of an n-vertex graph are 

from Petkovšek’s original paper:


Upper bound: 

Lower bound:
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For all graphs  on  vertices, we have G n ℓ(G) ≤ n − 1.

 For each , there is an  such that for all , 
there are -vertex graphs  with .

α < 1/ 2 N n > N
n G ℓ(G) ≥ αn ≈ 0.7071n



Proof of previous upper bound
• Upper bound: For all graphs  on  vertices, we have G n ℓ(G) ≤ n − 1.
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Proof: It is clear that we can encode any -vertex  with the word  by 
adding the appropriate elements to the decoder .

n G a1a2…an
D

We can then swap all instances of  with  in this word and decoder, and the new 
word and decoder will still encode the graph , (with  letters).

an a1
G n − 1

Word Decoder Elements
a1a2…an−1an

a1a2…an−1a1

(ak, an)

(ak, a1) ∎



The key observation
• We will expand on the main idea of this proof to obtain both the improved 

upper and lower bounds. 
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• That is, suppose we encode two vertices,  and , with the same letter . 
Then we can encode other vertices to the left or the right of both of the ’s 
only if they agree on  and :

u v a
a

u v

w = … a ab … … …

Both dashed edges are 
decided by presence of 

 in the decoder.(b, a)ux v



The key observation (2)

• But we can always encode other vertices between the two instances of :  a

18

• This is exactly what we did in the last proof… we saw that we can encode 
every graph with the word

xu v
w = … b aa … … …

The left and right dashed 
edges are decided by  
and , respectively.  

(a, b)
(b, a)

.a1 a2 a3 … an−1 a1



Construction for improved upper bound

• We will use the following construction to take advantage of this observation 
and obtain the improved upper bound.

19

• Proposition: For every  and each graph  on  
vertices,  has an induced subgraph with  vertices that is a -letter graph 
on the word

k G n ≥ 2(k − 1) + 22(k−1) + 1
G 2k k

.w = l1 l2…lk lk…l2 l1



Proof of proposition (1)

Proof: Induction on . Base case  is just any two vertices. So we suppose  
has at least  vertices, and given the result holds for  we have:

k k = 1 G
2k + 22k + 1 k

20

• Proposition: For every  and each graph  on  
vertices,  has an induced subgraph with  vertices that is a -letter graph 
on the word . 

k G n ≥ 2(k − 1) + 22(k−1) + 1
G 2k k

w = l1 l2…lk lk…l2 l1

……:H l1 l2 lk lk l2 l1

:G
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Proof of proposition (2)

Proof: (Continued) We can then safely extend  and the word  using these 
vertices  and  to obtain the desired construction:

H w
u v

21

• Proposition: For every  and each graph  on  
vertices,  has an induced subgraph with  vertices that is a -letter graph 
on the word . 

k G n ≥ 2(k − 1) + 22(k−1) + 1
G 2k k

w = l1 l2…lk lk…l2 l1

……
l1 l2 lk lk l2 l1lk+1 lk+1

u v

∎



The improved upper bound
• Theorem: For every  and each graph  on  

vertices, we have
k G n ≥ 2(k − 1) + 22(k−1) + 1

22

.ℓ(G) ≤ n − k

• Essentially, we can ‘save’ about  letters when encoding any graph 
 on  vertices.

(1/2)log2 n
G n

Proof: We can encode the rest of the vertices in the middle of this construction, 
each with its own letter:

l1 l2…lk  a1 a2 … an−2k  lk…l2 l1

From the proposition

∎



Previous lower bound

• Recall, the previously known lower bound on maximum lettericity of a graph 
says that there exists -vertex graphs with lettericity at least  for large 
enough .

n 0.707n
n

23

Proof: Some not so enlightening inequalities…

• It turns out we can do much better than this result, as we are able to show 
that essentially all graphs are actually somewhat close to the new upper 
bound.



First fact for lower bound
• Fact 1: For almost all graphs , no three vertices can be encoded by the 

same letter in a lettering of .
G

G

24

Proof: Let . Suppose we wish to encode three vertices ,  and  with 
the same letter in a lettering of :

G = G(n,1/2) x y z
G

w = … a aa … … …
Vertices encoded here must 

agree on at least  and y z
Vertices encoded here must 

agree on at least  and x y

Letting  denote the event that this is possible, we have .A(x,y,z) ℙ[A(x,y,z)] ≤ (3/4)n−3

x y z

Then the probability that we can encode any three vertices with the same letter is

 as . ℙ [⋃A(x,y,z)] ≤ ∑
(x,y,z)

ℙ[A(x,y,z)] ≤ (n)3 ⋅ (3/4)n−3 → 0 n → ∞ ∎



Second fact for lower bound

• Fact 2: For almost all graphs , if two letters appear twice in a lettering of , 
they must appear in a crossing or nested pattern.

G G

25

• We can now assume that at most two vertices can be encoded with one letter. 

• Given this, if two letters, say  and , each appear twice in a word, we define 
the following patterns for their possible relative positions:

a b

- Crossing: …  …  …  …  …a b a b
- Nested: …  …  …  …  …a b b a
- Separated: …  …  …  …  …a a b b



Second fact for lower bound (2)
• Fact 2: For almost all graphs , if two letters appear twice in a lettering of , 

they must appear in a crossing or nested pattern.
G G

26

Proof: We make almost the exact same argument. That is, suppose we try to 
encode  in a word with a separated pattern:G = G(n,1/2)

w =  … a … a … b … b …
Then to encode a vertex somewhere in this word, it must either agree on the 
vertices encoded by  or the vertices encoded by . a b

The probability that we can encode  with a word containing a separated pattern 
goes to 0 as . 

G
n → ∞ ∎



How else can we save letters?
• In summary, for almost all graphs  on  vertices, if  has a lettering  with 

 letters, then it will have  letters that appear twice and  letters 
that appear once.

G n G w
n − k k n − 2k

27

• Furthermore, there exists a permutation  such that π ∈ Sk
ω = l1 l2…lk lπ(1) lπ(2)… lπ(k)

is the subword of  containing all of the letters that appear twice, (i.e. this 
accounts for all the ways for each pair of letters to be crossing or nested).

w

• It remains to analyze how small we can make this  (as a function of ) so that 
the probability that  contains an induced subgraph that can be encoded by 
a word  goes to 0. 

k n
G

ω



How else can we save letters? (2)

• So for some vertices  of  and a permutation 
, we calculate the probability that these vertices can be encoded in this 

order by the word

(vi)2k
i=1 = (v1, v2, …, v2k) G(n,1/2)

π ∈ Sk

28

… …v1 v2 vk vk+1 vk+2 v2k

l1 l2 lk lπ(1) lπ(2) lπ(k)… …

• Letting  denote this event, it turns out that .C(vi),π ℙ[C(vi),π] = (1/4)(k
2)

.ℙ [⋃C(vi),π] ≤ ∑
(vi),π

ℙ[C(vi),π] = (n)2k ⋅ k! ⋅ 2−k(k−1)

• We again appeal to the union bound, this time to get an upper bound on the 
probability that any such construction is possible:



The improved lower bound
• Theorem: For almost all graphs  on  vertices, we haveG n

29

.ℓ(G) ≥ n − (2 log2 n + 2 log2 log2 n)

Proof: Since we have , plugging in 

 for , we have  goes to 0 as .

ℙ [⋃C(vi),π] ≤ (n)2k ⋅ k! ⋅ 2−k(k−1)

2 log2 n + 2 log2 log2 n k ℙ [⋃C(vi),π] n → ∞

The result then follows from this and facts 1 and 2. ∎



Summary of bounds on lettericity

30

 = number of verticesn



upper bound

lower bound


old lower bound

n

We now know almost 
all graphs have 

lettericity in here

( )≈ n − 0.5 ⋅ log2 n
( )≈ n − 2 ⋅ log2 n
( )≈ 0.7071 ⋅ n

Previously, all we 
knew was that there 

existed graphs above 
this line

Le
tte

ric
ity



A natural question

31

• Question: Can we obtain similar results pertaining to the maximal lettericity of 
inversion graphs?

• Because of the correspondence between lettericity and geometric grid 
classes, we can!



Returning to inversion graphs

32

π ∈ Geom (0 −1 1
1 0 −1) ⟹ ℓ(Gπ) ≤ ∑

i,j
|mi,j | = 4

• For our needs, the correspondence can be summarized in an example:

0

1

2

0 1 2 3

This drawing of a permutation on the 
standard figure maps to a lettering of its 
inversion graph in which the vertices in 
each cell are all encoded with the same 
letter. 



Maximal lettericity of inversion graphs

33

• We can draw every permutation on the standard figure of a row matrix with 
at most  entries:

±1
⌈n/2⌉

0

1

0 1 2 3 4 5

• Immediately, this shows that  for all .ℓ(Gπ) ≤ ⌈n/2⌉ π ∈ Sn



Expected lettericity of inversion graphs

34

• In using this row matrix approach, we can ask how many ‘bars’ do we need to 
write on a permutation so that the runs between the bars are monotone?

π = 6 4 3 1   2 9   5 7 8

0

1

0 1 2 3

• Thus we have that .ℓ(Gπ) ≤ 3



Expected lettericity of inversion graphs (2)

35

• By drawing a bar between the two entries of each descent, we partition a 
permutation into its ascending runs. It is known that

. 𝔼[# of ascending runs] = n + 1
2

• We can, of course, delete a lot of these bars drawn at the descents:

We can delete these and still have the 
permutation partitioned into monotone runs.

• These bars correspond exactly to descending runs of length 4, so we can 
subtract off . 𝔼[# of length 4 descending runs] = (n − 3)/24



Expected lettericity of inversion graphs (3)

36

• Using other similar pattern counting arguments, one can obtain

𝔼[ℓ(Gπ)] ≤ 0.41n + C

• (Note, this  can likely be lowered a bit further). 0.41

for some constant . C



Part 2

37

Graphical Tranpositions



Transpositions in permutations
• For two integers , a transposition  is a permutation given by the 

-cycle .
i, j ∈ [n] Ti,j

2 (i  j)

38

• For a permutation , the application of a transposition  on the 
left swaps the entries  and :

π ∈ Sn Tπ(k),π(l)
π(k) π(l)

π(1) π(2) … π(k) … π(l) … π(n)

π(1) π(2) … π(l) … π(k) … π(n)

π =

Tπ(k),π(l) ∘ π =
One-line notation 



Transpositions and inversion graphs
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Applying  to .T2,6 3164725
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Transpositions and inversion graphs (2)

40

• In summary, by transposing the vertices (entries) of the edge (inversion) , 
we saw that:

uv

Some of the nodes adjacent to exactly one of  and  were kept adjacent 
to that node, and some others were ‘passed’ to the other node.

u v

For some of the nodes that were adjacent to both  and , both the 
incident edges were deleted.

u v

The edge  was deleted.uv

1.

2.

3.



Graphical transpositions
• These observations suggest the following graph operation.

41

• A transposition in a graph  consists of the following steps:G

1.  Choose an edge .uv ∈ E(G)

2.  Choose a subset  containing  and .X ⊆ N(u) ∪ N(v) u v

3.  Toggle all edges between  and , including the edge .{u, v} X uv

• We will denote this transposition by .TX
uv



Graphical transposition example

42

1. Choose an 
edge uv ∈ E(G)

u v

(Only edges incident to  and  are drawn)u v

2. Choose 
X ⊆ N(u) ∪ N(v)

u v

3. Toggle edges 
between  and {u, v} X

u v

a
c

d

b

a
c

d

b



Our motivation
• Using this operation, we ask:

Can we turn questions about permutations into interesting graph 
theory problems? 

Might problems concerning permutations have simpler solutions from 
this graph-theoretic perspective?

1.

2.

43



Absolute length
• For a permutation , we will think of its absolute length as the least 

number of transpositions that can be applied to  to reach the identity 
permutation.

π ∈ Sn
π

44

• Theorem: For a permutation  with  cycles, the absolute length of  is 
given by . 

π ∈ Sn c π
n − c

• Equivalently, the absolute length of  is the least  such that  for 
transpositions . 

π k π = t1t2…tk
ti

Proof: This follows from the fact that the absolute length of a -cycle is :k k − 1
(1 2 3 … k) = (1 k) … (1 3)(1 2) . ∎



A first observation
• Fact: In a graph , we can isolate any vertex with a single transposition.G

45

Proof: For any , we can isolate it with the transposition , where  
is the closed neighborhood of , and  is any neighbor of .

u ∈ V(G) TN[u]
uv N[u]

u v u

u v u v

∎



A first theorem
• Theorem: A graph  can be transformed into the edgeless graph with  

or fewer transpositions.
G n − 1

46

Proof: We repeatedly isolate at least one vertex with a transposition, and we always 
get the last vertex for free.
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Proof: We repeatedly isolate at least one vertex with a transposition, and we always 
get the last vertex for free.

∎



Extremal graphs
• So for which graphs are these bounds tight to the minimum number of 

transpositions needed to reach the edgeless graph?

47

• Proposition: Applying any single transposition to a forest results in a forest 
with one fewer edge.

Proof: In applying any transposition  to a forest, only the edge  is deleted, and 
no cycles can be formed.

TX
uv uv

u v u v

w wT{u,v,w}
uv

∎



Extremal graphs (2)

48

• Corollary: For a tree on  vertices, exactly  transpositions are required 
to transform it into the edgeless graph.

n n − 1

• Further, for a forest with  edges, exactly  transpositions are required to 
transform it into the edgeless graph.

m m

• But are there other extremal graphs?



Extremal graphs (3)

49

• Theorem: A graph on  vertices requires exactly  transpositions to 
reach the edgeless graph if and only if it is a tree.

n n − 1

Proof: All that remains to show is that if a graph on  vertices has a cycle, we can 
reach the edgeless graph with fewer than  transpositions.

n
n − 1

This takes a quite a bit of work. Essentially, we can 
reach a graph that looks like:

And then there are a couple cases to deal with. ∎



Returning to permutations
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• The permutations whose inversions graphs are forests are referred to as 
boolean permutations, and are exactly those that avoid both the patterns 

 and .321 3412
To see this, we note that  is the only length 3 pattern that yields a triangle, and 

 is the only length 4 pattern that yields an induced 4-cycle:
321

3412

Then, using some geometric reasoning in the plane, one can show that it is 
impossible to find a length 5+ pattern that yields an induced cycle as its inversion 
graph.



Returning to permutations (2)
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• Theorem: (Edelman 1987, Petersen and Tenner 2014) The length (number of 
inversions) and absolute length of a permutation coincide if and only if it is a 
boolean permutation.
Proof: For a boolean permutation , its inversion graph is a forest, and thus the 
correspondence of length and absolute length is clear from the graph-theoretic 
perspective.

π

If  is not boolean then it contains either a  or  pattern:π 321 3412

-3 edges with 1 transposition

-4 edges with 2 transpositions
∎



Some natural unanswered questions
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• Can we find other bounds on the number of transpositions required to reach 
the edgeless graph in terms of other graph invariants?

e.g. diameter, connectivity, girth, chromatic number, etc…

• Can we characterize the minimum number of transpositions required to reach 
the edgeless graph for some other well-known families of graphs?

e.g. complete -partite graphs, threshold graphs, etc…k



Graphs requiring one transposition
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• It is not difficult to see that the connected graphs requiring exactly one 
transposition to reach the empty graph are given by

…Nk :=

 verticesk

• Note that  is the single edge graph .N0 K2

• We will call these graphs nested triangles.



A problem
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• Problem: For which graphs is it possible to consider only transpositions  
with  so that the minimal number of these transpositions 
required to reach the edgeless graph is the same as with any transpositions? 

TX
uv

X ⊆ N(u) ∩ N(v)

• Equivalently, we can ask for which graphs do we only have to concern 
ourselves with partitioning its edges into nested triangles?

 is such a graph.Kn
For ,  is not.n ≥ 4 Cn



A conjecture
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• Conjecture: For the graphs in which all induced cycles are triangles, often 
referred to as chordal graphs, we need only consider such transpositions.

• Note, these would not be the only such graphs.

This graph has an induced 4-cycle, and 
requires four arbitrary transpositions to reach 

the empty graph, corresponding with the 
minimum size of a partition of its edges into 

nested triangles.

• After proving this conjecture, we would next ask: ‘can we relate this result to 
permutations that have chordal inversion graphs?’ These are -avoiders.3412



Other future directions
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• Can we generalize results concerning adjacent block transpositions of 
permutations to the setting of arbitrary simple graphs and obtain other 
interesting results?

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11 π12

π1 π2 π3 π4 π5π6 π7 π8 π9 π10 π11 π12

• This operation would be equivalent to taking the symmetric difference with a 
complete bipartite graph on a subset of vertices.


