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1 Important Sequences

We list the first several entries in some important sequences:

• Factorial - 1, 2, 6, 24, 120 . . .

• Catalan Numbers - 1, 2, 5, 14, 42 . . .

• Fibonacci Numbers - 1, 1, 2, 3, 5, 8, 13 . . .

• Bell Numbers - 1, 2, 5, 15, 52 . . .

• Euler Numbers - 1, 1, 2, 5, 16, 61 . . .

• Schröder Numbers - 2, 6, 22, 90 . . .

• Motzkin Numbers - 1, 2, 4, 9, 21, 51 . . .

2 Some Elementary Principles

Reference: A Walk Through Combinatorics - Bóna, Chapters 1-4.

2.1 The Pigeon-Hole Principle

Theorem 2.1 (Pigeon-Hole Principle). Let n > k ∈ Z+. Suppose we place n identical balls into k
identical boxes. Then there will be at least one box with at least two balls.

Theorem 2.2 (Generalized Pigeon-Hole Principle). Let n,m and r be positive integers so that n > rm,
and let us distribute n identical balls into m identical boxes. Then there will be at least one box into which
we place r + 1 balls.
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Problems

Problem 2.3. We have distributed 200 balls into 100 boxes, each box got at least 1 ball and at most
100 balls. Prove that one can find a set of boxes containing together 100 balls.

Proof. If all boxes have the same number of balls, then they each have 2 and the result clearly
holds. Suppose not, so then we can find 2 boxes a1 and a2 such that a1 ∕= a2. Order the rest of
boxes a3, . . . , a100. For each i ∈ [100], denote si = a1 + · · · + ai. If there exists i > j ∈ [100]
such that si ≡ sj mod 100, then we have 100 = si − sj = aj+1 + · · · + ai. Otherwise, by the
pigeonhole principle there exists some 1 < k ∈ [100] such that sk ≡ a2 mod 100 and we have that
100 = sk − a2 = a1 + a3 + · · ·+ ak.

Problem 2.4. The sum of 100 given real numbers is 0. Prove that at least 99 of the pairwise sums
of these 100 numbers are non-negative. Is this result the best possible?

Proof. We can partition [100] into blocks of size 2 in 99 ways so that each block happens exaclty
once, (i.e. pairings). In each partition, at least one sum is non-negative. This result is the best
possible: consider {99,−1,−1, . . . ,−1}.

Problem 2.5. Let a1, . . . , a10 be positive integers not exceeding 100. Prove that there are disjoint
nonempty subsets S and T of [10] such that



i∈S
ai =



j∈T
aj .

Proof. It is clear that the sum of any such nonempty set of the ai’s is at most 1000 and at least 1.
There are then certainly 210 − 1 = 1023 nonempty subsets of [10] and therefore by the pigeon-hole
principle there are two distinct subsets G and H of [10], neither of which is contained in the other,
satisfying


i∈G ai =


j∈H aj . Therefore it is clear that S = G − H and T = H − G satisfy our

hypothesis.

Problem 2.6. One afternoon, a mathematics library had several vistors. A librarian noticed that it
was impossible to find three visitors so that no two of them met in the library that afternoon. Prove
that then it was possible to find two moments of time that afternoon so that each visitor was in the
library at one of those two moments.

Proof. For each visitor, either he met all the people that left the library before him or he met all the
people that got to the library after him, or both. That is, assume someone did not meet someone
who left the library before him and someone who arrived after him, then those are three people
none of which met each other that day. Consider the set of people who met everyone who left
before him. Then at the moment that the first person from this set was leaving, all the people in
this set were present.

Now consider the rest of the people, all of whom met everyone who arrived after them. Then
at the moment the last person in the set was arriving, then everyone in the set was present. Thus
everyone was present at one of these two times.

Problem 2.7. Determine the number of binary strings of length n beginning with 0, ending with
1, and such that the number of copies of 00 equals the number of copies of 11.
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Proof. The number is then the number of all such words with an equal number of 0’s and 1’s. This
takes a bit of thought. So we just have to pick where the 1’s (or 0’s) go. That is, there are no strings
if n is odd and 

n− 2

(n−2
2 )



strings if n is even.

2.2 Binomial Theorem and Related Identities

Theorem 2.8 (Binomial Theorem). For all nonnegative integers n,

(x+ y)n =

n

i=0


n

i


xiyn−i.

Proposition 2.9. For all nonnegative integers n and k, we have the identities

a.

n
k


+


n

k+1


=


n+1
k+1


, and

b.

k
k


+


k+1
k


+ · · ·+


n
k


=


n+1
k+1


.

For a,

n
k


counts the subsets with n+1, and


n

k+1


counts the subsets without n+1. For b, each

summand

k+i
k


counts the subsets whose largest element is k + i+ 1.

Theorem 2.10 (Vandermonde’s Identity). For all positive integers n,m and k,


n+m

k


=

k

i=0


n

i


m

k − i


.

Theorem 2.11 (Multinomial Theorem). For all nonnegative integers n and k, the equality

(x1 + · · ·+ xk)
n =



a1,...,ak


n

a1, . . . , ak


xa11 . . . xakk .

holds. Here the sum is taken over all k-tuples of nonnegative integers a1, . . . , ak satisfying n =
k

i=1 ai.

Definition. For any x ∈ R, we can define the generalized binomial coefficient by

x
0


= 1, and


x

k


=

x(x− 1) . . . (x− k + 1)

k!

for k ∈ Z+. This extends to a generalized binomial theorem.
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Problems

Problem 2.12. Let p ≥ 3 be prime, and let m and k < pm be positive integers. Show that p divides
pm

k


.

Proof. We have that


pm

k


=

pm

k
·
k−1

i=1

pm − i

i
=

pm

k
·
k−1

i=1

pm − pjiqi
pjiqi

=
pm

k
·
k−1

i=1

pm−ji − qi
qi

,

where i = pjiqi and p ∤ qi for each i ∈ [k−1]. Since p divides none of the qi’s, we have the result.

Problem 2.13. Give a proof that for all positive integers n,

2n
n


=

n
k=0


n
k

2.

Proof. The left-hand-side counts all the NE lattice paths (0, 0) → (n, n). The term

n
k

2
=


n
k


n

n−k



counts the number of NE lattice paths (0, 0) → (n, n) going through (n − k, k). Since each NE
lattice paths goes through one of these points on the diagonal, we have the result.

Problem 2.14. Prove that for all integers n, the equality



2|k≥0


n

k


2k =

3n + (−1)n

2

holds.

Proof.

(2 + 1)n + (2− 1)n =


k≥0


n

k


2n−k +



k≥0


n

k


2n−k(−1)k = 2



2|k≥0


n

k


2k.

Problem 2.15. How many strings of length n can be formed using the alphabet {A,B,C,D,E} if

(a) the letter A appears an odd number of times.

(b) The letters A and B are both used an odd number of times.

Proof. (a) We can pick an odd number of positions to place A, then place a word with the rest of
letters on the rest of the positions. This yields



k odd


n

k


4n−k =

1

2


n

k=0


n

k


4n−k −

n

k=0


n

k


(−1)k4n−k



=
1

2
((1 + 4)n − (−1 + 4)n)

=
5n − 3n

2
.
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(b) Similarly, we can pick an odd number of positions to place B, then put a word with an odd
number of A’s (and no B’s) on the remaining positions. So the number of ways to put have a word
with an odd number of A’s and no B’s is given by



k odd


n

k


3n−k =

1

2


n

k=0


n

k


3n−k −

n

k=0


n

k


(−1)k3n−k



=
1

2
((1 + 3)n − (−1 + 3)n)

=
4n − 2n

2
.

So the desired number is then


k odd


n

k


4n−k − 2n−k

2


=

1

2




k odd


n

k


4n−k −



k odd


n

k


2n−k



=
1

2
((1 + 4)n − (−1 + 4)n − (1 + 2)n + (−1 + 2)n)

=
5n − 2 · 3n + 1

2
.

3 Partitions

Reference: A Walk Through Combinatorics - Bóna, Chapter 5.

3.1 Compositions

Definition. A weak composition of n is a sequence (a1, a2, . . . , ak) of non-negative integers such that
a1+a2+ · · ·+ak = n. A composition of n is a sequence (a1, a2, . . . , ak) of positive integers such that
a1 + a2 + · · ·+ ak = n.
Theorem 3.1. For all n, k ∈ Z+, the number of weak compositions of n into k parts is


n+ k − 1

k − 1


=


n+ k − 1

n


.

That is, the number of linear orderings of n stars and k − 1 bars.
Theorem 3.2. For all n, k ∈ Z+, the number of compositions of n into k parts is


n− 1

k − 1


.

That is, the number of ways of placing k − 1 bars into the n− 1 spaces between n stars.
Theorem 3.3. Related to above, the number of k element subsets of an n-set with repetition is given by


n

k


:=


n+ k − 1

n− 1


=


n+ k − 1

k


,

called n multichoose k.
That is, the number of linear orderings of k stars and n− 1 bars.

6



Problems

Problem 3.4. Find the number of compositions of n into an odd number of parts.

Proof. The answer is 2n−2, i.e. the number of compositions of n− 1. That is, map the composition
(a1, . . . , ak) of n− 1 to (a1, . . . , ak+1) if k is odd, and to (a1, . . . , ak, 1) if k is even. The inverse map
is clear since we need only look at if the last entry of the composition is 1 or not.

Problem 3.5. Find the number of all compositions of n into parts that are odd.

Proof. Denote the number by f(n). Then it is clear that f(1) = 1 and f(2) = 1, and we will show
that

f(n) = f(n− 1) + f(n− 2)

for alln ≥ 3, and hence f(n) is the Fibonacci number. That is, take a composition (a1, . . . , ak) ofn−1
into odd parts, map it to (a1, . . . , ak, 1), and it is clear we obtain every desired composition ending
in 1. Then take the composition (b1, . . . , bj) of n− 2 into odd parts, and map that to (b1, . . . , bj +2),
and it is clear we obtain every desired composition not ending in 1 in this way. This gives the
result.

Problem 3.6. Let c̄(m,n) denote the number of compositions of n with largest part at most m. Find
n≥0 c̄(m,n)xn.

Proof. We have


n≥0

c̄(m,n)xn =


k≥0

(x+ x2 + · · ·+ xm)k

=


k≥0


x− xm+1

1− x

k

=
1− x

1− 2x+ xm+1
.

3.2 Set Partitions

Definition. The number of set partitions of [n] into k parts is denoted S(n, k), called the Stirling
number of the second kind.

Theorem 3.7. The Stirling numbers of the second kind satisfy the recurrence

S(n, k) = S(n− 1, k − 1) + k · S(n− 1, k).

Theorem 3.8. For all x ∈ R and all nonnegative integers n,

xn =

n

k=0

S(n, k)(x)k.
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For x ∈ Z+, both sides count x-colorings of [n], i.e. both sides are polynomials that agree at
infinitely many points.

Definition. The number of all set partitions of [n] is denoted B(n) =


k≥1 S(n, k), called the nth

Bell Number.

Theorem 3.9. The Bell numbers satisfy the recurrence

B(n+ 1) =

n

i=0


n

i


B(i).

Problems

Problem 3.10. Let F (n) be the number of partitions of [n] that contain no singleton blocks. Prove
that if n ≥ 1, then F (n) + F (n+ 1) = B(n), where B(n) is the nth Bell number.

Proof. Take any partition of [n] (enumerated by B(n)). If it has no singletons, then map it to itself,
accounting for all of the partitions enumerated byF (n). If it has singletons, put all of the singletons
in a block with n+1, accounting for all the terms counted by F (n+1). The inverse map is clear.

Problem 3.11. How many partitions does [n] have in which no block contains two consecutive
integers?

Proof. We see that it is B(n−1), the (n−1)st Bell number. That is, take any partition of [n] in which
no block contains consecutive integers, take the block with n in it, delete n, then add the remaining
integers of the block to the block containing the integer one greater than it. The inverse map is not
terribly difficult to see.

3.3 Integer Partitions

Theorem 3.12. Let p(n) denote the number of integer partitions of n. Then



n≥0

p(n)xn =

∞

i=1

1

1− xi
.

Definition. A Ferrers shape of a partition λ = {x1, x2, . . . , xk} of n is a set of n boxes with horizontal
and vertical sides so that the ith row has xi boxes and all rows start at the same vertical line. The
conjugate partitions of λ is the partition corresponding to the Ferrers shape obtained by reflecting
the Ferrers shape of λ over its diagonal.

Theorem 3.13. It is immediate from the conjugation map that the number of partitions of n into at most k
parts is equal to that of the partitions of n into parts not larger that k.
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Problems

Problem 3.14. Let q(n) be the number of paritions of n in which each part is at least 2. Show
q(n) = p(n)− p(n− 1) for all positive integers n ≥ 2.

Proof. We have a bijection from the set of partitions of n−1 to the set of partitions of nwith smallest
part 1: add the part 1 to each partition of n− 1.

Problem 3.15. Let pd(n) and podd(n) denote the numbers of partitions of n into distinct and odd
parts, respectively. Prove that pd(n) = podd(n).

Proof.


n≥0

pd(n)x
n = (1 + x)(1 + x2)(1 + x3) . . .

=
(1 + x)(1− x)

1− x
· (1 + x2)(1− x2)

1− x2
· (1 + x3)(1− x3)

1− x3
· . . .

=
1

1− x
· 1

1− x3
· 1

1− x5
· . . .

=


n≥0

podd(n)x
n.

4 Permutations

Reference: A Walk Through Combinatorics - Bóna, Chapters 6 and 14, and Combinatorics of Permuta-
tions - Bóna.

4.1 Linear Orders

Theorem 4.1. The number of n-permutations with k − 1 descents, (equivalently, k ascending runs), is
denoted A(n, k). These numbers are called Eulerian numbers, and they satisfy the recurrence:

A(n, k + 1) = (k + 1)A(n− 1, k + 1) + (n− k)A(n− 1, k).

Theorem 4.2. The number of alternating (i.e. down-up) n-permutations is denoted En, called the nth Euler
number. Noting that an (n + 1)-alternating permutation can be written as L(n + 1)R where both R and
Lr are reverse alternating, we obtain the recurrence

2En+1 =

n

k=0


n

k


EkEn−k,

and this yields the generating function



n≥0

En
zn

n!
= sec z + tan z.
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Definition. The number i is called a weak excedance of w ∈ Sn if wi ≥ i and an excedance if wi > i.

Proposition 4.3. The number ofw ∈ Sn with k weak excedances equals the is equal to the number ofw ∈ Sn

with n− k excedances.

To see this, take the reverse complement: wi ≥ i ⇐⇒ n+ 1− wi ≤ n+ 1− i.

Problems

Problem 4.4. How many permutations a1a2 . . . an ∈ Sn satisfy the property: if 2 ≤ j ≤ n, then
|ai−aj | = 1 for some 1 ≤ i < j? Equivalently, for all k, the set {a1, a2, . . . , ak} consists of consecutive
integers in some order.

Proof. We see that we can build every such permutation by choosing arbitrarily a first element, then
picking the next element to be one more or one less than all of the previous elements continually.
This is then counted by

n

k=1


n− 1

k − 1


,

where k can be thought of as the first element of the permutation, then the k − 1 elements chosen
from the remaining positions are where we pick the ‘lesser element’ option.

4.2 Inversions

Definition. The inversion table ofw ∈ Sn is a vector I(w) := (a1, a2, . . . , an) ∈ [n−1]×[n−2]×· · ·×[0],
where ai is the number of entries j in w to the left of i satisfying j > i. The code of w ∈ Sn is given
by code(w) := I(w−1), that is, code(w) := (c1, . . . , cn) is a vector where ci is equal to the number
of elements wj such that i < j and wi > wj .

Proposition 4.5. The maps code, I : Sn → [n− 1]× [n− 2]× · · ·× [0] are bijections.

Theorem 4.6. Let inv(p) denote the number of inversions of p ∈ Sn, then


p∈Sn

qinv(p) = (1 + q)(1 + q + q2) . . . (1 + q + · · ·+ qn−1).

Note. This generating function is sometimes denoted (n)q!, the q-analog of n!. The following per-
mutation has the same generating function, and is hence called equidistributed with inversions.

Definition. The major index of w ∈ Sn is the sum of the elements of its descent set D(w). That is,
maj(w) =


i∈D(w) i.

Definition. Here we list some q-analogs related to the generating function for inversions. These
are called q-analogs because setting q = 1 will give the original object. As we just saw we have

(n)q! = (1)q(2)q(3)q . . . (n)q = (1)(1 + q)(1 + q + q2) . . . (1 + q + · · ·+ qn−1),

10



the q-analog of n factorial. Then we have Gaussian coefficients, also called q-binomial coefficients,
given by


n

k



q

=
(n)q!

(n− k)q!(k)q!

=
(n)q(n− 1)q . . . (n− k + 1)q
(k)q(k − 1)q . . . (2)q(1)q

=
(qn − 1)(qn − q) . . . (qn − qk−1)

(qk − 1)(qk − q) . . . (qk − qk−1)
,

where the last line is obtained by using the identity qm − 1 = (q − 1)(qm−1 + · · · + q + 1), and
multiplying the numerator and denominator of the second line by q · q2 · q3 . . . qk−1.

Theorem 4.7. If q is a prime power, then

n
k


q

is the number of all k-dimensional subspaces of an n-
dimensional vector space over Fq.

Proof. We first see that (qn − 1)(qn − q) . . . (qn − qk−1) counts the number of ordered sequences of
k linearly independent vectors of the vector space. That is, we choose a non-zero vector in qn − 1
ways for the first vector, then a second vector not in the span of that vector in qn − q ways, then a
third vector not in the span of the first two in qn − q2 ways, etc.

Second, we see that (qk − 1)(qk − q) . . . (qk − qk−1) counts the number of ordered bases of
a k-dimensional vector space over Fq. This is shown in the same way as was done in the last
paragraph. Hence the term (qn − 1)(qn − q) . . . (qn − qk−1) counts every k-dimensional subspace
exactly (qk − 1)(qk − q) . . . (qk − qk−1) times, yielding the result.

Theorem 4.8. For all n, k ≥ 1, we have

n

k



q

=


n− 1

k − 1



q

+ qk

n− 1

k



q

.

Proof. Denoting our vector space Fm
q , let π : Fm

q → Fm−1
q be a projection with one-dimensional

nullspace N . Suppose V is a k-dimensional subspace, (what is enumerated by the left-hand side).
If N ∕⊆ V , then π(V ) is k-dimensional, and hence is counted by qk


n−1
k


q

since... If N ⊆ V , then
π(V ) is (k − 1)-dimensional, and hence is counted by


n−1
k−1


q
.

Problems

Problem 4.9. Let n ≥ 3. How many permutations of length n are there whose number of inversions
is divisible by 3?

Proof. We have that


p∈Sn

qinv(p) = (1 + q)(1 + q + q2) . . . (1 + q + · · ·+ qn−1) = (1 + q + q2)p(x),

where p(x) is some polynomial. Then it is clear by the right hand side that for the number of per-
mutations with number of inversions in the same congruence class modulo 3 is p(1), and therefore
the answer is 1/3.
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Problem 4.10. Let Πn be the set of permutations π of [n] such that π(i+1) ≤ π(i)+1 for i ∈ [n−1].
Find |Πn|.

Proof. We note that every such permutation has n in the first position or after n − 1. This gives
|Tn| = 2 · |Tn−1| = 2n−1.

Problem 4.11. Let Gn be the graph whose vertex set is the set of all permutations of [n] (in one
line notation) with two vertices adjacent if they differ by switching two consecutive entries in the
permutation. What is the chromatic number of Gn.

Proof. If n = 1 it is clearly one. So suppose n ≥ 2. We see that since Gn has at least one edge, we
have χ(Gn) ≥ 2. We show χ(Gn) = 2. That is, color each of the vertices with an even number
of inversions with red and each of the vertices with an odd number of vertices blue. Then since
interchanging two consecutive entries of a permutation changes the number of inversions by +1
or −1, we have that this is a proper coloring. This gives the result.

4.3 Cycles

Definition. A permutation w ∈ Sn is odd if it has an odd number of inversions, or even if it has an
even number of inversions.

Proposition 4.12. For w ∈ Sn, then w is even if and only if the number of even length cycles of w is even.

Definition. Let w ∈ Sn have exactly ai cycles of length i. Then the type of w is given by the vector
(a1, a2, . . . , an).

Proposition 4.13. The number of permutations in Sn of cycle type (a1, a2, . . . , an) is

n!

a1!a2! . . . an!1a12a2 . . . nan
.

Proposition 4.14. Two elements of Sn are conjugates in Sn if and only if they are of the came cycle types.
That is, for σ = (a11a12 . . . a1k) . . . (am1am2 . . . amj ) ∈ Sn, for any τ ∈ Sn we have

τστ−1 = (τ(a11)τ(a12) . . . τ(a1k)) . . . (τ(am1)τ(am2) . . . τ(amj )).

Definition. The number of permutations w ∈ Sn with k cycles is called the signless Stirling number
of the first kind, and is denoted c(n, k).

Proposition 4.15. Set c(n, 0) = 0 if n ≥ 1 and c(0, 0) = 1. Then the numbers c(n, k) satisfy the recurrence

c(n, k) = c(n− 1, k − 1) + (n− 1)c(n− 1, k).

Theorem 4.16. For all n ∈ Z+, the equality

z(z + 1) . . . (z + n− 1) =

n

k=0

c(n, k)zk,

holds.
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We can see this by showing that the coefficients of the polynomials on the left side satisfy the
same recurrence as the c(n, k). What happens when we evaluate at z = −1?

Theorem 4.17 (Transition Lemma). Let w ∈ Sn be written in canonical cycle notation, (i.e. largest ele-
ment first in each cycle, order cycles in increasing order by largest elements), and let f(w) be the permutation
obtained by omitting all parentheses. Then the map f : Sn → Sn is a bijection.

Definition. A permuation w ∈ Sn is called a derangement if it has no fixed-points, and let set of
them be denoted Dn.

Proposition 4.18. Some important formulas regarding derangements:

i. D(z) :=


n≥1Dn
zn

n! =
e−z

1−z ;

ii. Dn = n!

1− 1

1! +
1
2! − · · ·+ (−1)n

n!


;

iii. Dn = (n− 1)(Dn−1 +Dn−2);

iv. Dn = n ·Dn−1 + (−1)n.

Proof. First, i. is solved by simple application of exponential formula for generating functions.
Second, ii. is solved using inclusion-exclusion:

Dn = n!−

n

1


(n− 1)! +


n

2


(n− 2)!− · · ·+ (−1)n


n

n


1! = n!


1− 1

1!
+

1

2!
− · · ·+ (−1)n

n!


.

Third, iii. is clear by seeing that (n − 1)Dn−1 counts the number of derangements of length n
in which n is in a cycle of length ≥ 3, and (n− 1)Dn−2 counts those with n in a cycle of length 2.

Finally, iv. follows from ii.:

Dn−1 = (n− 1)!


1− 1

1!
+

1

2!
− · · ·+ (−1)n−1

n− 1!



=⇒ n ·Dn−1 + (−1)n = (n)!


1− 1

1!
+

1

2!
− · · ·+ (−1)n−1

n− 1!


+ (−1)n

=⇒ n ·Dn−1 + (−1)n = Dn.

Problems

Problem 4.19. Prove that the average number of cycles of a randomly chosen [n]-permutation is
the nth Harmonic number H(n).

Proof. The average number of k-cycles is

n
k

 (k−1)!(n−k)!
n! = 1

k , and then use linearity of expectation.
Also can take derivative of Theorem 4.16 and evaluate at z = 1.

Problem 4.20. How many permutations w ∈ Sn have the same number of cycles as weak ex-
cedances.

13



Proof. It is easy to see that every cycle admits at least one weak excedance, and the cycle (x1 x2 . . . xk)
admits exactly one weak excedance if x1 > x2 > · · · > xk. Thus the number of permutations with
as many cycles as weak excedances is B(n), the nth Bell number.

Problem 4.21. How many permutations of length n are there in which the cycle containing the
entry 7 is of length exactly k.

Proof. For n < 7, the answer is clearly 0, so suppose n ≥ 7. This is the same question as asking
how many permutations have n in a cycle of length k. By the transition lemma, the number of
permutations with n in a cycle of length k is equal to the number of permutations with n in position
n− k + 1. That is, there are (n− 1)! permutations.

Problem 4.22. How many permutations p = p1p2 . . . pn of length n are there in which pi ∕= i+ 1 if
i ∈ [n− 1]? For instance, for n=3, there are three such permutations: 123, 321, and 312.

Proof. We see that the answer is Dn +Dn−1. That is, mapping a derangement a1a2 . . . an of length
n to a2a3 . . . ana1, we achieve every desired permutation such that 1 is not in the last position. Now
the number of desired permutations with 1 in the last position is then Dn−1: take a derangement
b1b2 . . . bn−1, and map this to (b1 + 1)(b2 + 1) . . . (bn−1 + 1)1.

Problem 4.23. Prove that the number of permutations of length n + 1 with exactly two cycles is
equal to the number of all cycles of all n-permutations.

Proof. We first count the number of all cycles of all n-permutations. We see that the number of all
k-cycles of all n-permutations is given by


n

k


(k − 1)!(n− k)!.

Thus the number of all cycles is obtained by summing over all k as follows:

n

k=1


n

k


(k − 1)!(n− k)!.

We see that this sum also counts all permutations of length n+ 1 with exactly two cycles since we
choose must k, 0 ≤ k ≤ n − 1, elements from [n] to be in a cycle without n + 1, form a cycle on
those elements, then form a cycle on the remaining elements with n+ 1. This gives the result.

Problem 4.24. Pick a random cycle from all n! permutations of length n. On average, what is the
length of the selected cycle.

Proof. Let X(C) be the random variable indicating the length of the cycles C. We find the ex-
pectation of X . We know from above that the average number of cycles in an n-permutation is
Hn = 1 + 1

2 + · · ·+ 1
n . Thus there are n! ·Hn total cycles in all n-permutations. We also know that

for each k ∈ [n] that the total number of k-cycles is

n

k


(k − 1)!(n− k)! =

n!

k
.
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So by linearity of expectation we have

E(X) =

n

k=1

k · n!/k

n! ·Hn
=

n

k=1

1

Hn
=

n

Hn
.

Problem 4.25. LetAn be the number of all even derangements of lengthn, and letBn be the number
of all odd derangements of length n. Find an exact formula for An −Bn.

Proof. Using the cycle type indicator


n≥0


w∈Sn

ttype(w) xn

n! = exp(t1
x
1 + t2

x2

2 + t3
x3

3 + . . . ), it is
clear that the desired exponential generating function for the sequence An −Bn is given by

exp


−x2

2
+

x3

3
− x4

4
+ . . .


.

We see that − log(1 + x) = −x+ x2

2 − x3

3 + . . . , and thus log(1 + x)− x = −x2

2 + x3

3 − x4

4 + . . . , and
so we have our desired generating function:

exp(log(1 + x)− x) = (1 + x)e−x = (1 + x)






n≥0

(−1)n
xn

n!



 .

Simple coefficient extraction yields

An −Bn = (−1)n + n(−1)n−1 = (−1)n−1(n− 1).

4.4 Pattern Avoidance

Definition. Let q = q1 . . . qk ∈ Sk be a permutation and let k ≤ n. We say that the permutation
p = p1 . . . pn ∈ Sn contains q as a pattern is there are k entries pi1 . . . pik in p so that i1 < · · · < ik and
pia < pib is and only if qa < qb. If p does not contain q, then we say that p avoids q. We let Avn(q)
denote the number of permutations in Sn that avoid q.

Proposition 4.26. It is clear that Avn(132) = Avn(231) = Avn(312) = Avn(213) and that Avn(123) =
Avn(321) via the operations of complement and reverse on Sn.

Theorem 4.27. For all q ∈ S3 and n ≥ 3, we have Avn(q) = Cn =

2n
n


/(n + 1), i.e. the nth Catalan

number.

Proof. By the proposition, all we need to show is that Avn(132) = Cn and Avn(321) = Cn. Recall
that the number of lattices paths on an n × n grid from one corner to another only on one side of
the diagonal is Cn.

First, we see that a permutation w ∈ Sn avoids 132 if and only if its diagram is a Ferrers shape
contained in the staircase shape [n− 1]× · · ·× [1]× [0]. That is, permutations avoiding 132 are in
bijection with NE lattice paths from (0, 0) to (n, n) above the diagonal.
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Second, a permutation w ∈ Sn avoids 321 if and only if after removing its right-to-left maxima,
we are left with another decreasing subsequence. That is, given a NE lattice path from (0, 0) to
(n, n) that stays below the diagonal, we obtain the permutation matrix of a 321-avoiding permuta-
tion by filling in the inner corners above the lattice path (corresponding to right-to-left maxima),
and the rest of the entries of the permutation are determined since they must form a decreasing
subsequence. It is clear we can obtain each such permutation in that way.

Problems

Problem 4.28. LetX be defined on the set of all 132-avoiding permutations of length n so thatX(p)
is the number of of right-to-left maxima of p. Compute E(X).

Proof. LetXi be the indicator of the event that the ith position of p has a right-to-left maximum. This
must mean that all of the entries in pi+1 . . . pn are exactly those in [n− i] since we must avoid 132.
Hence the sub-permuations p1 . . . pi and pi+1 . . . pn are 132-avoiders, and recalling that Avn(132) =

Cn, we have that E(Xi) =
CiCn−i

Cn
, and thus

E(X) =

n

i=1

CiCn−i

Cn
=

Cn+1 − Cn

Cn
=

3n

n+ 2
,

using the recurrence relation
n

i=0CiCn−i = Cn+1.

Problem 4.29. Find a formula for each of the following:

1. Avn(132, 123),

2. Avn(132, 231),

3. Avn(132, 321),

4. Avn(231, 312).

Proof. 1. We see that Avn(132, 123) = 2n−1. We prove this by induction on n, with the case n = 1
being trivial. Taking all permutations of length n − 1 avoiding these patterns, if we add 1 to each
entry and then place 1 in the last or next to last spot, then we obtain 2 unique n-permutations
avoiding 132 and 123. To see that we obtain all such permutations in this way, we see that 1 must be
in the last two positions because any two entries after 1 would yield one of the forbidden patterns.
Hence Avn(132, 123) = 2 · Avn−1(132, 123) = 2n−1.

2. Similarly, we have that Avn(132, 231) = 2n−1 by induction. That is, if n isn’t in the first or last
position of an n-permutation, then any entries before and after nwould lead to a forbidden pattern.
Hence we obtain all the desired n-permutations by placing n at the beginning or end of an (n− 1)-
permutation avoiding these two patterns. Hence Avn(132, 231) = 2 · Avn−1(132, 231) = 2n−1.

3. To avoid 132 every entry before n must be larger than every entry after n, and to avoid 321,
every entry after n must be in increasing order. Thus if n is not in the last position, it also must
be that all of the entries before n must also be in increasing order, since any descent before n with
an entry after n would then form a 321 pattern. Hence we have n − 1 permutations of the form
(n− i+ 1)(n− i+ 2) . . . n12 . . . (n− i). The n-permutations avoiding these patterns with n in the
last position are simply those enumerated by Avn−1(132, 321), obtained by simply appending n to
the end, and thus Avn(132, 321) = (n− 1) + Avn−1(132, 321) = 1 +


n
2


.
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4. We note these are called layered permutations. That is, to avoid 312, everything after a
descending run must be larger than anything in that run. Also, to avoid 231, If some entry is larger
than an entry before it, then everything smaller than that entry is to the left of that smaller entry. So
the first descending run must include each of the smallest elements of [n], then the next descending
run must consistent of the next smallest elements of [n], etc. So the number of layered permutations
is equivalent to the number of compositions of n, i.e. Avn(312, 231) = 2n−1.

4.5 Robinson-Schensted-Knuth Correspondence

Theorem 4.30 (RSK Correspondence). Let S be the set of all pairs (P,Q) of Standard Young Tableaux
on [n] with the same Ferrers shape. Then the map rsk : Sn → S is a bijection.

Proof. Here we include an example of the RSK insertion algorithm, with the inverse clear and hence
proving the theorem. So we find P and Q for rsk(52314) = (P,Q). We insert the entries of 52314
from left to right:

5 : P = 5 Q = 1

2 : P = 2
5

Q = 1
2

3 : P = 2 3
5

Q = 1 3
2

1 : P =
1 3
2
5

Q =
1 3
2
4

4 : P =
1 3 4
2
5

Q =
1 3 5
2
4

That is, we insert in the P -tableau with the next entry of the permutation, starting at the first row,
following the rules:

i. If it is larger than each of the entries in that row, then insert that number at the end of the
row.

ii. If it is not larger than all of the entries, place the number in the box of the smallest num-
ber larger than it, then bump the entry that was in that box to the next row, resuming the
algorithm at i.

Once this P -tableau insertion terminates, we have a Ferrers shape augmented by one box, and so
we augment the Q-tableau to the same shape, placing the next unused integer in that box.
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Proposition 4.31. Here we list some interesting relationships between π ∈ Sn and rsk(π) = (P (π), Q(π)).
Let λ be the Ferrers shape of P (or Q).

a. For any w ∈ Sn, P (π)T = P (πr).

b. For any w ∈ Sn, rsk(π−1) = (Q(π), P (π))

c. If the longest increasing subsequence of π has length k, then λ has k columns.

d. A permutation π ∈ Sn is an involution if and only if P (π) = Q(π).

e. Define i ∈ [n] to be a descent of a standard Young tableau if i + 1 appears in a row strictly above i.
Then for π ∈ Sn and i ∈ [n− 1], i is a descent of π if and only if it is a descent of P (π).

5 Inclusion-Exclusion

Reference: A Walk Through Combinatorics - Bóna, Chapter 7 and Enumerative Combinatorics - Stanley,
Chapter 2.

Theorem 5.1 (Principle of Inclusion-Exclusion). For the collection A1, . . . , An of finite sets, we have


n

i=1

Ai

 =
n

k=1

(−1)k+1






1≤i1≤···≤ik≤n

|Ai1 ∩ · · · ∩Aik |



 .

Proof. Suppose x is in exactly r of the Ai’s. Then x is counted exactly

r

k=1

(−1)k−1


r

k


= 1−

r

k=0


r

k


(−1)k = 1− (1− 1)r =


1 if r > 0,

0 if r = 0.

times. This gives the result.

Theorem 5.2. g(S) =


T⊆S f(T ) ⇐⇒ f(S) =


T⊆S(−1)|S−T |g(T ).

Note. Need to find some good examples to put in here.

Problems

Problem 5.3. How many ways are there to set n married couples at a straight table so that no
woman sits next to her husband?

Proof. We count permutations of M = {12, 22, . . . , n2} so that no two consecutive integers are
equal. We use inclusion-exclusion to count the number of such permutations in which at least
one pair of consecutive entries are equal. We see that the number of permutations of M such that
each of the entries of [i] appear in consecutive positions is equal to the number of permutations of
{1, 2, . . . , i, (i + 1)2, . . . , n2}, (simply input a k next to k for each k ∈ [i]). It is clear the number of
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such permutations is then (2n− i)!2−(n−i). So the number of permutations of M with at least one
pair of consecutive entries being equal is


n

1


(2n− 1)! · 2−n+1 −


n

2


(2n− 2)! · 2−n+2 + . . . (−1)n−1


n

n


(2n− n)! · 2−n+n.

Thus the desired number is

(2n)! · 2−n −

n

1


(2n− 1)! · 2−n+1 + · · ·+ (−1)n


n

n


(2n− n)! · 2−n+n,

and in summation notation:
n

i=0


n

i


(2n− i)! · 2−n+i · (−1)i.

6 Generating Functions

Reference: A Walk Through Combinatorics - Bóna, Chapter 8 and Enumerative Combinatorics - Stanley,
Chapters 4, 5 and 6.

6.1 Ordinary Generating Functions

Theorem 6.1. Let an and bn count the number of ways to build some structures on an n-element set, with
A(x) and B(x) their ordinary generating functions.

• Product Formula: Let cn count the number of ways to separate [n] into intervals S = {1, . . . , i} and
T = {i + 1, . . . , n}, build a structure of type a on S and of type b on T , with C(x) their ordinary
generating function. Then

C(x) = A(x)B(x) =


n≥0

n

i=0

aibn−ix
n.

• Composition Formula: Suppose a0 = 0, b0 = 1. Let gn count the number of ways to split [n] into
an unspecified number of intervals, build a structure of type a on each interval and a structure of type
b on the set of intervals, with G(X) their ordinary generating function. Then

G(X) = B(A(X)) =


k≥0

bkA(x)
k.

Problems

Problem 6.2. Let ℓn be the total number of leaves in all unlabeled plane binary trees.

(a) Find the generating function L(z) =


n≥1 ℓnz
n in closed form.

(b) Find an explicit formula for the numbers ℓn.
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Proof. (a) Noting that cutting off the root of such a trees yields a possibly entry right and left subtree
of the same type, we see that

L(z) = z + 2zL(z)T (z),

where T (z) is the ordinary generating function of the number of the number of such trees on n
vertices. We know that these are enumerated be the Catalan numbers, and hence

T (z) =
1−

√
1− 4z

2z
,

but we can also find this formula by using the quadratic formula on the functional equation

T (z) = 1 + zT (z)2.

So we have
L(z) = z + 2zL(z)

1−
√
1− 4z

2z
= x+ L(z)(1−

√
1− 4z),

which implies
L(z) =

z√
1− 4z

= z(1− 4z)−
1
2 .

(b) We now use the binomial theorem to extract coefficients. So we have

L(z) = z


n≥0


−1

2

n


(−4)nzn =



n≥0

(2n− 1)!!

n!
2nzn+1

Hence we have
ℓn =

(2n− 3)!!2n−1

(n− 1)!

Problem 6.3. Find a generating function for the number of positive integer solutions to x1 +2x2 +
3x3 + 4x4 + 5x5 = n.

Proof. By simple application of the product rule for ordinary generating functions, the generating
function is clear:

5

i=1

xi

1− xi
= (x+ x2 + . . . )(x2 + x4 + . . . )(x3 + x6 + . . . )(x4 + x8 + . . . )(x5 + x10 + . . . ).
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6.2 Exponential Generating Functions

Theorem 6.4. Let an and bn count the number of ways to build some structures on an n-element set, with
A(x) and B(x) their exponential generating functions.

• Product Formula: Let cn count the number of ways to separate [n] into sets S and T such that
S ∪ T = [n], S ∩ T = ∅, build a structure of type a on S and of type b on T , with C(x) their
exponential generating function. Then

C(x) = A(x)B(x) =


n≥0

n

i=0


n

i


aibn−i

xn

n!
.

• Composition Formula: Suppose a0 = 0, b0 = 1. Let gn count the number of ways to partition [n]
into any number of non-empty subsets, build a structure of type a on each interval and a structure of
type b on the set of subsets, with G(X) their exponential generating function. Then

G(X) = B(A(X)) =


n≥0

bn
A(x)n

n!
.

Note. Very useful: d
dx(


n≥0 an

xn

n! ) =


n≥0 an+1
xn

n! .

Problems

Problem 6.5. Let t(n) be the number of of ways to color the integers [n] using only the colors red,
blue and yellow so that each color is used an odd number of times. Find a closed form for t(n).

Proof. Letting T (x) =


n≥0 t(n)
xn

n! , we see that if H(x) =


n odd
xn

n! = 1
2(e

x − e−x), then T (x) =

H(x)3. Extracting coefficients, we have t(n) = 0 for even n and 1
4(3

n − 3) for n odd.

Problem 6.6. Let hn be the number of all permutations of length n in which all cycles are of even
length. So hn = 0 if n is odd. Find the exponential generating function of the numbers hn.

Proof. Letting A(x) = x2

2 + x4

4 + x6

6 + . . . , we see that A(x) = log 1√
1−x2

, and hence we have

H(x) = eA(x) =
1√

1− x2
.

Problem 6.7. A binary total partition of [n] is a sequence of partitions achieved by repeatedly
breaking up each non-singleton block into exactly two block. It can be viewed at as unordered
binary trees with leaves labeled by the elements of [n]. Find the exponential generating function
B(x) =


n≥1 b(n)

xn

n! , where b(n) is the number of binary total partitions.

Proof. Some though yields:
1

2
B(x)2 = B(x)− x.

That is, the product rule on the left-hand side takes advantage of the fact that a binary total partition
of [n] is the same as taking a partition (S, T ) of [n] and then taking a total binary partition of each of
those sets. Using the quadratic formula and extracting coefficients we see that b(n) = (2n−3)!!.
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Problem 6.8. Define total partitions similarly to the previous exercise, except non-singleton blocks
can be broken up into any number of blocks greater than or equal to 2. These can be depicted by
non-plane trees with leaves labeled with [n]. Letting t(n) enumerate these objects, find a functional
equation for the exponential generating function T (x) =


n≥1 t(n)

xn

n! .

Proof. Some thought yields:
expT (x)− T (x)− 1 = T (x)− x.

We see that the left-hand side equals T (x)2/2! + T (x)3/3! + T (x)4/4! + . . . . The term T (x)k/k!
corresponds to the binary total partition where the first partition is into k parts, i.e. where the
corresponding tree has a root with k children. We subtract x on the right-hand side because the
left-hand side clearly doesn’t count the binary total partition of [1].

Problem 6.9. Decreasing binary trees are trees in which every vertex can have left and right chil-
dren, on the vertex set [n] and decreasing down the tree, (note they are in bijection with Sn). Let
hn denote the number of all leaves on all decreasing binary trees on [n]. Let H(x) =


n≥1 hn

xn

n! .
Find a functional equation for H(x).

Proof. Some thought yields:
H ′(x) = 2H(x)(1− x)−1 + 1

It is clear that cutting off the root of a DBT we obtain a left and right subtree. So the product
H(x)(1 − x)−1 accounts for the number of leaves in all of the left subtrees, (since (1 − x)−1 is the
exponential generating function of the number of DBT’s), and (1−x)−1H(x) accounts for the leaves
in all right subtrees. We add one to account for the trees whose root is a leaf.

Problem 6.10. Let tn be the number of ways to choose a permutation of length n, and then to color
a subset of its even cycles red. Find a closed formula for the exponential generating function of the
numbers tn.

Proof. Letting A(x) = x+2x2

2 + x3

3 +2x4

4 + . . . , that is, the exponential generating function of ways
to put a cycle on the set [n] and color it red or not if it is even, then it is clear we want the function
eA(x). Now we need only find A(x). It is known that − log(1−x) = x+ x2

2 + x3

3 + . . . , and then also
that x

1−x2 = x+ x3 + x5 + . . . implies − log
√
1− x2 = x2

2 + x4

4 + . . . , (simple u-substitution). Thus

A(x) = −(log(1− x) + log


1− x2) = log


1

(1− x)
√
1− x2


,

and our desired generating function is then

eA(x) =
1

(1− x)
√
1− x2

.

Problem 6.11. Choose a permutation p of length n uniformly at random. Let an be the probability
that p has no fixed points and no cycles of length three. Compute limn→∞ an.
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Proof. We find the exponential generating function of such permutations. If pn is the number of
such permutations of length n, and P (x) their exponential generating function, it is clear that

P (x) =


n≥0

pn
xn

n!
=



n≥0

anx
n,

so we need only find the exponential growth rate of the coefficients of P (x). We see that

P (x) = exp


x2

2
+

x4

4
+

x5

5
+ . . .


= exp


− log(1− x)− x3

3
− x


.

We see that the smallest in modulus singularity of P is x = 1, and thus limn→∞ a
1/n
n = 1 =⇒

limn→∞ an = 1.

6.3 Rational Generating Functions

Theorem 6.12. Let α1, . . . ,αd be a fixed sequence of complex numbers with αd ∕= 0. Then the following
are equivalent for the function f : N → C.

i. We have 

n≥0

f(n)xn =
P (x)

Q(x)
,

where Q(x) = 1 + α1x+ · · ·+ αdx
d and P (x) is a polynomial of degree less than d.

ii. For all n ≥ 0,
f(n+ d) + α1f(n+ d− 1) + · · ·+ αdf(n) = 0.

Note. We now outline the Transfer Matrix Method. Let D = (V,E,φ) be a digraph and w : E → C
a weight function. If Γ = e1 . . . en is a walk, then define w(Γ) = w(e1) . . . w(en). For i, j ∈ [p] and
n ∈ N, since D is finite we can define

Aij(n) =


Γ

w(Γ),

where the sum is over all walks of length n from vi to vj . In particular, Aij(0) = δij . If w(e) = 1 for
all e ∈ E. then Aij(n) is the number of walk of length n from vi to vj . So now define A = (Aij) to
be the adjacency matrix of D:

Aij =


w(e)

where the sum is over all edges from vi to vj .

Theorem 6.13. We have (An)ij = Aij(n).

Theorem 6.14. We have Fij(λ) =


n≥0Aij(n)λ
n = (−1)i+j det(I−λA:j,i)

det(I−λA) , where (I − λA : j, i) is the
matrix I − λA with the jth row and ith column deleted.
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Corollary 6.15. Let cD(n) :=


Γw(Γ), where the sum is over all closed walks of length n in D, (note
cD(1) equals the trace of A). Let Q(λ) = det(I − λA). Then



n≥1

cD(n)λ
n = −λQ′(λ)

Q(λ)
.

That is cD(n) equals the trace of An, so with λ1, . . . ,λq the nonzero eigenvalues of A, we have

cD(n) = tr An = λn
1 + · · ·+ λn

q .

Problems

Problem 6.16. Let B be the set of words in the alphabet {a, b, c} so that the number of a’s is even
and the number of c’s is odd. If bn is the number of words in B with n letters, find

B(x) =


n≥0

bnx
n.

Proof. We find a recurrence relation for bn. We note that bn also equals the number of such words
with odd a’s and even c’s by interchanging all the a’s and c’s. The total number of such words
starting with b is then bn−1, and same with the number of words ending in b. Further the number
of words starting and ending in b is bn−2. Thus the number of desired words starting or ending in
b is 2bn−1− bn−2 by inclusion-exclusion. Now we find the number of all words starting and ending
in a or c. The number of words awa and cwc is then 2bn−2, and the number of words awc and cwa
is also 2bn−2, (note for these words are the ones in which a’s and c’s must be swapped). This gives
the recurrence bn = 2bn−1 + 3bn−2 for all n ≥ 2, hence multiplying by xn and summing over all n
yields 

n≥2

bnx
n = 2



n≥1

bnx
n+1 + 3



n≥0

bnx
n+2.

Noting that b0 = 0 and b1 = 1, (the word c), we have that

B(x)− x = 2xB(x) + 3x2B(x) =⇒ B(x)− 2xB(x)− 3x2B(x) = x,

and hence
B(x) =

x

1− 2x− 3x2
.

Problem 6.17. Let f(n) be the number of words of length n over the alphabet {a, b, c} that start and
end with the same letter and that contain none of the following factors: ac, ba, or ca. Find a closed
form for f(n).

Proof. Omitting the corresponding digraph D, we have the adjacency matrix:

A =




1 1 0
0 1 1
0 1 1



 .
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If cD(n) denotes the number of closed walks of length n in D, then it is clear that f(n) = cD(n− 1).
So we compute the eigenvalues of A:

det(A− λI) = 0

=⇒ −λ3 + 3λ2 − 2λ = 0

=⇒ −λ(λ− 2)(λ− 1) = 0

=⇒ λ = 0, 1, 2.

Thus we have that
f(n) = cD(n− 1) = 1n−1 + 2n−1 = 1 + 2n−1.

6.4 The Lagrange Inversion Formula

Theorem 6.18 (The Lagrange Inversion Formula). Let F (x) = a1x + a2x
2 + · · · ∈ xK[[x]] where

a1 ∕= 0, and let k, n ∈ Z. Then

n[xn]F 〈−1〉(x)k = k[xn−k]


x

F (x)

n

.

Note. Equivalently, suppose G(x) ∈ K[[x]] with G(0) ∕= 0, and let f(x) be defined by

f(x) = xG(f(x)).

Then
n[xn]f(x)k = k[xn−k]G(x)n.

These are equivalent since the statement that f(x) = F 〈−1〉(x) is easily seen to mean the same as
f(x) = xG(f(x)) where G(x) = x

F (x) .

Problems

Problem 6.19. Let D(z) denote the generating function for Dyck paths. Derive a functional equa-
tional for D(z). Then use the Lagrange inversion formula to obtain a formula for [zn]D(z).

Proof. The functional equation is given by D(z) = 1 + zD(z)2. To apply LIF, we want D(0) = 0, so
we actually want to use the functional equation D(z) = z(1+D(z))2. Then solving for z we obtain

z =
D(z)

(1 +D(z))2
,

and hence

D(z) =


z

(1 + z)2

〈−1〉
.

Thus the LIF yields

[zn]D(z) =
1

n
[zn−1]


z
z

(1+z)2

n

=
1

n
[zn−1](1 + z)2n.
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Using binomial theorem we obtain

[zn]D(z) =
1

n
[zn−1]



k≥0


2n

k


zk =


2n
n−1



n
=


2n
n



n+ 1
.

Problem 6.20. Let tn be the number of all unlabeled rooted plane trees on n vertices in which every
vertex has an even number of successors. Let T (x) =


n≥1 tnx

n. Find a simple functional equation
for T (x), then find a closed formula for tn using the Lagrange inversion formula.
Proof. We first see that

T (x) =
x

1− T (x)2
,

since by removing the root of such a tree we obtain an order sequence of even length of such trees.
Solving for x we then see that

x = T (x)− T (x)3 =⇒ T (x) = (x− x3)〈−1〉,

so by LIF we have

[xn]T (x) =
1

n
[xn−1]


x

x− x3

n

=
1

n
[xn−1]


1− x2

−n
.

Using the binomial theorem we obtain

[xn]T (x) =
1

n
[xn−1]



k≥0


−n

k


(−1)kx2k =

1

n
[xn−1]



k≥0


n+ k − 1

k


x2k.

So for n even we have tn = 0, and for n odd we have

tn =
1

n


n+ (n−1

2 )− 1

(n−1
2 )


.

Problem 6.21. Using the Lagrange inversion formula, show that the number of rooted trees on [n]
is nn−1.
Proof. Letting T (x) be the exponential generating function of the number rooted trees on [n]. Then
it is clear that removing the root of such a tree results in an unordered sequence of such labeled
trees. Some though yields:

T (x) = xeT (x) =⇒ x = T (x)e−T (x) =⇒ T (x) = (xe−x)〈−1〉.

Applying LIF we have
[xn]T (x) =

1

n
[xn−1]

 x

xe−x

n
=

1

n
[xn−1]exn.

We then see that
1

n
[xn−1]



k≥0

nk x
k

k!
=

nn−1

n!
.
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6.5 Algebraic Generating Functions

Definition. A formal power series f(x) ∈ K[[x]] is said to be algebraic if there exist polynomials
p0(x), . . . , pd(x) ∈ K[x], not all 0, such that

p0(x) + p1(x)f(x) + · · ·+ pd(x)f(x)
d = 0.

Note. An algebraic series f(x) is rational if and only if it is algebraic of degree d = 1.

Theorem 6.22. The following objects each have the same algebraic generating functions. Let S ⊆ Z+ and
n,m ∈ Z+. There are nice bijections between the following sets.

i. Plane S-trees (rooted trees in which each vertex has a number of children in S) with n vertices and m
endpoints.

ii. Sequences i1i2 . . . in−1 where each ij + 1 ∈ S or ij = −1 such that there are a total of m − 1 values
of j for which ij = −1, and such that i1 + · · ·+ ij ≥ 0 for all j and i1 + · · ·+ in−1 = 0.

iii. Paths P in the plane from (0, 0) to (n − 1, 0) using steps (1, k) where k + 1 ∈ S or k = −1, with a
total of m− 1 steps of the form (1,−1), such that P never passes below the x-axis.

iv. Paths P in the plane from (0, 0) to (m− 1,m− 1) using steps (k, 0) or (0, 1) with k+ 1 ∈ S, with a
total of n− 1 steps, such that P never passes above the line x = y.

Proof. (i ↔ ii) Take a plane S-tree, order its vertices by a depth first search (read, left, right), then
in this order record the number of children of the vertex minus one.

(ii ↔ iii) Take such a sequence i1 . . . in−1, then map it to the path starting at (0, 0) with the jth

step being (1, ij).
(ii ↔ iv) Take such a sequence i1 . . . in−1, then map it to the path starting at (0, 0) with the jth

step being (k, 0) if ij = k > 0, or (0, 1) if ij = −1.

Corollary 6.23. The following equivalences are obtained by letting S = {2} in the the last theorem. The
Catalan number Cn =


2n
n


/(n+ 1) counts the following:

i. Plane binary trees with n+ 1 endpoints (i.e. 2n+1 vertices).

ii. Sequences i1 . . . i2n of 1’s and −1’s in which all initial sums are non-negative and i1 + . . . i2n = 0.
These sequences are called ballot sequences.

iii. Paths P in the plane from (0, 0) to (2n, 0) with steps (1, 1) and (1,−1) that never passes below the
x-axis. Such paths are called Dyck paths.

iv. Paths P in the plane from (0, 0) to (n, n) with steps (1, 0) and (0, 1) that never passes above the
diagonal x = y.
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6.6 D-Finite Generating Functions

Definition. Let u ∈ K[[x]], then we say that u is d-finite if it satisfies one of the following equivalent
conditions:

i. The vector space over K(x) spanned by {u, u′, u′′, . . . } is finite dimensional.

ii. There exists polynomials p0, . . . , pd ∈ K[x] with pd(x) ∕= 0 such that

pdu
(d)
p d−1u

(d−1) + . . . p1u
′ + p0u = 0.

Definition. A function f : N → K is called P-recursive if there exist polynomials p0, . . . , pe ∈ K[n]
with pe ∕= 0 such that

pe(n)f(n+ e) + pe−1f(n+ e− 1) + · · ·+ p0(n)f(n) = 0

for all n ∈ N.

Proposition 6.24. Let u =


n≥0 f(n)x
n ∈ K[[x]]. Then u is d-finite if and only if f is P -recursive.

Problems

Problem 6.25. Let f(n) = 1! + 2! + · · ·+ n!. Is f(n) a polynomially recursive sequence?

Proof. Yes, it is P-recursive. We have that

(n+ 1)f(n) = (n+ 1) · 1! + (n+ 1) · 2! + · · ·+ (n+ 1)(n− 1)! + (n+ 1)!

= (n(1! + 2! + · · ·+ (n− 2)!) + n!) + (1! + 2! + · · ·+ (n− 1)! + (n+ 1)!)

= nf(n− 2) + f(n+ 1).

Hence we obtain
nf(n− 2)− (n+ 1)f(n) + f(n+ 1) = 0

for all n ≥ 3. This gives the result.

6.7 Recognizing Rational, Algebraic and D-Finite Series

Proposition 6.26 (Stirling’s Approximation). The following is useful for finding the growth rates of se-
quences:

n! ≈
n
e

n√
2πn.

Proposition 6.27. For some constants C and α, the coefficients of a power series f(x) grow at

• C αn

nd for d ∈ Z+ if f is rational,

• C αn

nd+1
2

for d ∈ Z≥0 if f is algebraic.
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Proposition 6.28. The following table shows which operations preserve the classification of each type of
function. The Y indicating ‘yes’ and N indicating ‘not necessarily.’ Note that A B denotes the Hadamard
product. The one significant combination not included in this table is that ‘rational  algebraic’ is always
algebraic.

cA A+B AB 1/A A B A ◦B A′ 
A

Rational Y Y Y Y Y Y Y N
Algebraic Y Y Y Y N Y Y N
D-Finite Y Y Y N Y N Y Y

Problems

Problem 6.29. Let F (x) = (log 1
1−x)

k. Is F algebraic? Is F d-finite?

Proof. It is not algebraic. We note that the coefficients of log 1
1−x are 1

n , and hence their growth rate
forbids that they are algebraic. Therefore, since algebraic functions are closed under multiplicative
inverses, F cannot be algebraic.

It is d-finite. This follows from induction on k, where the base case of k = 1 is clear because its
coefficients are clearly P -recursive. Taking derivatives we see that

F ′
k(x) =

kFk−1(x)

1− x
,

which is d-finite because Fk−1(x) is d-finite by the inductive hypothesis and 1/(1 − x) is rational,
and hence d-finite. Thus Fk(x) must also be d-finite by integrating.

6.8 Rational and Algebraic Languages

Note. We give the simplest results on rational and algebraic languages.

Theorem 6.30. A language L is rational (i.e. regular) if and only if it is accepted by a finite automaton.

Theorem 6.31. A language L is algebraic (i.e. context-free) if and only if L+ (L without 1) is a component
of a proper algebraic system.

Theorem 6.32. Rational languages are algebraic.

Example 6.33. The Dyck language D is the subset of {x, y}∗ such that w1 . . . wn ∈ D if and only if
the number of x’s is greater than or equal to the number of y’s in w1 . . . wi for all i ∈ [n], and the
number of x’s is equal to the number of y’s in w1 . . . wn. We have that D is the solution to

z = 1 + xzyz,

and that D+ = D − 1 is the solution to

z′ = x(z′ + 1)y(z′ + 1).

Hence D is algebraic.

29



Problems

Problem 6.34. Prove that the language L = {ww : w ∈ {a, b}∗} is not regular.

Proof. We can show that this requires an infinite automaton.

Problem 6.35. Let X = {x, y, u} and let L ⊆ X∗ be the language of all words in which there are as
many letters x as letters y, and in every initial segment there are at least as many letters x as letters
y. Is L an algebraic language?

Proof. We first see that L solves the system

z = 1 + xzyz + uz.

That is, each non-empty word in L must start with an x or u since starting with y would break the
condition that each initial segment has at least as many x’s as y’s. It is clear that every word w ∈ L
starting with u can be decomposed into w = uw′, where w′ ∈ L, hence the uz term accounts for
these words exactly.

Furthermore, each word w ∈ L starting with x can be decomposed uniquely into w = xw1yw2,
where w1, w2 ∈ L and xw1y is the first initial segment of w in which the number of x’s is equal to
the number of y’s. Hence the xzyz term accounts for exactly all the words of L starting with x.

It follows quickly that L+ solves the component of the proper algebraic system

z′ = x(z′ + 1)y(z′ + 1) + u(z′ + 1),

and therefore L is algebraic.

7 Graph Theory

Reference: A Walk Through Combinatorics - Bóna, Chapters 9-13.

7.1 Basic Concepts and Traversibility

Definition. Let G = (V,E) be a graph.

i. A sequence of edges e1e2 . . . ek is called a walk if we can take a continuous walk in our graph,
first through e1, then e2, etc.

ii. A trail is a walk in which each of the edges are distinct.

iii. A path is a trail in which no vertex is visited twice.

iv. A cycle is a closed trail that does not visit any vertex twice.

v. An Eulerian trail is a trail in which all of the edges of G are used. An Eulerian circuit or tour is
an Eulerian trail that is closed. A graph that has an Eulerian circuit is called Eulerian.

vi. A cycle that includes all vertices of a graph is called a Hamiltonian cycle, whereas a path that
includes all vertices of a graph is called a Hamiltonian path.

30



Theorem 7.1 (Handshaking Lemma). For any graph G = (V,E) we have


v∈V
deg v = 2 · |E|.

It follows that the number of vertices of G with odd degree is even.

Theorem 7.2. A connected graph G has an Eulerian circuit, (i.e. G is eulerian), if and only if every vertex
has even degree. A connected graph G has an Eulerian trail from u to v if and only if the degrees of u and v
are odd and the rest of the vertices have even degree.

Theorem 7.3. A directed graphD has an Eulerian circuit if and only if it is balanced and strongly connected.

Theorem 7.4. Let n ≥ 3, let G be a simple graph on n vertices, and let us assume that all vertices in G are
of degree at least n/2. Then G has a Hamiltonian cycle.

Proof. G is clearly connected by these conditions. Let us assume G does not have Hamiltonian
cycle and add as many edges to G as possible so that it doesn’t have a Hamiltonian cycle but
adding any edge will add one. Call this graph G′. Let P be a path of maximal length in G′,
and we see that P contains every vertex of G′. This is clear since if x and y aren’t adjacent, then
adding that edge would give a Hamiltonian cycle using that edge. Hence we can assume the
path is x = z1, z2, . . . , zn = y. Together x and y have n neighbors, thus the pigeon-hole princi-
ple yields that there exists an i such that yzi−1 and xzi are edges. Hence we have a Hamiltonian
cycle xz2 . . . zi−1yzn−1 . . . zi, a contradiction.

Theorem 7.5. All tournaments have a Hamiltonian path.

Proof. We do induction on n, with base cases of n = 1, 2 clear. So take a tournament T on n vertices,
ignore one vertex v so that T ′ is a tournament on n− 1 vertices, hence by the inductive hypothesis
has a Hamiltonian path, call it h1h2 . . . hn−1. If hiv and vhi+1 are arcs in T , then we are done.
Otherwise, (via some omitted reasoning), vh1 or hn−1v is an arc in T , and we are done.

Theorem 7.6. A tournament T has a Hamiltonian cycle if and only if it is strongly connected.

Problems

Problem 7.7. Let T be a tournament that is not strongly connected. Prove that the vertex set of T
can be partitioned into two blocks A and B so that all edges between A and B go from A to B.

Proof. Let v be a vertex such that there are some vertices u in which there is no path u to v. These
vertices u must exist by our hypothesis. Let A be the set of vertices with a path to v (including v),
and let B be the rest of the vertices. If there were an edge going from b ∈ B to a ∈ A, then b would
have a path to v and so would be in A, a contradiction. Hence all edges between A and B are from
A to B.

Problem 7.8. There are several people in a classroom; some of them know each other. It is true
that if two people know the same number of people in the classroom, then there is nobody in the
classroom both of these people know. Prove that there is someone in the classroom who knows
exactly one other person in the classroom.
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Proof. This is equivalent to saying that for each person v in the classroom, the person v knows no
two people who know the same number of people. That is, correlating this classroom with the
obvious graph model, we have that for each vertex v, the vertices in N(v) have all distinct degrees.
So consider a vertex u with maximal degree, say k. Then there are k vertices in N(u) such that each
one has degree in [k] and no two have the same degree. Thus one of them must have degree one,
i.e. there must be a person in the classroom who knows exactly one other person.

Problem 7.9. Each vertex of a simple graph has degree k. Prove that G has a cycle of length at least
k + 1.

Proof. Let v1v2 . . . vℓ be a maximal path in G. Suppose that v1 is adjacent to some vertex u not in
{v1, . . . , vℓ}, then uv1v2 . . . vℓ is a longer path, a contradiction. Hence N(v1) ⊆ {v2, . . . , vℓ}. Since
N(v1) ≥ k, there exists some index i ≥ k + 1 such that vi ∈ N(n1), and thus v1v2 . . . vi is a cycle of
length at least k + 1.

Problem 7.10. Show that a k-regular graph of girth 4 has at least 2k vertices, and a k-regular graph
of girth 5 has at least k2 + 1 vertices.

Proof. A graph of girth 4 is triangle-free, hence the neighborhoods of any two adjacent vertices
must be disjoint. So let uv be an edge in such a graph. Then N(u) ∪ N(v) is the union of disjoint
sets of vertices, and |N(u) ∪N(v)| = 2k.

Now in a graph of girth 5, we have no triangles or four cycles, so if there is a path of length 2 or
3 between any two vertices, those vertices cannot be adjacent. So if we consider a vertex v in such
a graph, then for each x, y ∈ N(v), we have N(x) ∩N(y) = v. Therefore we have k vertices in the
neighborhood of v, and k − 1 distinct vertices in the neighborhood of each of those vertices. This
gives 1 + k + k(k − 1) = k2 + 1 unique vertices.

Problem 7.11. Prove bijectively that the number of graphs with vertex set [n] for which all vertices
have even degree is 2(

n−1
2 ).

Proof. We show a bijection with all graphs on vertex set [n− 1]. That is, take a a graph G on vertex
set [n− 1], then take all vertices of odd degree, of which we know there is an even number by the
handshaking lemma, and add a vertex labeled n and connect them all to this vertex to obtain a
graph G′. Then all vertices in G′ have even degree. The inverse map is then clear, so we have a
bijection and we are done.

7.2 Trees

Definition. A graph G on is called a tree if it is minimally connected, or equivalently, is connected
and acyclic.

Proposition 7.12. Some easy facts about trees:

i. A tree on n vertices has n− 1 edges.

ii. Every tree with greater than one vertex has at least 2 leaves.

Theorem 7.13 (Cayley’s Formula). For any positive integer n, the number of all trees with vertex set [n]
is nn−2.
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Proof. (André Joyal) We will show that the number of doubly rooted trees (where the two roots
can be the same vertex) on vertex set [n] is nn. We give an example of the bijection mapping the
set of all functions from [n] to [n] to the set of all doubly rooted trees and it will be clear. Consider
the function f : [n] → [n]; 1 → 3, 2 → 4, 3 → 1, 4 → 5, 5 → 5, 6 → 7, 7 → 8, 8 → 6. The function f
creates the cycles (13), (5) and (678). This gives a permutation on the set {1 < 3 < 5 < 6 < 7 < 8},
so we map this to the path f(1)f(3)f(5)f(6)f(7)f(8), so our start and end roots are f(1) = 3 and
f(8) = 6. We then extend this to the desired doubly rooted tree in the natural way in the following
figure. This makes the bijection clear.

3 1 5 7 8 6

4

2

Start End

Figure 1: The doubly rooted tree corresponding to the function f .

Corollary 7.14. The number of planted forest on vertex set [n] is equal to (n + 1)n−1, i.e. the number of
Cayley trees on vertex set [n+ 1].

Theorem 7.15. Let G be a graph on vertex set [n] and let A be its adjacency matrix. Then for k ∈ Z+, the
entry Ak

i,j is equal to the number of walks from i to j that are of length k.

Proof. We do induction on k. It is clear for the base case Ai,j . Suppose it holds for some k − 1 that
Ak−1

i,j is the number of walks of length k − 1 from i to j for each pair of vertices i, j. Then from
matrix multiplication we have

Ak
i,j =



m∈[n]
Ak−1

i,m Am,j ,

which makes the result clear.

Definition. For a directed graph D, define its Laplacian matrix L(D) to be

L(D)ij =


−mij if i ∕= j and there are mij edges from vi to vj ,

outdeg(vi)−mii if i = j.

Similarly, for an undirected graph G, define its Laplacian Matrix L(G) to be

L(G)ij =


−mij if i ∕= j and there are mij edges between vi and vj ,

deg(vi)−mii if i = j.

Note that, if Ĝ is the digraph obtained from the undirected graph G by replacing each edge vivj ∈
E(G) with the arcs (vi, vj) and (vj , vi), then L(G) = L(Ĝ).
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Theorem 7.16. For a loopless digraph D, let L0(D) be the matrix obtained by deleting the kth row and
column of L(D), then the number of oriented spanning trees rooted at vk, (pointing ‘towards’ the root),
denoted τ(D, vk), is given by

τ(D, vk) = detL0(D).

If D is balanced and the eigenvalues of L(D) are µ1, . . . , µn = 0, then for each v ∈ V (D)

τ(D, v) =
1

n
µ1 . . . µn−1.

Theorem 7.17 (Matrix-Tree Theorem). Let G be a connected n-vertex graph, L0(G) the matrix obtained
by deleting the kth row and column of L(G), and µ1 . . . µn = 0 the eigenvalues of L(G). Then the number
of spanning trees of G, known as the complexity of G and denoted c(G), is given by

c(G) = detL0(G),

or by
c(G) =

1

n
µ1 . . . µn−1.

Problems

Problem 7.18. Compute the number of spanning trees of the complete bipartite graph Kn,n.

Proof. Label the vertices of the two maximal independent sets of Kn,n by {1, . . . , n} and {n +
1, . . . , 2n}. Then it is clear that

L(Kn,n) =


nIn −1

−1 nIn



is the Laplacian matrix of Kn,n. So L(kn,n) = nI2n −A where

A =


0 1

1 0


.

We see that A has rank 2 and trace 0, so A has at most 2 nonzero eigenvalues that sum to 0. It is
easy to see that n is an eigenvalue, and thus the other eigenvalue is −n.

Therefore the eigenvalues of L(Kn,n) are 2n, n, n, . . . , n, 0. By the matrix-tree theorem it follows
that

c(Kn,n) =
1

2n
· 2n · n2n−2 = n2n−2.

Problem 7.19. Let A be the graph obtained from Kn by deleting an edge. Find a closed formula
for the number of spanning trees of A.
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Proof. Suppose that the deleted edge was v1v2. Then we have that

L(A) =





n− 2 0
0 n− 2

−1’s

−1’s

(n− 1) −1 . . . −1
−1 (n− 1) . . . −1
... . . . ...

−1 −1 . . . (n− 1)





Then we have that L(A) = nIn −B where

B =




2 0
0 2

1’s

1’s 1’s



 .

We have that B has trace n + 2 and rank 2, so has at most two nonzero eigenvectors summing
to n + 2. It is easy to see that (1, 1, . . . , 1) is an eigenvector with eigenvalue n, hence the other
eigenvalue of B is 2.

Thus the eigenvalues of L(A) are 0, n− 2, n, . . . , n. By the matrix-tree theorem it follows that

c(A) =
1

n
(n− 2)nn−2 = (n− 2)nn−3.

Problem 7.20. Let f : [n] → [n] be a function. Draw the diagram of f by drawing an arrow from i
to j if f(i) = j. Let us say that f is acyclic if the diagram of f does not contain any directed cycles
with two or more vertices. Find the number of acyclic functions f : [n] → [n].

Proof. We can draw each such function as a planted forest, with the root set being the fixed points
of the function. The inverse map is then also clear, hence the answer is the number of planted
forests on vertex set [n], with is (n+ 1)n−1.

Problem 7.21. There are n parking spots 1, 2, . . . , n on a one way street. Cars 1, 2, . . . , n arrive in
this order. Each car i has a favorite spot f(i). If the spot is free, the car will take it, if not it goes to
the next spot. Again, if that spot is free, the car will take it, if not, the car goes to the next spot. If
a car had to leave even the last spot and did not find the space, then its parking attempt has been
unsuccessful. If, at the end of this procedure, all cars have a parking spot, we say that f is a parking
function on [n]. Prove that the number of parking functions on [n] is (n+ 1)n−1.

Proof. We consider a circular arrangement of n+1 parking spots, and instead, consider all (n+1)n

ways to assign the n cars their favorite spots. Since the spots are in a circle, each car drives up
to their favorite spot and and continues around the circle until they find a free spot. For every
such assignment, it is clear that every spot will be filled except for one. It is then clear that each
of the assignments that results in spot n + 1 being empty corresponds to a successful parking
function. Each of the assignments can then be seen to be equivalent to one of the successful parking
assignments by a cyclic rotation of the spots. There are n+1 assignments in each equivalence class,
and hence there are (n+ 1)n−1 parking functions on [n].
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Problem 7.22. How many parking functions are there on [n] without like consecutive elements?
That is, we want to enumerate all parking functions on [n] such that there is no i ∈ [n − 1] so that
f(i) = f(i+ 1).

Proof. We consider the same setup as in the previous solution. It is clear we can assign any spot to
1 in n+ 1 ways, and then each of the following spots can only be assigned in one of n ways. Then
there is a total of (n + 1)nn−1 assignments, and each successful parking assignment is equivalent
to n + 1 of them via cyclic rotations. Hence we have nn−1 parking functions without consecutive
elements.

Problem 7.23. Prove that if G is a simple graph on [n], then at least one of G and its complement
is connected. Show an example when they are both connected.

Proof. Suppose G is disconnected with connected components C1, C2, . . . , Ck. Then in Ḡ each ver-
tex of one component is connected to every vertex of every other component. So suppose v ∈ Ci

and we will find a path to every other vertex in Ḡ. Suppose u ∈ Cj where i ∕= j, then vu is a path.
If i = j, then by taking w ∈ Ck where k ∕= i we have a path vwu. Hence Ḡ is connected.

Both the pentagon and its complement are connected.

Problem 7.24. We say F1, F2, . . . , Fk is a refining sequence if for all i ∈ [k], Fi is a rooted forest on
[n] having i components, and Fi contains Fi+1. Now fix Fk.

a. Find the number N∗(Fk) of refining sequences ending in Fk.

b. Find the number N(Fk) of rooted trees containing Fk.

c. Deduce Cayley’s Formula.

Proof. a. So how many options are there for Fk−1? We pick any vertex of Fk, then append one
of the roots of one of the components to it. There are n vertices and k − 1 options for the other
component. So there are n(k − 1) options. Continuing in this way, we get N∗(Fk) = nk−1(k − 1)!.

b. It isn’t difficult to see that N∗(Fk) = N(Fk) · (k − 1)!, which yields

N(Fk) =
nk−1(k − 1)!

(k − 1)!
= nk−1.

c. We then wantN(Fn), the number of rooted trees containing the empty graph on [n]. From (b),
it is then clear that the number of rooted trees on [n] is nn−1, and hence the number of (unrooted)
trees on [n] is nn−2.

Problem 7.25. Let G be a connected graph, and let T1 and T2 be two of its spanning trees. Prove
that T1 can be transformed into T2 through a sequence of intermediate trees, each arising from the
previous one by removing and adding an edge.

Proof. First choose any edge e in T1 that is not in T2 and delete it. Then T1 − {e} is disconnected
with two components A and B. Since T2 is a spanning tree, there must be an edge f between A
and B, and thus T1 − {e}+ {f} is one edge closer to becoming T2. Since these trees are finite, this
iterated process will get end with T2.

Problem 7.26. Let µ be the largest eigenvalue of the adjacency matrix of a graph G and ∆ the
maximum degree of G. Prove that µ ≤ ∆.
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Proof. Let A be the adjacency matrix of G and x = (x1, . . . , xn)
T be the eigenvector satisfying

Ax = µx.

Suppose that xi is the largest coordinate in absolute value of x, then we see that

|µxi| =



n

k=1

Ai,kxk

 ≤

xi
n

k=1

Ai,k

 ≤ |xi∆|.

Hence |µ| ≤ |∆| =⇒ µ ≤ ∆, since ∆ must be nonnegative.

Problem 7.27. Consider the set Tn of non-rooted trees with n ≥ 3 labeled leaves for which each
interior vertex has degree 3.

(a) Prove that each tree in Tn has exactly 2n− 3 edges.

(b) Prove that the number of trees Tn is (2n− 5)!!.

Proof. (a) We do induction on n, with the base case n = 3 being given by the star with three labeled
leaves. Now take T ∈ Tn, delete the leaf n, the edge adjacent to it, then remove the vertex at the
other end of the leaf so that the two vertices that were adjacent to it are now adjacent. Then this is
a tree in Tn−1, and hence has 2(n− 1)− 3 edges. Thus the tree T has 2n− 3 edges.

(b) Take any tree T ∈ Tn−1, then by choosing any edge in T in any of 2n− 5 ways, we can add
a vertex in the middle of this edge and add a leaf labeled n to this vertex. This makes it clear that
|Tn| = (2n− 5) · |Tn−1| = (2n− 5)!!. This gives the result.

7.3 Coloring and Matching

Definition. The chromatic number of a graph G, denoted χ(G), is the smallest integer k such that
G is k-(vertex)-colorable, in which case we say G is k-chromatic. We list some important definitions
and notation:

• The set of all vertices assigned the same color in a proper coloring of a graph G is called a
color class.

• Clique number - ω(G) is the order of the largest clique of G.

• Independence number - α(G) is the order of the largest independent set of G.

• Maximum degree - ∆(G) is the largest degree of any vertex in G.

• Minimum degree - δ(G) is the smallest degree of any vertex in G.

Proposition 7.28. For any graph G with order n, χ(G) ≥ ω(G) and n
α(G) ≤ χ(G) ≤ n+ 1− α(G).

Theorem 7.29. For any graph G, χ(G) ≤ ∆(G) + 1.

Definition. A greedy coloring of a graph G is done by ordering the vertices of G, then coloring the
vertices in that order with the smallest possible positive integer.
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Theorem 7.30 (Brooks’s Theorem). For every connected graph G that is not complete or an odd cycle,
χ(G) ≤ ∆(G).

Definition. The chromatic index of a graph G, denoted χ′(G), is the smallest integer k such that G
is k-edge-colorable. An edge set is independent if no two edges in the set share an endpoint. The edge
independence number of G, denoted α′(G), is then the order of the largest independent edge set of
G.

Proposition 7.31. For any graph G with size m, χ′(G) ≥ m
α′(G) and χ′(G) ≥ ∆(G).

Definition. A 2-colorable graph is called bipartite. Equivalently, a graph is bipartite if its vertex set
can be partitioned into disjoint sets A and B such that every edge is adjacent to one vertex of A and
one vertex of B.

Theorem 7.32. A graph G is bipartite if and only if it does not contain a cycle of an odd length.

Theorem 7.33. Let G be a simple bipartite graph on n vertices. Then G has at most n2/4 edges if n is even,
and at most (n2 − 1)/4 edges, if n is odd.

Proof. Clearly the bipartite graph with the most edges on n vertices will be Ka,b for some a, b ∈ Z+

summing to n. We have that Ka,b has ab = a(n − a) edges, and so we maximize the number of
edges via calculus.

Definition. Let G be any graph, and let S be a set of edges in G so that no two edges in G have a
vertex in common. Then we say that S is a matching in G. If each vertex in G is covered be an edge
in S, then we call S a perfect matching. Let G = (X,Y ) be a bipartite graph. If S is a matching in G
that covers all vertices of X , then we say that S is a perfect matching of X into Y .

Theorem 7.34 (Philip Hall’s Theorem). Let G = (X,Y ) be a bipartite graph. Then X has a perfect
matching into Y if and only if for all T ⊆ X , the inequality |T | ≤ |N(T )| holds, where N(T ) ⊆ Y is the
neighborhood of T .

Problems

Problem 7.35. Let G be a bipartite graph with partitioning sets of equal size that does not have a
perfect matching. Let A be the adjacency matrix of G. Is it true that detA = 0?

Proof. It is true. We can order the vertices of G so that

A =


0 B

C 0


.

The determinant of A is then non-zero only if there is a way to pick n entries of A so that no
column of row is selected from twice, and such that each of those entries are non-zero. However
those entries would mean there are vertex disjoint edges cover each vertex in G, so G would have
a perfect matching.

Problem 7.36. Let G be any simple graph with labeled vertices, and let p(k) be the number of
ways to properly k-color G. Prove that p is a polynomial function of k. What is the degree of that
polynomial?
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Proof. Suppose G has n vertices, and let p1, p2, . . . , pn be the number of ways to properly color G
with exactly 1, 2, . . . , n colors, respectively. Then it is clear that

p(k) =

n

i=1

pi


k

i


,

since we have to pick which colors we will use. Since the pi’s are constants and the

k
i


are polyno-

mials, we see that p(k) is a polynomial of degree n.

Problem 7.37. Let G be a regular bipartite graph. Prove that G has a perfect matching.

Proof. Suppose G does not have a perfect matching. Then there exists some vertex set T within one
of the color classes such that T > N(T ). Suppose G is regular of degree d, then it is clear that there
are |T |d edges between T and N(T ). However, by the pigeon-hole principle this would imply that
N(T ) has at least one vertex of degree greater d, a contradiction.

Problem 7.38. A medium-size city has three high schools, each of them attended by n students,
Each student knows exactly n+1 students who attend a high school different from his. Prove that
we can choose three students, one from each school, so that they each know the other two.

Proof. Let the three schools be A, B and C. Choose the student v, without loss of generality in
school A, such that he knows the most people k from one other school, without loss of generality
let it be B. That is, v knows k ≥ (n+ 1)/2 students from school B and n+ 1− k from school C.

Let X and Y be the sets of students v knows in B and C, respectively. Consider a student u in
Y . If u knows any students in X then we are done, so assume he does not. So u knows at most n−k
students in school B, and therefore must know n+1− (n−k) = k+1 students in A, contradicting
our choice of v. Hence u must know a student in X , yielding a triangle.

Problem 7.39. Fix two positive integers n and k so that k < n/2. Let G = (X,Y ) be the bipartite
graph in which the vertices of X are the k-element subsets of [n] and Y are the (k + 1)-element
subsets of [n], and there is an edge between x ∈ X and y ∈ Y if and only if x ⊂ y. Prove that X has
a perfect matching into Y by (a) using Philip Hall’s Theorem, and (b) by finding a perfect matching
of X to Y .

Proof. (a) Let S ⊆ X , we want to show that |S| ≤ |N(S)|. Let E be the set of edges incident to
the set X , and let E′ be the set of edges incident to the set N(S). Then certainly |E| ≤ |E′| since
E ⊆ E′. We see further that |E| = |S|(n− k) and |E′| = |N(S)|(k + 1), and hence we obtain

|N(S)| = |E′|
k + 1

≥ |S|n− k

k + 1
≥ |S|.

(b) This is actually quite a difficult construction.

Problem 7.40. König’s Theorem states that the size of maximum independent edge set (or match-
ing) is equal to the size of a minimum vertex cover of edges in a bipartite graph.

(a) Deduce Philip Hall’s Theorem from König’s Theorem.

(b) Deduce König’s Theorem from Philip Hall’s Theorem.
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Proof. (a) Let G = (X,Y ) be a bipartite graph satisfying |S| ≤ |N(S)| for all S ⊆ X . Suppose
for a contradiction that G does not have a matching of X into Y . So a minimum vertex cover C,
equivalent in size to a maximum matching, satisfies |C| < |X|. Let X ′ = X ∩ C and Y ′ = Y ∩ C.
Then |X ′|+ |Y ′| = |C| < |X|, which implies |Y ′| < |X|− |X ′| = |X \X ′|. Since C is a vertex cover,
if x ∈ X \X ′, then it may not be connected to any of Y \ Y ′, because that would mean there is an
edge with neither vertex in C, and hence C doesn’t cover the edges of G. Therefore, we have that

|N(X \X ′)| ≤ |Y ′| < |X \X ′|,

a contradiction. This proves the result.
(b) Assume König’s Theorem is false and show this contradicts Philip Hall’s Theorem?

7.4 Planarity

Definition. A graph G is a planar graph if G can be drawn in the plane without any two of its edges
crossing. A graph G that is already drawn in the plane is called a plane graph. When the vertices
and edges of a plane graph are removed, the resulting connected pieces are called regions of G.

Theorem 7.41 (Euler’s Theorem). For every connected plane graph of ordern, sizem and having r regions,
we have

n−m+ r = 2.

Proof. Induction on m. In inductive step, we either delete an edge from a cycle, or we have a
tree.

Theorem 7.42. If G is a planar graph of order n ≥ 3 and size m, then

m ≤ 3n− 6.

Proof. As G is planar, each of its faces has at least three edges, and each edge is in at most two faces,
hence 3r ≤ 2m, (the two sides under and over count edge-face pairs). That is, r ≤ 2m

3 . Comparing
this with Euler’s theorem, m+ 2 = n+ r, we obtain m+ 2 ≤ 2m

3 + n, which yields

m

3
≤ n− 2 =⇒ m ≤ 3n− 6.

Theorem 7.43. All simple planar graphs have a vertex of degree at most 5.

Proof. Assume all vertices of a graph have degree at least 6. Then the sum of all vertex degrees is at
least 6n, and hence the number of edges of the graph is at least 3n, hence proving the graph can’t
be planar by the last theorem.

Theorem 7.44. If G is a planar bipartite graph of order n ≥ 3 and size m, then

m ≤ 2n− 4.
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Proof. As G is planar and bipartite, each edge is on at most two faces and each face has at least 4
edges, hence 4r ≤ 2m =⇒ r ≤ m/2. Comparing with Euler’s theorem n−m+ r = 2, then

2 ≤ n−m+
m

2
= n− m

2
=⇒ m ≤ 2n− 4.

Definition. A graph H is called a subdivision of a graph G if either H ≃ G or H can be obtained
from G by inserting vertices of degree 2 into some, all or none of the edges of G.

Theorem 7.45. A graph G is planar if and only if G contains no subgraph that is a subdivision of K5 or
K3,3.

Problems

Problem 7.46. LetP be a convex polyhedron whose faces are all either a-gons or b-gons, and whose
vertices are each incident to three edges. Let pa, pb, andn respectively denote the number of a-gonal
faces, b-gonal faces and vertices of P . Prove that pa(6− a) + pb(6− b) = 12.

Proof. We use the following system of equations:

(1) n−m+ r = 2,

(2) pa + pb = r,

(3) apa + bpb = 2m,

(4) 3n = 2m.

Combining (1) and (4) we obtain 2
3m − m + r = r − m

3 = 2. Next we plug in (2) and obtain
pa + pb − m

3 = 2. Next we plug in (3) and obtain pa + pb − apa+bpb
6 = 2, and we have

6pa + 6pb − apa − bpb = 12 =⇒ pa(6− a) + pb(6− b) = 12.

Problem 7.47. LetG be a simple graph of order n such that each vertex has degree at least (n−1)/2.

(a) Prove that the diameter of G is at most 2.

(b) Prove that G has a Hamiltonian path.

(c) Prove that G is not planar if n > 10.

Proof. (a) Let u and v be any two vertices of G. Then the shortest path between u and v is greater
than 2 if and only if the closed neighborhood of each of these vertices are disjoint. The closed
neighborhood of each of these vertices has at least n−1

2 + 1 = n+1
2 in each of them, hence N [u] ∩

N [v] ∕= ∅. Thus the diameter of G is at most 2.
(b) Add a new vertex v to G adjacent to every vertex. Then the new graph G′ satisfies the hy-

potheses of Theorem 7.4 since every vertex will have degree at least n+1
2 . ThusG′ has a Hamiltonian

cycle, hence deleting v will leave us with a Hamiltonian path.
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(c) If n ≥ 12, then every vertex has degree at least 6, contradicting the fact that planar graphs
must have a vertex of degree at most 5. If n = 11, then we know that every vertex has degree at
least 5, and therefore G has at least 5·11

2 = 27.5 edges, and therefore at least 28 edges. However, by
Theorem 7.42, we know that the number of edges of G is at most m ≤ 3n − 6 = 27 edges if it is
planar, a contradiction.

Problem 7.48. (a) Prove that a planar graph of girth at least 6 has a vertex of degree at most 2.

(b) The Four Color Theorem states that any planar graph is 4-colorable. Grotzsch proved that
any triangle-free planar graph is 3-colorable. Without using his result, prove that a planar
graph of girth at least 6 is 3-colorable.

Proof. (a) In a plane graph of girth at least 6, each region has at least 6 edges. Therefore, considering
region-edge pairs, we have that 6r ≤ 2m =⇒ r ≤ m

3 . Comparing with Euler’s Theorem, we have
that

n−m+ r = 2 =⇒ n−m+
m

3
≥ 2 =⇒ n− 2 ≥ 2m

3
=⇒ 3n

2
− 3 ≥ m.

So suppose that each vertex has degree greater than or equal to three, then be the handshaking
lemma, we have that 2m ≥ 3n =⇒ m ≥ 3n

2 , which contradicts the above inequality.
(b) We do induction on n, with the base case clear. Now pick such a graph G on n vertices, and

by part (a), there exists a vertex of degree 1 or 2. Deleting that vertex, the new graph is 3-colorable
by the inductive hypothesis, and thus a 3-coloring can be extended to G since it has degree less
than 3.

Problem 7.49. Prove that for a simple graph G with n ≥ 11 vertices, at most one of G or its com-
plement Ḡ is planar.

Proof. Note if G is a graph on n vertices, one of G or Ḡ has at least

n
2


/2 edges. We also know that

for a graph on n vertices to be planar, it must have less than or equal to 3n−6 edges. So we are able
to prove this if we can show that the polynomial f(n) =


n
2


/2 − 3n + 6 is positive for all n ≥ 11.

We see that f(11) =

11
2


/2− 3 · 11 + 6 = 11·5

2 − 33 + 6 > 0. Further, taking the derivative of f , we
see that it is increasing on an interval including n ≥ 11. This gives the result.

7.5 Ramsey Theory

Definition. The Ramsey number R(k, ℓ) is the least positive integer n such that every graph on n
vertices has a clique on k vertices or an anticlique on ℓ vertices.

Theorem 7.50 (Ramsey’s Theorem). For every two integers k, ℓ ≥ 1, the Ramsey number R(k, ℓ) exists.

Theorem 7.51. For every two integers k, ℓ ≥ 2, the Ramsey number R(k, ℓ) exists and satisfies

R(k, ℓ) ≤ R(k − 1, ℓ) +R(k, ℓ− 1).

Proof. Take any graph G on R(k − 1, ℓ) + R(k, ℓ − 1) vertices and take a vertex v ∈ V (G). By the
pigeon-hole principle, v is either adjacent to R(k − 1, ℓ) vertices or it is not adjacent to R(k, ℓ − 1)
vertices.
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If v is adjacent to R(k − 1, ℓ) vertices, those vertices either have a clique of k − 1 vertices or an
anticlique with ℓ vertices. In the latter case we are done, and in the former case we then have a
clique on k vertices by adding the vertex v.

If v is not adjacent to R(k, ℓ− 1) vertices, then the argument is very similar.
Note that since R(k, 2) = k and R(2, ℓ) = ℓ, induction proves Ramsey’s theorem.

Theorem 7.52. For all k ≥ 2, we have R(k, k) >
√
2
k.

Proof. Let G be an n-vertex graph and let S be a k-vertex subset of V (G). Let AS denote the event
that S is a clique or an anticlique, hence

P[As] =
2

2(
k
2)

= 21−(
k
2).

Now letting S denote the set of all k-vertex subsets of V (G), we see that

P




S∈S
AS


≤



S∈S
P[AS ] =


n

k


21−(

k
2).

Noting that (n)k ≤ nk, we have that

n

k


21−(

k
2) ≤ 2 · n

k

k!
·
√
2
−k(k−1)

.

Now letting n =
√
2
k, then

2 · n
k

k!
·
√
2
−k(k−1)

=
2
√
2
k2

k!
√
2
k(k−1)

< 1.

This gives the result.

Problems

Problem 7.53. We color each point of space either red, blue, green or yellow. Prove that there is a
segment of unit length with monochromatic vertices.

Proof. Take a unit tetrahedron in space ABCD. If A is red, then if any of BCD are red or two of
them are the same color, then we have a monochromatic segment of unit length. So suppose B,C
and D are blue, green and yellow. Append another unit tetrahedron BCDE to the other side of
ABCD. If E is one of blue, green or yellow, we are again done, so it must be red.

Suppose A and E are at distance m from each other. Then by the above argument, if any
two points in space at distance m are the same color then we have a segment of unit length with
monochromatic vertices. So suppose all points at distance m are the same color. Then considering
the sphere of radius m around any point, all points on that sphere must be monochromatic, and
hence we can find two monochromatic points at unit distance on that sphere.
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7.6 Extremal Graph Theory

Theorem 7.54 (Mantel’s Theorem). The maximum possible number of edges in a triangle-free graph of
order n is ⌊n2/4⌋.

Proof. Since G does not contain a K3, every neighborhood of N(v) must be an independent set. So
let A ⊆ V (G) be an independent set of maximum size, so deg v ≤ |A| for all v ∈ V . Every edge of
G must be incident to at least one vertex in V \A, so we have

|E(G)| =


v∈V \A
deg v ≤ |A| · |V \A|.

Setting x = |A|, we seek to maximize the quadratic x(n− x), which gives the result.

Theorem 7.55 (Turán’s Theorem). For all integers n ≥ r ≥ 1, among all graphs of order n that do not
contain an (r + 1)-clique, there exists precisely one with the maximum number of edges, namely the Turán
graph T (n, r) = Kn1,...,nr where

n = n1 + · · ·+ nr, n1 ≥ · · · ≥ nr ≥ 1, and n1 − nr ≤ 1.

8 Partially Ordered Sets

Reference: A Walk Through Combinatorics - Bóna, Chapter 16 and Enumerative Combinatorics - Stan-
ley, Chapter 3.

8.1 Basic Concepts

Definition. A partially ordered set P is a set with a binary relation ≤ satisfying

• Reflexivity: t ≤ t for all t ∈ P ;

• Antisymmetry: if s ≤ t and t ≤ s, then t = s;

• Transitivity: if s ≤ t and t ≤ u, then s ≤ u.

Example 8.1. Some easy examples:
Boolean: Bn is the set 2[n] = P([n]) ordered by inclusion.
Divisor: Dn is the set of all divisors of n, with i ≤ j iff i | j.
Partition: Πn is the set of all partitions of [n] ordered by refinement.

Definition. An interval [s, t] of a poset P is a subposet of P given by {u ∈ P : s ≤ u ≤ t}. The poset
P is called locally finite is every interval is finite.

An element of P is called 0̂ if for all t ∈ P we have 0̂ ≤ t. An element of P is called 1̂ if for all
t ∈ P we have t ≤ 1̂.

A chain is a poset in which all elements are comparable. The length of a chain C is given by
ℓ(C) = |C| − 1, i.e. the number of edges in the chain. If every maximal chain of P has length n,
then we say P is graded with rank n.
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Note. If P is graded of rank n, then there exists a rank function ρ : P → [n] such that ρ(s) = 0 if s
is minimal and ρ(t) = ρ(s) + 1 if t covers s.

Definition. An antichain is a subset A of a poset P in which no two distinct elements are compa-
rable. An order ideal of P is a subset I of P such that if t ∈ I and s ≤ t, then s ∈ I .

Note. There is a one-to-one correspondence between antichains and order ideals of finite posets.
Namely, if A is the set of maximal elements of an order ideal I , then I = {s ∈ P : s ≤ t ∈ A}. The
set of all order ideals of P , ordered by inclusion, forms a poset denoted J(P ).

Problems

Problem 8.2. Let A2(n) denote the number of 2-element antichains of the boolean algebra Bn. Find
A2(n).

Proof. We count the number of ways to pick a subset of 2[n], then pick another subset such that
neither subset is contained in the other. This will clearly give 2 ·A2(n). So we have

2 ·A2(n) =

n

k=0


k

n


k−1

i=0


k

i


n−k

k=1


n− k

j



=

n

k=0


k

n


(2k − 1)(2n−k − 1)

=

n

k=0


k

n


(2n − 2k − 2n−k + 1)

= 2n
n

k=0


k

n


−

n

k=0


k

n


2k −

n

k=0


k

n


2n−k +

n

k=0


k

n



= 2n · 2n − (1 + 2)n − (2 + 1)n + 2n

= 4n − 2 · 3n + 2n.

Hence
A2(n) =

1

2
(4n − 2 · 3n + 2n).

Problem 8.3. How many maximal chains does Πn have?

Proof. The number of maximal chains is clearly the number of ways to take the minimal element
0̂ = {1}, {2}, . . . , {n}, and continually merge two blocks until we obtain 1̂ = [n]. This is clearly
done in


n

2


n− 1

2


. . .


2

2


=

n(n− 1)

2
· (n− 1)(n− 2)

2
. . .

3 · 2
2

· 2
2
=

n!(n− 1)!

2n−1
.

Problem 8.4. The famous Dilworth Theorem for a finite poset P states that the minimum number
of chains in any partition of P into chains is equal to the maximum number of elements in an
antichain of P .
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(a) Prove that if P has size at least rs+ 1, then there is either a chain of size r of an antichain of
size s.

(b) There are many proofs of the following Erdős-Szekeres Theorem: For any sequence a1a2 . . . an2+1

of integers, there is a subsequence of length n+1 that is monotone. Prove the Erdős-Szekeres
Theorem using Dilworth’s Theorem.

Proof. (a) Suppose that P contains no antichain of size s, then a partition of P into the minimum
number of chains contains less than s chains. Suppose none of these chains contain r elements,
then P contains less than rs elements, a contradiction.

(b) Define a posetP on the set {a1, a2, . . . , an2+1} given by ai ≤ aj if and only if i ≤ j and ai ≤ aj
in the real number sense. It is then clear that a chain in this posets corresponds to a monotone
increasing subsequence, and an antichain corresponds to a monotone decreasing subsequence. By
part (a), P must then contain a chain or antichain of size n, yielding the result.

8.2 Lattices

Definition. For s, t in a poset P , an upper bound u of s and t is an element such that s ≤ u and t ≤ u.
A least upper bound or join u of s and t is an upper bound such that for every upper bound v of s
and t we have u ≤ v. Lower bounds and meets defined similarly.

Note. Joins and meets are clearly unique, and are denoted s ∨ t and s ∧ t, respectively.

Definition. A lattice is a poset for which every pair of elements has a meet and a join. If every pair of
elements of P has a meet (resp. join), then we say that P is a meet-semilattice (resp. join-semilattice).

Proposition 8.5. If P is a finite meet-semilattice with 1̂, then P is a lattice.

Proof. We let S = {u ∈ P : u ≥ s, u ≥ t}, which is not empty because P has 1̂. Then s ∨ t =
u∈S u.

Proposition 8.6. Let L be a finite lattice. The following are equivalent:

i. L is graded and its rank function ρ satisfies

ρ(s) + ρ(t) ≥ ρ(s ∨ t) + ρ(s ∧ t) ∀s, t ∈ L,

ii. If s and t both cover s ∧ t, then s ∨ t covers both s and t.

Definition. Finite lattices satisfying either of the above conditions are called finite upper semimodular
lattices.

Definition. A finite lattice L is modular if it is graded, and its rank function ρ satisfies

ρ(s) + ρ(t) = ρ(s ∨ t) + ρ(s ∧ t),

for all s, t ∈ L, (i.e. both upper and lower semimodular).
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Note. A finite lattice L if modular if and only if for all s, t, u ∈ L with s ≤ u,

s ∨ (t ∧ u) = (s ∨ t) ∧ u).

This shows distributive lattices are modular.

Definition. A distibutive lattice L is a lattice satisfying the distributive laws:

s ∨ (t ∧ u) = (s ∨ t) ∧ (s ∨ u), and s ∧ (t ∨ u) = (s ∧ t) ∨ (s ∧ u).

Definition. An element s of a lattice L is join-irreducible if s ∕= 0̂ and one cannot write s = t ∨ u
where t < s and u < s. That is, s covers exactly one element.

Theorem 8.7 (Fundamental Theorem of Finite Distributive Lattices). Let L be a finite distributive
lattice. Then there exists a poset P for which L ∼= J(P ).

Proof. Let P be the subposet of join-irreducibles of L. Then we see that L ∼= J(P ). Define ϕ :
L → J(P ) by t → It = {s ∈ P : s ≤ t}. ϕ is order preserving and so is its inverse. Since ϕ is
meet-preserving and J(P ) is a lattice, ϕ is injective.

Now let I ∈ J(P ) and t =

{s ∈ I}, then we show I = It. Clearly I ⊆ It. Now suppose u ∈ It,

then we have


{s ∈ I} =


{s ∈ It} =⇒


{s ∧ u : s ∈ I} =


{s ∧ u : s ∈ It}.

The right-hand side is u, so we have

{s ∧ u : s ∈ I} = u. Since u ∈ P is join-irreducible, we have

u ∈ I , thus I = It.

Problems

Problem 8.8. Let (L,≤) be a finite distributive lattice and Irr(L) be the set of join-irreducibles in L.
For t ∈ L, define Kt = {p ∈ Irr(L) : p ≤ t}. Show

t =


p∈Kt

p.

Proof. First, it is clear that t ≥


p∈Kt
p. If t is join-irreducible, then t ∈ Kt, and we are done. If not,

then we can write t = q∨p for some two elements q, p < t. If they are join-irreducible, we are done.
If not, we can write either of them as the join of two smaller elements. Since L is finite, there must
be able to find a finite number of join-irreducibles r1, . . . , rk such that t = r1 ∨ · · · ∨ rk. Since each
or the ri’s must be in Kt, we are done.

8.3 Incidence Algebras and Möbius Inversion Formula

Definition. Let P be locally finite and define Int(P ) to be the set of closed intervals of P . Then
we define the incidence algebra over the field K to be the set of functions f : Int(P ) → K with
multiplication

fg(s, u) =


s≤t≤u

f(s, t)g(t, u).
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Note. By fixing a linear extension of P , I(P ) can be represented by upper triangular matrices, and
this shows that f ∈ I(P ) is invertible if and only if f(t, t) ∕= 0 for all t ∈ P . The identity is then
δ(s, t) which is 1 if s = t and 0 otherwise.

Definition. We define two elements of every I(P ). The zeta function is given by

ζ(t, u) = 1 ∀t ≤ u,

and the Möbius function µ is defined to be the inverse of the zeta function, i.e. ζµ = δ.

Note. Here we list some properties of both functions. The zeta function:

• ζk(s, u) =


s=s0≤···≤sk=u 1,

• (ζ − δ)k(s, u) =


s=s0<···<sk=u 1.

Both properties can be easily seen by induction. The Möbius function:

• µ(s, s) = 1 for all s ∈ P ,

•


s≤t≤u µ(s, t) = 0 which implies µ(s, u) = −


s≤t<u µ(s, t) for all s < u ∈ P .

Theorem 8.9 (Möbius Inversion Formula). Let P be a poset for which every order ideal is finite. Define
the some functions f, g : P → K, where K is a field. Then

g(t) =


s≤t

f(s) ∀t ∈ P ⇐⇒ f(t) =


s≤t

g(s)µ(s, t) ∀t ∈ P.

Theorem 8.10 (Hall’s Theorem). Let P be a finite poset and let P̂ be P with 0̂ and 1̂ added. Let ci be the
number of chains of length i between 0̂ and 1̂. Then

µP̂ (0̂, 1̂) = c0 − c1 + c2 − . . .

Theorem 8.11 (Weisner’s Theorem). LetL be a finite lattice with at least two elements, and let 1̂ ∕= a ∈ L.
Then 

t∧a=0̂

µ(t, 1̂) = 0.

Problems

Problem 8.12. Let D be the division poset, (the set of all positive integers ordered by divisibility).
Find a formula for the Möbius function µ and prove that it is correct.

Proof. We show that

(a) µ(x, y) = (−1)k if y
x = p1p2 . . . pk where p1, p2, . . . , pk are distinct primes, and

(b) µ(x, y) = 0 if y
x is divisible by the square of a prime.
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We first note that the intervals [x, y] and [1, yx ] are isomorphic as posets, so we prove our statement
for intervals [1, y], i.e. when x = 1.

To prove (a), note that if y = p1 . . . pk is square-free, then [1, y] is isomorphic to the boolean
poset Bk. Hence it follows that µ(1, y) = (−1)k.

To prove (b), we do strong induction on y. If y = 4, the result is true. So we assume now that the
statement is true for all integers smaller than y. Let p1, . . . , pk be the distinct divisors of y, and we
see that the interval [1, p1 . . . pk] consists of exactly all the divisors of y that are square-free. Also,
the rest of the elements in [1, y] (that aren’t y) are divisible by the square of a prime, so the inductive
hypothesis holds. This yields

µ(1, y) = −


z<y

µ(1, z) = −


z∈[1,p1...pk]
µ(1, z)−



y>z/∈[1,p1...pk]
µ(1, z) = −0− 0 = 0,

using the fact that for any non-singleton interval I that


z∈I µ(1, z) = 0.

Problem 8.13. Let P be a finite poset with 0̂ and 1̂. Let f ∈ I(p) be defined by f(x, y) = 1 if y covers
x, and f(x, y) = 0 otherwise. Find a formula for the total number of maximal chains of P in terms
of f .

Proof. It is clear that δ(0̂, 1̂) is the number of maximal chains of length 0, f(0̂, 1̂) is the number
of maximal chains of length 1, f2(0̂, 1̂) is the number of maximal chains of length 2, etc. So the
number of maximal chains of P is

δ(0̂, 1̂) + f(0̂, 1̂) + f2(0̂, 1̂) + · · · = (δ + f + f2 + . . . )(0̂, 1̂) = (δ − f)−1(0̂, 1̂).

Problem 8.14. Let P be a poset with 0̂ and 1̂. Let x /∈ {0̂, 1̂}. Finally, let Px be the poset obtained
from P by removing x and leaving all other comparability relations unchanged. Prove that

µPx(0̂, 1̂) = µP (0̂, 1̂)− µP (0̂, x)µP (x, 1̂).

Proof. By Hall’s theorem, we see that

µP (0̂, x)µP (x, 1̂) = b0 − b1 + b2 − . . . ,

where bi is the number of length i chains 0̂ = s0 < s1 < · · · < si = 1̂ in P such that x is in the chain.
Noting that µP (0̂, 1̂) = c0 − c1 + c2 − . . . where ci is the number of length i unrestricted chains in
P , it is clear that

µPx(0̂, 1̂) = (c0 − b0)− (c1 − b1) + (c2 − b2)− . . . ,

yielding the result.

Problem 8.15. Let P be a poset with a minimal element 0̂, and let x be an element of P that covers
one single element y. Let us assume that y ∕= 0̂. Prove that µ(0̂, x) = 0.

Proof. We see that

µ(0̂, x) = −


0̂≤z<x

µ(0̂, z) = −


z∈[0̂,y]

µ(0̂, z) = −µζ(0̂, y) = −δ(0̂, y) = 0.
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9 Horizons

Reference: A Walk Through Combinatorics - Bóna, Chapters 15, 17-20.

9.1 Probability

Definition. If P (A∩B) = P (A) ·P (B), then the events A and B are called independent. Otherwise,
they are called dependent.

Definition. Let A and B be events from the sample space, and assume P (B) > 0. Let

P (A|B) =
P (A ∩B)

P (B)
.

Then P (A|B) is called a conditional probability, and is read the “probability of A given B”.

Theorem 9.1 (Bayes’ Theorem). Let A and B be mutually exclusive events so that A ∪B = Ω. Let C be
any event. Then

P (C) = P (C|A) · P (A) + P (C|B) · P (B).

Definition. For a sample space Ω, a random variable is a function X : Ω → R. If X has a finite range
S, the number

E(X) =


i∈S
i · P (X = i)

is called the expectation of X on Ω.

Theorem 9.2 (Linearity of Expectation). Let X,X1, . . . , Xk be random variables defined over the finite
sample space Ω such that X = X1 + · · ·+Xk. Then

E(X) = E(X1) + · · ·+ E(Xk).

Theorem 9.3. Every graph of size m contains a bipartite graph of size at least m/2.

Proof. For any graph G, choose a subset S ⊆ V (G) uniformly at random, so that P[v ∈ S] = 1/2.
For any edge e = uv ∈ E(G), define the event Xe that has value 1 if exactly one of u and v is in S
and the other in V \ S, and 0 otherwise. By linearity of expectation we have

E(X) =


e∈E
E(Xe) = m/2.

Since this is the expected value of X , there exists a choice of S ⊆ V such that X ≥ m/2. This gives
the result.

Theorem 9.4. For every positive integer n, there is a tournament of order n with at least n!/2n−1 hamilto-
nian paths.

Proof. For any tournament T on vertices {v1, . . . , vn}, consider for any permutation π = π1 . . .πn ∈
Sn on the set of vertices giving an ordering π(V ) := vπ1vπ2 . . . vπn . We consider the probability
space where each arc has half probability to point in either direction, then the probability that
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π(V ) is a hamiltonian path is (1/2)n−1, since we need for each i ∈ [n− 1], the arc must be pointing
from vπi to vπi+1 .

Letting Xπ be the indicator variable of this event, it is clear that X =


π∈Sn
Xπ is the variable

indicating the number of hamiltonian paths in T . We obtain

E(X) =


π∈Sn

E(Xπ) = n!(1/2)n−1.

Hence there must exists a tournament T such that it has at least n!(1/2)n−1 hamiltonian paths.

Problems

Problem 9.5. Let Y (α) be the number of parts of a randomly selected composition α of n. Find
E(Y ).

Proof. Returning to the stars and bars model of compositions, we see that Y (α) is one plus the
number of bars of the composition. A bar can placed in each of the n − 1 spots between the n
balls, and it is easily seen that the probability that this occurs for each spot in a randomly selected
composition is 1

2 . Hence we have that

E(Y ) = 1 +
n− 1

2
=

n+ 1

2
.

Problem 9.6. Sperner’s Theorem states that if A is an antichain in 2[n], the power set of [n] ordered
by containment, then

|A| ≤


n

⌊n/2⌋


.

Prove Sperner’s Theorem.

Proof. Let A be an antichain and C a maximal chain in 2[n]. Then how many elements of A can we
expect to be in C? Clearly ≤ 1. Let S ⊆ [n] with |S| = k, then we have P (S ∈ C) =


n
k

−1, and thus
the expected number of elements of A in C is given by



S∈A


n

|S|

−1

=

n

k=0

ak
n
k

 ,

where ak is the number of elements of A containing k elements. Since


n
⌊n/2⌋


≥


n
k


for all k, we

see that
|A|
n

⌊n/2⌋
 =

n

k=0

ak
n

⌊n/2⌋
 ≤

n

k=0

ak
n
k

 ≤ 1.

Finally we see that

|A| ≤


n

⌊n/2⌋


.
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Problem 9.7. Among a population of n+1 people, a rumor is spread at random. One person tells
the rumor to a second, who in turn repeats it to a third person, etc. What is the probability that the
rumor will be told k times without being repeated to any person?

Proof. The first person told clearly can’t violate the condition. Then the first person told can tell
any of the n− 1 people who haven’t been told, then he can tell any of the n− 2 people who haven’t
been told, etc. Since these events are independent, the probability of this event is then

n

n
· n− 1

n
· n− 2

n
. . .

n− k + 1

n
=

(n)k
nk

,

where (n)k is a falling factorial.

9.2 Block Designs and Error Correcting Codes

Definition. Let S be a finite set of v elements called vertices. Let B be a collection of b non-empty
subsets of S called blocks. Then the pair (S,B) is called a block design.

If a design (S,B) contains at least one block that does not contain all of the elements of S, then
it is called incomplete. If each block consists of exactly k vertices, then the design is called uniform.
If each vertex occurs in exactly r blocks, then the design is called regular. Finally, if each pair of
vertices occurs together in exactly λ blocks, then (S,B) is called balanced incomplete block design or
BIBD of parameters (b, v, r, k,λ).

Theorem 9.8. If a (b, v, r, k,λ)-design exists, then

bk = vr and r(k − 1) = λ(v − 1).

Proof. The equality bk = vr clearly holds since both sides count pairs (w,X), where x is in the
block X .

To prove the second equality, fix a vertex x. Then we can pick a block that contains x in r ways,
and then another element in that block in k−1 ways, hence the term r(k−1) counts the pairs (y, T )
where T is a block containing x and y. We see that the right hand side counts the same thing. Pick
a vertex that is not x in v − 1 ways, then choose a common block in λ ways.

Definition. Let S and T be two finite alphabets. A code c is an injective function c : S → T ∗.
If t ∈ T ∗ is in the range of c, then t is called a codeword for the code c, and we denote the set of
codewords by C. It T = {0, 1} then the code is called binary.

Definition. The injection c can easily be extended to the set S∗ of all finite sequences over S by
setting

c(s1s2 . . . sn) = c(s1)c(s2) . . . c(sn).

If this extended function c : S∗ → T ∗ is injective then we say that c is uniquely decodable.
A code c : S → T ∗ is called prefix-free if there are no two codewords c(x) and c(y) such that

c(x) = c(y)q for some q ∈ T ∗.

Theorem 9.9. If c is prefix-free, then it is uniquely decodable.
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Proof. Let c : S → T ∗ be a prefix-free code, and let us say that

c(x1x2 . . . xk) = c(y1y2 . . . ym) = t1t2 . . . tn.

We prove that k = m and that x1x2 . . . xk = y1y2 . . . yk with xi = yi for each i using strong induction
on n. For n = 1 the statement is obvious. We see that c(x1) = c(y1)must hold, otherwise one would
be a prefix of the other. As c is injective this implies that x1 = y1, and hence

c(x2 . . . xk) = c(y2 . . . ym) = th . . . tn

for some h > 1. Since the word th . . . tn has less than n letters, it is uniquely decodable by the
inductive hypothesis, and therefore xi = yi for all i.

Definition. Let v and w be two n-letter codewords. The Hamming distance of v and w, denoted
d(v, w) is the number of positions in which v and w differ. A code c is e-error correcting if the ball of
radius e around any two of its codewords are disjoint, i.e. the distance between any two codewords
is at least 2e + 1. An (n,m, d)-code is a code that consists of m codewords of length n so that the
Hamming distance of any two codewords is at least d.

Proposition 9.10. Let c be an r-error correcting code over the binary alphabet in which all codewords are
of length n. Then the number |C| of codewords in c is at most

2nr
i=0


n
i

 .

Proof. We see that 2n is the total number of binary words of length n, and that the size of a ball of
radius r must be

r
i=0


n
i


. That is, all the ways to pick less than r positions of a word and ‘flip’

them. Since each ball must be disjoint in an r-error correcting code, we have that

|C| ·
r

i=0


n

i


≤ 2n,

yielding the result.

Definition. Let c be an r-error correcting code over Bn. We say that c is perfect if each word v ∈ Bn

belongs to a ball B(w, r) for some codeword w. That is, equality holds in the statement of the
previous proposition.

Problems

Problem 9.11. Prove that if a (v, k,λ) BIBD exists with block set B on a point set V , then the set
B′ = {V \B : B ∈ B} is a BIBD.

Proof. We see that B′ is a (v, b− k, b− 2r + λ) BIBD, where b is the number of blocks of B and r is
the number of blocks each vertex is in. The first two values are clear, and the fact that b− 2r+ λ is
the number of blocks that two elements are together in is a result of inclusion exclusion.

Problem 9.12. A t-design is a design in which every t-element set of vertices appears together in
exactly λ blocks. So BIBDs are 2-designs. Prove that if D is a t-design with parameters (b, v, r, k,λ),
then

b


k

t


= λ


v

t


.
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Proof. Both sides count the number of pairs (S,B), where S is a t-element subset of the block B.
On the left-hand side we pick a block in b ways, then choose t vertices from the k it contains. Then
the right hand side picks t vertices and then one of the blocks containing that set of vertices.

Problem 9.13. Construct a BIBD with parameters (12,9,4,3,1).

Proof. Just try it:

• (123)(456)(789)

• (147)(258)(369)

• (159)(267)(348)

• (168)(249)(357).

Problem 9.14. Construct a (7, 4, 2) BIBD.

Proof. That is v = 7 vertices, each block having k = 4 vertices, and every pair of vertices appearing
together in a block twice, i.e. λ = 2. To find the number of blocks b and the number of blocks r
each element appears in, we have that bk = vr and λ(v− 1) = r(k− 1), i.e. 4b = 7r and 2 · 6 = r · 3.
So we have r = 4 and b = 7. So the complement of such a design would be a (v = 7, k = 3,λ = 1)
design, so that 3b = 7r and 6 = 2r, and therefore r = 3 and b = 7. This should be easier to find:

(123)(145)(167)(246)(347)(257)(356),

and thus the desired BIBD is as follows:

(4567)(2367)(2345)(1357)(1256)(1346)(1247).

Problem 9.15. Let c : S → {0, 1}∗ be a prefix-free code in which bi codewords have length i. Prove
that


i
bi
2i

≤ 1.

Proof. Let w be a binary word of length longer than each codeword of c. Then the probability
that the codeword p of length i is a prefix of w is 1

2i
. Let Sp be the event that the codeword p is a

prefix of w, and define S =


p Sp, the event that w has a prefix in C. Then since the events Sp are
independent we have

P (S) =


p

P (Sp) =


i

bi
2i
,

which must be less than or equal to one since it is a probability.

Problem 9.16. Show an example of a code that is not prefix-free but still uniquely decodable.

Proof. Consider the code c(x) = 10 and c(y) = 100.
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Problem 9.17. Let C be a binary code of length n and minimum distance d ≥ 2e + 1. Prove the
following two bounds.

|C| ≤ 2ne
i=0


n
i

 and |C| ≤ 2n−d+1.

Proof. Since any two codewords must have Hamming distance at least d ≥ 2e+ 1 from each other,
then the balls of any two codewords of radius e must be disjoint. It is clear that the ball of radius e
of any codeword has exactly

e
i=0


n
i


words in it. Since there are 2n total binary words of length

n, we have

|C| ·
e

i=0


n

i


≤ 2n,

yielding the first bound.
Now for the second bound, for each codeword in C, if we delete the last d− 1 entries of each of

them, then each of them is still unique since they must have Hamming distance at least d. Thus it
must be that |C| ≤ 2n−d+1.

9.3 Unlabeled Structures

Definition. Let G be a group acting on a set S, and let i ∈ S. The the set

Gi = {g ∈ G : g(i) = g},

is called the stabilizer of i. The set
iG = {g(i) : g ∈ G}

is called the orbit of i.

Theorem 9.18 (Orbit-Stabilizer Theorem). Let G be a finite group acting on a set S, and let i ∈ S. Then

|G|
|Gi|

= |iG|.

Definition. Let G be a group acting on a set S, and let g ∈ G. Then define

Fg = {i ∈ S : g(i) = i},

i.e. the elements of S fixed by the action of g.

Theorem 9.19 (Burnside’s Lemma). Let G be a group acting on a set S. Then the number of orbits of S
under the action of G is equal to

1

|G|


g∈G
|Fg|.

Note. The rest of this section is on generating functions of unlabeled trees, which will be covered
in the section on generating functions. Thus we omit those notes here.
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Problems

Problem 9.20. A non-plane 2-tree is a rooted tree in which each non-leaf vertex has exactly 2 chil-
dren, Prove that all non-plane 2-trees have an odd number of vertices. Let dn be the number of
non-plane 2-trees on 2n+ 1 vertices. Prove that dn = bn, where bn is the number of non-plane 1-2
trees on n vertices.

Proof. The first claim follows by induction. Each such tree with more than one vertex has a two
subtrees that are plane 2-trees and a root.

Let T be a non-plane 2-tree enumerated by dn, then T has n+ 1 leaves, and thus the tree f(T )
obtained by removing all the leaves of T is a non-plane 1-2 tree on n vertices, enumerated by bn.
We show this is a bijection by showing it has an inverse. If we take a 1-2 plane tree on n vertices
and, add two leaves to each on each of its leaves, and one leaf to each vertex with one child, then
we have the we will have the original non-plane 2-tree, (it must be on 2n+ 1 vertices because it is
a 2-tree and has n non-leaves).

Problem 9.21. Let d0 = 0, let dn be the number of all decreasing non-plane trees on vertex set [n]
if n ≥ 1. Let D(x) be the exponential generating function of these numbers.

(a) Let Dk(x) be the exponential generating function for the sequence counting decreasing non-
plane trees in which the has exactly k children. Prove that

D′
k(x) =

Dk(x)

k!
.

(b) Use part (a) to find a closed form for D(x), and then for dn.

Proof. (a) We see that removing the root of such a tree on n vertices, (which must be labeled n), we
obtain an unordered sequence of k of these trees with labels [n − 1]. It is clear that the coefficient
of xn/n! in D′

k(x) is the number of such trees on [n + 1], (taking the derivative shifts the index).
Similarly, by the product rule of exponential generating functions, the coefficient of xn/n! in Dk(x)

k!
counts the number of such unordered sequences of k trees on [n].

(b) Summing over all k, we see that D′(x) = eD(x), which gives D′(x)e−D(x) = 1. Integrating
we obtain −e−D(x) = x− 1, since the coefficient of integration must be −1 to conform with the fact
that D(0) = 0. Taking logarithms we obtain

D(x) = log
1

1− x
=



n≥1

xn

n
,

and hence dn = (n− 1)!.

Problem 9.22. Let T be a rooted non-plane 2-tree with n leaves, i.e. every non-leaf vertex has two
children. Let sym(T ) be the number of non-leaf vertices v of T such that the two children of v are
roots of identical subtrees.

(a) How many automorphisms does T have?

(b) How many different ways are there to bijectively label the leaves of T with the numbers
1, 2, . . . , n?
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(c) Find an explicit formula for


T
1

|Aut(T )| , where the sum is taken over all rooted non-plane
2-trees with n leaves.

Proof. (a) It is not difficult to see that |Aut(T )| = 2sym(T ).
(b) It is then clear that there are x = n!

2sym(T ) bijective labelings of the leaves of T . That is, embed
T in the plane, label its leaves left to right with the elements of [n] in one of n! ways, then each one
is equivalent to 2sym(T ) labelings.

(c) For a fixed tree T , we have that 1
|Aut(T )| =

x
n! , where x is the number of bijective labelings of

the leaves of T found in part (b). The sum


T x is then the total number of labeled rooted non-
plane 2-trees, which we know is (2n−3)!!, (these are the same as binary total partitions), and hence
we have 

T

1

|Aut(T )| =


T

x

n!
=

(2n− 3)!!

n!
.

9.4 Combinatorial Algorithms

Note. I don’t anticipate any questions on this section either. I include a couple of definitions that I
should know anyways.
Definition. Let f, g : Z+ → R. We say that

f(n) = O(g(n))

if there exists a positive constant c such that f(n) ≤ cg(n) for all n ∈ Z+. We say that

f(n) = Ω(g(n))

if there exists a positive constant c such that f(n) ≥ cg(n). We then say that

f(g) = Θ(g(n))

if f(n) = O(g(n)) and f(n) = Ω(g(n)).
Note. This section includes and discusses the sorting algorithms bubble sort and merge sort, and
then some algorithms pertaining to minimum weight spanning trees and paths in graphs.

9.5 Computational Complexity

Definition. A decision problem is a “yes-no” problem question asked about a combinatorial object.
Definition. We say that a languageL is in P if there exists a Turing machine T and a positive integer
k so that T accepts L in O(nk) time, where n is the size of the input. That is, membership in L can
be tested in polynomial time.
Definition. We say that a language L is in NP if membership in L can be verified in polynomial
time, but not necessarily found in polynomial time.
Proposition 9.23. We have P ⊆ NP.
Definition. We say that a language L is in coNP if non-membership in L can be verified in poly-
nomial time.

57


