MAD 6406: Final exam. December 10, 2018

First Name: \qquad

Last Name:

\qquad
"On my honor, I have neither given nor received unauthorized aid in doing this assignment."

Signature: \qquad UFID: \qquad

Directions: Submit solutions to any 6 of the following 8 problems, and clearly indicate on the front page which 6 you would like graded.

No books, no notes, no tablets, no calculators, no computers, no phones! Write your solutions clearly and legibly for full credit.

Good luck!

$\#$	Points	Score
$\mathbf{1}$	10	
$\mathbf{2}$	10	
$\mathbf{3}$	10	
$\mathbf{4}$	10	
$\mathbf{5}$	10	
$\mathbf{6}$	10	
$\mathbf{7}$	10	
$\mathbf{8}$	10	
$\mathbf{1 0 0 \%}$	60	

Problem 1. (10 points)
(a) Show the matrix 2-norm is invariant under unitary transformation: For $A \in \mathbb{C}^{m \times n}$ it holds that $\|A V\|_{2}=\|A\|$ and $\|U A\|_{2}=\|A\|$ for unitary matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$.
(b) Show the Frobenius norm is invariant under unitary transformation (as above this requires showing $\|U A\|_{F}=\|A\|$ and $\|A V\|_{F}=\|A\|$).
(c) Show the Frobenius norm is not induced by any vector norm.

Problem 2. (10 points) Let $A=U \Sigma V^{*}$ be the singular value decomposition of $A \in \mathbb{C}^{m \times n}$ with $\operatorname{rank}(A)=p \leq n \leq m$.
(a) Show $\operatorname{Col}(A)=\operatorname{Span}\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$, where u_{1}, \ldots, u_{p} are the first p columns of U.
(b) Show $\operatorname{Null}\left(A^{*}\right)=\operatorname{Span}\left\{u_{p+1}, u_{p+2}, \ldots, u_{m}\right\}$.
(c) Without using the SVD or any other matrix decomposition, show $\operatorname{Col}(A)$ is orthogonal to $\operatorname{Null}\left(A^{*}\right)$.

Problem 3. (10 points) Let $A \in \mathbb{C}^{m \times n}$, with $m \geq n$ and $\operatorname{rank}(A)=p=n \geq 3$.
(a) Using the classical Gramm-Schmidt process, write out expressions for q_{1}, q_{2}, q_{3}, the first three columns of Q in the $Q R$ decomposition of A.
(b) Show the vector q_{3} found in part (a) is orthogonal to both q_{1} and q_{2}.
(c) Write an expression for the first Householder reflector H_{1}, used to find the QR decomposition of A. Show H_{1} is both unitary and Hermetian.

Problem 4. (10 points) let P be a projector.
(a) Find all eigenvalues of P.
(b) Show $\operatorname{Null}(P)=\operatorname{Col}(I-P)$
(c) Show $\operatorname{Null}(I-P)=\operatorname{Col}(P)$.

Problem 5. (10 points)
(a) Show that if $A \in \mathbb{C}^{m \times m}, A$ has a Schur decomposition.
(b) Show that if a matrix $A \in \mathbb{C}^{m \times m}$ is normal, then A has a full set of m independent eigenvectors.

Problem 6. (10 points)
(a) Show for $A \in C^{m \times n}$ and $x \in \mathbb{C}^{n}, x \in 0$, that

$$
\sigma_{1} \geq \frac{\|A x\|_{2}}{\|x\|_{2}} \geq \sigma_{n}>0
$$

where σ_{1} and σ_{n} are the largest and smallest singular values of A. (If you want to use the fact that $\|A\|_{2}=\sigma_{1}$, then you need to show this as well).
(b) Show $\operatorname{cond}(A)_{2}=\sigma_{1} / \sigma_{n}$

Problem 7. (10 points) Let $\|\cdot\|$ be a subordinate (induced) matrix norm. If A is $n \times n$ invertible and and E is $n \times n$ with $\left\|A^{-1}\right\|\|E\|<1$, then show
(a) $A+E$ is nonsinguar
(b)

$$
\left\|(A+E)^{-1}\right\| \leq \frac{\left\|A^{-1}\right\|}{1-\left\|A^{-1}\right\|\|E\|}
$$

Problem 8. Consider the matrix A given by

$$
A=\left(\begin{array}{cccc}
10 & 1 & 2 & 3 \\
1 & 25 & 4 & 6 \\
2 & 4 & 20 & 8 \\
3 & 6 & 8 & 25
\end{array}\right)
$$

(a) What does Gerschgorin's disk theorem say about the location of each of the eigenvalues of A ? Be specific.
(b) Use the fact that A is symmetric positive definite (SPD) to improve your answer above about the location of the eigenvalues of A.
(c) Suppose the eigenvalues of A are all distinct (they are) and satisfy $\lambda_{1}>\lambda_{2}>\lambda_{3}>\lambda_{4}$. Describe an algorithm that could be used to determine λ_{4}.

