MAD 6406: Final exam. December 10, 2018

First Name:

Last Name:

"On my honor, I have neither given nor received unauthorized aid in doing this assignment."

Signature: UFID:

Directions: Submit solutions to any 6 of the following 8 problems, and clearly indicate on the front page which 6 you would like graded.

No books, no notes, no tablets, no calculators, no computers, no phones!

Write your solutions clearly and legibly for full credit.

Good luck!

#	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
100%	60	

- **Problem 1.** (10 points)
 - (a) Show the matrix 2-norm is invariant under unitary transformation: For $A \in \mathbb{C}^{m \times n}$ it holds that $||AV||_2 = ||A||$ and $||UA||_2 = ||A||$ for unitary matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$.
 - (b) Show the Frobenius norm is invariant under unitary transformation (as above this requires showing $||UA||_F = ||A||$ and $||AV||_F = ||A||$).
 - (c) Show the Frobenius norm is not induced by any vector norm.
- **Problem 2.** (10 points) Let $A = U\Sigma V^*$ be the singular value decomposition of $A \in \mathbb{C}^{m \times n}$ with rank $(A) = p \le n \le m$.
 - (a) Show $\operatorname{Col}(A) = \operatorname{Span}\{u_1, u_2, \dots, u_p\}$, where u_1, \dots, u_p are the first p columns of U.
 - (b) Show Null (A^*) = Span $\{u_{p+1}, u_{p+2}, \dots, u_m\}$.
 - (c) Without using the SVD or any other matrix decomposition, show $\operatorname{Col}(A)$ is orthogonal to $\operatorname{Null}(A^*)$.
- **Problem 3.** (10 points) Let $A \in \mathbb{C}^{m \times n}$, with $m \ge n$ and rank $(A) = p = n \ge 3$.
 - (a) Using the classical Gramm-Schmidt process, write out expressions for q_1, q_2, q_3 , the first three columns of Q in the QR decomposition of A.
 - (b) Show the vector q_3 found in part (a) is orthogonal to both q_1 and q_2 .
 - (c) Write an expression for the first Householder reflector H_1 , used to find the QR decomposition of A. Show H_1 is both unitary and Hermetian.
- **Problem 4.** (10 points) let P be a projector.
 - (a) Find all eigenvalues of P.
 - (b) Show Null $(P) = \operatorname{Col}(I P)$
 - (c) Show Null $(I P) = \operatorname{Col}(P)$.
- Problem 5. (10 points)
 - (a) Show that if $A \in \mathbb{C}^{m \times m}$, A has a Schur decomposition.
 - (b) Show that if a matrix $A \in \mathbb{C}^{m \times m}$ is normal, then A has a full set of m independent eigenvectors.
- Problem 6. (10 points)
 - (a) Show for $A \in C^{m \times n}$ and $x \in \mathbb{C}^n$, $x \in 0$, that

$$\sigma_1 \ge \frac{\|Ax\|_2}{\|x\|_2} \ge \sigma_n > 0,$$

where σ_1 and σ_n are the largest and smallest singular values of A. (If you want to use the fact that $||A||_2 = \sigma_1$, then you need to show this as well).

(b) Show $\operatorname{cond}(A)_2 = \sigma_1 / \sigma_n$

- **Problem 7.** (10 points) Let $\|\cdot\|$ be a subordinate (induced) matrix norm. If A is $n \times n$ invertible and and E is $n \times n$ with $\|A^{-1}\| \|E\| < 1$, then show
 - (a) A + E is nonsinguar
 - (b)

$$||(A+E)^{-1}|| \le \frac{||A^{-1}||}{1-||A^{-1}||||E||}.$$

Problem 8. Consider the matrix A given by

$$A = \begin{pmatrix} 10 & 1 & 2 & 3 \\ 1 & 25 & 4 & 6 \\ 2 & 4 & 20 & 8 \\ 3 & 6 & 8 & 25 \end{pmatrix}$$

- (a) What does Gerschgorin's disk theorem say about the location of each of the eigenvalues of A? Be specific.
- (b) Use the fact that A is symmetric positive definite (SPD) to improve your answer above about the location of the eigenvalues of A.
- (c) Suppose the eigenvalues of A are all distinct (they are) and satisfy $\lambda_1 > \lambda_2 > \lambda_3 > \lambda_4$. Describe an algorithm that could be used to determine λ_4 .