MAD 6406: Midterm. October 12, 2018

First Name:

Last Name:

"On my honor, I have neither given nor received unauthorized aid in doing this assignment."

Signature:

UFID:

Directions: Submit solutions to any 4 of the following 6 problems, and clearly indicate on the front page which 4 you would like graded.

No books, no notes, no tablets, no calculators, no computers, no phones!

Write your solutions clearly and legibly for full credit.

Good luck!

#	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
$\mathbf{100\%}$	40	

- **Problem 1.** (10 points) Let $A \in C^{m \times n}$ with rank $(A) = n \le m$. Let A = QR be the QR decomposition of A, and $A = Q_1R_1$ be the economy QR decomposition.
 - (a) Show $Q_1Q_1^*$ is an orthogonal projector.
 - (b) Show $Q_1Q_1^*y = y$ for any $y \in \operatorname{Col}(A)$.
 - (c) Show $Q_1Q_1^*z = 0$ for any $z \in \text{Null}(A^*)$.

Problem 2. (10 points)

- (a) Show the matrix 2-norm is invariant under unitary transformation: For $A \in \mathbb{C}^{m \times n}$ it holds that $||AV||_2 = ||A||$ and $||UA||_2 = ||A||$ for unitary matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$.
- (b) Show the Frobenius norm is invariant under unitary transformation.
- (c) Show the Frobenius norm is not induced by any vector norm.
- **Problem 3.** (10 points) Let $A = U\Sigma V^*$ be the singular value decomposition of $A \in \mathbb{C}^{m \times n}$ with rank $(A) = p \le n \le m$.
 - (a) Show $\operatorname{Col}(A) = \operatorname{Span}\{u_1, u_2, \dots, u_p\}$, where u_1, \dots, u_p are the first p columns of U.
 - (b) Show Null (A^*) = Span $\{u_{p+1}, u_{p+2}, \dots, u_m\}$.
 - (c) Without using the SVD or any other matrix decomposition, show $\operatorname{Col}(A)$ is orthogonal to $\operatorname{Null}(A^*)$.

Problem 4. (10 points)

- (a) Let A be a Hermetian matrix. Show the eigenvalues of A are real.
- (b) Let A be a Hermetian matrix. Show the eigenvectors of A corresponding to distinct eigenvalues are orthogonal.
- (c) Let $\{v_1, \ldots, v_n\}$ be a set of *n* mutually orthogonal vectors. Show $\{v_1, \ldots, v_n\}$ is a linearly independent set.
- **Problem 5.** (10 points) Let $A \in \mathbb{C}^{m \times n}$, with $m \ge n$ and rank $(A) = p = n \ge 3$.
 - (a) Using the classical Gramm-Schmidt process, write out expressions for q_1, q_2, q_3 , the first three columns of Q in the QR decomposition of A.
 - (b) Show the vector q_3 found in part (a) is orthogonal to both q_1 and q_2 .
 - (c) Write an expression for the first Householder reflector H_1 , used to find the QR decomposition of A. Show H_1 is both unitary and Hermetian.

Problem 6. (10 points) Let matrix $A \in \mathbb{C}^{m \times n}$, and let vector $b \in \mathbb{C}^m$ be written in terms of the decomposition $b = b_R + b_N$, where $b_R \in \text{Col}(A)$, and $b_N \in \text{Null}(A^*)$.

- (a) Let r denote the residual vector r = b Ax. Show that x solves the least-squares problem min $||b Ax||_2$ precisely when $Ax = b_R$ and $r = b_N$.
- (b) Write down an expression for the least-squares solution x_{ls} in terms of the singular value decomposition (SVD) of A.
- (c) Write down an expression for the least-squares solution x_{ls} in terms of the QR decomposition of A.