MAD 6406: Midterm. October 12, 2018

First Name: \qquad
\qquad
"On my honor, I have neither given nor received unauthorized aid in doing this assignment."

Signature: \qquad UFID: \qquad

Directions: Submit solutions to any 4 of the following 6 problems, and clearly indicate on the front page which 4 you would like graded.

No books, no notes, no tablets, no calculators, no computers, no phones! Write your solutions clearly and legibly for full credit.

Good luck!

$\#$	Points	Score
$\mathbf{1}$	10	
$\mathbf{2}$	10	
$\mathbf{3}$	10	
$\mathbf{4}$	10	
$\mathbf{5}$	10	
$\mathbf{6}$	10	
$\mathbf{1 0 0 \%}$	40	

Problem 1. (10 points) Let $A \in C^{m \times n}$ with $\operatorname{rank}(A)=n \leq m$. Let $A=Q R$ be the $Q R$ decomposition of A, and $A=Q_{1} R_{1}$ be the economy $Q R$ decomposition.
(a) Show $Q_{1} Q_{1}^{*}$ is an orthogonal projector.
(b) Show $Q_{1} Q_{1}^{*} y=y$ for any $y \in \operatorname{Col}(A)$.
(c) Show $Q_{1} Q_{1}^{*} z=0$ for any $z \in \operatorname{Null}\left(A^{*}\right)$.

Problem 2. (10 points)
(a) Show the matrix 2-norm is invariant under unitary transformation: For $A \in \mathbb{C}^{m \times n}$ it holds that $\|A V\|_{2}=\|A\|$ and $\|U A\|_{2}=\|A\|$ for unitary matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$.
(b) Show the Frobenius norm is invariant under unitary transformation.
(c) Show the Frobenius norm is not induced by any vector norm.

Problem 3. (10 points) Let $A=U \Sigma V^{*}$ be the singular value decomposition of $A \in \mathbb{C}^{m \times n}$ with $\operatorname{rank}(A)=p \leq n \leq m$.
(a) Show $\operatorname{Col}(A)=\operatorname{Span}\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$, where u_{1}, \ldots, u_{p} are the first p columns of U.
(b) Show $\operatorname{Null}\left(A^{*}\right)=\operatorname{Span}\left\{u_{p+1}, u_{p+2}, \ldots, u_{m}\right\}$.
(c) Without using the SVD or any other matrix decomposition, show $\operatorname{Col}(A)$ is orthogonal to $\operatorname{Null}\left(A^{*}\right)$.

Problem 4. (10 points)
(a) Let A be a Hermetian matrix. Show the eigenvalues of A are real.
(b) Let A be a Hermetian matrix. Show the eigenvectors of A corresponding to distinct eigenvalues are orthogonal.
(c) Let $\left\{v_{1}, \ldots v_{n}\right\}$ be a set of n mutually orthogonal vectors. Show $\left\{v_{1}, \ldots, v_{n}\right\}$ is a linearly independent set.

Problem 5. (10 points) Let $A \in \mathbb{C}^{m \times n}$, with $m \geq n$ and $\operatorname{rank}(A)=p=n \geq 3$.
(a) Using the classical Gramm-Schmidt process, write out expressions for q_{1}, q_{2}, q_{3}, the first three columns of Q in the $Q R$ decomposition of A.
(b) Show the vector q_{3} found in part (a) is orthogonal to both q_{1} and q_{2}.
(c) Write an expression for the first Householder reflector H_{1}, used to find the QR decomposition of A. Show H_{1} is both unitary and Hermetian.

Problem 6. (10 points) Let matrix $A \in \mathbb{C}^{m \times n}$, and let vector $b \in \mathbb{C}^{m}$ be written in terms of the decomposition $b=b_{R}+b_{N}$, where $b_{R} \in \operatorname{Col}(A)$, and $b_{N} \in \operatorname{Null}\left(A^{*}\right)$.
(a) Let r denote the residual vector $r=b-A x$. Show that x solves the least-squares problem min $\|b-A x\|_{2}$ precisely when $A x=b_{R}$ and $r=b_{N}$.
(b) Write down an expression for the least-squares solution $x_{l s}$ in terms of the singular value decomposition (SVD) of A.
(c) Write down an expression for the least-squares solution $x_{l s}$ in terms of the QR decomposition of A.

