# MAD 6406: Final exam. December 4, 2019 

First Name: $\qquad$
$\qquad$
"On my honor, I have neither given nor received unauthorized aid in doing this assignment."

Signature: $\qquad$ UFID: $\qquad$

Directions: Submit solutions to any 4 of the following 6 problems, and clearly indicate on the front page which 4 you would like graded.

No books, no notes, no tablets, no calculators, no computers, no phones! Write your solutions clearly and legibly for full credit.

## Good luck!

| $\#$ | Points | Score |
| :---: | :---: | :---: |
| $\mathbf{1}$ | 10 |  |
| $\mathbf{2}$ | 10 |  |
| $\mathbf{3}$ | 10 |  |
| $\mathbf{4}$ | 10 |  |
| $\mathbf{5}$ | 10 |  |
| $\mathbf{6}$ | 10 |  |
| $\mathbf{1 0 0} \%$ | 40 |  |

Problem 1. (10 points) Prove that every Hermitian positive definite matrix $A$ has a Cholesky decomposition.

Problem 2. (10 points)
(a) Show for $A \in C^{m \times n}$ and $x \in \mathbb{C}^{n}, x \neq 0$, that

$$
\sigma_{1} \geq \frac{\|A x\|_{2}}{\|x\|_{2}} \geq \sigma_{n}>0
$$

where $\sigma_{1}$ and $\sigma_{n}$ are the largest and smallest singular values of $A$. (If you want to use the fact that $\|A\|_{2}=\sigma_{1}$, then you need to show this as well).
(b) Show $\operatorname{cond}(A)_{2}=\sigma_{1} / \sigma_{n}$

Problem 3. ( 10 points) Let $\|\cdot\|$ be a subordinate (induced) matrix norm.
(a) If $E$ is $n \times n$ with $\|E\|<1$, then show $I+E$ is nonsingular and

$$
\left\|(I+E)^{-1}\right\| \leq \frac{1}{1-\|E\|}
$$

(b) If $A$ is $n \times n$ invertible and $E$ is $n \times n$ with $\left\|A^{-1}\right\|\|E\|<1$, then show $A+E$ is nonsingular and

$$
\left\|(A+E)^{-1}\right\| \leq \frac{\left\|A^{-1}\right\|}{1-\left\|A^{-1}\right\|\|E\|}
$$

Problem 4. (10 points)
(a) Suppose $A$ is $n \times n$ and nonsingular, and exact data $b$ and solution $x$ satisfy $A x=b$. Suppose data pertubation $\Delta b$ and solution perturbation $\Delta x$ further satisfy $A(x+$ $\Delta x)=(b+\Delta b)$. Show

$$
\frac{\|\Delta x\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\Delta b\|}{\|b\|} .
$$

(b) Prove Gerschgorin's disk theorem: Let $r_{i}=\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|$. Let $D_{i}$ be the disk in $\mathbb{C}$ with center $a_{i i}$ and radius $r_{i}$. If $\lambda$ is an eigenvalue of $A$, then $\lambda \in \bigcup_{i} D_{i}$; in other words, $\lambda$ is in at least one of the disks $D_{i}$.

Problem 5. Consider the matrix $A$ given by

$$
A=\left(\begin{array}{cccc}
10 & 1 & 2 & 3 \\
1 & 25 & 4 & 6 \\
2 & 4 & 20 & 8 \\
3 & 6 & 8 & 25
\end{array}\right)
$$

(a) What does Gerschgorin's disk theorem say about the location of each of the eigenvalues of $A$ ? Be specific.
(b) Suppose the eigenvalues of $A$ are all distinct (they are) and satisfy $\lambda_{1}>\lambda_{2}>\lambda_{3}>\lambda_{4}$. Describe an algorithm that could be used to determine $\lambda_{4}$.

Problem 6. (a) Let $v=(1,0,1,0,1)^{T}$ and $x=(1,1,2,3,5)^{T}$. Find $w \in \mathbb{C}^{5}$ and $c \in \mathbb{C}$ such that $x=c v+w$ and $w^{*} v=0$. Is there any other vector $w$ and/or scalar $c$ that will work? Explain.
(b) Compute the Cholesky decomposition of the matrix in Problem 5 or explain why it does not exist.

