MAD 6406: Midterm. October 2, 2019

First Name:

Last Name:

"On my honor, I have neither given nor received unauthorized aid in doing this assignment."

Signature:....

Directions: Submit solutions to any 4 of the following 6 problems, and clearly indicate on the front page which 4 you would like graded.

No books, no notes, no tablets, no calculators, no computers, no phones!

Write your solutions clearly and legibly for full credit.

Good luck!

#	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
100%	40	

Problem 1. (10 points) let P be a projector.

- (a) Find all eigenvalues of *P*.
- (b) Show Null $(P) = \operatorname{Col}(I P)$
- (c) Show Null $(I P) = \operatorname{Col}(P)$.
- **Problem 2.** (10 points) Let $A \in \mathbb{C}^{m \times n}$.
 - (a) Show the matrix 2-norm is invariant under unitary transformation: $||AV||_2 = ||A||$ and $||UA||_2 = ||A||$ for unitary matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$.
 - (b) Prove or give a counterexample: $||A||_2 \leq \sqrt{||A||_{\infty} ||A||_1}$. If you prove this, make sure to justify each nontrivial step.
 - (c) Prove or give a counterexample: $||A||_F \leq ||A||_2$, where $||A||_F$ is the Frobenius norm of A. If you prove this, make sure to justify each nontrivial step.
- **Problem 3.** (10 points) Let $A = U\Sigma V^*$ be the singular value decomposition (SVD) of $A \in \mathbb{C}^{m \times n}$ with rank $(A) = p \le n \le m$.
 - (a) Show $\{u_1, u_2, \ldots, u_p\}$, is a basis for Col(A), where u_1, \ldots, u_p are the first p columns of U.
 - (b) Show $\{u_{p+1}, u_{p+2}, \ldots, u_m\}$ is a basis for Null (A^*) .
 - (c) Show $||A||_2 = \sigma_1$, the first singular value of A.

Problem 4. (10 points)

- (a) Prove that every square matrix A has a Schur decomposition.
- (b) Prove that if square matrix A is both normal and upper triangular then it is diagonal.

Problem 5. (10 points)

- (a) Let $w \in \mathbb{C}^n$. Determine all eigenvalues of the Householder reflector H(w), including their multiplicities. Justify your answer.
- (b) Given $A \in \mathbb{C}^{m \times n}$ with $m \ge n$, show that A^*A is nonsingular if and only if A has full rank.
- **Problem 6.** (10 points) Define the matrices A and B by

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 2 & 0 \\ 1 & 2 & 0 \\ 1 & 2 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- (a) Find both full and economy singular value decompositions of A.
- (b) Find both full and economy QR decompositions of B.