MAD 6406: Midterm. October 2, 2019

First Name: Last Name: \qquad
"On my honor, I have neither given nor received unauthorized aid in doing this assignment."

Signature:

Directions: Submit solutions to any 4 of the following 6 problems, and clearly indicate on the front page which 4 you would like graded.

No books, no notes, no tablets, no calculators, no computers, no phones! Write your solutions clearly and legibly for full credit.

Good luck!

$\#$	Points	Score
$\mathbf{1}$	10	
$\mathbf{2}$	10	
$\mathbf{3}$	10	
$\mathbf{4}$	10	
$\mathbf{5}$	10	
$\mathbf{6}$	10	
$\mathbf{1 0 0 \%}$	40	

Problem 1. (10 points) let P be a projector.
(a) Find all eigenvalues of P.
(b) Show $\operatorname{Null}(P)=\operatorname{Col}(I-P)$
(c) Show $\operatorname{Null}(I-P)=\operatorname{Col}(P)$.

Problem 2. (10 points) Let $A \in \mathbb{C}^{m \times n}$.
(a) Show the matrix 2-norm is invariant under unitary transformation: $\|A V\|_{2}=\|A\|$ and $\|U A\|_{2}=\|A\|$ for unitary matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$.
(b) Prove or give a counterexample: $\|A\|_{2} \leq \sqrt{\|A\|_{\infty}\|A\|_{1}}$. If you prove this, make sure to justify each nontrivial step.
(c) Prove or give a counterexample: $\|A\|_{F} \leq\|A\|_{2}$, where $\|A\|_{F}$ is the Frobenius norm of A. If you prove this, make sure to justify each nontrivial step.

Problem 3. (10 points) Let $A=U \Sigma V^{*}$ be the singular value decomposition (SVD) of $A \in \mathbb{C}^{m \times n}$ with $\operatorname{rank}(A)=p \leq n \leq m$.
(a) Show $\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$, is a basis for $\operatorname{Col}(A)$, where u_{1}, \ldots, u_{p} are the first p columns of U.
(b) Show $\left\{u_{p+1}, u_{p+2}, \ldots, u_{m}\right\}$ is a basis for $\operatorname{Null}\left(A^{*}\right)$.
(c) Show $\|A\|_{2}=\sigma_{1}$, the first singular value of A.

Problem 4. (10 points)
(a) Prove that every square matrix A has a Schur decomposition.
(b) Prove that if square matrix A is both normal and upper triangular then it is diagonal.

Problem 5. (10 points)
(a) Let $w \in \mathbb{C}^{n}$. Determine all eigenvalues of the Householder reflector $H(w)$, including their multiplicities. Justify your answer.
(b) Given $A \in \mathbb{C}^{m \times n}$ with $m \geq n$, show that $A^{*} A$ is nonsingular if and only if A has full rank.

Problem 6. (10 points) Define the matrices A and B by

$$
A=\left(\begin{array}{lll}
1 & 2 & 0 \\
1 & 2 & 0 \\
1 & 2 & 0 \\
1 & 2 & 0
\end{array}\right), \quad B=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(a) Find both full and economy singular value decompositions of A.
(b) Find both full and economy QR decompositions of B.

