MAD 6406: Final exam. Due December 9, 2020, 3pm

First Name:

Last Name:

"On my honor, I have neither given nor received unauthorized aid in doing this assignment."

Signature:

UFID:

Directions: Submit solutions to any 4 of the following 6 problems, and clearly indicate on the front page which 4 you would like graded.

No books, no notes, no tablets, no calculators, no computers, no phones!

Write your solutions clearly and legibly for full credit.

Good luck!

#	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
100%	40	

- Problem 1. (10 points)
 - (a) Show the matrix 2-norm is invariant under unitary transformation: For $A \in \mathbb{C}^{m \times n}$ it holds that $||AV||_2 = ||A||$ and $||UA||_2 = ||A||$ for unitary matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$.
 - (b) Show the Frobenius norm is invariant under unitary transformation (as above this requires showing $||UA||_F = ||A||$ and $||AV||_F = ||A||$).
- **Problem 2.** (10 points) Let $A = U\Sigma V^*$ be the singular value decomposition of $A \in \mathbb{C}^{m \times n}$ with rank $(A) = p \le n \le m$.
 - (a) Show $\operatorname{Col}(A) = \operatorname{Span}\{u_1, u_2, \dots, u_p\}$, where u_1, \dots, u_p are the first p columns of U.
 - (b) Show Null (A^*) = Span $\{u_{p+1}, u_{p+2}, \dots, u_m\}$.
- **Problem 3.** (10 points) Prove or provide a counterexample to the following statements
 - (a) Any square matrix A has a decomposition Q^*TQ where Q is unitary and T is triangular.
 - (b) The spectral radius is equal to the matrix 2-norm for any normal matrix A.
- **Problem 4.** (10 points) Prove that every Hermitian positive definite matrix A has a Cholesky decomposition.
- **Problem 5.** (a) Prove Gerschgorin's disk theorem: Let $r_i = \sum_{j=1, j \neq i}^n |a_{ij}|$. Let D_i be the disk in \mathbb{C} with center a_{ii} and radius r_i . If λ is an eigenvalue of A, then $\lambda \in \bigcup_i D_i$; in other words, λ is in at least one of the disks D_i .
 - (b) Consider the matrix A given by

What does Gerschgorin's disk theorem say about the location of each of the eigenvalues of A? Be specific.

- **Problem 6.** (a) Let $v = (1, 0, 1, 0, 1)^T$ and $x = (1, 1, 2, 3, 5)^T$. Find $w \in \mathbb{C}^5$ and $c \in \mathbb{C}$ such that x = cv + w and $w^*v = 0$. Is there any other vector w and/or scalar c that will work? Explain.
 - (b) Compute the Cholesky decomposition of the matrix in **Problem 5** or explain why it does not exist.