MAD 6406: Final exam. Due December 9, 2020, 3pm

First Name: \qquad
\qquad
"On my honor, I have neither given nor received unauthorized aid in doing this assignment."

Signature: \qquad UFID: \qquad

Directions: Submit solutions to any 4 of the following 6 problems, and clearly indicate on the front page which 4 you would like graded.

No books, no notes, no tablets, no calculators, no computers, no phones! Write your solutions clearly and legibly for full credit.

Good luck!

$\#$	Points	Score
$\mathbf{1}$	10	
$\mathbf{2}$	10	
$\mathbf{3}$	10	
$\mathbf{4}$	10	
$\mathbf{5}$	10	
$\mathbf{6}$	10	
$\mathbf{1 0 0 \%}$	40	

Problem 1. (10 points)
(a) Show the matrix 2-norm is invariant under unitary transformation: For $A \in \mathbb{C}^{m \times n}$ it holds that $\|A V\|_{2}=\|A\|$ and $\|U A\|_{2}=\|A\|$ for unitary matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$.
(b) Show the Frobenius norm is invariant under unitary transformation (as above this requires showing $\|U A\|_{F}=\|A\|$ and $\left.\|A V\|_{F}=\|A\|\right)$.

Problem 2. (10 points) Let $A=U \Sigma V^{*}$ be the singular value decomposition of $A \in \mathbb{C}^{m \times n}$ with $\operatorname{rank}(A)=p \leq n \leq m$.
(a) Show $\operatorname{Col}(A)=\operatorname{Span}\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$, where u_{1}, \ldots, u_{p} are the first p columns of U.
(b) Show $\operatorname{Null}\left(A^{*}\right)=\operatorname{Span}\left\{u_{p+1}, u_{p+2}, \ldots, u_{m}\right\}$.

Problem 3. (10 points) Prove or provide a counterexample to the following statements
(a) Any square matrix A has a decomposition $Q^{*} T Q$ where Q is unitary and T is triangular.
(b) The spectral radius is equal to the matrix 2 -norm for any normal matrix A.

Problem 4. (10 points) Prove that every Hermitian positive definite matrix A has a Cholesky decomposition.

Problem 5. (a) Prove Gerschgorin's disk theorem: Let $r_{i}=\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|$. Let D_{i} be the disk in \mathbb{C} with center $a_{i i}$ and radius r_{i}. If λ is an eigenvalue of A, then $\lambda \in \bigcup_{i} D_{i}$; in other words, λ is in at least one of the disks D_{i}.
(b) Consider the matrix A given by

$$
A=\left(\begin{array}{cccc}
10 & 1 & 2 & 3 \\
1 & 25 & 4 & 6 \\
2 & 4 & 20 & 8 \\
3 & 6 & 8 & 25
\end{array}\right)
$$

What does Gerschgorin's disk theorem say about the location of each of the eigenvalues of A ? Be specific.

Problem 6. (a) Let $v=(1,0,1,0,1)^{T}$ and $x=(1,1,2,3,5)^{T}$. Find $w \in \mathbb{C}^{5}$ and $c \in \mathbb{C}$ such that $x=c v+w$ and $w^{*} v=0$. Is there any other vector w and/or scalar c that will work? Explain.
(b) Compute the Cholesky decomposition of the matrix in Problem 5 or explain why it does not exist.

