MAD 6406: Final exam. December 15, 2021

First Name: \qquad
\qquad
"On my honor, I have neither given nor received unauthorized aid in doing this assignment."

Signature: \qquad UFID: \qquad

Directions: Submit solutions to any 4 of the following 5 problems, and clearly indicate on the front page which 4 you would like graded.

No books, no notes, no tablets, no calculators, no computers, no phones! Write your solutions clearly and legibly for full credit.

Good luck!

$\#$	Points	Score
$\mathbf{1}$	10	
$\mathbf{2}$	10	
$\mathbf{3}$	10	
$\mathbf{4}$	10	
$\mathbf{5}$	10	
$\mathbf{1 0 0 \%}$	40	

Problem 1. (10 points)
(a) Show the matrix 2-norm is invariant under unitary transformation: For $A \in \mathbb{C}^{m \times n}$ it holds that $\|A V\|_{2}=\|A\|$ and $\|U A\|_{2}=\|A\|$ for unitary matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$.
(b) Show the Frobenius norm is invariant under unitary transformation (as above this requires showing $\|U A\|_{F}=\|A\|$ and $\left.\|A V\|_{F}=\|A\|\right)$.

Problem 2. (10 points) Prove or provide a counterexample to the following statements
(a) Any square matrix A has a decomposition $Q^{*} T Q$ where Q is unitary and T is triangular.
(b) The spectral radius is equal to the matrix 2 -norm for any square matrix A.

Problem 3. (10 points)
(a) Show for full rank $A \in C^{m \times n}$ and $x \in \mathbb{C}^{n}, x \neq 0$, that

$$
\sigma_{1} \geq \frac{\|A x\|_{2}}{\|x\|_{2}} \geq \sigma_{n}>0
$$

where σ_{1} and σ_{n} are the largest and smallest singular values of A. (If you want to use the fact that $\|A\|_{2}=\sigma_{1}$, then you need to show this as well).
(b) Show $\operatorname{cond}(A)_{2}=\sigma_{1} / \sigma_{n}$

Problem 4. (10 points) For $x, y>0$, consider computing $f(x, y)=\sqrt{y+x^{2}}-\sqrt{y}$ in floating-point arithmetic with machine precision ϵ_{m}.
(a) Explain the difficulties in computing $f(x, y)$, if $x^{2} \ll y$. What are the absolute and relative errors if $x^{2} / y<\epsilon_{m}$, if $f(x, y)$ is computed directly from the form given above?
(b) Suppose $x^{2} / y<\epsilon_{m}$. Describe a way to compute $f(x, y)$ with more accuracy in this situation.

Problem 5. (10 points) Compute the Cholesky decomposition of the following matrix, or explain why it does not exist.

$$
A=\left(\begin{array}{cccc}
1 & 1 & 2 & 0 \\
1 & 5 & 4 & 2 \\
2 & 4 & 14 & 1 \\
0 & 2 & 1 & 5
\end{array}\right)
$$

