MAD 6406: Midterm. October 2, 2019

First Name:

Last Name:

"On my honor, I have neither given nor received unauthorized aid in doing this assignment."

Signature:....

Directions: Submit solutions to any 3 of the following 4 problems, and clearly indicate on the front page which 3 you would like graded.

No books, no notes, no tablets, no calculators, no computers, no phones!

Write your solutions clearly and legibly for full credit.

Good luck!

#	Points	Score
1	10	
2	10	
3	10	
4	10	
100 %	30	

- **Problem 1.** (10 points) Let $A = U\Sigma V^*$ be the singular value decomposition (SVD) of $A \in \mathbb{C}^{m \times n}$ with rank $(A) = p \le n \le m$.
 - (a) Show $\{u_1, u_2, \ldots, u_p\}$, is a basis for Col(A), where u_1, \ldots, u_p are the first p columns of U.
 - (b) Show $\{u_{p+1}, u_{p+2}, \ldots, u_m\}$ is a basis for Null (A^*) .
 - (c) Show $||A||_2 = \sigma_1$, the first singular value of A.
- **Problem 2.** (10 points) Show the matrix norm equality for $A \in \mathbb{C}^{m \times n}$

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|$$

Problem 3. (10 points)

- (a) Prove that every square matrix A has a Schur decomposition.
- (b) Prove that if square matrix A is both normal and upper triangular then it is diagonal.
- **Problem 4.** (10 points) Let $P \in \mathbb{C}^{m \times m}$ be a projector. Show that $||P||_2 = 1$ if and only if P is an orthogonal projector.