MAD 6406: Midterm. October 2, 2019

First Name: Last Name:
"On my honor, I have neither given nor received unauthorized aid in doing this assignment."

Signature:

Directions: Submit solutions to any 3 of the following 4 problems, and clearly indicate on the front page which 3 you would like graded.

No books, no notes, no tablets, no calculators, no computers, no phones! Write your solutions clearly and legibly for full credit.

Good luck!

$\#$	Points	Score
$\mathbf{1}$	10	
$\mathbf{2}$	10	
$\mathbf{3}$	10	
$\mathbf{4}$	10	
$\mathbf{1 0 0 \%}$	30	

Problem 1. (10 points) Let $A=U \Sigma V^{*}$ be the singular value decomposition (SVD) of $A \in \mathbb{C}^{m \times n}$ with $\operatorname{rank}(A)=p \leq n \leq m$.
(a) Show $\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$, is a basis for $\operatorname{Col}(A)$, where u_{1}, \ldots, u_{p} are the first p columns of U.
(b) Show $\left\{u_{p+1}, u_{p+2}, \ldots, u_{m}\right\}$ is a basis for $\operatorname{Null}\left(A^{*}\right)$.
(c) Show $\|A\|_{2}=\sigma_{1}$, the first singular value of A.

Problem 2. (10 points) Show the matrix norm equality for $A \in \mathbb{C}^{m \times n}$

$$
\|A\|_{\infty}=\max _{1 \leq i \leq m} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

Problem 3. (10 points)
(a) Prove that every square matrix A has a Schur decomposition.
(b) Prove that if square matrix A is both normal and upper triangular then it is diagonal.

Problem 4. (10 points) Let $P \in \mathbb{C}^{m \times m}$ be a projector. Show that $\|P\|_{2}=1$ if and only if P is an orthogonal projector.

