MAD 6407: Final exam. April 30, 2019

First Name:

Last Name:

"On my honor, I have neither given nor received unauthorized aid in doing this assignment."

Signature:

UFID:

Directions: Submit solutions to any 5 of the following 6 problems, and clearly indicate on the front page which 5 you would like graded.

No books, no notes, no tablets, no calculators, no computers, no phones!

Write your solutions clearly and legibly for full credit.

Good luck!

#	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
100%	50	

Problem 1. (10 points)

- (a) Let $g(x) = \sqrt{1+x^2}$. Show that the Newton iteration for finding a zero of g'(x) converges to zero for $|x_0| < 1$ and diverges for $|x_0| > 1$.
- (b) Consider using Newton's method to find $x \in \mathbb{R}^n$ such that F(x) = 0, for $F : D \subseteq \mathbb{R}^n \to \mathbb{R}^n$, where F is continuously differentiable on D. Write down the Newton iteration for finding x_{k+1} from x_k .

Problem 2. (10 points)

- (a) Define the maximum norm $||f||_{C[a,b]}$ for a function $f \in C[a,b]$.
- (b) Prove for any $f \in C[a, b]$ and integer $n \ge 0$ that the best uniform approximation of f in P_n is unique.

Problem 3. (10 points) Find the values of α and β that minimize

$$\int_{-1}^{1} (x^2 - (\alpha x - \beta))^2 \, \mathrm{d} x$$

Problem 4. (10 points)

(a) Consider the inner product on $C[0,\infty)$ given by

$$(f,g) = \int_0^\infty f(t)g(t)e^{-t} \,\mathrm{d}\,t.$$

Find three orthonormal polynomials π_0, π_1, π_2 on $[0, \infty)$ with respect to the given inner product such that the degree of π_n is equal to n, n = 0, 1, 2.

(b) Find the nodes t_1 and t_2 and weights w_1 and w_2 which yield the weighted Gaussian Quadrature formula

$$\int_0^\infty f(t)e^{-t} \, \mathrm{d}\, t \approx w_1 f(t_1) + w_2 f(t_2)$$

with degree of exactness m = 3. You should find the nodes exactly, and may leave the weights w_1, w_2 in integral form.

- **Problem 5.** (10 points) Let $\{\phi_k\}_{k=0}^{n+1}$ be a set of orthogonal polynomials on [a, b] with respect to inner product $(f, g) = \int_a^b f(x)g(x)w(x) \, \mathrm{d} x$. Show that ϕ_k has k distinct roots $\{x_j^{(k)}\}_{j=1}^k$ with $x_i^{(k)} \in [a, b], j = 1, \ldots, k$.
- **Problem 6.** (10 points) Let $x_0 = a$, $x_1 = a + h$ and $x_2 = b = a + 2h$, and let $f \in C^2[a, b]$.
 - (a) Construct the central difference approximation to $f'(x_1)$ based on the \mathcal{P}_2 interpolant of f on [a, b] with interpolation points x_0, x_1, x_2 (you should explicitly show how the central difference approximation is derived from the interpolant).
 - (b) Recall that the central difference approximation satisfies $|f'(x_1) p'_2(x_1)| \leq \frac{Mh^2}{6}$, where M is a constant that depends on f. Suppose the data is noisy and the approximation is based on the values f_i where $f_i - f(x_i) = \epsilon_i$ with $|\epsilon_i| < \epsilon$, i = 0, 1, 2, for a given value of ϵ . What is the best accuracy with which $f'(x_1)$ can be approximated? For what value of h is it attained?