MAD 6407: Final exam. April 30, 2019

First Name: Last Name: \qquad
"On my honor, I have neither given nor received unauthorized aid in doing this assignment."

Signature: \qquad UFID: \qquad

Directions: Submit solutions to any 5 of the following 6 problems, and clearly indicate on the front page which 5 you would like graded.

No books, no notes, no tablets, no calculators, no computers, no phones! Write your solutions clearly and legibly for full credit.

Good luck!

$\#$	Points	Score
$\mathbf{1}$	10	
$\mathbf{2}$	10	
$\mathbf{3}$	10	
$\mathbf{4}$	10	
$\mathbf{5}$	10	
$\mathbf{6}$	10	
$\mathbf{1 0 0 \%}$	50	

Problem 1. (10 points)
(a) Let $g(x)=\sqrt{1+x^{2}}$. Show that the Newton iteration for finding a zero of $g^{\prime}(x)$ converges to zero for $\left|x_{0}\right|<1$ and diverges for $\left|x_{0}\right|>1$.
(b) Consider using Newton's method to find $x \in \mathbb{R}^{n}$ such that $F(x)=0$, for $F: D \subseteq$ $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, where F is continuously differentiable on D. Write down the Newton iteration for finding x_{k+1} from x_{k}.

Problem 2. (10 points)
(a) Define the maximum norm $\|f\|_{C[a, b]}$ for a function $f \in C[a, b]$.
(b) Prove for any $f \in C[a, b]$ and integer $n \geq 0$ that the best uniform approximation of f in P_{n} is unique.

Problem 3. (10 points) Find the values of α and β that minimize

$$
\int_{-1}^{1}\left(x^{2}-(\alpha x-\beta)\right)^{2} \mathrm{~d} x
$$

Problem 4. (10 points)
(a) Consider the inner product on $C[0, \infty)$ given by

$$
(f, g)=\int_{0}^{\infty} f(t) g(t) e^{-t} \mathrm{~d} t
$$

Find three orthonormal polynomials $\pi_{0}, \pi_{1}, \pi_{2}$ on $[0, \infty)$ with respect to the given inner product such that the degree of π_{n} is equal to $n, n=0,1,2$.
(b) Find the nodes t_{1} and t_{2} and weights w_{1} and w_{2} which yield the weighted Gaussian Quadrature formula

$$
\int_{0}^{\infty} f(t) e^{-t} \mathrm{~d} t \approx w_{1} f\left(t_{1}\right)+w_{2} f\left(t_{2}\right)
$$

with degree of exactness $m=3$. You should find the nodes exactly, and may leave the weights w_{1}, w_{2} in integral form.
Problem 5. (10 points) Let $\left\{\phi_{k}\right\}_{k=0}^{n+1}$ be a set of orthogonal polynomials on $[a, b]$ with respect to inner product $(f, g)=\int_{a}^{b} f(x) g(x) w(x) \mathrm{d} x$. Show that ϕ_{k} has k distinct roots $\left\{x_{j}^{(k)}\right\}_{j=1}^{k}$ with $x_{j}^{(k)} \in[a, b], j=1, \ldots, k$.
Problem 6. (10 points) Let $x_{0}=a, x_{1}=a+h$ and $x_{2}=b=a+2 h$, and let $f \in C^{2}[a, b]$.
(a) Construct the central difference approximation to $f^{\prime}\left(x_{1}\right)$ based on the \mathcal{P}_{2} interpolant of f on $[a, b]$ with interpolation points x_{0}, x_{1}, x_{2} (you should explicitly show how the central difference approximation is derived from the interpolant).
(b) Recall that the central difference approximation satisfies $\left|f^{\prime}\left(x_{1}\right)-p_{2}^{\prime}\left(x_{1}\right)\right| \leq \frac{M h^{2}}{6}$, where M is a constant that depends on f. Suppose the data is noisy and the approximation is based on the values f_{i} where $f_{i}-f\left(x_{i}\right)=\epsilon_{i}$ with $\left|\epsilon_{i}\right|<\epsilon, \quad i=$ $0,1,2$, for a given value of ϵ. What is the best accuracy with which $f^{\prime}\left(x_{1}\right)$ can be approximated? For what value of h is it attained?

