MAD 6407: Midterm. February 22, 2019

First Name:

Last Name:

"On my honor, I have neither given nor received unauthorized aid in doing this assignment."

Signature:

UFID:

Directions: Submit solutions to any 4 of the following 5 problems, and clearly indicate on the front page which 4 you would like graded.

No books, no notes, no tablets, no calculators, no computers, no phones!

Write your solutions clearly and legibly for full credit.

Good luck!

#	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
\mathbf{M}	10	
100%	50	

(* M is the Matlab component)

- **Problem 1.** (10 points) Consider the fixed point problem x = f(x) where $f(x) = e^{-(1+x)}$.
 - (a) Find the largest open interval in \mathbb{R} where f(x) is a contraction.
 - (b) Suppose a fixed-point iteration $x_{k+1} = f(x_k)$ is run starting from $x_0 = -10$. Will the iteration converge or diverge? Explain.
- **Problem 2.** (10 points) Consider using Newton's method to find $x \in \mathbb{R}^n$ such that F(x) = 0, for $F: D \subseteq \mathbb{R}^n \to \mathbb{R}^n$, where D is open and convex and F is continuously differentiable on D.
 - (a) Write down the Newton iteration for finding x_{k+1} from x_k .
 - (b) Suppose \bar{x} satisfies $F(\bar{x}) = 0$; and J(x), the Jacobian of F evaluated at x satisfies $\|J^{-1}(x)\| \leq \mu$ for some number $\mu > 0$ for all x in a neighborhood $N \subseteq D$ of \bar{x} . Show for $x_k \in N$ that

$$||x_{k+1} - \bar{x}|| \le \mu ||\bar{x} - x_k|| \cdot \max_{0 \le t \le 1} ||J(x_k + t(\bar{x} - x_k)) - J(x_k)||.$$

- **Problem 3.** (10 points) Consider the data points $(x_1, y_1) = (0, -1), (x_2, y_2) = (1, -2), (x_3, y_3) = (2, 3).$
 - (a) Construct the Lagrange form of the interpolating polynomial through (x_1, y_1) , (x_2, y_2) and (x_3, y_3) . Leave your answer in the form of a linear combination of basis functions (but write out explicitly what the basis functions and coefficients are).
 - (b) Construct the Newton form of the interpolating polynomial through (x_1, y_1) , (x_2, y_2) and (x_3, y_3) . Leave your answer in the form of a linear combination of basis functions (but write out explicitly what the basis functions and coefficients are).
 - (c) Let $(x_4, y_4) = (3, -1)$. Construct the interpolating polynomial through (x_1, y_1) , (x_2, y_2) , (x_3, y_3) and (x_4, y_4) . You may use any form of the interpolating polynomial that you like.
- **Problem 4.** (10 points) Consider the function

$$t(x) = \begin{cases} t_1(x) = (x+1)^3, & -1 \le x \le 0\\ t_2(x) = (1-x)^3, & 0 \le x \le 1 \end{cases}$$

- (a) Is t(x) a cubic spline on $-1 \le x \le 1$? If so, what kind?
- (b) Find a cubic spline of the form

$$v(x) = \begin{cases} v_1(x) = (x+1)^3 + a_1x + b_1, & -1 \le x \le 0\\ v_2(x) = (1-x)^3 + a_2x + b_2, & 0 \le x \le 1 \end{cases}$$

that interpolates the endpoint data v(-1) = 0, v(1) = 1.

(c) Suppose you were asked to find a cubic spline v(x) of the form given above in (b) that interpolates the data v(-1) = 0, v(0) = 5, v(1) = 1. Find such a spline or explain why there is no solution.

Problem 5. (10 points) Consider the interval [a, b] with the partition $a = x_1 < x_2 < \cdots < x_n < x_{n+1} = b$. Suppose s(x) is the natural cubic spline that interpolates the data $\{(x_i, y_i)\}_{i=1}^{n+1}$, and that $g \in C^2[a, b]$ interpolates the same data. Show that

$$\int_{a}^{b} (s''(x))^{2} \, \mathrm{d} x \le \int_{a}^{b} (g''(x))^{2} \, \mathrm{d} x.$$