MAD 6407: Midterm. February 22, 2019

First Name: \qquad
\qquad
"On my honor, I have neither given nor received unauthorized aid in doing this assignment."

Signature: \qquad UFID: \qquad

Directions: Submit solutions to any 4 of the following 5 problems, and clearly indicate on the front page which 4 you would like graded.

No books, no notes, no tablets, no calculators, no computers, no phones! Write your solutions clearly and legibly for full credit.

Good luck!

$\#$	Points	Score
$\mathbf{1}$	10	
$\mathbf{2}$	10	
$\mathbf{3}$	10	
$\mathbf{4}$	10	
$\mathbf{5}$	10	
\mathbf{M}	10	
$\mathbf{1 0 0 \%}$	50	

(* M is the Matlab component)

Problem 1. (10 points) Consider the fixed point problem $x=f(x)$ where $f(x)=e^{-(1+x)}$.
(a) Find the largest open interval in \mathbb{R} where $f(x)$ is a contraction.
(b) Suppose a fixed-point iteration $x_{k+1}=f\left(x_{k}\right)$ is run starting from $x_{0}=-10$. Will the iteration converge or diverge? Explain.

Problem 2. (10 points) Consider using Newton's method to find $x \in \mathbb{R}^{n}$ such that $F(x)=0$, for $F: D \subseteq R^{n} \rightarrow \mathbb{R}^{n}$, where D is open and convex and F is continuously differentiable on D.
(a) Write down the Newton iteration for finding x_{k+1} from x_{k}.
(b) Suppose \bar{x} satisfies $F(\bar{x})=0$; and $J(x)$, the Jacobian of F evaluated at x satisfies $\left\|J^{-1}(x)\right\| \leq \mu$ for some number $\mu>0$ for all x in a neighborhood $N \subseteq D$ of \bar{x}. Show for $x_{k} \in N$ that

$$
\left\|x_{k+1}-\bar{x}\right\| \leq \mu\left\|\bar{x}-x_{k}\right\| \cdot \max _{0 \leq t \leq 1}\left\|J\left(x_{k}+t\left(\bar{x}-x_{k}\right)\right)-J\left(x_{k}\right)\right\| .
$$

Problem 3. (10 points) Consider the data points $\left(x_{1}, y_{1}\right)=(0,-1),\left(x_{2}, y_{2}\right)=(1,-2),\left(x_{3}, y_{3}\right)=$ $(2,3)$.
(a) Construct the Lagrange form of the interpolating polynomial through $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$. Leave your answer in the form of a linear combination of basis functions (but write out explicitly what the basis functions and coefficients are).
(b) Construct the Newton form of the interpolating polynomial through $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$. Leave your answer in the form of a linear combination of basis functions (but write out explicitly what the basis functions and coefficients are).
(c) Let $\left(x_{4}, y_{4}\right)=(3,-1)$. Construct the interpolating polynomial through $\left(x_{1}, y_{1}\right)$, $\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ and $\left(x_{4}, y_{4}\right)$. You may use any form of the interpolating polynomial that you like.

Problem 4. (10 points) Consider the function

$$
t(x)=\left\{\begin{array}{lc}
t_{1}(x)=(x+1)^{3}, & -1 \leq x \leq 0 \\
t_{2}(x)=(1-x)^{3}, & 0 \leq x \leq 1
\end{array}\right.
$$

(a) Is $t(x)$ a cubic spline on $-1 \leq x \leq 1$? If so, what kind?
(b) Find a cubic spline of the form

$$
v(x)=\left\{\begin{array}{lc}
v_{1}(x)=(x+1)^{3}+a_{1} x+b_{1}, & -1 \leq x \leq 0 \\
v_{2}(x)=(1-x)^{3}+a_{2} x+b_{2}, & 0 \leq x \leq 1
\end{array}\right.
$$

that interpolates the endpoint data $v(-1)=0, v(1)=1$.
(c) Suppose you were asked to find a cubic spline $v(x)$ of the form given above in (b) that interpolates the data $v(-1)=0, v(0)=5, v(1)=1$. Find such a spline or explain why there is no solution.

Problem 5. (10 points) Consider the interval [a,b] with the partition $a=x_{1}<x_{2}<\cdots<x_{n}<$ $x_{n+1}=b$. Suppose $s(x)$ is the natural cubic spline that interpolates the data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n+1}$, and that $g \in C^{2}[a, b]$ interpolates the same data. Show that

$$
\int_{a}^{b}\left(s^{\prime \prime}(x)\right)^{2} \mathrm{~d} x \leq \int_{a}^{b}\left(g^{\prime \prime}(x)\right)^{2} \mathrm{~d} x
$$

