MAD 6407: Midterm. February 28, 2020

First Name: \qquad
\qquad
"On my honor, I have neither given nor received unauthorized aid in doing this assignment."

Signature: \qquad UFID: \qquad

Directions: Submit solutions to any 4 of the following 5 problems, and clearly indicate on the front page which 4 you would like graded.

No books, no notes, no tablets, no calculators, no computers, no phones! Write your solutions clearly and legibly for full credit.

Good luck!

$\#$	Points	Score
$\mathbf{1}$	10	
$\mathbf{2}$	10	
$\mathbf{3}$	10	
$\mathbf{4}$	10	
$\mathbf{5}$	10	
$\mathbf{1 0 0 \%}$	40	

Problem 1. (10 points)
(a) Find the value of α that minimizes

$$
\int_{0}^{1}\left(e^{x}-(1+\alpha x)\right)^{2} \mathrm{~d} x .
$$

(b) Find the values of α and β that minimize

$$
\int_{0}^{1}\left(e^{x}-\left(1+\alpha x+\beta x^{2}\right)\right)^{2} \mathrm{~d} x .
$$

Problem 2. (10 points)
(a) Define the maximum norm $\|f\|_{C[a, b]}$ for a function $f \in C[a, b]$.
(b) Prove for any $f \in C[a, b]$ and integer $n \geq 0$ that the best uniform approximation of f in P_{n} is unique.

Problem 3. (10 points) The third Chebyshev polynomial T_{3} is given by $T_{3}(x)=4 x^{3}-3 x$.
(a) Find the gobal interpolating polynomial on $-2 \leq x \leq 2$ that interpolates $f(x)=e^{x}$ at the Chebyshev nodes.
(b) Suppose you were given 200 pieces of data, equally spaced on $-2 \leq x \leq 2$, and you want to approximate values that lie between data points. Explain what kind of interpolant you would use to fit these data, and why.

Problem 4. (10 points) Suppose $f \in C^{n+1}[a, b]$, and let $p \in \mathcal{P}_{n}$ be a polynomial that interpolates the data $\left\{\left(x_{i}, f\left(x_{i}\right)\right\}_{i=0}^{n}\right.$, where x_{0}, \ldots, x_{n}, are distict points in $[a, b]$. Consider an arbitrary fixed $x \in[a, b]$, and derive an exact expression for the error $f(x)-p(x)$.

Problem 5. (10 points) Consider the interval [a,b] with the partition $a=x_{1}<x_{2}<\cdots<x_{n}<$ $x_{n+1}=b$. Suppose $s(x)$ is the natural cubic spline that interpolates the data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n+1}$, and that $g \in C^{2}[a, b]$ interpolates the same data. Show that

$$
\int_{a}^{b}\left(s^{\prime \prime}(x)\right)^{2} \mathrm{~d} x \leq \int_{a}^{b}\left(g^{\prime \prime}(x)\right)^{2} \mathrm{~d} x .
$$

