
Chapter 2

Foundations

2.1 Quantum calorimeter basics

The idea behind a quantum calorimeter is deceptively simple. A “calorimeter” is an in-
strument that measures energy,1 and the word “quantum” refers to the fact that we are
measuring the energy of quanta of light. Figure 2.1 is a schematic of the simplest calorimeter.
An absorber with heat capacity C is connected via a weak link with thermal conductance
G to a heat sink (also called a cold bath) at temperature Tb. If no power is applied, the
absorber temperature T (t) will be equal to the bath temperature. If a photon with energy
Eγ is absorbed, then the temperature of the absorber will rise and then cool back to the
bath temperature. The rise in temperature will be proportional to the energy of the photon
(∆Tγ = Eγ/C). Thus by measuring the rise in temperature ∆Tγ as each photon comes in,
the energy of the photons can be determined. That is quantum calorimetry in a nutshell.

If constant power is applied, then the absorber will rise to a temperature above the bath
temperature until the power flowing into the absorber equals the power flowing out through
the weak link into the cold bath. The thermal equation for this system is

C
dT (t)

dt
= P − Plink

(

T (t), Tb

)

+ Eγδ(t − tγ) (2.1)

where P is the heat flow into the absorber2, (which for now we are assuming constant or
zero), and Plink

(

T (t), Tb

)

is the power that flows from the absorber to the cold bath through
the weak link. Eγδ(t−tγ) is an absorption event; the delta function deposition of the energy
of photon γ into the absorber at time tγ . The functional form of Plink

(

T (t), Tb

)

depends on
the physics of the particular device, and for now we will assume

Plink

(

T (t), Tb

)

= G
(

T (t) − Tb

)

(2.2)

1According to Webster, a calorimeter is “any of several apparatuses for measuring quantities of absorbed
or evolved heat or for determining specific heats. From Latin calor.”

2This power usually refers to the power dissipated by a thermometer with bias applied, but it could be
radiation from the environment or any other parasitic load.

11



12 CHAPTER 2. FOUNDATIONS

Absorber

Tb

T(t)

Weak thermal link

Eγ
thermometer

Power
(heat)

Figure 2.1: A simple calorimeter. An X-ray is absorbed in a pixel which has a weak thermal link to a
cold bath. The pixel heats up when the X-ray deposits its energy in it, and then cools back down as heat
flows from the pixel to the cold bath. This temperature pulse is measured by a thermometer. The height
of the pulse is proportional to the energy of the X-ray.

which makes Eq. (2.1) linear, and taking tγ = 0 we can immediately solve to obtain

T (t) =
Eγ

C
e−t/τo +

(
P

G
+ Tb

)

(2.3)

with a time constant τo ≡ C/G and a quiescent absorber temperature P/G + Tb. So the
simplest calorimeter has an exponential decay response with a time constant of C/G and
an initial temperature rise ∆Tγ = Eγ/C. By measuring T (t) the energy and timing of
incoming photons can be determined.

A bolometer is essentially the same device, but looking at many photons instead of
one. The difference between a bolometer and a calorimeter is that the bolometer measures
the power, usually from a flux of photons hitting the absorber in rapid succession, while a
calorimeter usually measures the energy deposited by a single photon or particle.

For a basic overview of quantum calorimetry, see Stahle et al. (1999) or a more in depth
treatment in Stahle (2000). For a general review of low temperature detectors and their
applications, see Booth et al. (1996).

2.1.1 X-ray absorption and thermalization

In the calculation above we made the simplifying assumption that the photon thermalizes
immediately into the absorber. Next, we briefly look at the process of absorption and
thermalization.

In the 0.1 to 10 keV energy band (our band of interest for this thesis), the primary
interactions of X-rays with matter are the photoelectric effect, Rayleigh scattering, and
Compton scattering (Knoll, 1979). Rayleigh scattering is a coherent process where the X-
ray is deflected off one of the atoms in the absorber. No energy is deposited in the absorber.
Rayleigh scattering therefore does not produce any signal in our thermometer. In Compton
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scattering, the X-ray scatters off an electron and imparts some of its energy to it. For X-rays
in our energy band and the materials we use as absorbers, the cross section (probability to
for the interaction to occur, see Knoll (1979), chap. 2) of Compton scattering is orders of
magnitude less than for the photoelectric effect (Evans, 1955).

In the photoelectric effect, the X-ray is absorbed by an atom in the absorber, which
ejects a previously bound electron with an energy Ee = Eγ − Eb, where Eγ is the X-ray
energy and Eb is the binding energy of the electron to the atom. The binding energy of
the electron must be lower than the energy of the X-ray. The most probable origin of
the electron is the highest-energy bound state that satisfies the Eb < Eγ condition. For
absorbers like bismuth, rhenium and tin, X-rays in the 0.1 to 10 keV band will not have
enough energy to kick off a K shell electron (see Center for X-ray optics; NIST physical
reference data). L shell and higher bound electrons will be accessible depending on the
material and the X-ray energy.

This ejected electron is called a “photoelectron.” This photoelectron now has a much
higher energy (Ee) than the average electron energy, and has a huge cross section with other
electrons. The photoelectron’s mean free path3 is extremely short, and it collides with other
electrons, shedding its energy. Also, the interaction of the X-ray with the atom leaves the
atom with a vacancy in one of its bound shells. This vacancy is quickly filled by the capture
of a free electron and/or the rearrangement of electrons from the other shells of the atom.
In these processes one or more characteristic X-rays may be generated. In most cases these
secondary X-rays are quickly reabsorbed close to the original site through photoelectric
absorption with less tightly bound shells, and the process starts again. Another possibility
is that the atom relaxes by the emission of an Auger electron. In this process, the excitation
energy of the atom is transferred directly to one of its outer shell electrons, causing the
electron to be ejected from the atom. This electron (called an Auger electron) appears with
an energy given by the difference between the original atomic excitation energy and the
binding energy of shell from which the electron was ejected. This process dominates for
lower energy photoelectric absorption events and higher bound-shell vacancies.

Soon a ball of energetic electrons is created around the absorption point. As the number
of electrons in this process increases, the average energy of any one electron goes down. As
the mean electron energy goes down, electrons have a higher probability of releasing energy
by the emission of phonons.4 When the electron energy drops below a few eV, phonon
emission becomes the dominant energy-loss mechanism. The mean free path increases as
the energy of the particles decreases, so the size of the ball grows rapidly. Finally, the
mean energy of all the particles in the detector rises and a Maxwell-Boltzman distribution

3The mean free path is the average distance a particle travels before hitting another particle, a quantity
related to the cross section and the speed of the particle.

4In a perfect, infinite crystal made of atomic nuclei with their corresponding electrons that has been
cooled to absolute zero, conduction band electrons propagating through the crystal would never collide
with the nuclei. But no crystal is perfect or infinite or at absolute zero, and electrons do collide with the
nuclei and excite the crystal vibrational modes. One can equivalently describe these vibrational modes by
fundamental excitations called phonons. When we talk about phonons we are talking about the excited
vibrational modes of the crystal. Ashcroft and Mermin (1976, chap. 23) gives a good description of phonons
in the low-temperature limit.
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around a higher mean energy is reached. This is what we call “thermalization,” because
the increase in mean energy is detected as an increase in the temperature of the detector.5

Cabrera et al. (1993) has done Monte-Carlo simulations and taken measurements on Si
detectors to study these thermalization processes. Fann et al. (1993); Maris (1993); Tamura
(1993) are other excellent papers on the subject.

2.2 Transition-edge sensors

Many methods of measuring the absorber temperature exist. Our group uses thermistors,
i.e. resistive elements whose resistance is a function of temperature. This work is based on
superconducting-Transition-Edge Sensors (TESs), sometimes called Superconducting Phase
Thermometers (SPTs). A TES is a superconducting film operated in its superconducting
transition (Figure 2.2). Since the R vs. T curve is very steep at the TES operation point,
a small change in temperature causes a large change in resistance. Hoevers (2002) gives a
review of current TES efforts.

2.2.1 Electrothermal feedback and pulse decay time

Several different ways of maintaining the TES in its transition have been developed (Galea-
zzi, 1998; Irwin, 1995b; Meier et al., 2000). We use the method developed by Irwin (1995b)
called the electrothermal feedback TES (ETF-TES), and reproduce some of his theoretical
results below. In this scheme the TES is voltage biased, and Joule heating of the TES
maintains its temperature in the transition. The power input is a function of resistance
P (T ) = V 2/R(T ) and thus of temperature. Figure 2.2(b) shows the two power terms in
Eq. (2.1) vs. temperature for the curve in Figure 2.2(a) and using typical values for the
constants. When the TES is normal, the resistance is large, and the input power P (T ) is
lower than the output power, so the TES cools. As it cools, it enters its transition, and the
resistance rapidly decreases. As the resistance decreases, the input power P (T ) increases,
slowing the cooling rate. The TES enters a stable equilibrium between the power leaving
the device through the weak link and the power input through the Joule heating of the
TES (the crossing point in the figure). If the temperature drops, the input power rapidly
increases and heats the device back to the bias point. This is called negative ETF. The
negative ETF makes the TES a self-biasing device which is very stable and easy to operate.
As we shall see, the large negative slope of the output power curve that results from ETF
also causes the pulses to decay more quickly, an added benefit which allows for devices with
very high count rates. We will now derive the pulse decay time (τeff) and demonstrate its
dependence on the device parameters.

5Electron-phonon decoupling at low energies produces an out of equilibrium electron temperature which
is higher than the phonon temperature for 100’s of µsec (Roukes et al., 1985). In our transition-edge sensors
we measure the electron temperature.
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(a) Schematic of R vs. T curve for a transition-edge sensor. A TES is a supercon-
ducting film biased within its transition. Within the transition, a small temperature
change creates a large change in the resistance, making a very sensitive thermometer
within a small operating range.
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(b) Power into calorimeter at constant voltage V from bias V 2/R(T ) (at constant
V ) and power out of calorimeter through weak link as a function of temperature. The
crossing point is the stable quiescent operating point of the TES. Notice the very
sharp slope of the input power.

Figure 2.2: R and P vs. T for a TES
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To gauge the sharpness of the transition, we define the dimensionless parameter α:

α ≡ T

R(T )
∂R(T )

∂T
(2.4)

where, for now, we have assumed that the resistance is only a function of temperature (it
is also a function of current, but we will take that up in Chapter 3).

As we mentioned before, the functional form of the power output to the cold bath
through the weak link depends on the physics of the weak link. In our devices the power
output is of the form

Plink
(

T (t), Tb
)

= K
(

T (t)n − T n
b

)

(2.5)

where K is a constant and n is a number between 2 and 5 depending on the dominant
mechanism of heat transfer and the dimensionality of the link (Anghel et al. 1998; Ashcroft
and Mermin 1976, chap. 25).

Rewriting the thermal equation (Eq. (2.1)) we obtain

C
dT (t)

dt
=

V 2

R(T )
− K

(

T (t)n − T n
b

)

+ Eγδ(t − tγ) (2.6)

where again Eγδ(t − tγ) is a delta function input of energy Eγ at time tγ , i.e. a photon. In
quiescence

P =
V 2

R
= K(T n − T n

b ) (2.7)

where P is the input power at a particular bias V .6 To solve this non-linear differential
equation analytically we must linearize the system. Using Taylor expansion (the procedure
is explained in Section 3.1.1), we expand to first order in ∆T :

C∆Ṫ (t) =
V 2

R
− K(T n − T n

b ) − V 2

R2

∂R

∂T
∆T − nKT n−1∆T + Eγδ(t − tγ) (2.8)

where R and T are the quiescent values and ∆T is the dynamic variable. Then from
Eq. (2.7) the first two terms cancel. We define

G ≡ dP

dT
= nKT n−1 (2.9)

6Since we are operating in the transition of the TES, the change in temperature as R goes from zero
to Rn can be very small. If we assume that T = Tc (where Tc is the critical superconducting transition
temperature) for all points in the transition, then the quiescent power will be the same for any bias. Note
that we are referring to the quiescent value of the power. This is reflected in the almost horizontal slope of
the output power in Figure 2.2(b). The bias point is the intersection of the two lines.
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set P = V 2/R, and use Eq. (2.4) to arrive at

∆Ṫ (t) = −
(

αP

TC
+

G

C

)

∆T +
Eγ

C
δ(t − tγ) (2.10)

The solution to this equation as before is a simple exponential, but the effective time
constant is now

τeff =
τo

1 + αP
TG

(2.11)

Substituting the definitions above for P and G and using Eq. (2.7) we get the equivalent

τeff =
τo

1 + α
n

(

1 − T n
b

T n

) =
τo

1 + αφ
n

(2.12)

where

φ ≡
(

1 −
T n

b

T n

)

(2.13)

so φ goes from 1 to 0 as the bath temperature increases from absolute zero to the detector
temperature. With this nomenclature the variables are the operating temperature and the
base temperature; α and n can be determined from theory or more commonly from fitting
data for each device. To keep the derivations general we will resort to the αφ/n notation
sparingly.

Defining “extreme electrothermal feedback regime” as a state where Tn # T n
b and

α/n # 1 we can express the decay time as

τeff =
nτo

α
(2.14)

For large α, ETF can thus make TES calorimeters have much faster decay times than their
intrinsic time constants. We will see in the next section why it is desirable to have fast
decay times. Looking at Eq. (2.11), one could argue that if one had a device with α ∼ 5
(as in semiconductors), one could just increase G to decrease τo to get the desired decay
time. This is true, but in practice non-linear effects make it hard to achieve the same
decay times in semiconductor calorimeters that are found in TES calorimeters. The main
problem is power. As one increases G, one needs to increase the power into the thermistor
(per Eq. (2.7)) to keep the thermistor at its same operating point. In both semiconductor
and TES detectors, non-linear effects prevent the arbitrary increase of the input power. So
once this limit has been reached, increasing α is the only way to make the decay time faster.

A note to the reader: this discussion is valid only for ETF calorimeters and assuming
each X-ray is recorded for several decay-time constants after the peak (as explained in the
next sections). Other bias techniques or other filtering methods that record only to slightly
after the peak have different constraints and trade-offs. One must take great care when
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comparing across these methods, since one must look at count rate, dead time, and energy
resolution simultaneously.

2.2.2 Decay time and pile-up

To understand the importance of pulse decay time, we must talk about count rate, pile-up,
dead time, and energy resolution. Count rate is the number of X-rays per unit time that
hit the detector. Pile-up is the condition where an X-ray hits the detector, and while the
detector is still recovering from the increase in temperature imparted by this first X-ray, a
second X-ray hits. In a temperature vs. time plot, one sees the second X-ray on the “tail”
of the first. Dead time is the percentage of time the detector is unusable while operating.

As we will discuss in more detail in Sections 2.3 and 3.1.5, the best energy resolution
attainable by a calorimeter depends on various factors. One of these factors is bandwidth.
Bandwidth is the width in frequency space over which the signal-to-noise ratio (See Sec-
tion 3.1.3) is greater than some fiducial number, which we will take as 1. To get the high
energy resolution desired, we must record the time evolution of an X-ray event to several
times the decay time constant of the device. The longer we record the data, the larger our
bandwidth becomes. Of course, there is an obvious reason for not making these records
arbitrarily long: other X-rays will hit the detector. We want to make detectors that can
handle a large count rate of X-rays. This is where decay time comes in. The faster the decay
time, the less total time we need to record a particular pulse before we are ready for the next
one. Pile-up occurs when an X-ray hits the detector while we are still recording the previous
one. More complex algorithms must be used to untangle both photons and determine their
respective energies. These algorithms generally degrade the achievable resolution. Every
time this happens those two X-rays get a medium- or low-energy-resolution energy estimate,
and cannot be counted in the high-energy resolution histogram. The percentage of time
this happens accrues as dead time. We will discuss the other side of our bandwidth window
(the high frequency side) and its effect on energy resolution in Section 2.3.1.

Photon emission is a stochastic process. We can determine what the average count rate
in the detector is, but it is not possible to know a priori the time between any two consecu-
tive events. The time could be long, or two photons could arrive almost simultaneously. So
for any decay time and X-ray count rate there is pile-up. As the count rate or decay time
goes down, pile-up becomes a rare event. The relation between pile-up and dead time, for
a given count rate and decay time, obeys Poisson statistics and one must take these into
account when designing a detector.

2.2.3 Stability condition

The temperature evolution after a photon is absorbed at tγ = 0 is

∆T (t) =
Eγ

C
e−t/τeff (2.15)
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Using the definition of α and ∆I = − V
R2

∂R
∂T∆T we obtain the relation between current and

temperature7

∆I = −αI

T
∆T (2.16)

Thus the current will follow the equation

∆I(t) = −αI

T

Eγ

C
e−t/τeff

= −
(

1
τeff

− 1
τo

)
Eγ

V
e−t/τeff (2.17)

= ∆Imease
−t/τeff

where ∆Imeas = −Eγ

C
αI
T is the initial drop in current measured from the resulting increase

in resistance after the photon was absorbed.
Looking at Eq. (2.17) we see that for the current signal to be a decaying exponential,

τeff has to be a positive number. From Eq. (2.11) we see that τeff will be as long as

αP

TG
> −1 (2.18)

This equation defines the stability condition for this simple TES. Since P , G, and T are
always positive, the only way that expression can be negative is to have a negative α. The
sign of α depends on the slope of the R vs. T curve. For TESs, the slope is positive and
so is α. For silicon thermistors, the resistance increases as the temperature decreases, so
α is negative for these devices (a typical value is α = −5). This is why TESs are voltage
biased and silicon thermistors are current biased. Negative ETF will occur for voltage-biased
positive-α and current-biased negative-α thermistors.

It is interesting to note that the crossover between stable and unstable (positive and
negative τeff) does not occur when α = 0, rather when αP/T = −G. This effect can be
explained by looking at the energy flow in the calorimeter. To set up this explanation let
us take a short detour for another look at electrothermal feedback.

2.2.4 ETF revisited

Consider the calorimeter in Figure 2.1. In the steady state, with no noise sources (which
we will talk about in Section 2.3), and no incident radiation, there are only two ways for
energy to come in or go out of the calorimeter: through Joule heating of the thermistor, or
through the weak link to the cold bath. The weak link to the cold bath is always there, and
is a “pipe” through which any excess heat in the calorimeter will be siphoned away with a
time constant τo = C/G.

7Eq. (2.16) is valid only for perfect voltage bias and a resistance curve that is only a function of temper-
ature. See Section 3.1.1, Eq. (3.16).
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If one turns the current through the thermistor off, the Joule power will be zero, and
the quiescent temperature of the calorimeter will be the same as the cold bath temperature;
T = Tb. A photon incident on the calorimeter will heat it up to a temperature Tb + Eγ/C,
and consequently this heat will be released into the cold bath with a decaying exponential
form with a time constant of τo.

Now we turn the voltage across the thermistor on. The Joule power heats the calorime-
ter, and it comes to a stable equilibrium at some temperature T > Tb. As can be seen on
Figure 2.2(b), the Joule power dissipated in the TES is much larger than the power leaking
to the weak link into the cold bath for T < 100 mK, and the reverse for T > 100 mK.
The TES is stable only at T = 100 mK (Tb = 50 mK in the model used for the figure).
Now a photon is absorbed and heats the calorimeter to a temperature T +Eγ/C. Since the
temperature is higher than T , we see in Figure 2.2(b) that the Joule power drops. From
Eq. (2.10) we see that the term αP/T has the same units as thermal conductance, and
comes into the equation in the same place as G. In fact, these two terms act as two ther-
mal conductances in parallel, one real (the cold bath siphoning heat out of the calorimeter
through the weak link), and one virtual (the electrical circuit siphoning heat out of the
calorimeter by reducing the amount it put in). We can then make the definitions

GETF ≡ αP

T
τETF ≡ C

GETF
=

C
αP
T

=
αP

TG
τo (2.19)

G and GETF added in parallel give an effective ETF thermal conductance out of the
calorimeter of Geff = G + αP/T , for an effective time constant of

τeff =
C

Geff
=

C

G + GETF
=

C/G

1 + αP
TG

=
1

1
τo

+ 1
τETF

(2.20)

Now it is clear why ETF speeds up pulses. In extreme ETF, the “conductance” GETF =
αP/T # G and so dominates the effective time constant; in extreme ETF, τeff → τETF.

In fact, any power source applied to the calorimeter that is fed back (turned down in
response to a pulse) will act as a virtual conductance and exhibit this speed-up behavior.
Various techniques have been proposed and implemented to substitute or augment ETF
(Galeazzi, 1998; Meier et al., 2000; Nam et al., 1999). The advantages and disadvantages
of these other techniques need to be properly assessed.

It is now easy to see why the calorimeter stability point is not when α = 0. Under
voltage bias, when α is negative, the system is in positive feedback. For α < 0, αP/T is not
a conductance siphoning out heat, but a pipe pumping it in, in proportion to an excitation
∆T . But as long as |α|P/T < G, the heat can go out through G faster than it can get in
through αT/P , and the calorimeter is stable (although for this regime where α < 0 and the
calorimeter is still stable the time constant τeff > τo). In other words, as long as Eq. (2.18)
holds, a device in positive feedback (negative GETF) will still be stable. If αP/T < G,
then the positive feedback puts more power in the calorimeter than what goes out to the
cold bath through the conductance G, and the TES will heat up and “latch” at the normal
resistance Rn.
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Actually, when the TES is unstable, positive feedback will make the TES run away in
whatever direction a small perturbation takes it from the quiescent temperature. So if a
little dip in temperature occurs, the positive ETF will shut the power down and the TES
will “latch” at R = 0. Whether it goes to R = 0 or R = Rn just depends on the initial
perturbation, the important thing is that if the stability condition is not met, the TES is
unusable as a thermometer.

2.2.5 Energy integral

Since ∆P (t) = V∆I(t) for constant voltage bias, we can integrate the current to obtain the
total energy removed from the system from the reduction in Joule power,8 which will be

EJoule = −τeffV∆Imeas = − 1
1 + TG

αP

Eγ (2.21)

= − 1
1 + n

αφ

Eγ (2.22)

= −
(

1 − τeff

τo

)

Eγ (2.23)

As we can see, the decrease in Joule power does not integrate to the energy of the photon
for low values of α, but approaches that value as one moves into the extreme ETF regime,
where τeff → 0. For a detector with an α of 100 (representative or our current TESs), with
n = 4 and φ ∼ 1, EJoule = 0.96Eγ . For a detector with α = 5 (representative of our current
silicon thermistors), EJoule = 0.56Eγ . Note that this derivation assumes perfect voltage
bias and a resistance function that does not depend on current. Both these factors change
the measured energy, and we show that derivation in Section 3.1.1.

Finally, we point out that we are assuming that all the energy of the photon is deposited
and thermalizes in the TES, i.e., the thermalization efficiency is 1. If a fraction of the
energy of each photon is not thermalized, then this energy will not be measured, and
one must multiply the above Eγ by the thermalization efficiency to get the correct EJoule.
The loss mechanism is usually due to hot electron or hot phonon effects which make the
thermalization of the absorber non-ideal. For example, Miller (2001) finds the Stanford
optical tungsten TESs have a thermalization efficiency of 42% due to phonon losses to the
substrate.

2.2.6 Saturation in a TES

A TES is a very sensitive thermometer, but it only operates within a finite range of temper-
atures. This range is dictated by the width of the transition of the TES. In Figure 2.2(a)
the total transition width is about 1.5 mK. The linear portion is roughly 0.5 mK. If the
transition were wider, we would have a larger operating range, but at the same time the
gain of our thermistor would decrease, as the slope of the R vs. T curve decreases.

8This is basically the amount of energy siphoned by GETF.
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Figure 2.3: Assumed R vs. T curve for this thesis. ∆Tsat = Esat/C only for the single-pixel TES.

In a linear model, the resistance vs. temperature function is a straight line, with the
slope determined by αR

T evaluated at the steady state point of the real curve (Figure 2.2(a)).
For the purposes of this thesis, we will model the R-T curve as in Figure 2.3. The curve is
a straight line from zero to Rn and then abruptly becomes horizontal.

We define saturation energy as the photon energy that causes any TES in a calorimeter
to have a temperature swing large enough that its resistance reaches Rn. For a single pixel
calorimeter without a decoupled absorber, this energy is

Esat = C∆Tsat (2.24)

where ∆Tsat is the maximum temperature excursion from the operating point that is still
in the linear range. From the definition of α, we can rewrite this as

Esat =
C

α

∆Rsat

R
T (2.25)

If we assume we bias the device in the middle of its transition, then R = ∆Rsat = Rn/2,
and T = Tc. We then have

Esat ≈
C

α
Tc (2.26)

For any application, there is always a desired energy range one wants the detector to
operate in. The maximum energy one needs to be able to resolve determines Esat. This
in turn places constraints on the value of C, α and Tc. This saturation energy has direct
implications on the ultimate resolution of a TES, since (as we will see in the next section)
the theoretical resolution is a function of all these variables:

∆Erms ∝
√

C

α
T 2 ∝

√

Esat (2.27)

For Part I of this thesis, we will assume ∆Tsat = 0.5 mK, and since we are interested in
X-ray detectors, we will use an Esat = 6 keV, which means C = 1.92 pJ/K (using Eq. (2.24)).
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We will use 0.5 mK as the fiducial value of ∆Tsat for our single-pixel TES benchmarks, and
keep the overall temperature excursion of the position-sensitive TESs to this number. There
is nothing magical about 0.5 mK, we just need a yard stick to define saturation and that
value is consistent with our current data. Note that if this value for the heat capacity is
used in Eq. (2.26), with a 6 keV saturation energy and a critical temperature of 75 mK, we
obtain an α of 150. For this thesis we will use a more conservative α of 90, which is more
consistent with our data. Eq. (2.26) does not take into account the curvature of the real R
vs. T curves, which are not as steep near saturation as in the middle of the transition. We
will use Eq. (2.24) as our saturation condition.

There is a very important point that must be made here. The limiting factor for the
amount of energy the calorimeter can absorb and stay linear is the maximum change in
temperature that the thermistor incurs. In designs where the absorber is decoupled by
a thermal link from the thermistor, the initial rise in temperature of the absorber will
be E/Cabs, but the temperature rise of the thermistor will depend on the strength of
the thermal link (in the limit of a very weak thermal link, the thermistor’s temperature
change tends toward zero, and it acts as a bolometer). The problem is that the moment
one decouples the absorber from the thermistor, a phonon noise term due to this link
enters the equations, and worsens the energy resolution. But since a calorimeter cannot
be fully described by an energy resolution at a single energy, there are trade-offs to be
made between dynamic range, energy resolution at a particular energy of interest, and the
energy resolution as a function of energy. The non-linearities and range of operating and
analysis modes encountered when pushing the dynamic-range/energy-resolution envelope
do not allow for a succinct final answer. We will be looking at detectors with low heat
capacities in which we are able to see high energy X-rays because of the weak coupling
between the absorbers and the TESs. We will discuss this in Chapter 7. The noise from a
decoupled absorber is discussed in Appendix A.

2.3 Single-pixel energy resolution

To understand the energy resolution of a calorimeter, we will look at simple model of a
single-pixel thermistor calorimeter where all amplifier and other external noise sources are
assumed to be small enough to be negligible. In this case, we only have two sources of noise:
the Johnson noise from the resistor, and phonon noise from the connection to the cold bath.

Phonon noise is the thermodynamic power fluctuations through the thermal conductance
G connecting the calorimeter to the cold bath. These power fluctuations create temperature
fluctuations in the calorimeter. The heat capacity of the calorimeter and how well it is
coupled to the cold bath through the conductance G give the system its characteristic time
constant τo = C/G. This time constant is the decay time of a simple calorimeter with no
feedback. It is also the time constant that determines how fast the calorimeter can change
its temperature. Although the power fluctuations are fairly flat at all frequencies of interest,
the response of the calorimeter is not. Temperature fluctuations faster than the frequency
∼ 1/2πτo are damped, so the spectrum of the temperature fluctuations has a -3 dB point
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(a 1 pole roll-off) at 1/2πτo.
Johnson noise is the voltage fluctuations across any resistor due to the Brownian motion

of the electrons in the resistor. The frequency distribution of these fluctuations is white
for all frequencies of interest. These voltage fluctuations cause a change in the measured
resistance of the TES, and so become a source of noise.

The full calorimeter theory will be presented in Chapter 3, so we will just show some
of the general trends here. With these two sources of noise, the energy resolution of a
calorimeter in the limit where αP/TG # 1 can be expressed as (Irwin, 1995b):

∆EFWHM = 2.355 ×

√

4kBT 2C
1
α

√

n

2
(2.28)

where kB is Boltzman’s constant, T is the quiescent calorimeter temperature, C is the heat
capacity, α is defined in Eq. (2.4), and n is the exponent in Eq. (2.7). See Eq. (3.75) for a
more general expression of the energy the resolution.

Looking at the current signal for a pulse in Eq. (2.17) we see in the first line of that equa-
tion that the signal is proportional to α. Figure 2.4(a) shows a frequency power spectrum
of a photon hit (the signal) and the noise terms on a set of calorimeters with progressively
larger α. No electrothermal feedback has been applied to allow the intrinsic behavior to be
seen. For α = 1, both the signal and the phonon noise are below the horizontal Johnson
noise level. As α increases, the signal gets bigger and rises above the Johnson noise. The
“knee” of the curve occurs at the same frequency; without ETF, increasing α increases the
size of the signal but does not speed up the pulses. A measure of the energy resolution
can be made by looking at the signal-to-noise ratio (SNR). An quick estimate of the SNR
can be made by looking at how much area there is between the signal and the noise. As α
increases, even though the phonon noise increases along with the signal the SNR increases.
Eq. (2.28) shows that the energy resolution indeed gets better (smaller ∆E) for higher α.

Figure 2.4(b) shows the same set of calorimeters, but with ETF turned on. There are
two effects. First, pulse speed-up. Extreme ETF causes τeff → τETF = C/GETF ) nC/αG.
So as α increases, the “knee” (at 1/2πτeff ) occurs at higher and higher frequencies. The
second effect of ETF is to suppress all curves below 1/2πτeff . Note that for each α, the
amount suppressed in the signal, the Johnson noise and the phonon noise is the same, so
the SNR for the ETF curves is identical to that for the respective no-ETF curves. We will
see in Section 3.1.3 that this means the amount of ETF does not affect the resolution of a
calorimeter. It does change the decay time τeff .

If one had a device with an α of 10, one could try to obtain the same fast decay times
of the higher α devices by increasing G. Figure 2.5(a) shows a no-ETF plot of an α = 10
device at different values of G. The “knee” goes out in frequency, but note that per Eq. (2.7)
the power into the calorimeter must also increase as G increases to maintain the device in
the same place in its transition. The effect of this necessary increase in power is that the
energy resolution does not change. Thus, for all the curves in Figure 2.5 the resolution is
5 eV, just like the α = 10 device in Figure 2.4.
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Figure 2.4: Current noise for α of 1, 10, 100, and 1000. The lowest magnitude curves correspond to
α = 1, and the largest to α = 1000. The energy resolution in each case is 25, 5, 1.5, and 0.5 eV,
respectively.



26 CHAPTER 2. FOUNDATIONS

100 101 102 103 104 105 106
10-13

10-12

10-11

10-10

Frequency [Hz]

∆ 
I rm

s [A
/rt

H
z]

Total noise
Signal
Johnson noise
Phonon noise

(a) No ETF

100 101 102 103 104 105 106
10-13

10-12

10-11

10-10

Frequency [Hz]

∆ 
I rm

s [A
/rt

H
z]

Total noise
Signal
Johnson noise
Phonon noise

(b) With ETF

Figure 2.5: Current noise for α = 10, conductance of G, 10G, 100G, 1000G. The energy resolution for
each case is 5 eV.
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One might be tempted to think that the bigger the α the better, since one obtains
better resolution. The problem in this argument has to do with saturation. Since α is
a measure of the steepness of the transition, the bigger the α, the steeper the transition.
In Section 2.2.6 we imposed a fiducial temperature excursion of 1/2 mK for a device with
an α of 90. For each value of α, the temperature excursion to reach saturation and the
heat capacity needed must be calculated. The result is that, for a maximum photon energy
Esat with which the detector reaches saturation, the ratio C/α remains the same. Using
Eq. (2.26) we can rewrite the resolution as

∆EFWHM = 2.355 ×

√

4kBTEsat

√

n

2
(2.29)

So in the strong ETF limit, where Eq. (2.28) is valid, energy resolution is independent
of α (for the same saturation energy). For the low α case, where one might not be in the
strong ETF limit, Eq. (3.75) must be used. This is the case of silicon thermistors, whose
value of α is ∼ −5.

2.3.1 Energy resolution and thermalization

In Section 2.2.2 we discussed the need to have long integration times to get more bandwidth
at the lower frequencies. Looking at Figure 2.4(b) for the case α = 100, we see the signal
rolls off at about 300 Hz. To get good energy resolution we would want to get to as low
an energy as possible given the rate and pile-up constraints. Up to now we have been
assuming that the thermalization takes place instantly, which makes the rise of the pulse
instantaneous also. The Fourier transform of this perfect exponential is the signal curve
shown in Figure 2.4(b). But in the real world, there is some thermalization time, due to the
processes discussed in Section 2.1.1. This means the rise of the pulse is not instantaneous,
but has a rise that can be modeled as a rising exponential. This will create a second roll
off at a frequency 1/2πτr where τr is the rise time constant. This roll off will make the
signal cross over the noise at a lower frequency, lowering the bandwidth and thus reducing
the energy resolution. If the thermalization time is fast enough that this roll off occurs at
frequencies above the bandwidth imposed by the ideal signal and Johnson noise crossover,
then the thermalization time does not affect the resolution since it is outside the defined
bandwidth. Thus fast thermalization is important in single-pixel TESs.

As we will see in Section 2.4.1 and Section 4.5.1, for a PoST there is always some
degradation in energy resolution from roll offs at high frequencies. The trick is to loose as
little resolution as possible while still determining the position of the X-ray absorption in
the PoST. We will discuss these issues in more detail next.
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Figure 2.6: Concept for a one-dimensional imaging calorimeter. Two thermometers sense the same
event, and the difference in signals provides the position information, while the pulse heights provide a
measurement of the energy.

2.4 Position-sensitive calorimeters

As mentioned in Section 1.4 the current limiting factor to fabricating kilo-pixel calorimeter
arrays is the available number of readout channels. Although great progress in SQUID
multiplexing is being made (Chervenak et al., 1999), in the near future the total number of
SQUID channels including multiplexing will be in the order of a few thousand. To increase
the number of pixels another order of magnitude, we have developed the Position-Sensitive-
TES (PoST) calorimeter.

In general, an imaging calorimeter uses one or more thermometers to analyze the signal
produced by a photon absorption event in an absorber. For the same energy photons,
the signal received by the thermometers varies in some detectable way depending on the
position in the absorber where the event occurred. In other words, the absorber exhibits
position dependence. If one can use the information in the signal shape to determine the
location of photon absorption and the photon energy, one has an imaging calorimeter. This
definition does not impose restrictions on the type of thermometer or absorber used, nor
on the method of position or energy determination from the produced signal.

The imaging calorimeter can be a one-dimensional “strip” absorber with one or more
thermometers, or a two-dimensional “plane” absorber with two or more thermometers. In
this work we have concentrated on the simpler one-dimensional case, although the arguments
put forth are equally valid for the two dimensional case, which we consider in Section 8.2.

Figure 2.6 shows a schematic of a one-dimensional position-sensitive calorimeter. The
width of the PoST defines the pixel size in that direction, while the length-wise pixel size
depends on how one bins the information from the detector and depends on the application.
For example, Constellation-X detectors have a specified pixel size of 250 µm, so this would
be the width of the PoST, while the number of pixels would be equal to the length of
the absorber divided by 250 µm. When an X-ray event occurs, heat propagates down the
absorber and reaches the thermometers. Since the PoST is connected to a cold heat sink,


