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Chapter 1

Introduction

1.1 Basic Concepts of Statistical Analysis

Statistical tools and methods are used to describe data and make inferences regarding states of nature in a
wide variety of areas of study. From simple graphs and numeric summaries provided in mainstream press
to highly complex models used to describe measurements across a wide range of individuals or sampling
units, we see reports making use of statistical tools and methods constantly. We will go through many of
the commonly used methods in these notes.

After a brief introduction to descriptive statistics, making use of numeric and graphical summaries
of variables, we will spend the remainder of the notes on inferential statistics that make use of informa-
tion from a sample to make statements regarding a larger population of units. When conducting a study,
researchers typically use the following strategy known as the Scientific Method.

1. Define the problem/research question of interest, including what to measure and all relevant conditions
or groups to study.

2. Generate a hypothesis regarding the question of interest.

3. Construct one or more predictions based on the hypothesis.

4. Collect the data by means of a controlled experiment, observational study, or sample survey.

5. Summarize the data numerically in tabular form and/or graphically.

6. Analyze, interpret, and communicate the study’s findings.

Many methods exist for the final part, data analysis, that we describe in detail in these notes. Many
factors lead to the choice of the statistical methods to use for the analysis, including: data type(s), sampling
method, and distributional assumptions regarding the measurements.

7



8 CHAPTER 1. INTRODUCTION

Populations will be thought of as the universe of units, while samples will refer to subsamples of the
populations that are observed and measured. In practice, we observe the sample with the goal of making
inferences regarding the corresponding population. Consider the following examples.

1.2 Data Collection

Once a research question has been posed, then data are collected to attempt to answer the question. Three
common methods of collecting data are: controlled experiments, observational studies, and sample surveys.

In a Controlled Experiment, a sample of experimental units is obtained, and randomized to the
various treatments or conditions to be compared. There are many ways that these can be conducted, and
we will describe many variations of them throughout this course. Some elements of controlled experiments
are given here.

Factors Variable(s) that are controlled by the experimenter (e.g. new drug vs placebo, 4 doses of a pesticide,
3 packages for food product)

Responses Measurements/Outcomes obtained during the experiment (e.g. change in blood pressure, weeds
killed, consumer ratings for the product)

Treatments Conditions that are generated by the factor(s). When only 1 factor, these are the levels. With
2 or more factors, these are combinations of levels.

Experimental Unit Entity that is randomized to the Treatments. These can be individual items (patients
in clinical trial, plants in botanical experiment) or groups of items (classrooms of students in an
education experiment, pens of animals in a feed study).

Replications Treatments are assigned to more than one experimental unit, allowing for experimental error
(variation) to be measured.

Measurement Unit Entity on which measurements are obtained. These can be experimental units when
individuals are randomized, or subunits within the experimental units (students in a classroom, pigs
in a pen).

Controlled experiments can be conducted in laboratories/hospitals/greenhouses, but can also be con-
ducted in the “real world” where they are often referred to as “field studies” or “natural experiments.”

There are many different treatment designs that are commonly applied. Some classes of designs are
given below.

Single Factor Designs In these designs, there is a single factor to be studied with various levels.

Multi Factor Designs More than one factor is varied. Treatments correspond to combinations of factor
levels.

Completely Randomized Designs Experimental units are randomly assigned to treatments with no re-
striction on randomization.
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Height Dropped (H) Distance Traveled (D) Predicted Distance
(

47.086
√

H
)

1000 1500 1489
828 1340 1355
800 1328 1332
600 1172 1153
300 800 816

Table 1.1: Measurements and predictions for Galileo’s experiment with ramp and shelf on horizontal distance
traveled as a function of height of ball drop

Randomized Block Designs Experimental units are grouped into homogeneous blocks, with treatments
assigned so that each block receives each treatment.

Latin Square Designs Two or more blocking factors are available.

Repeated Measure Designs Units can be assigned to each treatment or be measured at multiple occa-
sions on the same treatment.

Note that in designs with 2 or more factors, researchers are often interested in whether the effects of the
levels of one factor depend on the levels of the other factor(s). When the effects do depend on the levels of
the other factor, this is referred to as an interaction.

Example 1.1: Galileo’s Experiments with Gravity

Experimental work by Galileo has been described and analyzed (Dickey and Arnold (1995) [19]). Two
experiments involved rolling a ball down a ramp and measuring the horizontal distance traveled by the ball
as a function of the height at which the ball was dropped. One set of measurements contained only a ramp,
the second set of measurements had a ramp and a flat shelf at the bottom of the ramp.

One theory is that the horizontal distance traveled increases with the height at which the ball is dropped
on the ramp. However, the rate of change should decrease with height. Another restriction is that the
distance traveled should be 0 when the height it is dropped at is 0. One mathematical equation that could
be used to relate Distance (D) to Height (H) is the following.

D = α + β
√

H

In this formulation, it is expected that α = 0, that is, that D = 0 when H = 0 and that β > 0. The
authors fit a regression model and, first found no evidence that α 6= 0. Then they fit a model without the
intercept and found that D = 47.086

√
H . Table 1.1 contains the data and the predictions based on the

equation for 5 observations. As seen in the table, the predictions are very close to the observed values.

∇

Example 1.2: Factors Effecting Color Strength of Dyes Applied to Modified Cotton
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An experiment was conducted to measure the effects of 4 factors on color strength measured as K/S (Ben
Ticha, Haddar, Meksi, Guesmi, and Mhenni (2016) [7]). Each factor was set at 2 levels and the experiment
included all 24 = 16 combinations of the factor levels. The factors studied and their levels were: Cationizing
Agent Amount (5%, 10%), pH (5, 11), Dying Temperature (40C, 100C), and Drying Time (30min, 60min).

∇

In many settings, it is not possible or ethical to assign units to treatments. For instance, when comparing
quality of products of various brands, you can take samples from the various brands, but not assign “raw
materials” at random to the brands. Studies comparing residents of various parts of a country can only take
samples of residents from the areas, not assign people to them. In studies of the effects of smoking or drinking,
it is unethical to assign subjects to the conditions. In all of these cases, we refer to these as Observational
Studies. Typically the method of analysis is the same for controlled experiments and observational studies,
however the ability to imply “cause and effect” is more difficult in observational studies than controlled
experiments. Researchers in such studies must try and control for any potential alternative explanations of
the association. For an interesting discussion of various aspects of observational studies, including: external
validity (generalizing results beyond the original study), causation, reliability of measurement, and inclusion
of covariates, involving study of interruption and multitasking, see Walter, Dunsmuir, and Westbrook (2015)
[59].

1.3 Variable Types

In most settings, researchers have one or more “output” variable(s) and one or more “input” variable(s).
For instance, a study comparing salaries among males and females would have the output variable be salary
and possible input variables: gender (1 if female, 0 if male), experience (years), and education (years). The
output variables are often referred to as dependent variables, responses, or end points. The input
variables are often referred to as independent variables, predictors, or explanatory variables.

Variables are measured on different scales, and the data analysis methods are determined by variable
types. Variables can be categorical or numeric. Categorical variables can be nominal or ordinal, while
numeric variables can be discrete or continuous.

Examples of nominal variables include gender, hair color, and automobile make. These are categories
with no inherent ordering. Ordinal variables are categorical, but with an inherent ordering, such as: strongly
disagree, disagree, neutral, agree, strongly agree. Discrete variables can take on only a finite or countably
infinite set of values, these can be counts of number of occurrences of an event in a series of trials or in a
fixed time or space, or the number facing up on a roll of a dice. Continuous variables can take on any value
along a continuum, such as temperature, time, or blood pressure. When discrete variables take on many
values, they are often treated as continuous, and continuous variables are often reported as discrete values.

Example 1.3: Consistency of Ratings Based on a Rating Scale for Videostroboscopy

A study was conducted to measure inter-rater and intra-rater reliability of the Voice-Vibratory Assess-
ment with Laryngeal Imaging (VALI) rating form for assessing videostroboscopy and high-speed videoendo-
scopic (HSV) recordings (Poburka, Patel, and Bless (2017) [48]). Table 1.2 contains information on the 30
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Subject Age Gender Dysphonia Subject Age Gender Dysphonia Subject Age Gender Dysphonia

1 10 M 3 11 45 F 3 21 57 F 2
2 19 M 1 12 47 F 3 22 59 F 2
3 27 F 1 13 48 M 1 23 60 F 3
4 32 M 1 14 49 F 2 24 60 M 1
5 37 F 2 15 50 F 3 25 62 F 2
6 37 M 0 16 51 F 3 26 62 M 3
7 39 F 3 17 51 M 0 27 64 F 3
8 42 F 2 18 51 M 0 28 70 M 3
9 44 F 2 19 53 F 1 29 77 F 3
10 45 F 2 20 57 F 3 30 89 F 2

Table 1.2: Age, Gender, and Dysphonia Grade for 30 Subjects - VALI Study

subjects in the study. These include: subject ID, Age (continuous, reported as a discrete variable), gender
(nominal), and an overall dysphonia grade (ordinal, with 0=normal, 1=mild, 2=moderate, 3=severe).

∇
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Chapter 2

Describing Data

Once data have been collected, they are typically described via graphical and numeric means. The methods
used to describe the data will depend on its type (nominal, ordinal, or numeric). We also need to distinguish
whether the data corresponds to a sample or a population. In this chapter, we focus purely on describing a
set of measurements, not making inferences. First we consider graphical and numeric descriptions of a single
variable. Then we consider pairs of variables.

2.1 Graphical Description of a Single Variable

Depending on the type of measurement, common plots are pie charts, bar charts, histograms, box
plots, and density plots.

Pie charts can be used to describe any variable type. Continuous numeric variables must be collapsed
into “bins” or “buckets.” The size of the sectors of the pie represent the relative frequency of each category.

Bar charts are used to describe nominal or ordinal data. The variable levels are arrayed on the bottom
(or left side) of the plot and bars above (or beside) the levels represent the frequency or relative frequency
of the number of observations belonging to the various categories.

Histograms are used for numeric variables, where the heights of the bars above the bins represent the
frequency or relative frequency of the various bins.

Box plots are used on numeric variables. They identify particular percentiles of a distribution and are
useful in detecting outlying observations and spread in the distribution.

Density plots are used for numeric variables. They offer a smoother description of the measurements
than a histogram does and are simple to obtain with modern statistical software packages.

Example 2.1: Measurements of the Velocity of Light circa 1931-1933

13
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Relative Frequency Histogram of Velocity of Light
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Figure 2.1: Relative Frequency Histogram and Smooth Density for 1010 measurements of the velocity of
light made near Irvine, CA during 1931-1933. Data represent the measured value - 299000 km/sec

A.A. Michelson, F.G. Pease, and F. Pearson set up an approximately one mile long tube to make
determinations of the speed of light near Irvine, CA in the early 1930s (Michelson, Pease, and Pearson, (1935),
[43]). Without getting into the very detailed description given in the paper, we have 1010 determinations
of the velocity of light after having removed some runs with anomalous values in the table. Further, we do
not include weights that varied due to the experimental protocol as it evolved during the data collection
process. Figure 2.1 provides a histogram of the n = 1010 measurements (approximated from their tabular
information) as well as a smooth density function overlay on the graph. The values on the graph represent
velocity - 299000 km/sec. The individual measurements are mound shaped around a center point with
arithmetic mean of 299773.5 km/sec. Modern assessments of the velocity of light in a vacuum is 299792.5
km/sec.

Measurements were made in 4 groups of series: Series 1-54 (2/16/1931-7/14/1931), Series 55-110
(3/3/1932-5/13/1932), Series 111-158 (5/13/1932-8/4/1932), and Series 159-233 (12/3/1932-2/27/1933).
Side-by-side box plots are given in Figure 2.2. The box plot identifies from bottom to top the following
elements.

1. Minimum: Bottom of line at bottom of plot (or the lowest circle)

2. Range for lowest 25% of measurements: Distance from minimum observation to the bottom of the box

3. 25th percentile (Lower Quartile, aka LQ): Bottom line of box

4. Range for the 25th to 50th percent of participants: Distance between bottom of box and second
horizontal line

5. Median (50th percentile): Second horizontal line

6. Range for the 50th to 75th percent of participants: Distance between second horizontal line and top
of box

7. Interquartile Range (IQR): Distance between top (75th percentile) and bottom (25th percentile) of the
box

8. 75th percentile (Upper Quartile, UQ): Top line of the box
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Figure 2.2: Side-by-side boxplots for velocities measured in the 4 groups of series

9. Range for 75th to 100th percent of participants: Distance from the top of the box to the maximum
observation

10. Maximum: Top of line at the top of plot (or the highest circle)

11. Lower line extends either to the minimum or 1.5(IQR) below the LQ, whichever is shortest.

12. Upper line extends either to the maximum or 1.5(IQR) above the UQ, whichever is shortest.

13. Circles represent outlying measurements (very extreme measurements).

The precision of the measurements tend to improve slightly over the course of the study. Note that the
average weights for the individual measurements included in this analysis were approximately 1.65 for the
first series and approximately 3 for the remaining series.

∇

Example 2.2: Body Mass Index for National Hockey League Players - 2013/2014 Season

Body mass index (BMI) is a measure of body fat that is based on the the work of Adolphe Quetelet, a
renowned Belgian researcher in astronomy and statistics and other areas, particularly social sciences. In terms
of metric units, BMI is mass(kg)/height(m)

2
; in the American system, BMI is 703×mass(lbs)/height(in)

2
.

Data for all National Hockey League (NHL) players are obtained, reported in pounds (lbs) and inches,
discretely. A histogram is given in Figure 2.3. The histogram is approximately symmetric and mound-
shaped, centered above 26.

∇

Example 2.3: Female and Male Speeds at Washington, DC Rock and Roll Marathon - 2015
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NHL BMI Distribution 2013−2014 Season
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Figure 2.3: Body Mass Index for 2013/2014 season National Hockey League Players
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Figure 2.4: Histograms and density plots of Rock and Roll marathon speeds by gender

The 2015 Rock and Roll Marathon in Washington, D.C. was completed by 1045 female and 1454 male
participants. Each participant’s time to complete the marathon was converted to a speed (miles per hour).
Histograms and kernel density plots for females and males are given in Figure 2.4, and side-by-side box plots
are given in Figure 2.5. For both genders, there tend to be more cases at lower speeds with a few extreme
cases with higher speeds. These distributions are right-skewed.

A smooth version of a boxplot, which does not separate the measurements into quantiles is a violin
plot. For the marathon data, one is displayed in Figure 2.6.

∇

Time series plots are widely used in many areas including economics, finance, climatology, and biology.
These graphs include one or more characteristics being observed in a sequential time order. These plots can
be based on virtually any level of sampling interval.

Example 2.4: Miami Monthly and Annual Mean Temperature 1/1949-12/2014
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Figure 2.5: Side-by-side box plots of Rock and Roll marathon speeds by gender
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Figure 2.6: Side-by-side violin plots of Rock and Roll marathon speeds by gender
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Figure 2.7: Monthly Mean Temperature in Miami, FL (January 1949 - December 2014)

They can be used to detect trend and cyclical patterns over time. Figure 2.7 shows the the monthly
and annual mean temperature in Miami for the years 1949 through 2014. Clearly there is a cyclical pattern
occurring within years, and after a flat early annual series, there certainly appears to be evidence of an
increasing trend over approximately the second half of the series (after about 1970).

∇

2.2 Numerical Descriptive Measures of a Single Variable

Numerical descriptive measures describe a set of measurements in quantitative terms. When describing a
population of measurements, they are referred to as parameters; when describing a sample of data, they
are referred to as statistics.

In terms of nominal and ordinal data, proportions are generally the numeric measures of interest.
These are simply the fraction of measurements falling into the various possible levels (and must sum to
1). For ordinal variables, the cumulative proportions are also of interest, representing the fraction of
measurements falling in or below the various categories.
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2.2.1 Measures of Central Tendency

There are two commonly reported measures of central tendency, or location for a set of measurements. The
mean is the sum of all measurements divided by the number of measurements, and is reported often as “per
capita” in economic reports. The mean is the “balance point” of a set of measurements in a physical sense.
The median is the point where half of the measurements fall at or below it, and half of the measurements
fall at or above it. It is also the 50th percentile of the set of measurements. Many economic reports state
median values. A third, less reported measure is the mode which really is only appropriate for discrete
variables, and is the value that occurs most often. For a histogram of discretely measured data, the mode is
the level with the highest bar.

Note that the mean is affected by outlying measurements, as it is the sum of all measurements, evenly
distributed among all of the measurements. The median is more “robust” as it is not effected by the actual
values of individual measurements, only the center of them. The formulas for the population mean µ, based
on a population of N items and the sample mean y for a sample of n items are given below.

Population Mean: µ =

∑N
i=1 yi

N
Sample Mean: y =

∑n
i=1 yi

n

To obtain the median, measurements are ordered from smallest to largest, and the middle observation
(odd population/sample size) or the average of the middle two observations (even population/sample size)
are identified.

Examples 2.2, 2.3 Continued: NHL BMI’s and Rock and Roll Marathon Speeds

Using the mean and median functions in R, we obtain the population means for NHL BMI’s and
marathon speeds by gender for the Rock and Roll marathon.

R Output

### Output

> cbind(head(bmi.nhl.sort), tail(bmi.nhl.sort))

[,1] [,2]

[1,] 21.56757 29.98314

[2,] 21.75521 30.12259

[3,] 22.14871 30.51215

[4,] 22.64680 30.82813

[5,] 22.75987 31.39688

[6,] 22.75987 32.00386

> round(bmi.cent.out, 4)

N sum mean median

[1,] 717 19000.61 26.5002 26.5159

>

> ### Use built-in mean and median functions

> mean(bmi.nhl)

[1] 26.50015

> median(bmi.nhl)

[1] 26.51586

Note that the mean (26.50) and median (26.52) are very close, as is expected for an (approximately)
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symmetric distribution.

For the marathon speeds, we use the tapply function in R that will compute functions separately for
different groups (gender).

R Output

> tapply(mph,Gender,mean)

F M

5.839839 6.336979

> tapply(mph,Gender,median)

F M

5.711109 6.276599

These distributions are skewed-right, with a few very fast runners in each gender. This causes the means
(F=5.84, M=6.37) to be larger than the medians (F=5.71, M=6.28).

∇

Example 2.5: James Short’s Measurements of the Sun’s Parallax

The parallax is defined as (Merriam-Webster Dictionary):

the apparent displacement or the difference in apparent direction of an object as seen from two
different points not on a straight line with the object.

especially : the angular difference in direction of a celestial body as measured from two points
on the earth’s orbit.

James Short reported n = 158 measurements of the parallax of the sun in seconds of a degree (Short
(1763) [54], also reported in Stigler (1977) [55]). From the data on the class website, we obtain the following
quantities:

n = 158

n
∑

i=1

yi = 1360.31 y =
1360.31

158
= 8.610 Median = 8.55

The true value is 8.798. A histogram of the data, the true value, and sample mean, as well as a box plot
of the measurements are given in Figure 2.8.

R Output

> length(prlxsun)
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Figure 2.8: James Short’s measurements of the sun’s parallax. Left: Histogram, Right: Box plot

[1] 158

> sum(prlxsun)

[1] 1360.31

> mean(prlxsun)

[1] 8.609557

> median(prlxsun)

[1] 8.55

∇

Outliers are observations that lie “far” away from the others. These may be data that have been
entered erroneously or just individual cases that are quite different from others. As stated above, means
can be affected by outliers, while medians generally are not. A measure of the mean that is not affected by
outliers is the trimmed mean. This is the mean of observations in the “middle” of the measurements. For
instance, a 90% trimmed mean is the mean of the middle 90% of the ordered measurements (removing the
smallest 5% and largest 5%).

Note that the Short parallax data has some extreme outliers in the box plot. The 90% trimmed mean
is 8.594, which is not far from the sample mean as the data are still fairly symmetric despite the outliers.

2.2.2 Measures of Variability

Along with the “location” of a set of measurements, researchers are also interested in their variability (aka
dispersion). The range is the distance between the largest and smallest measurements (note that this differs
from the standard meaning which would just give the lowest and highest values). The interquartile range
(IQR) is the distance between the 75th percentile (3/4 of measurements lie below it) and the 25th percentile
(1/4 of the measurements lie below it). That is, the IQR measures the range for the middle half of the
ordered measurements.

Measures that are more widely used in making inferences are the variance and its square root, the
standard deviation. In terms of measurements, the variance is approximately the average squared distance
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of the individual measurements from the mean (for a population, it is the average). The formulas for the
population and sample variance are given below. Note that unless stated otherwise specifically, software
packages are reporting the sample version.

Population Variance: σ2 =

∑N
i=1 (yi − µ)2

N
Sample Variance: s2 =

∑n
i=1 (yi − y)2

n − 1

The reason for dividing by n− 1 in the sample variance is to make the estimator an unbiased estimator
for the population variance. That is, when computed across all possible samples, the “average” of the sample
variance will be the population variance. The standard deviation is the positive square root of the variance
and is in the same units as the measurements. The population standard deviation is denoted as σ, the
sample standard deviation is denoted as s. For many (but certainly not all) distributions, approximately
2/3 of the measurements lie within one standard deviation of the mean and approximately 19/20 lie within
two standard deviations of the mean.

Example 2.2, 2.3 Continued: NHL BMI’s and Rock and Roll Marathon Speeds

We compute the range, interquartile range, variance, and standard deviations for the NHL BMI’s and
the Rock and Roll mathon speeds by gender. Since we treat each of these as a population, we will make a
slight adjustment to R’s “built-in” functions var and sd, which compute the sample versions by default.

R Output

### Output

> var(bmi.nhl) # Sample Variance with "var" function

[1] 2.116228

> (N-1)*var(bmi.nhl)/N # Pop variance with "var" function

[1] 2.113277

> sd(bmi.nhl) # Sample Std Dev with "sd" function

[1] 1.454726

> sqrt((N-1)/N)*sd(bmi.nhl) # Population Std Dev with "sd" function

[1] 1.453711

> round(bmi.var.out1, 3)

min max range LQ UQ IQR

21.568 32.004 10.436 25.62 27.439 1.819

> round(bmi.var.out2, 3)

mean sum(dev^2) sigma^2 s^2 sigma s P(mu+/-1sigma) P(mu+/-2sigma)

[1,] 26.5 1515.219 2.113 2.116 1.454 1.455 0.706 0.946

For the marathon speeds, we will simply use the var and sd functions in R, applied separately to Females
and Males. As both population sizes exceed 1000, the adjustment for population variances and standard
deviations would be very small.

R Output

### Output

> round(rr.var.out, 3)

N mean sigma^2 sigma P(mu+/-1sigma) P(mu+/-2sigma)

Females 1045 5.840 0.691 0.831 0.662 0.964

Males 1454 6.337 1.119 1.058 0.665 0.964
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Male speeds tend to be higher and more variable than Female speeds. All three distributions have
approximately 2/3 of individuals lying with one standard deviation of the mean, and approximately 95%
lying within two standard deviations from the mean.

∇

Example 2.5 Continued: James Short’s Measurements of the Sun’s Parallax

We compute the range, interquartile range, variance, and standard deviations for the sample of n = 158
sun parallax measurements.

R Output

> (n <- length(prlxsun))

[1] 158

> (range <- max(prlxsun) - min(prlxsun))

[1] 5.04

> (IQR <- quantile(prlxsun,0.75) - quantile(prlxsun,0.25))

0.445

> (var <- var(prlxsun))

[1] 0.4545164

> (sd <- sd(prlxsun))

[1] 0.6741783

> sum(prlxsun >= mean(prlxsun)-sd & prlxsun <= mean(prlxsun)+sd) / n

[1] 0.778481

> sum(prlxsun >= mean(prlxsun)-2*sd & prlxsun <= mean(prlxsun)+2*sd) / n

[1] 0.9367089

The full set of measurements lie within a range of 5.04 seconds of a degree, while the middle 50% lie
within a range of 0.445. The variance is 0.455 and the standard deviation (a typical distance from an
observation to the mean) is 0.674. Further, approximately 77.8% of measurements lie with one standard
deviation and 93.7% lie within two standard deviations of the mean.

∇

2.3 Describing More than One Variable

So far, we have looked at cases one variable at a time, although the marathon speed data set has two
variables: speed and gender. Now we consider describing relationships when two variables are observed on
each sampling/experimental unit. These can be extended to more than two variables, but can be harder to
visualize. We consider graphical techniques as well as numerical measures. Keep in mind that variable types
(nominal, ordinal, and numeric) will dictate which method(s) is (are) appropriate.

When both variables are categorical (nominal or ordinal), two methods of plotting them are stacked
bar graphs and cluster bar graphs. For the stacked bar graph, one variable is on the horizontal axis



24 CHAPTER 2. DESCRIBING DATA

Column
1 2 · · · c Total

Row 1 n11 n12 · · · n1c n1.

2 n21 n22 · · · n2c n2.

...
...

...
...

...
...

r nr1 nr2 · · · nrc nr.

Total n.1 n.2 · · · n.c n..

Table 2.1: Contingency Table for Row Variable with r levels, and Column variable with c columns

(one slot for each level) and the other variable is displayed within the bars with subcategories for each of
its levels. In a cluster (grouped) bar graph, one variable forms “major groupings,” while the second variable
is plotted “side-by-side” within the groupings. Both methods are based on results of a contingency table
also known as a crosstabulation. These are tables where rows are the levels of one categorical variable,
columns are levels of another variable, and numbers within the table are counts of the number of units falling
in that cell (combination of variable levels). Often these are converted into proportions either overall (cell
probabilities sum to 1), or within rows or columns marginally. A contingency table is typically of the form
in Table 2.1.

Example 2.6: Thumb Styles of Blues Guitarists by Region and Period

A study reported hand and thumb styles of Blues guitarists as well as the region they were from and
when they were born (Cohen (1996) [16]). The regions are 1=East, 2=Delta, and 3=Texas. The thumb
styles are 1=Alternating, 2=Utility, and 3=Dead. The birth period was labeled post1906 with 0=Born
before 1906, 1=born after 1906. First, the association between region (row) and thumb style (column) is
considered, then birth period is added. The crosstabulations are given below in the R code. Figure 2.9 gives
the Stacked and Cluster Bar Graphs.

R Output

### Output

> (reg_ts <- table(region, thumbSty))

thumbSty

region Alternating Utility Dead

East 20 8 7

Delta 9 19 19

Texas 1 2 8

> ## Obtain Row (1) and Column (2) Marginal Totals

> margin.table(reg_ts,1)

region

East Delta Texas

35 47 11

> margin.table(reg_ts,2)

thumbSty

Alternating Utility Dead

30 29 34

> ## Obtain Proportions across all Cells

> reg_ts/sum(reg_ts)

thumbSty

region Alternating Utility Dead

East 0.21505376 0.08602151 0.07526882

Delta 0.09677419 0.20430108 0.20430108
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Figure 2.9: Stacked and Cluster (Grouped) Bar Charts - Blues Guitarists - Region and Thumb Style

Texas 0.01075269 0.02150538 0.08602151

> ## Obtain Row Proportions (Thumb Style w/in Region)

> prop.table(reg_ts,1)

thumbSty

region Alternating Utility Dead

East 0.57142857 0.22857143 0.20000000

Delta 0.19148936 0.40425532 0.40425532

Texas 0.09090909 0.18181818 0.72727273

> ## Obtain Column Proportions (Region w/in Thumb Style)

> prop.table(reg_ts,2)

thumbSty

region Alternating Utility Dead

East 0.66666667 0.27586207 0.20588235

Delta 0.30000000 0.65517241 0.55882353

Texas 0.03333333 0.06896552 0.23529412

∇

When the independent variable is categorical (nominal or ordinal) and the response (dependent variable)
is numeric, we can construct side-by-side histograms and density plots, or box plots (see Figure 2.2 for side-
by-side box plots). Histograms and densities can also be placed into single plots with different colors or
patterns.

When two variables (labeled x and y) are both numeric, one numeric descriptive measure that is widely
reported is the correlation between the two variables. Technically, this is called the Pearson product
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moment coefficient of correlation. This measure is only for the linear, or “straight line” relation between
the two variables. Unlike in Regression (described later), the variables are not necessarily (but can be)
identified as an independent and or dependent variable. The formula for this measure (population and
sample) are given below.

Population Correlation: ρ =
1
N

∑N
i=1 (xi − µx) (yi − µy)

σxσy
=

∑N
i=1 (xi − µx) (yi − µy)

√

∑N
i=1 (xi − µx)2

∑N
i=1 (yi − µy)2

Sample Correlation: r =
1

n−1

∑n
i=1 (xi − x) (yi − y)

sxsy
=

∑N
i=1 (xi − x) (yi − y)

√

∑N
i=1 (xi − x)

2∑N
i=1 (yi − y)

2

A scatterplot is a plot where each case’s x and y pairs are plotted in two dimensions. When one variable
is the dependent variable, it is labeled y, and plotted on the vertical axis and the independent variable is
labeled x, plotted on the horizontal axis. We are interested in any pattern (linear or possibly nonlinear, or
none at all) between the variables. The formulas for the (ordinary) least squares regression line relating y
to x are given below.

ŷ = β̂0+β̂1x β̂1 =

∑n
i=1(xi − x)(yi − y)
∑n

i=1(xi − x)2
β̂0 = y−β̂1x SSE =

n
∑

i=1

(yi − ŷi)
2

=

n
∑

i=1

(

yi −
(

β̂0 + β̂1xi

))2

Example 2.7: Relation Between Temperature and Water Evaporation

An experiment was conducted that observed the temperature x (fahrenheit) and water evaporation y
(grains of water) with measurements taken at 8:00AM daily from 11/10/1692-11/09/1693 (Halley (1694)
[28]).

The plot of the data and the linear regression equation was obtained in R and is given in Figure 2.10.
The correlation and regression equation were obtained using the cor and lm functions.

R Output

> cor(dayEvap, dayTemp)

[1] 0.7961281

> mod1 <- lm(dayEvap ~ dayTemp)

> summary(mod1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.94556 1.09028 21.96 <2e-16 ***

dayTemp 0.62879 0.02509 25.07 <2e-16 ***

The sample correlation is r = 0.7691 and the fitted linear regression equation is ŷ = 23.9456 + 0.6288x.
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Figure 2.10: Daily Water Evaporation (y) and Temperature (x) for experiment conducted 11/10/1692-
11/09/1693 reported by Edmund Halley

∇

Example 2.8 - Heights of Adult Children and Their Parents

Francis Galton measured many aspects of humans, plants, and animals during the late 1800s, some of
which were presented in table form in his book Natural Inheritance. One analysis that had been published
previously (Galton (1886) [25]) introduced the notion of linear regression. Galton reported the heights of
adult children and their “mid-parents” which was the average height of the parents. Galton multiplied female
heights for the adult children and the mothers by 1.08 to make the female and male heights “comparable.”
The individual data were obtained from Galton’s notebooks and are available due to Professor James A.
Hanley (Hanley (2004), [30]).

Histograms of the male and (unscaled) female heights is given in Figure 2.11. The histograms are
approximately mound-shaped within gender. The plot of adult child height versus mid-parent height (with
female heights scaled by 1.08) is given in Figure 2.12. The plot contains three lines, which are described
below.

• Steepest: Line of equality y = x, which represents the case with the average adult child height equaling
the mid-parent height.

• Flat: Constant line y = x, which represents the case with the average adult child height equaling the
average mid-parent height (no association between adult child and mid-parent height).

• Middle: Least squares regression line y = 18.77 + 0.73x

The fact the least squares line falls between the two reference lines showed that adult children of tall parents
tended to be tall, but not as tall on average as their parents. Similarly, adult children of short parents tended
to be short, but not as short on average as their parents. Galton referred to this phenomenon as “regression
to mediocrity.” Today it is more widely referred to as “regression to the mean.”
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Figure 2.11: Histograms and smooth densities of adult child heights by gender in Frances Galton’s data
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∇

We often are interested in relationships among more than two numeric variables. Scatterplot and corre-
lation matrices can be constructed to demonstrate the bivariate association of all pairs of variables.

Example 2.9: Compressive Strength and Microfabric Properties of Amphibolites

A study (Ali, Guang, and Ibrahim (2014) [5]) reported the relationship between Uniaxial Compression
Strentgh (UCS) and 8 predictor variables including: percent hornblende (hb), grain size (gs), and grain area
(ga). A simple scatterplot matrix of plots of all pairs of these four variables is given in Figure 2.13. The
correlation matrix is given along with R code below. Note that this can be extended to all pairs of variables,
the plot just gets very difficult to focus on particular pairs of variables.

R Output

### Text Output

> cor(rs1[,c(2,6,7,8)])

UCS hb gs ga

UCS 1.0000000 0.6935996 -0.8535317 -0.8537215

hb 0.6935996 1.0000000 -0.7200409 -0.6641698

gs -0.8535317 -0.7200409 1.0000000 0.9845240

ga -0.8537215 -0.6641698 0.9845240 1.0000000

∇

When data are highly skewed, individual cases have the ability to have a large impact on the correlation
coefficient. An alternative measure that is widely used is the Spearman Rank Correlation Coefficient (aka
Spearman’s rho). This coefficient is computed by ranking the x and y values from 1 (smallest) to n or N
(largest), and applying the formula for Pearson’s coefficient to the ranks. This way, extreme x or y values
do not have as large of an impact on the coefficient. Also, in many situations, the natural measurements are
the rankings or ordering themselves.

Example 2.10: NASCAR Start and Finish Positions 1975-2003

A study of NASCAR races for the years 1975-2003, considered the correlation between starting and
finishing positions among drivers for the 898 races during those seasons (Winner (2006) [60]). As the data
were orderings, it was natural to compute the correlation using Spearman’s rank correlation. The summary
of the correlations is given below, and a density plot and histogram are given in Figure 2.14.

R Output

### Output

> length(spearman)
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Figure 2.13: Bivariate Plots of Uniaxial Compression Strength (UCS), Percent Hornblende (hb), Grain Size
(gs), and Grain Area (ga)
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Figure 2.14: NASCAR Races 1975-2003 - Spearman’s rank correlation coefficient for start/finish positions

[1] 898

> summary(spearman)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.3768 0.2399 0.3690 0.3590 0.4869 0.8977

∇

Many series (particularly when measured over time) display spurious correlations, particularly when
both variables tend to increase or decrease together with no causal reason that the two (or more) variables
move in tandem. For instance, the correlation between annual U.S. internet users (per 100 people) and
electrical power consumption (kWh per capita) for the years 1994-2010 is .7821 (data source: The World
Bank). Presumably increasing internet usage isn’t leading to large increases in electrical consumption, or
vice versa.
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Chapter 3

Probability

In this chapter, we describe the concepts of probability, random variables, probability distributions, and
sampling distributions. There are three commonly used interpretations of probability: classical, relative
frequency, and subjective. Probability is the basis of all methods of statistical inference covered in this
course.

3.1 Terminology and Basic Probability Rules

The classical interpretation of probability involves listing (or using counting rules to quantify) all possible
outcomes of a random process, often referred to as an “experiment.” It is often (but not necessarily) assumed
that each outcome is equally likely. If a coin is tossed once, it can land either “heads” or “tails,” and unless
there is reason to believe otherwise, we would assume the probability of each possible outcome is 1/2. If a
dice is rolled, the possible numbers on the “up face” are {1,2,3,4,5,6}. Again, unless some external evidence
leads us to believe otherwise, we would assume each side has a probability of landing as the “up face” is
1/6. When dealing a 5 card hand from a well shuffled 52 card deck, there are 52!

5!(52−5)!
= 2, 598, 960 possible

hands. Clearly that would be impossible to enumerate, but with counting rules it is still fairly easy to assign
probabilities to different types of hands.

An event is a pre-specified outcome of an experiment/random process. It can be made up of a single
element or a group of elements of the sample space. If the sample space is made up of N elements and the
event of interest constitutes NE elements of the sample space, the probability of the event is pE = NE/N ,
when all elements are equally likely. If elements are not equally likely, pE is the sum of the probabilities of
the elements constituting the event (where the sum of all the N probabilities is 1).

The relative frequency interpretation of probability corresponds to how often an event of interest
would occur if an experiment were conducted repeatedly. If an unbalanced dice were tossed a very large
number of times, we could observe the fractions of times each number was the “up face.” With modern
computing power, simulations can be run to approximate probabilities of complex events, which could never
be able to be obtained via a model of a sample space.

33
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In cases where a sample space can not be enumerated or an experiment can not be repeated, individuals
often resort to assessing subjective probabilities. For instance, in considering whether the price of a stock
will increase over a specific time horizon, individuals may speculate on the probability based on any market
information available at the time of the assessment. Different individuals may have different probabilities
for the same event. Many studies have been conducted to assess people’s abilities and heuristics used to
assign probabilities to events (see e.g. Kahneman, Slovic, and Tversky (1982) [33]), for a large collection of
research on the topic.

Three useful counting tools are the multiplication rule, permutations and combinations. The
multiplication rule is useful when the experiment is made up of k stages, where stage i can end in one of
mi outcomes. Permutations are used when sampling k items from n items without replacement, and order
matters. Combinations are similar to permutations with the exception that order does not matter. The
total possible outcomes for each of these rules is given below.

Multiplication Rule: m1 × m2 × · · · × mk =

k
∏

i=1

mi

Permutations: P n
k = n × (n − 1) × · · · × (n − k + 1) =

n!

(n − k)!
0! ≡ 1

Combinations: Cn
k =

n × (n − 1) × · · · × (n − k + 1)

k × (k − 1) · · · × 1
=

n!

k!(n − k)!

Note that there are k! possible orderings of the k items selected from n items, which is why there are
fewer combinations than permutations.

Example 3.1: Lotteries and Competitions

The Florida lottery has many “products” for consumers (flalottery.com). The Pick 4 game is conducted
twice per day and pays out up to $5000 per drawing. Participants choose 4 digits from 0-9 (digits can be
repeated). Thus at each of k = 4 stages, there are m = 10 potential digits. Thus there are 10(10)(10)(10) =
10,000 possible sequences (order matters in payouts).

In a race among 10 “identical” mice of a given strain, there are P 10
3 = 10(9)(8) = 720 possible orderings

of 1st, 2nd, and 3rd place. In the 2017 Kentucky Derby, there were 22 horses in the race. Starting positions
are taken by “pulling names out of a hat.” Thus, there are 22! = 1.124 × 1021 possible orderings of the
horses to the starting positions. This is 10.4 billion times as many people who had ever lived on the earth
as of 2011 according to the Population Reference Bureau (www.prb.com).

The Florida Lotto game, held every Wednesday and Saturday night, involves selecting 6 numbers without
replacement from the integers 1,...,53; where order does not matter. There are C53

6 = 53!
6!47! = 22, 957, 480

possible drawings.

3.1.1 Basic Probability

Let A and B be events of interest with corresponding probabilities P (A) and P (B), respectively. The Union
of events A and B is the event that either A and/or B occurs and is denoted A ∪ B. Events A and B are
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B B Total
A 909 67 976

A 2528 142 2670
Total 3437 209 3646

Table 3.1: Counts of UFO’s by Shape Type and nation of sighting

mutually exclusive if they can not both occur as an experimental outcome. That is, if A occurs, B cannot
occur, and vice versa. The Complement of event A, is the event that A does not occur and is denoted
by A or sometimes A′. The Intersection of events A and B is the event that both A and B occur, and is
denoted as A ∩ B or simply AB. In terms of probabilities, we have the following rules.

Union: P (A∪B) = P (A)+P (B)−P (AB) Mutually Exclusive: P (AB) = 0 Complement: P
(

A
)

= 1−P (A)

The probability of an event A or B, without any other information, is referred to as its unconditional or
marginal probability. When information is known whether or not another event has (or has not) occurred
it is referred to as its conditional probability. If the unconditional probability of A and its conditional
probability given B has occurred are equal, then the events A and B are said to be independent. The
rules for obtaining conditional probabilities (assuming P (A) > 0 and P (B) > 0) are given below, as well as
probabilities under independence.

Prob. of A Given B: P (A|B) =
P (AB)

P (B)
Prob. of B Given A: P (B|A) =

P (AB)

P (A)

P (AB) = P (A)P (B|A) = P (B)P (A|B)

A and B independent: P (A) = P (A|B) = P
(

A|B
)

P (B) = P (B|A) = P
(

B|A
)

P (AB) = P (A)P (B)

Example 3.2: UFO Sightings

Based on 3646 UFO sightings on the UFO Research Database (www.uforesearchdb.com), we define A
to be the event that a UFO is classified as being shaped as an orb/sphere or circular or a disk and event B
that the sighting is in the USA. Table 3.1 gives a cross-tabulation of the counts for this “population.”

P (A) =
976

3646
= .2677 P (B) =

3437

3646
= .9427 P (AB) =

909

3646
= .2493 P (A∪B) = .2677+.9427−.2493 = .9611

P (A|B) =
.2493

.9427
=

909

2528
= .2645 P

(

A|B
)

=
67

209
= .3206 P (B|A) =

.2493

.2677
=

909

976
= .9314
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Note that the event that a UFO is classified as orb/sphere or circular or a disk is not independent of
whether it was sighted in the USA. There is a higher probability for these types of shapes to be sighted
outside the USA (.3206) than in the USA (.2645).

∇

Example 3.3: Women’s and Men’s Marathon Speeds

For the Rock and Roll marathon runner speeds, we can classify events as follow. Event F is that the
runner is Female, event S5 is the event that a runner’s speed is less than or equal to 5 miles per hour, and S7

is the event that the runner’s speed is greater than or equal to 7 miles per hour. Counts of runners by gender
and speed are given in Table 3.2. Note that the middle row represents the intersection of the compliments
of events S5 and S7 and represents the runners with speeds between 5 and 7 miles per hour. We compute
various probabilities below.

P (F ) =
1045

2499
= .4182 P

(

F
)

= 1−.4182 =
1454

2499
= .5818 P (S5) =

326

2499
= .1305 P (S7) =

464

2499
= .1857

P
(

S5 ∩ S7

)

= 1−.1305−.1857 =
1709

2499
= .6839 P (F∩S5) =

172

2499
= .0688 P

(

F ∩ S5

)

=
154

2499
= .0616

P (F ∩ S7) =
106

2499
= .0424 P

(

F ∩ S7

)

=
358

2499
= .1433 P

(

F ∩ S5 ∩ S7

)

=
767

2499
= .3069

P
(

F ∩ S5 ∩ S7

)

=
942

2499
= .3770 P (S5|F ) =

.0688

.4182
=

172

1045
= .1646 P (S7|F ) =

.0424

.4182
=

106

1045
= .1014

(

S5 ∩ S7|F
)

=
.3069

.4182
=

767

1045
= .7340

∇

3.1.2 Bayes’ Rule

Bayes’ rule is used in a wide range of areas to update probabilities (and probability distributions) in light
of new information (data). In the case of updating probabilities of particular events, we start with a set
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F F Total
S5 172 154 326

S5 ∩ S7 767 942 1709
S7 106 358 464

Total 1045 1454 2499

Table 3.2: Counts of Speeds (mph) by Gender - 2015 Rock and Roll Marathon

of events A1, . . . , Ak that represent a partition of the sample space. That means that each element in the
sample space must fall in exactly one Ai. In probability terms this means the following statements hold.

i 6= j : P (Ai ∩ Aj) = 0 P (A1) + · · ·+ P (Ak) = 1

The probability P (Ai) is referred to as the prior probability of the ith portion of the partition, and
in some contexts are referred to as base rates. Let C be an event, such that 0 < P (C) < 1, with known
conditional probabilities P (C|Ai). This leads to being able to “update” the probability that Ai occurred,
given knowledge that C has occurred, the posterior probability of the ith portion of the partition. This
is simply (in this context) an application of conditional probability making use of formulas given above and
the fact that there is a partition of the sample space.

P (Ai ∩ C) = P (Ai)P (C|Ai) P (C) =

k
∑

i=1

P (Ai ∩ C) =

k
∑

i=1

P (Ai)P (C|Ai)

⇒ P (Ai|C) =
P (Ai ∩ C)

P (C)
=

P (Ai)P (C|Ai)
∑k

i=1 P (Ai)P (C|Ai)
i = 1, ..., k

Example 3.4: Women’s and Men’s Marathon Speeds

Treating the three speed ranges (A1 ≡≤ 5, A2 ≡ 5 − 7, A3 ≡≥ 7) as a partition of the sample
space, we can update the probabilities of the runner’s speed range, given knowledge of gender. The prior
probabilities are P (A1) = 326/2499 = .1305, P (A2) = 1709/2499 = .6839, and P (A3) = 464/2499 = .1857.
The relevant probabilities are given below to obtain the posterior probabilities of the speed ranges, given
the runner’s gender.

P (A1) =
326

2499
= .1305 P (F |A1) =

172

326
= .5276 P (A1∩F ) = P (A1)P (F |A1) =

(

326

2499

)(

172

326

)

= .0688

P (A2) =
1709

2499
= .6839 P (F |A2) =

767

1709
= .4488 P (A2∩F ) = P (A2)P (F |A2) =

(

1709

2499

)(

767

1709

)

= .3069

P (A3) =
464

2499
= .1857 P (F |A3) =

106

464
= .2284 P (A3∩F ) = P (A3)P (F |A3) =

(

464

2499

)(

106

464

)

= .0424
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P (F ) =

3
∑

i=1

P (Ai ∩ F ) = .0688 + .3069 + .0424 = .4182 P (A1|F ) =
.0688

.4182
= .1646

P (A2|F ) =
.3069

.4182
= .7340 P (A3|F ) =

.0424

.4182
= .1014

Note that these can be computed very easily from the counts in Table 3.2 by taking the cell counts over
the column totals, as can be seen for the males.

P (M) =
1454

2499
= .5818 P (A1|M) =

154

1454
= .1059 P (A2|M) =

942

1454
= .6479 P (A3|M) =

358

1454
= .2462

∇

Example 3.5: Drug Testing Accuracy

As a second example based on assessed probabilities, Barnum and Gleason (1964), [6], considered drug
tests among workers. They had four sources of prevalence of recreational drug users based on published data
sources (2.4% (.024), 3.1% (.031), 8.2% (.082), and 20.2% (.202)). Further, based on studies of test accuracy
at the time, they had the probability that a drug user (correctly) tests positive is 0.80, and the probability
a non-drug user (incorrectly) tests positive is 0.02. Let D be the event that a worker is a drug user, and T+

be the event that a worker tests positive for drug use.

Consider the case where P (D) = .024. We are interested in the probability a worker who tests positive
is a drug user. Note that we do not have this probability stated above. The relevant probabilities and
calculations are given below.

P (D) = .024 P
(

D
)

= 1 − .024 = .976 P
(

T+|D
)

= .80 P
(

T+|D
)

= .02

P
(

D ∩ T+
)

= .024(.80) = .01920 P
(

D ∩ T+
)

= .976(.02) = .01952 P
(

T+
)

= .01920+.01952 = .03872

P
(

D|T+
)

=
.01920

.03872
= .4959 P

(

D|T+
)

=
.01952

.03872
= .5041

Thus a positive result on the test implies slightly less than a 50:50 chance the worker uses drugs. As the
prevalence increases, this probability increases, see Table 3.3.

∇
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P (D) P
(

D ∩ T+
)

P
(

D ∩ T+
)

P
(

T+
)

P
(

D|T+
)

.024 .01920 .01952 .03872 .4959

.031 .02480 .01938 .04418 .5613

.082 .06560 .01836 .08396 .7813

.202 .16160 .01596 .17756 .9101

Table 3.3: Probability a Positive Drug test corresponds to a drug user as a function of Prevalence of Drug
Use

3.2 Random Variables and Probability Distributions

When an experiment is conducted, or an observation is made, the outcome will not be known in advance, and
is considered to be a random variable. Random variables can be qualitative or quantitative. Qualitative
variables are generally modeled as a list of outcomes and their corresponding counts, as in contingency tables
and cross-tabulations. Quantitative random variables are numeric outcomes and are classified as being either
discrete or continuous, as described previously in describing data.

A probability distribution gives the values a random variable can take on and their corresponding
probabilities (discrete case) or density (continuous case). Probability distributions can be given in tabular,
graphic, or formulaic form. Some commonly used families of distributions are described below.

3.3 Discrete Random Variables

Discrete random variables can take on a finite, or countably infinite, set of outcomes. We label the random
variable as Y , and its specific outcomes as y1, y2, . . . , yk. Note that in some cases there is no upper limit for
k. We denote the probabilities of the outcomes as P (Y = yi) = p (yi), with the following restrictions.

0 ≤ p (yi) ≤ 1

k
∑

i=1

p (yi) = 1 F (yt) = P (Y ≤ yt) =

t
∑

i=1

p (yi) t = 1, . . . , k

Here F (y) is called the cumulative distribution function (cdf). This is a monotonic “step” function
for discrete random variables, and ranges from 0 to 1.

Example 3.6: NASCAR Race Finish Positions - 1975-2003

For the NASCAR race data in Winner (2006) [60], each driver was classified by their starting position
and their finishing position in the 898 races (34884 driver/races). For each race, we identify the number of
racers who start in the top 10, that finish in the top 3. This random variable (Y ) can take on the values y =
0, 1, 2, or 3. That is, none of the people who start toward the front (top 10) finish in the top 3, or one, or
two, or three. Table 3.4 gives the counts, probabilities, cumulative probabilities, and calculations used later
to numerically describe the empirical population distribution. The probability of either 2 or 3 drivers who
started in the top 10 finish in the top 3, is over 3/4 (.3987+.3708=.7695).
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y # races p(y) F (y) yp(y) y2p(y)

0 37 .0412 .0412 0.0000 0.0000
1 170 .1893 .2305 0.1893 0.1893
2 358 .3987 .6292 0.7974 1.5948
3 333 .3708 1.0000 1.1124 3.3372

Total 898 1 2.0991 5.1213

Table 3.4: Probability Distribution for Number of Top 10 Starters finishing in Top 3 positions, NASCAR
races 1975-2003

R Output

## Output

> (t.strt10Fin3 <- table(strt10Fin3)) ### Count 0,1,2,3 Top 3 finishers

strt10Fin3

0 1 2 3

37 170 358 333

> t.strt10Fin3 / sum(t.strt10Fin3) ### Turn counts to proportions

strt10Fin3

0 1 2 3

0.04120267 0.18930958 0.39866370 0.37082405

∇

Population Numerical Descriptive Measures

Three widely used numerical descriptive measures corresponding to a population are the population mean,
µ, the population variance, σ2, and the population standard deviation, σ. While we have previously
covered these based on a population of measurements, we now base them on a probability distribution. Their
formulas are given below.

Mean: E{Y } = µY = y1p(y1) + · · ·+ ykp(yk) =
∑

y

yp(y)

Variance: V {Y } = E{(Y − µY )2} = σ2
Y = (y1 − µY )2p(y1) + · · ·+ (yk − µY )2p(yk) =

∑

y

(y − µY )2p(y) =

=
∑

y

y2p(y) − µ2
Y Standard Deviation: σY = +

√

σ2
Y

Some useful rules among linear functions of random variables are given here. Suppose Y is a random
variable with mean and variance µY and σ2

Y , respectively. Further, suppose that a and b are constants (not
random). Then we have the following results.
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E{a + bY } =
∑

y

(a + by)p(y) = a
∑

y

p(y) + b
∑

y

yp(y) = a(1) + bµY = a + bµY

V {a + bY } =
∑

y

((a + by) − (a + bµY ))2p(y) = b2
∑

y

(y − µY )2p(y) = b2σ2
Y σa+bY = |b|σY

Examples where these can be applied involve transforming from inches to centimeters (1 inch = 2.54
cm, 1 cm = 1/2.54=0.3937 inch), from pounds to kilograms (1 kilogram = 2.204623 pounds) and from
degrees Fahrenheit to Celsius (deg F = 32 +1.8 deg C). These rules do not work for values raised to powers,
exponentials, or logarithms, although some approximations exist.

Example 3.7: NHL Hockey Player BMI and Marathon Speeds

Previously, we obtained the population mean and variance for NHL player body mass indices. Now
we obtain the mean, variance, and standard deviation of their weights (pounds) and heights (inches), and
convert them to kilograms and centimeters, respectively. The mean weight is 202.42 pounds, and the
variance is 228.60 pounds2. To convert from pounds to kilos, we have to divide pounds by 2.2, that is
K = (1/2.204623)P = 0.453592P . Thus, we obtain the following quantities.

µK = 0.453592µP = 0.453592(202.42) = 91.92 σ2
K = (0.453592)2σ2

P = (0.453592)2(228.60) = 47.03

σK =
√

47.03 = 6.86

The population mean and variance of heights are 73.26 inches and 4.26 inches2, respectively. To convert
inches to centimeters, we have to multiply by 2.54, that is C = 2.54I. Thus, we obtain the following
quantities.

µC = 2.54µI = 2.54(73.26) = 186.08 σ2
C = (2.54)2σ2

I = (2.54)2(4.26) = 27.48 σC =
√

27.48 = 5.24

Note that in the metric system, the weights in kilograms are less variable than weights in pounds, while
the heights in centimeters are more variable than than heights in inches.

For the female marathon runners, the mean and variance of their speeds were 5.84 mph and 0.69 mph2,
respectively. One mile represents 1.60394 kilometers, so that so that a person who runs M miles in 1 hour,
runs K = 1.60394M kilometers in one hour. This leads to the following quantities.

µK = 1.60394(5.84) = 9.37 σ2
K = (1.60394)2(0.69) = 1.78 σK =

√
1.78 = 1.33

∇
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In many settings, we are interested in linear functions of a sequence of random variables: Y1, . . . , Yn.
Typically, we have fixed coefficients a1, . . . , an, and E{Yi} = µi, V {Yi} = σ2

i , and COV{Yi, Yj} = σij.

COV{Yi, Yj} = E{(Yi − µi) (Yj − µj)} = σij = ρijσiσj

W =

n
∑

i=1

aiYi E{W} = µW =

n
∑

i=1

aiµi V {W} =

n
∑

i=1

a2
i σ

2
i + 2

n−1
∑

i=1

n
∑

j=i+1

aiajσij

If, as in many, but by no means all, cases, the Yi values are independent (σij = 0), the variance simplifies
to V {W} =

∑n
i=1 a2

i σ
2
i . A special case is when we have two random variables: X and Y , and a linear function

W = aX + bY for fixed constants. We have means µX , µY , standard deviations σX , σY , covariance σXY ,
and correlation ρXY .

W = aX +bY E{W} = aµX +bµY V {W} = a2σ2
X +b2σ2

Y +2abσXY = a2σ2
X +b2σ2

Y +2abρXY σXσY

Some special cases include where we have: a = 1, b = 1 (sums), and a = 1, b = −1 (differences). This
leads to the following results.

E{X + Y } = µX + µY V {X + Y } = σ2
X + σ2

Y + 2ρXY σXσY

E{X − Y } = µX − µY V {X − Y } = σ2
X + σ2

Y − 2ρXY σXσY

Example 3.8: Movie “Close Up” Scenes

Barry Salt has classified film shots along an ordinal scale for a “population” of 398 movies. The levels
are (BCU=Big Close Up, CU=Close Up, MCU=Medium Close Up, MLS=Medium Long Shot, LS=Long
Shot, and VLS=Very Long Shot). We consider X to be the number of Big Close Up’s and Y to be the
number of Close Up’s in a film. For this population, µX = 28.84, µY = 79.23, σX = 31.48, σY = 61.37, and
ρXY = 0.51. We obtain the population mean, variance, and standard deviations of the sum of Big Close
Up’s and Close Up’s (X + Y ) and the difference between Big Close Up’s and Close Up’s (X − Y ).

E{X+Y } = 28.84+79.23 = 108.07 V {X+Y } = 31.482+61.372+2(0.51)(31.48)(61.37) = 6727.83 σX+Y = 82.02

E{X−Y } = 28.84−79.23 = −50.39 V {X−Y } = 31.482+61.372−2(0.51)(31.48)(61.37) = 2786.70 σX−Y = 52.79

Source: http://www.cinemetrics.lv/salt.php

∇
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3.3.1 Common Families of Discrete Probability Distributions

Here we consider some commonly used families of discrete probability distributions, namely the Binomial,
Poisson, and Negative Binomial families. These are used in many situations where data are counts of numbers
of events occurring in an experiment.

Binomial Distribution

A binomial “experiment” is based on a series of Bernoulli trials with the following characteristics.

• The experiment consists of n trials or observations.

• Trial outcomes are independent of one another.

• Each trial can end in one of two possible outcomes, often labeled Success or Failure.

• The probability of Success, π is constant across all trials.

• The random variable, Y , is the number of Successes in the n trials

Note that many experiments are well approximated by this model, and thus it has wide applicability.
One problem that has been considered in great detail is the assumption of independence from trial to trial. A
classic paper that looked at the “hot hand” in basketball shooting has led to many studies in sports involving
the topic is Gilovich, Vallone, and Tversky (1985), [26].

The probability of any sequence of y Successes and n − y Failures is πy(1 − π)n−y for y = 0, 1, . . . , n.
The number of ways to observe y successes in n trials makes use of combinations described previously. The
number of ways of choosing y positions from 1, 2, . . . , n is Cn

y = n!
y!(n−y)! =

(

n
y

)

. For instance, there is only

one way observing either 0 or n Successes, there are n ways of observing 1 or n − 1 Successes, and so on.
This leads to the following probability distribution for Y ∼ Bin(n, π).

P (Y = y) = p(y) =

(

n

y

)

πy(1 − π)n−y y = 0, 1, . . . , n

n
∑

y=0

p(y) = (π + (1 − π))
n

= 1n = 1

Statistical packages and spreadsheets have functions for computing probabilities for the Binomial (and
all distributions covered in these notes). In R, the function dbinom(y,n,π) returns P (Y = y) = p(y) (the
probability “density”) when Y ∼ Bin(n, π).

To obtain the mean and variance of the Binomial distribution, consider the n independent trials indi-
vidually (these are referred to as Bernoulli trials). Let Si = 1 if trial i is a success, and Si = 0 if it is a
failure. Then Y , the number of Successes is the sum of the independent Si values, leading to the following
results.

E{Si} = 1π+0(1−π) = π E{S2
i } = 12π+02(1−π) = π V {Si} = E{S2

i }−(E{Si})2 = π−π2 = π(1−π)
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Y =

n
∑

i=1

Si ⇒ E{Y } = µY =

n
∑

i=1

E{Si} = nπ V {Y } = σ2
Y =

n
∑

i=1

V {Si} = nπ(1−π) σY =
√

nπ(1 − π)

Example 3.9: Experiments of Mobile Phone Telepathy

A set of experiments was conducted to determine whether people displayed evidence of telepathy in
receiving mobile phone calls (Sheldrake, Smart, and Avraamides (2015), [53]). Each subject received 6
calls from one of two potential callers. Each subject predicted which caller was calling. Assuming random
guessing, the number of successful predictions should be Binomial, with n = 6 trials, and probability of
Success π = 0.5, since there were two potential callers. The probabilities of 0,1,2,...,6 successes for a subject
in the experiment are given below. A plot of the probability distribution is given in Figure 3.1.

6!

0!(6− 0)!
=

6!

6!(6 − 6)!
= 1

6!

1!(6 − 1)!
=

6!

5!(6− 5)!
= 6

6!

2!(6− 2)!
=

6!

4!(6 − 4)!
= 15

6!

3!(6 − 3)!
= 20

.5y(1 − .5)6−y = .56 = .015625

p(0) = p(6) = .015625 p(1) = p(5) = .09375 p(2) = p(4) = .234375 p(3) = .3125

R Output

### Output

> (p_y <- dbinom(y, 6, 0.5)) ## Obtain p(y) for y=0,1,...,6

[1] 0.015625 0.093750 0.234375 0.312500 0.234375 0.093750 0.015625

The mean, variance, and standard deviation of the number of Successful predictions in the n = 6 trials
under this model are as follow.

µY = nπ = 6(0.5) = 3 σ2
Y = nπ(1 − π) = 6(0.5)(1− 0.5) = 1.5 σY =

√
1.5 = 1.2247

For the Sheldrake, et al study, [53], 110 subjects completed 6 trials each (660 total trials). There were a
total of 369 hits (there appears to be a typo saying 370 in their Table 3). This corresponds to a proportion of
369/660=.559, in other words, these subjects in aggregate showed better than expected success in predicting
callers. Table 3.5 gives the probability distributions for π = 0.50 and π = 0.56, along with expected counts
under the two models and the observed counts (N = 110 subjects).

∇
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y π = 0.50 : p(y) π = 0.56 : p(y) π = 0.50: Expected # π = 0.56: Expected # Observed #

0 .015625 .007256 1.72 0.80 1
1 .093750 .055412 10.31 6.10 5
2 .234375 .176310 25.78 19.39 18
3 .312500 .299193 34.38 32.91 37
4 .234375 .285594 25.78 31.42 31
5 .093750 .145393 10.31 15.99 15
6 .015625 .030841 1.72 3.39 3

Total 1 1 110 110 110

Table 3.5: Probability Distribution for Number of successful prediction for mobile telephone telepathy study

0 1 2 3 4 5 6
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Probabilty Distribution for Binomial(6,0.5)

y

p
(
y
)

Figure 3.1: Probability Distribution for Mobile Telephone Telepathy experiment assuming random guessing,
Y ∼Bin(6,0.5)
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y p(y) Expected # Observed #

0 .3936 226.71 229
1 .3670 211.39 211
2 .1711 98.55 93
3 .0532 30.64 35
4 .0124 7.14 7

≥ 5 .0027 1.56 1

Total 1 576 576

Table 3.6: Probability Distribution for Number of bombs hitting within 576 areas on a grid in the south of
London during World War II

Poisson Distribution

In many applications, researchers observe the counts of a random process in some fixed amount of time or
space. The random variable Y is a count that can take on any non-negative integer. One important aspect
of the Poisson family is that the mean and variance are the same. This is one aspect that does not work for
all applications. We use the notation: Y ∼ Poi (λ). The probability distribution, mean and variance of Y
are:

p(y) =
e−λλy

y!
y = 0, 1, . . .; λ > 0 E {Y } = µY = λ V {Y } = σ2

Y = λ

Note that λ > 0. The Poisson arises by dividing the time/space into n “infinitely” small areas, each having
either 0 or 1 Success, with Success probability π = λ/n. Then Y is the number of areas having a success.

p(y) =
n!

y!(n − y)!

(

λ

n

)y (

1 − λ

n

)n−y

=
n(n − 1) · · · (n − y + 1)

y!

(

λ

n

)y (

1 − λ

n

)n−y

=

=
1

y!

(n

n

)

(

n − 1

n

)

· · ·
(

n − y + 1

n

)

λy

(

1 − λ

n

)n(

1 − λ

n

)−y

The limit as n goes to ∞ is:

lim
n→∞

p(y) =
1

y!
(1)(1) · · · (1)λye−λ(1) = p(y) =

e−λλy

y!
y = 0, 1, 2...

The mean and variance for the Poisson distribution are both λ. This restriction can be problematic in many
applications, and the Negative Binomial distribution (described below) is often used when the variance
exceeds the mean.

Example 3.10: London Bomb Hits in World War II

A widely reported application of the Poisson Distribution involves the counts of the number of bombs
hitting among 576 areas of 0.5km2 in south London during WWII (Clarke (1946), [15], also reported in
Feller (1950), [24]). There were a total of 537 bombs hit with a mean of 537/576 = .9323. Table 3.6 gives
the counts, and their expected counts (576p(y)) for the occurrences of 0 bombs, 1 bomb, ..., ≥ 5 bombs (the
last cell involves 1 area which was hit 7 times).
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Negative Binomial Distribution

The negative binomial distribution is used in two quite different contexts. The first is where a binomial
type experiment is being conducted, except instead of having a fixed number of trials, the experiment is
completed when the rth success occurs. The random variable Y is the number of trials needed until the rth

success, and can take on any integer value greater than or equal to r. The probability distribution, its mean
and variance are given below.

p(y) =

(

y − 1

r − 1

)

πr (1 − π)y−r E {Y } = µY =
r

π
V {Y } = σ2

Y =
r (1 − π)

π2
.

A second use of the negative binomial distribution is as a model for count data. It arises from a mixture
of Poisson models. In this setting it has 2 parameters and is more flexible than the Poisson (which has the
variance equal to the mean), and can take on any non-negative integer value. In this form, the negative
binomial distribution and its mean and variance can be written as follow (see e.g. Agresti (2002) [1] and
Cameron and Trivedi (2005) [12]).

f (y; µ, α) =
Γ
(

α−1 + y
)

Γ (α−1) Γ (y + 1)

(

α−1

α−1 + µ

)α−1
(

µ

α−1 + µ

)y

Γ(w) =

∫ ∞

0

xw−1e−xdx = (w − 1)Γ (w − 1) .

E {Y } = µ V {Y } = µ (1 + αµ) .

Example 3.11: Number of Comets Observed per Year - 1789-1888

The number of comets observed per year for the century 1789-1888 inclusive were reported by Chambers
(1889), [13] and included in a large number of datasets by Thorndike (1926), [58]. The annual number of
comets ranged from 0 (19 years) to 9 (1 year), with frequency counts and computations for the mean and
variance given in Table 3.7, treating this as a population of years. The mean and variance are given below,
along with “method of moments” estimates for µ and α for the Negative Binomial distribution.

µY =
∑

y

yp(y) = 2.58 σ2
Y =

∑

y

y2p(y) − µ2
Y = 11.36− 2.582 = 4.70

σ2 = µ(1 + αµ) ⇒ α =
σ2/µ − 1

µ
=

4.70/2.58− 1

2.58
= 0.32

The Negative Binomial appears to fit better than a Poisson distribution with mean 2.58, based on
observed and expected counts.

∇
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y # years p(y) yp(y) y2p(y) Exp(Poi) Exp(NegBin)

0 19 .19 0.00 0.00 7.58 15.22
1 19 .19 0.19 0.19 19.55 21.54
2 17 .17 0.34 0.68 25.22 20.11
3 14 .14 0.42 1.26 21.69 15.54
4 13 .13 0.52 2.04 13.99 10.76
5 8 .08 0.40 2.00 7.22 6.93
6 4 .04 0.24 1.44 3.10 4.24
7 2 .02 0.14 0.98 1.14 2.50
8 3 .03 0.24 1.92 0.37 1.43

≥ 9 1 .01 0.09 0.81 0.14 1.73

Total 100 1 2.58 11.36 100 100

Table 3.7: Probability Distribution for Number of Comets Observed for years 1789-1888

3.4 Continuous Random Variables

Continuous random variables can take on any values along a continuum. Their distributions are described
as densities, with probabilities being assigned as areas under the curve. Unlike discrete random variables,
individual points have no probability assigned to them. While discrete probabilities and means and variances
make use of summation, continuous probabilities and means and variances are obtained by integration. The
following rules and results are used for continuous random variables and probability distributions. We use
f(y) to denote a probability density function and F (y) to dentote the cumulative distribution function.

f(y) ≥ 0

∫ ∞

−∞
f(y)dy = 1 P (a ≤ Y ≤ b) =

∫ b

a

f(y)dy F (y) =

∫ y

−∞
f(t)dt

E{Y } = µY =

∫ ∞

−∞
yf(y)dy V {Y } = σ2

Y =

∫ ∞

−∞
(y − µY )

2
f(y)dy =

∫ ∞

−∞
y2f(y)dy−µ2

Y σY = +
√

σ2
Y

3.4.1 Common Families of Continuous Probability Distributions

Three commonly applied families of distributions for describing populations of continuous measurements are
the normal, gamma, and beta families, although there are many other families also used in practice.

The normal distribution is symmetric and mound-shaped. It has two parameters: a mean and variance
(the standard deviation is often used in software packages). Many variables have distributions that are
modeled well by the normal distribution, and many estimators have sampling distributions that are
approximately normal. The gamma distribution has a density over positive values that is skewed to the
right. There are many applications where data are skewed with a few extreme observations, such as the
marathon running times observed previously. The gamma distribution also has two parameters associated
with it. The beta distribution is often used to model data that are proportions (or can be extended to any
finite length interval). The beta distribution also has two parameters. All of these families can take on a
wide range of shapes by changing parameter values.
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Probabilities, quantiles, densities, and random number generators for specific distributions and param-
eter values can be obtained from many statistical software packages and spreadsheets such as EXCEL. We
will use R throughout these notes.

Normal Distribution

The normal distributions, also known as the Gaussian distributions, are a family of symmetric mound-
shaped distributions. The distribution has 2 parameters: the mean µ and the variance σ2, although often it
is indexed by its standard deviation σ. We use the notation Y ∼ N (µ, σ). The probability density function,
the mean and variance are:

f(y) =
1√

2πσ2
exp

(

−(y − µ)
2

2σ2

)

−∞ < y < ∞,−∞ < µ < ∞, σ > 0 E {Y } = µY = µ V {Y } = σ2
Y = σ2

The mean µ defines the center (median and mode) of the distribution, and the standard deviation σ is a
measure of the spread (µ − σ and µ + σ are the inflection points). Despite the differences in location and
spread of the different distributions in the normal family, probabilities with respect to standard deviations
from the mean are the same for all normal distributions. For −∞ < z1 < z2 < ∞, we have:

P (µ + z1σ ≤ Y ≤ µ + z2σ) =

∫ µ+z2σ

µ+z1σ

1√
2πσ2

exp

(

−(y − µ)
2

2σ2

)

dy =

∫ z2

z1

1√
2π

e−z2/2dz = Φ(z2) − Φ(z1).

Here Z is standard normal, a normal distribution with mean 0, and variance (standard deviation) 1. Φ(z∗)
is the cumulative distribution function of the standard normal distribution, up to the point z∗:

Φ(z∗) =

∫ z∗

−∞

1√
2π

e−z2/2dz

These probabilities and critical values can be obtained directly or indirectly from standard tables, statistical
software, or spreadsheets. Note that:

Y ∼ N (µ, σ) ⇒ Z =
Y − µ

σ
∼ N(0, 1).

This makes it possible to use the standard normal table to obtain probabilities and quantiles for any normal
distribution. Plots of three normal distributions are given in Figure 3.2.

Approximately 68% (.6826) of the probability lies within 1 standard deviation from the mean, 95%
(.9544) lies within 2 standard deviations, and virtually all (.9970) lies within 3 standard deviations.

Example 3.12: NHL Player Body Mass Indices

Previously, we saw that the Body Mass Indices (BMI) of National Hockey League players for the 2013-
2014 season were mound shaped with a mean of 26.50 and standard deviation 1.45. Figure 3.3 gives a
histogram along with the corresponding normal density. There is a tendency to observe more actual BMI’s
in the center than the normal distribution would imply, but the normal model seems to be reasonable.

Consider the following quantiles (.10, .25, .50, .75, .90) for the NHL data and the corresponding N(26.50,
1.45) distribution. Also consider the probabilities of the following ranges (< 26.50 − 2(1.45) = 23.60, >
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Figure 3.2: Three Normal Densities

26.50 + 2(1.45) = 29.40, and (25.05 = 26.50− 1.45, 26.50+ 1.45 = 27.95)) for the NHL data and the normal
distribution.

R Output

### Output

> round(q.out, 3)

10% 25% 50 75% 90%

Theoretical 24.637 25.52 26.500 27.481 28.363

Empirical 24.702 25.62 26.516 27.439 28.342

>

> round(p.out, 4)

<mu-2sigma (mu-sigma,mu+sigma) >mu+2sigma

Theoretical 0.0228 0.6827 0.0228

Empirical 0.0265 0.7057 0.0279

The quantiles and probabilities are very similar, showing the normal model is a reasonable approximation
to the distribution of NHL BMI values.

∇
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Figure 3.3: NHL Body Mass Indices and Normal Distribution

Gamma Distribution

The gamma family of distributions are used to model non-negative random variables that are often right-
skewed. There are two widely used parameterizations. The first given here is in terms of shape and scale

parameters.

f(y) =
1

Γ(α)βα
yα−1e−y/β y ≥ 0, α > 0, β > 0 E {Y } = µY = αβ V {Y } = σ2

Y = αβ2

Here, Γ(α) is the gamma function Γ(α) =
∫∞
0 yα−1e−ydy and is built-in to virtually all statistical packages

and spreadsheets. It also has two simple properties.

α > 1 : Γ(α) = (α − 1) Γ(α − 1) Γ

(

1

2

)

=
√

π

Thus, if α is an integer, Γ(α) = (α − 1)!. The second parameterization given here is in terms of shape and
rate parameters.

f(y) =
βα

Γ(α)
yα−1e−yβ y ≥ 0, α > 0, β > 0 E {Y } = µY =

α

β
V {Y } = σ2

Y =
α

β2

Note that different software packages use the different parameterizations in generating samples and giving
tail-areas and critical values. For instance, EXCEL uses the first parameterization and R uses the second.
Figure 3.4 displays three gamma densities of various shapes.

Example 3.13: Rock and Roll Marathon Speeds
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Figure 3.4: Three Gamma Densities

As seen previously, when considering females and males separately, the distributions of running speeds
are all positive, and skewed to the right. The means for females and males were 5.8398 and 6.3370, re-
spectively; and the variances were 0.6906 and 1.1187, respectively. Using the second formulation of the
gamma distribution, with µ = α/β and σ2 = α/β2, we obtain the following parameter values for the two
distributions based on the method of moments.

µ2

σ2
=

(α/β)2

α/β2
= α

µ

σ2
=

α/β

α/β2
= β

Females: αF =
5.83982

0.6906
= 49.38 βF =

5.8398

0.6906
= 8.46

Males: αM =
6.33702

1.1187
= 35.90 βM =

6.3370

1.1187
= 5.66

Histograms of the actual speeds and the corresponding Gamma densities are given in Figure 3.5. Similar
to what was done for the NHL BMI measurements, we compare the theoretical quantiles for the female
and male speeds with the actual quantiles, and compare theoretical probabilities for females and males with
observed probabilities. There is very good agreement between the quantiles. The extreme probabilities do
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Figure 3.5: Rock and Roll Marathon speeds and Gamma Distributions for Females and Males

not match up as well, but still show fairly good agreement, with exception of no actual cases falling more
than 2 standard deviations below the means.

R Output

## Output

> round(q.out, 3)

10% 25% 50 75% 90%

Theoretical/Female 4.803 5.260 5.800 6.377 6.927

Empirical/Female 4.811 5.203 5.711 6.357 7.015

Theoretical/Male 5.025 5.595 6.278 7.015 7.725

Empirical/Male 4.970 5.561 6.277 6.986 7.718

> round(p.out, 4)

<mu-2sigma (mu-sigma,mu+sigma) >mu+2sigma

Theoretical/Female 0.0146 0.6843 0.0298

Empirical/Female 0.0000 0.6622 0.0364

Theoretical/Male 0.0131 0.6850 0.0309

Empirical/Male 0.0000 0.6651 0.0365

∇

Two special cases are the exponential family, where α = 1 and the Chi-square family, with α = ν/2 and
β = 2 for integer valued ν . For the exponential family, based on the second parameterization, the symbol β
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Figure 3.6: Three Exponential Densities

is often replaced by θ.

f(y) = θe−yθ E {Y } = µY =
1

θ
V {Y } = σ2

Y =
1

θ2
.

Probabilities for the exponential distribution are trivial to obtain as F (y∗) = 1 − e−y∗θ. Figure 3.6 gives
three exponential distributions.

For the chi-square family, based on the first parameterization, we have the following.

f(y) =
1

Γ
(

ν
2

)

2ν/2
y

ν
2
−1e−y/2 E {Y } = µY = ν V {Y } = σ2

Y = 2ν

Here, ν is the degrees of freedom and we denote the distribution as: Y ∼ χ2
ν. Upper and lower critical

values of the chi-square distribution are available in tabular form, and in statistical packages and spread-
sheets. Probabilities, quantiles, densities, and random samples can be obtained with statistical packages and
spreadsheets. The chi-square distribution is widely used in statistical testing as will be seen later. Figure 3.7
gives three Chi-square distributions.
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Figure 3.7: Three Chi-Square Densities

3.5 Sampling Distributions and the Central Limit Theorem

Sampling distributions are the probability distributions of sample statistics across different random samples
from a population. That is, if we take many random samples, compute the statistic for each sample, then
save that value, what would be the distribution of those saved statistics? In particular, if we are interested
in the sample mean Y , or the sample proportion with a characteristic π̂, we know the following results, based
on independence of elements within a random sample.

Sample Mean: E{Yi} = µ V {Yi} = σ2 E{Y } = E

{

n
∑

i=1

(

1

n

)

Yi

}

= n

(

1

n

)

µ = µ

V {Y } = V

{

n
∑

i=1

(

1

n

)

Yi

}

=

n
∑

i=1

(

1

n

)2

V {Yi} = n

(

1

n

)2

σ2 =
σ2

n

SE{Y } = σY =
σ√
n

Sample Proportion: E{Yi} = π V {Yi} = π(1 − π) E{π̂} = E

{

n
∑

i=1

(

1

n

)

Yi

}

= n

(

1

n

)

π = π

V {π̂} = V

{

n
∑

i=1

(

1

n

)

Yi

}

=

n
∑

i=1

(

1

n

)2

V {Yi} = n

(

1

n

)2

π(1 − π) =
π(1 − π)

n
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SE{π̂} = σπ̂ =

√

π(1 − π)

n

The standard deviation of the sampling distribution of a sample statistic (aka estimator) is referred to
as its standard error. Thus SE{Y } = σY is the standard error of the sample mean, and SE{π̂} = σπ̂ is
the standard error of the sample proportion.

When the data are normally distributed, the sampling distribution of the sample mean is also normal.
When the data are not normally distributed, as the sample size increases, the sampling distribution of the
sample mean or proportion tends to normality. The “rate” of convergence to normality depends on how
“non-normal” the underlying distribution is. The mathematical arguments for these results are Central
Limit Theorems.

Sample Mean: Y
·∼ N

(

µ,
σ√
n

)

Sample Proportion: π̂
·∼ N

(

π,

√

π(1 − π)

n

)

Example 3.14: Sampling Distributions - NHL BMI, Female Marathon Speeds

We consider the sampling distributions of sample means for the NHL player Body Mass Indices, and
Female Rock and Roll Marathon Speeds. For the NHL BMI data, the population mean is µ = 26.500 and
standard deviation is σ = 1.454. As the underlying distribution is approximately normal, the sampling
distribution of the mean is approximately normal, regardless of the sample size. We take 10000 random
samples of size n = 9, computing and saving the sample mean for each sample. The theoretical and empirical
(based on the 10000 random samples) mean and standard error of the sample means are given below and a
histogram with the normal density are shown in Figure 3.8.

Theory: µY = µ = 26.500 σY =
1.454√

9
= 0.485 Empirical: y = 26.504 sy = 0.485

The mean and standard deviation are very close to the corresponding theoretical values (they won’t
always be this close, as sampling error exists).

For the female marathon speeds, we saw that the distribution was skewed to the right, and well modeled
by a gamma distribution with mean µ = 5.84 and standard deviation σ = 0.83. We take 10000 random
samples of n = 16 from this population, computing and saving the sample mean from each sample. The
theoretical and empirical (based on the 10000 random samples) mean and standard error of the sample
means are given below and a histogram with the normal density are shown in Figure 3.9.

Theory: µY = µ = 5.840 SE{Y } =
0.831√

16
= 0.208 Empirical: y = 5.839 SE{y} = 0.206

Again, we see very strong agreement between the empirical and theoretical values (as we should). Also,
note that the sampling distribution is very well approximated by the N(5.840,0.208) in the graph.

∇
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Sampling Distribution of Sample Mean, n=9
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Figure 3.8: Sampling distribution for sample means (n=9) for NHL Body Mass Index

Sampling Distribution of Sample Mean, n=16
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Figure 3.9: Sampling Distribution for sample means (n=16) for Female Rock and Roll Marathon speeds
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Chapter 4

Inferences for Population Means

Researchers often are interested in making statements regarding unknown population means and medians
based on sample data. There are two common methods for making inferences: Estimation and Hypothesis
Testing. The two methods are related and make use of the sampling distribution of the sample mean when
making statements regarding the population mean.

Estimation can provide a single “best” prediction of the population mean, a point estimate, or it
can provide a range of values that hopefully encompass the true population mean, an interval estimate.
Hypothesis testing involves setting an a priori (null) value for the unknown population mean, and measuring
the extent to which the sample data contradict that value. Note that a confidence interval provides a credible
set of values for the unknown population mean, and can be used to test whether or not the population mean
is the null value. Both methods involve uncertainty as we are making statements regarding a population
based on sample data.

4.1 Estimation

For large samples, the sample mean has an approximately normal sampling distribution centered at the
population mean, µ, and a standard error σ/

√
n. When the data are normally distributed, the sampling

distribution is normal for all sample sizes. For normal distributions, 95% of its density lies in the range
(mean +/- 1.96 SD). Thus, when we take a random sample, we obtain the following probability statement
regarding the sample mean.

Y
·∼ N

(

µ, SE{Y } =
σ√
n

)

⇒ P

(

µ − zα/2
σ√
n

≤ Y ≤ µ + zα/2
σ√
n

)

≈ 1 − α P (Z ≥ za) = a

⇒ 1 − α ≈ P

(

−zα/2 ≤ Y − µ

σ/
√

n
≤ zα/2

)

= P

(

Y − zα/2
σ√
n

≤ µ ≤ Y + zα/2
σ√
n

)
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Some commonly used coverage probabilities (1−α) are given here, along with the corresponding z values.

1−α = .90 ⇒ α = .10 ⇒ α

2
= .05 ⇒ z.05 = 1.645 1−α = .95 ⇒ z.025 = 1.96 1−α = .99 ⇒ z.005 = 2.576

Note that in the probability statements above, µ is a fixed, unknown constant in practice, and Y is a
random variable that varies from sample to sample. The probability refers to the fraction of the samples
that will provide sample means such that the lower and upper bounds “cover” µ. Also, in practice, σ will
be unknown and need to be replaced by the sample standard deviation.

A Large-Sample (1 − α)100% Confidence Interval for a Population Mean µ is given below, where y and
s are the observed mean and standard deviation from a random sample of size n and ŜE{Y } represents the
estimated standard error .

y ± zα/2ŜE{Y } y ± zα/2
s√
n

When the data are normally distributed, for small samples (although this has shown to work well for
other distributions), replace zα/2 with tα/2,n−1.

y ± tα/2,n−1ŜE{Y } y ± tα/2,n−1
s√
n

Any software package or spreadsheet that is used to obtain a confidence interval for a mean (or difference
between two means) will always use the version based on the t-distribution. There will be settings, when
making confidence intervals for parameters, that there is no justification for using the t-distribution, and we
will make use the z-distribution, as does statistical software packages.

Example 4.1: NHL Players’ BMI

The Body Mass Indices for the NHL players are approximately normally distributed with mean µ =
26.500 and standard deviation σ = 1.454. We take 10000 random samples of size n = 12, implying a standard
error of σY = 1.454/

√
12 = 0.420. We count the number of the 10000 sample means that lie in the ranges

µ ± zα/2σY for the three values of 1 − α given above.

Of the 10000 sample means, 8975 (89.75%) lied within µ ± 1.645(.420), 9512 (95.12%) within µ ±
1.96(.420), and 9902 (99.02%) within µ±2.576(.420). Had we constructed intervals of the form y±zα/2(.420)
for each sample mean, the coverage rates for µ would have been the same values (89.75%, 95.12%, 99.02%).

When the population standard error SE{Y } = σ/
√

n is replaced by the estimated standard error
ŜE{Y } = s/

√
n, which varies from sample to sample, we find the coverage rates of the intervals decrease.

When constructing intervals of the form y±zα/2s/
√

n, the coverage rates fall to 86.78%, 92.29%, and 97.58%,
respectively. This is a by-product of the fact that the sampling distribution of the standard deviation is
skewed right, and its median is below its mean. Whenever the sample standard deviation is small, the width
of the constructed interval is shortened. When using the estimated standard error, replace zα/2 with the



4.1. ESTIMATION 61

corresponding critical value for the t-distribution, with n − 1 degrees of freedom: tα/2,n−1. For this case,
with n = 12, we obtain t.05,11 = 1.796, t.025,11 = 2.201, and t.005,11 = 3.106. When z is replaced by the
corresponding t values, the coverage rates for the constructed intervals with the estimated standard errors
reach their nominal rates: 89.79%, 95.22%, and 99.15%, respectively.

For the first random sample of the 10000 generated, we observe y = 25.838 and s = 1.717. The 95%
Confidence Interval for µ based on the first sample is obtained as follows.

y ± t.025,n−1
s√
n

≡ 25.838± 2.201

(

1.717√
12

)

≡ 25.838± 1.091 ≡ (24.747, 26.929)

Thus, this interval does contain µ = 26.500.

R Output

### Output

> round(cover.out,4)

90% Confidence 95% Confidence 99% Confidence

Z - True SE 0.8975 0.9512 0.9902

Z - Estimated SE 0.8678 0.9229 0.9758

t - Estimated SE 0.8979 0.9522 0.9915

∇

Often, researchers choose the sample size so that the margin of error will not exceed some fixed level
E with high confidence. That is, we want the difference between the sample and population means to be
within E with confidence level 1 − α. This means the width of a (1 − α)100% Confidence Interval will be
2E. This can be done in one calculation based on using the z distribution, or more conservatively, by trivial
iteration based on the t-distribution. Either way, we must have an approximation of σ based on previous
research or a pilot study.

z : Ez = zα/2
σ√
n

⇒ n =

(

zα/2σ

Ez

)2

t : Smallest n such that Et ≤ tα/2,n−1
σ√
n

Example 4.2: Estimating Population Mean Male Marathon Speed

Suppose we want to estimate the population mean of the male Rock and Roll marathon running speeds
within E = 0.20 miles per hour with 95% confidence. We treat the standard deviation as known, σ = 1.058.
The calculation for the sample size based on the z-distribution is given below, followed by R commands that
iteratively solve for n based on the t-distribution.

z : z.025 = 1.96 n =

(

1.96(1.058)

0.20

)2

= 107.5 ≈ 108

R Output
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## Output

> cbind(n, E.t)

n E.t

[1,] 110 0.1999336

Since n was needed to be so large, z.025 and t.025,n−1 are very close, and both methods give virtually
the same n (108 and 110).

4.2 Hypothesis Testing

In hypothesis testing, a sample of data is used to determine whether a population mean is equal to some
pre-specified level µ0. It is rare, except in some situations to test whether the mean is some specific value
based on historical level, or government or corporate specified level to have a null value to test. These tests
are more common when comparing two or more populations or treatments and determining whether their
means are equal. The elements of a hypothesis test are given below.

Null Hypothesis (H0) Statement regarding a parameter that is to be tested. It always includes an equality,
and the test is conducted assuming its truth.

Alternative (Research) Hypothesis (HA) Statement that contradicts the null hypothesis. Includes
“greater than” (>), “less than” (<),or “not equal too” (6=)]

Test Statistic (T.S.) A statistic measuring the discrepancy between the sample statistic and the parameter
value under the null hypothesis (where the equality holds).

Rejection Region (R.R.) Values of the Test Statistic for which the Null Hypothesis is rejected. Depends
on the significance level of the test.

P -value Probability under the null hypothesis (at the equality) of observing a Test Statistic as extreme or
more extreme than the observed Test Statistic. Also known as the observed significance level.

Type I Error Rejecting the Null Hypothesis when in fact it is true. The Rejection Region is chosen so that
this has a particular small probability (α = P (Type I Error) is the significance level and is often set
at 0.05).

Type II Error Failing to reject the Null Hypothesis when it is false. Depends on the true value of the
parameter. Sample size is often selected so that it has a particular small probability for an important
difference. β = P (Type II Error).

Power The probability the Null Hypothesis is rejected. When H0 is true the power is π = α, when HA is
true, it is π = 1 − β.

The testing procedure for a mean is based on the sampling distribution of Y being approximately normal
with mean µ0 under the null hypothesis. Also, when the data are normal the difference between the sample
mean and µ0 divided by its estimated standard error is distributed as t with n− 1 degrees of freedom under
the null hypothesis.



4.2. HYPOTHESIS TESTING 63

Y
·∼ N

(

µ0, SE{Y } =
σ√
n

)

Y − µ0

ŜE{Y }
=

Y − µ0

s/
√

n
∼ tn−1

When the absolute value of the t-statistic is large, there is evidence against the null hypothesis. Once a
sample is taken (observed), and the sample mean y and sample standard deviation s are observed, the test
is conducted as follows for 2-tailed, upper tailed, and lower tailed alternatives.

2-tailed: H0 : µ = µ0 HA : µ 6= µ0 T.S.: tobs =
y − µ0

s/
√

n
R.R.: |tobs| ≥ tα/2,n−1 P = 2P (tn−1 ≥ |tobs|)

Upper tailed: H0 : µ ≤ µ0 HA : µ > µ0 T.S.: tobs =
y − µ0

s/
√

n
R.R.: tobs ≥ tα,n−1 P = P (tn−1 ≥ tobs)

Lower tailed: H0 : µ ≥ µ0 HA : µ < µ0 T.S.: tobs =
y − µ0

s/
√

n
R.R.: tobs ≤ −tα,n−1 P = P (tn−1 ≤ tobs)

The form of the rejection regions are given for 2-tailed, Upper and Lower tailed tests in Figure 4.1. These
are based on α = 0.05, and n = 16. The vertical lines lie at t.975,15 = −t.025,15 = −2.131 and t.025,15 = 2.131
for the 2-tailed test, t.05,15 = 1.753 for the Upper tailed test, and t.95,15 = −t.05,15 = −1.753 for the Lower
tailed test.

When the Null Hypothesis is false, the test statistic is distributed as non-central t with non-centrality
parameter given below.

H0 : µ = µ0 In reality: µ = µA 6= µ0 ∆ =
µA − µ0

σ/
√

n
t =

Y − µ0

S/
√

n

·∼ tn−1,∆

Power probabilities, which depend on whether the test is 2-tailed or 1-tailed can be obtained from
statistical software packages, such as R, but not directly in EXCEL.

2-tailed tests: π = P
(

tn−1,∆ ≤ −tα/2,n−1

)

+ P
(

tn−1,∆ ≥ tα/2,n−1

)

Lower tailed tests: π = P (tn−1,∆ ≤ −tα,n−1) Upper tailed tests: π = P (tn−1,∆ ≥ tα,n−1)

While it is rare to use hypothesis testing regarding a single mean (except in the case where data are
paired differences within individual units), the procedure is demonstrated based on male Rock and Roll
marathon speeds with several values of µ0.
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Figure 4.1: Rejection Regions for 2-tailed, Upper and Lower tailed tests, with α = 0.05 and n = 16

Example 4.3: Male Rock and Roll Marathon Speeds

For the males participating in the Rock and Roll marathon, the population mean speed was µ = 6.337
miles per hour with standard deviation of σ = 1.058. We will demonstrate hypothesis testing regarding a
single mean by first testing H0 : µ = 6.337 versus HA : µ 6= 6.337, based on random samples of n = 40. Since
the null hypothesis is true, if the test is conducted with a Type I Error rate of α = 0.05, the test should
reject the null in approximately 5% of samples. The distribution of the test statistic is t with n − 1 = 39
degrees of freedom. Further, the P -values should approximate a Uniform distribution between 0 and 1. Note
that 482 (4.82%) of the 10000 samples reject the null hypothesis, in agreement with what is to be expected.
A histogram of the observed test statistics, along with the t-density, and the P -values and the the Uniform
density are given in Figure 4.2. The two vertical bars on the t-statistic plot are at ±t.025,39 = ±2.023.

Next consider cases where the null hypothesis is not true. Consider H01 : µ = 6 versus HA1 : µ 6= 6 and
H02 : µ = 6.5 versus HA2 : µ 6= 6.5. Since the null value for H02 is closer to the true value µA = 6.337 than
the null value for H01, we expect that we will reject H02 less often for tests based on the same sample size.
That is, the power is higher for H01 than H02. The non-centrality parameters and the corresponding power
values are given below, based on samples of n = 40.

∆1 =
6.337− 6.0

1.058/
√

40
= 2.015 π1 = .5022 ∆2 =

6.337− 6.5

1.058/
√

40
= −0.974 π2 = .1583

Based on 10000 random samples from the male marathon speeds, 49.93% rejected H0 : µ = 6, and for
another set of 10000 random samples, 17.05% rejected H0 : µ = 6.5. The histogram of the test statistics and
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Figure 4.2: t-statistics and P -values for testing H0 : µ = 6.337

the non-central t-distribution are given in Figure 4.3 for testing H0 : µ = 6.

R Output

## Output

> round(power.out, 4)

Delta Theoretical Power Empirical Power

mu0=6.33 0.0000 0.0500 0.0482

mu0=6.00 2.0150 0.5022 0.4993

mu0=6.50 -0.9748 0.1583 0.1705

∇
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Figure 4.3: t-statistics and non-central t-distribution for testing H0 : µ = 6.0



Chapter 5

Introduction to Experimentation

This chapter will briefly introduce the following models which will be described in detail in subsequent
chapters.

• Observational Studies vs Controlled Experiments

• Completely Randomized Design

• Randomized Block Design

• Factorial Designs

• Chi-Square Tests for Categorical Variables

• Regression Models

Studies can be described as Observational or as Controlled Experiments. Observational studies
occur when experimental/sampling units are obtained from existing populations. These could be different
brands of a product, animals from different species, or people who do or do not practice a particular habit. In
controlled experiments, a sample of units is obtained, and the individual elements of the sample are randomly
assigned to the various conditions/treatments. This could involve batches of raw material being assigned
to various machines, mice being assigned to various doses of a chemical compound, or humans assigned to
various advertising campaigns.

The Completely Randomized Design (CRD) simply randomizes the experimental units to the
various treatments in the most basic manner with no restrictions on randomization. The Randomized
Block Design (RBD) first creates “blocks” of units that are similar based on some external criteria (e.g.
age or skill) and then assigns units to treatments within blocks. In many experiments, each individual unit
may receive each treatment, and the units are treated as blocks.

In Factorial Designs, there are multiple treatment factors that are simultaneously controlled. These
can be structured as a CRD or a RBD. In some cases, one or more of the factors may be controlled, while
others may be observed. In many engineering applications, a set of k factors, each at two or more levels,

67
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may be observed to determine which variables have the largest impacts on the response, or to optimize the
response.

When the independent and dependent variables are categorical, Chi-Square Tests can be conducted
to determine whether the response variable is associated with the predictor, or grouping variable.

When the independent and dependent variables are both numeric, Regression Models can be applied
to measure the associations among variables. These models can be extended in many ways to various types
of predictor and response variables.



Chapter 6

Comparing Two Population Means

While estimating the mean or median of a population is important, many more applications involve compar-
ing two or more treatments or populations. There are two commonly used designs: independent samples
and paired samples. Independent samples are used in controlled experiments when a sample of exper-
imental units is obtained, and randomly assigned to one of two treatments or conditions. That is, each
unit receives only one of the two treatments. These are often referred to as Completely Randomized or
Parallel Groups or Between Subjects designs in various fields of study. Paired samples can involve the
same experimental unit receiving each treatment, or units being matched based on external criteria, then
being randomly assigned to the two treatments within pairs. These are often referred to as Randomized
Block or Crossover or Within Subjects designs.

In observational studies, independent samples can be taken from two existing populations, or elements
within two populations can be matched based on external criteria and observed. In each case, the goal is to
make inferences concerning the difference between the two means or medians based on sample data.

6.1 Independent Samples

In the case of independent samples, assume we sample n1 units or subjects in treatment 1 which has a
population mean response µ1 and population standard deviation σ1. Further, a sample of n2 elements from
treatment 2 is obtained where the population mean is µ2 and standard deviation is σ2. Measurements within
and between samples are independent. Regardless of the distributions of the individual measurements, we
have the following results based on linear functions of random variables, in terms of the means of the two
random samples. The notation used is Y1j is the jth unit (replicate) from sample 1, and Y2j is the jth unit
(replicate) from sample 2. In the case of independent samples, these two random variables are independent.

Y 1 =

∑n1

j=1 Y1j

n1
=

n1
∑

j=1

(

1

n1

)

Y1j ⇒ E{Y 1} = µ1 V {Y 1} =
σ2

1

n1
E{Y 2} = µ2 V {Y 2} =

σ2
2

n2

69
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E{Y 1 − Y 2} = E{Y 1} − E{Y 2} = µ1 − µ2

V {Y 1 − Y 2} = σ2
Y 1−Y 2

= V {Y 1} + V {Y 2} − 2COV{Y 1, Y 2} =
σ2

1

n1
+

σ2
2

n2
+ 0 =

σ2
1

n1
+

σ2
2

n2

SE{Y 1 − Y 2} = σY 1−Y 2
=

√

σ2
1

n1
+

σ2
2

n2

If the data are normally distributed, Y 1 − Y 2 is also normally distributed. If the data are not normally
distributed, Y 1 − Y 2 will be approximately normally distributed in large samples. As in the case of a single
mean, how large of samples are needed depends on the shape of the underlying distributions.

The problem arises again that the variances will be unknown and must be estimated. For large sample
sizes n1 and n2, we have the following approximation for the sampling distribution of the following quantity,
where the sample variances replace the true population variances.

(

Y 1 − Y 2

)

− (µ1 − µ2)
√

S2

1

n1

+
S2

2

n2

·∼ N(0, 1)

⇒ P





(

Y 1 − Y 2

)

− zα/2

√

S2
1

n1
+

S2
2

n2
≤ µ1 − µ2 ≤

(

Y 1 − Y 2

)

+ zα/2

√

S2
1

n1
+

S2
2

n2



 ≈ 1 − α

Example 6.1: NHL and EPL Players’ BMI

Body Mass Indices for all National Hockey League (NHL) and English Premier League (EPL) football
players for the 2013/4 season were obtained. Identifying the NHL as league 1 and EPL as league 2 we have
the following population parameters.

N1 = 717 µ1 = 26.500 σ1 = 1.454 N2 = 526 µ2 = 23.019 σ2 = 1.711

A plot of the two population histograms, along with normal densities is given in Figure 6.1. Both
distributions are well approximated by the normal distribution, with the NHL having a substantially higher
mean and EPL having a slightly higher standard deviation.

We take 100000 independent random samples of sizes n1 = n2 = 20 from the two populations, each time
computing and saving y1, s1, y2, s2. A histogram of the 100000 sample mean differences and the superimposed
Normal density with mean µ1 − µ2 = 3.481 and standard error 0.502 (calculation given below) is shown in
Figure 6.2. The mean of the 100000 mean differences y1 − y2 is 3.482 with standard deviation (standard
error) 0.493. Both are very close to their theoretical values (as they should be). Then we compute the
following quantity (and interval), counting the number of samples for which it contains µ1 − µ2, and its
average estimated variance (squared standard error).
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Figure 6.1: Distributions of NHL and EPL players Body Mass Index
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Figure 6.2: 100000 sample mean differences (n1 = n2 = 20) for NHL and EPL BMI values and Normal
Density
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(y1 − y2) ± 1.96

√

s2
1

20
+

s2
2

20
µ1 − µ2 = 26.500− 23.019 = 3.481

SE
{

Y 1 − Y 2

}

=

√

σ2
1

n1
+

σ2
2

n2
=

√

1.4542

20
+

1.7112

20
= 0.502

The mean of the 100000 sample mean differences is 3.479 compared to the theoretical mean difference of
3.481. The standard deviation of the sample mean differences is 0.493, compared to the theoretical standard
error of 0.502.

Of the intervals constructed from each sample mean difference and its estimated standard error (using
s1, s2 in place of σ1, σ2), the interval contains the true mean difference (3.481) for 94.698% of the samples, very
close to the nominal 95% coverage rate. If we replace z.025 = 1.96 with the more appropriate t.025,n1+n2−2 =
t.025,38 = 2.0244, the coverage rate increases to 95.395%. Note that virtually all software packages will
automatically use t in place of z, however, there are various statistical methods that always use the z case.

The average of the estimated variance of y1 − y2: s2
1/n1 + s2

2/n2 is 0.2527, while its theoretical value
is σ2

1/n1 + σ2
2/n2 = 0.2521. Note that the variance of the estimated difference is unbiased, not so for the

standard error.

R Output

### Output

> round(md.out, 3)

mu1 mu2 sigma1 sigma2 n mu1-mu2 SE{Yb1-Yb2} Mean(yb1-yb2) SD(yb1-yb2) cover(z) cover(t)

[1,] 26.5 23.019 1.454 1.711 20 3.481 0.502 3.479 0.493 0.947 0.954

∇

This logic leads to a large-sample test and Confidence Interval regarding µ1−µ2 once estimates y1, s1, y2, s2

have been observed in an experiment or observational study. The Confidence Interval and test are given be-
low. Typically, zα/2 is replaced with tα/2,ν, where ν is the degrees of freedom, which depends on assumptions
involving the variances (see below).

Large Sample (1 − α)100% CI for µ1 − µ2: (y1 − y2) ± zα/2

√

s2
1

n1
+

s2
2

n2

2-tail: H0 : µ1−µ2 = ∆0 HA : µ1−µ2 6= ∆0 TS : zobs =
(y1 − y2) − ∆0
√

s2

1

n1
+

s2

2

n2

RR : |zobs| ≥ zα/2 P = 2P (Z ≥ |zobs|)



6.2. SMALL–SAMPLE TESTS 73

Upper tail: H0 : µ1−µ2 ≤ ∆0 HA : µ1−µ2 > ∆0 TS : zobs =
(y1 − y2) − ∆0
√

s2

1

n1
+

s2

2

n2

RR : zobs ≥ zα P = P (Z ≥ zobs)

Lower tail: H0 : µ1−µ2 ≥ ∆0 HA : µ1−µ2 < ∆0 TS : zobs =
(y1 − y2) − ∆0
√

s2

1

n1

+
s2

2

n2

RR : zobs ≤ zα P = P (Z ≤ zobs)

Example 6.2: Gender Classification from Physical Measurements

A study in forensics used measurements of the length and breadth of the scapula from samples of 95
male and 96 female Thai adults (Peckmann, Scott, Meek, Mahakkanukrauh (2017), [47]). The measurements
were length and breadth of glenoid cavity (LGC and BGC, in mm), respectively. Summary data for the two
samples for BGC are given below.

nm = 95 ym = 27.87 sm = 2.04 nf = 96 yf = 23.77 sf = 1.85

ym − yf = 27.87− 23.77 = 4.10 ŜE{Y m − Y f} =

√

2.042

95
+

1.852

96
= 0.282

A 95% Confidence Interval for the population mean difference, µm − µf is given below.

(

ym − yf

)

± z.025

√

s2
1

n1
+

s2
2

n2
≡ 4.10± 1.960(0.282) ≡ 4.10± 0.553 ≡ (3.55, 4.65)

The interval is very far away from 0, making us very confident that the population mean is higher for
males than females. To test whether the population means differ (which they clearly do from the Confidence
Interval), we conduct the following 2-tailed test with α = 0.05.

H0 : µm−µf = 0 HA : µm−µf 6= 0 T.S. : zobs =
4.10− 0

0.282
= 14.54 R.R. : |zobs| ≥ 1.960 P = 2P (Z ≥ 14.54) ≈ 0

∇

6.2 Small–Sample Tests

In this section we cover small–sample tests without going through the detail given for the large–sample
tests. In each case, we will be testing whether or not the means (or medians) of two distributions are equal.
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There are two considerations when choosing the appropriate test: (1) Are the population distributions of
measurements approximately normal? and (2) Was the study conducted as an independent samples (parallel
groups) or paired samples (crossover) design? The appropriate test for each situation is given in Table 6.1.
We will describe each test with the general procedure and an example.

The two tests based on non–normal data are called nonparametric tests and are based on ranks, as
opposed to the actual measurements. When distributions are skewed, samples can contain measurements
that are extreme (usually large). These extreme measurements can cause problems for methods based on
means and standard deviations, but will have less effect on procedures based on ranks.

Design Type
Completely Randomized Randomized Block

Normally Distributed Data 2–Sample t–test Paired t–test
Non–Normally Distributed Data Wilcoxon Rank Sum test Wilcoxon Signed–Rank Test

(Mann–Whitney U–Test)

Table 6.1: Statistical Tests for small–sample 2 group situations

6.2.1 Independent Samples (Completely Randomized Designs)

Completely Randomized Designs are designs where the samples from the two populations are independent.
That is, subjects are either assigned at random to one of two treatment groups (possibly active drug or
placebo), or possibly selected at random from one of two populations (as in Example 5.1, where we had NHL
and EPL players and in Example 5.2 where they measured males and females). In the case where the two
populations of measurements are normally distributed, the 2–sample t–test is used. Note that it also works
well for reasonably large sample sizes when the measurements are not normally distributed. This procedure
is very similar to the large–sample test from the previous section, where only the critical values for the
rejection region changes. In the case where the populations of measurements are not approximately normal,
the Wilcoxon Rank–Sum test (or, equivalently the Mann–Whitney U–test) is commonly used. These tests
are based on comparing the average ranks across the two groups when the measurements are ranked from
smallest to largest, across groups.

2–Sample Student’s t–test for Normally Distributed Data

This procedure is similar to the large–sample test, except the critical values for the rejection regions and
Confidence Intervals are based on the t–distribution with ν = n1+n2−2 degrees of freedom and the variances
are “pooled” (see below). We will assume the two population variances are equal in the 2–sample t–test. If
they are not, simple adjustments can be made to obtain an appropriate test, which will be given below. We
then ‘pool’ the 2 sample variances to get an estimate of the common variance σ2 = σ2

1 = σ2
2 . This estimate,

that we will call s2
p is calculated as follows:

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
.

The test of hypothesis concerning µ1 − µ2 is conducted as follows:

1. H0 : µ1 − µ2 = 0
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2. HA : µ1 − µ2 6= 0 or HA : µ1 − µ2 > 0 or HA : µ1 − µ2 < 0 (which alternative is appropriate should be
clear from the setting).

3. T.S.: tobs = (y1−y2)
√

s2
p

(

1

n1
+ 1

n2

)

4. R.R.: |tobs| > tα/2,n1+n2−2 or tobs > tα,n1+n2−2 or tobs < −tα,n1+n2−2 (which R.R. depends on which
alternative hypothesis you are using).

5. p-value: 2P (tn1+n2−2 > |tobs|) or P (tn1+n2−2 > tobs) or P (tn1+n2−2 < tobs) (again, depending on
which alternative you are using).

Example 6.3: Comparison of Two Instructional Methods

A study was conducted (Rusanganwa (2013) [49]) to compare two instructional methods: multimedia
(treatment 1) and traditional (treatment 2) for teaching physics to undergraduate students in Rwanda.
Subjects were assigned at random to the two treatments. Each subject received only one of the two methods.
The numbers of subjects who completed the courses and took two exams were n1 = 13 for the multimedia
course and n2 = 19 for the traditional course. The primary response was the post-course score on an
examination. We will conduct the test H0 : µ1 − µ2 = 0 vs HA : µ1 − µ2 6= 0, where the null hypothesis is
no difference in the effects of the two methods. The summary statistics are given below.

n1 = 13 y1 = 11.10 s1 = 3.47 n2 = 19 y2 = 8.35 s2 = 2.45

First, compute s2
p, the pooled variance:

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
=

(13 − 1)(3.47)2 + (19 − 1)(2.45)2

13 + 19 − 2
=

252.54

30
= 8.42 (sp = 2.90)

Now conduct the (2-sided) test as described above with α = 0.05 significance level:

• H0 : µ1 − µ2 = 0

• HA : µ1 − µ2 6= 0

• T.S.: tobs = (y1−y2)
√

s2
p

(

1

n1
+ 1

n2

)

= (11.10−8.35)
√

8.42( 1

13
+ 1

19 )
= 2.75

1.04
= 2.633

• R.R.: |tobs| ≥ tα/2,n1+n2−2 = t.05/2,13+19−2 = t.025,30 = 2.042

• P -value: 2P (t30 ≥ |tobs|) = 2P (t30 ≥ 2.633) = 0.0132

Based on this test, reject H0 (for any α ≥ .0132), and conclude that the population mean post course scores
differ under these two conditions. The 95% Confidence Interval for µ1−µ2 is 2.75±2.042(1.04) ≡ (0.62, 4.88)
which does not contain 0.

Below we use generated samples that have the same means and standard deviation and use t.test
function in R to conduct the 2-sample t-test.

R Commands and Output
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## Commands

rp <- read.csv("http://www.stat.ufl.edu/~winner/data/rwanda_physics.csv")

attach(rp); names(rp)

t.test(score ~ trt.y, var.equal=T) # t-test with single y-var and trt id

## Output

> t.test(score ~ trt.y, var.equal=T)

Two Sample t-test

data: score by trt.y

t = 2.6323, df = 30, p-value = 0.01327

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

0.6163295 4.8826179

sample estimates:

mean in group 1 mean in group 2

11.100000 8.350526

∇

When the population variances are not equal, there is no justification for pooling the sample vari-
ances to better estimate the common variance σ2. In this case the estimated standard error of Y 1 − Y 2 is
√

s2
1/n1 + s2

2/n2. An adjustment is made to the degrees of freedom for an approximation to a t-distribution
of the t-statistic.

(

Y 1 − Y 2

)

− (µ1 − µ2)
√

S2

1

n1

+
S2

2

n2

·∼ tν ν =

[

S2

1

n1
+

S2

2

n2

]2

[

(S2

1
/n1)2

n1−1
+

(S2

2
/n2)2

n2−1

]

The test is referred to as Welch’s Test, and the degrees of freedom Satterthwaite’s Approximation.
Statistical software packages automatically compute the approximate degrees of freedom. The approximation
extends to more complex models as well. Once the samples are obtained, and the sample means and standard
deviations are computed, the (1 − α)100% Confidence Interval for µ1 − µ2 is computed as follows.

(y1 − y2) ± tα/2,ν

√

s2
1

n1
+

s2
2

n2
ν =

[

s2

1

n1
+

s2

2

n2

]2

[

(s2

1
/n1)2

n1−1
+

(s2

2
/n2)2

n2−1

]

The test of hypothesis concerning µ1 − µ2 is conducted as follows:

1. H0 : µ1 − µ2 = 0

2. HA : µ1 − µ2 6= 0 or HA : µ1 − µ2 > 0 or HA : µ1 − µ2 < 0 (which alternative is appropriate should be
clear from the setting).
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Figure 6.3: Abdominal drainage in breast reconstruction surgery, DIEP procedure with and without abdom-
inal suture quilting.

3. T.S.: tobs =
(y

1
−y

2
)

√

s2

1

n1
+

s2

2

n2

4. R.R.: |tobs| ≥ tα/2,ν or tobs ≥ tα,ν or tobs ≤ −tα,ν (which R.R. depends on which alternative hypothesis
you are using).

5. p-value: 2P (tν ≥ |tobs|) or P (tν ≥ tobs) or P (tν ≤ tobs) (again, depending on which alternative you
are using).

Example 6.4: Abdominal Quilting to Reduce Drainage in Breast Reconstruction Surgery

A study considered the effect of abdominal suture quilting on abdominal drainage during breast recon-
struction surgery (Liang, et al, (2016), [37]). A group of n1 = 27 subjects (controls) received the standard
DIEP procedure, while a group of n2 = 26 subjects (treatment) received the DIEP procedure along with the
suture quilting. The response measured was the amount of abdominal drainage during the surgery (in ml).
The summary data are given below, note that the sample standard deviations are substantially different,
and these are relatively large sample sizes. Side-by-side box plots are given in Figure 6.3.

n1 = 27 y1 = 527.78 s1 = 322.07 n2 = 26 y2 = 238.31 s2 = 242.66

The estimated mean difference, standard error, and degrees of freedom are computed below.
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y1 − y2 = 527.78− 238.31 = 289.47 ŜE{Y 1 − Y 2} =

√

322.072

27
+

242.662

26
= 78.14

ν =

[

322.072

27 + 242.662

26

]2

[

(322.072/27)2

27−1
+ (242.662/26)2

26−1

] = 48.25 t.025,48.25 = 2.010

The 95% Confidence Interval for µ1 − µ2 and test statistic and P -value for testing H0 : µ1 − µ2 = 0
versus HA : µ1 − µ2 6= 0 are given below. There is strong evidence that the suture quilting reduces blood
loss during surgery.

95% CI for µ1 − µ2: 289.47± 2.010(78.14) ≡ 289.47± 157.06 ≡ (132.41, 446.53)

T.S.: tobs =
289.47

78.14
= 3.705 P (t48.25 ≥ 3.705) = .0005

R Commands and Output

## Commands

quilt <- read.csv("http://www.stat.ufl.edu/~winner/data/breast_diep.csv")

attach(quilt); names(quilt)

trt.f <- factor(trt)

levels(trt.f) <- c("Control", "Treatment")

t.test(totvol ~ trt.f, var.equal=F)

## Output

> t.test(totvol ~ trt, var.equal=F)

Welch Two Sample t-test

data: totvol by trt

t = 3.7043, df = 48.25, p-value = 0.0005452

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

132.3707 446.5695

sample estimates:

mean in group 1 mean in group 2

527.7778 238.3077

∇
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6.2.2 Paired Sample Designs

In paired samples (aka crossover or within subjects) designs, subjects receive each treatment, thus acting
as their own control. They may also have been matched based on some characteristics. Procedures based
on these designs take this into account, and are based in determining differences between treatments after
“removing” variability in the subjects (or pairs). When it is possible to conduct them, paired sample designs
are more powerful than independent sample designs in terms of being able to detect a difference (reject H0)
when differences truly exist (HA is true), for a fixed sample size and when measurements within subjects or
pairs are positively correlated.

Paired t–test for Normally Distributed Data

In paired sample designs, each subject (or pair) receives each treatment. In the case of two treatments
being compared, we compute the difference in the two measurements within each subject (or pair), and test
whether or not the population mean difference is 0. When the differences are normally distributed, we use
the paired t–test to determine if differences exist in the mean response for the two treatments. Then this is
simply a 1-sample problem on the differences.

Let Y1 be the score in condition 1 for a randomly selected subject, and Y2 be the score in condition 2
for the subject. Let D = Y1 − Y2 be the difference. Further, suppose the following assumptions and their
corresponding results. Note that the differences across subjects (or pairs) are considered to be independent.

E{Y1} = µ1 V {Y1} = σ2
1 E{Y2} = µ2 V {Y2} = σ2

2 COV{Y1, Y2} = σ12

⇒ E{D} = µ1 − µ2 = µD V {D} = σ2
D = σ2

1 + σ2
2 − 2σ12

D =

∑n
i=1 Di

n
E{D} = µD V {D} = σ2

D
=

σ2
D

n
SE{D} = σD =

σD√
n

For large n: D
·∼ N

(

µD, SE{D} =
σD√

n

)

Normality holds for any sample size if the individual measurements (or the differences) are normally
distributed.

It should be noted that in the paired case n1 = n2 by definition. That is, there will always be equal sized
samples when the experiment is conducted properly. There will be n = n1 = n2 differences, even though
there were 2n = n1 + n2 measurements made. From the n differences obtained in a sample, the mean and
standard deviation are obtained, and will labeled as d and sd.

d =

∑n
i=1 di

n
s2
d =

∑n
i=1(di − d)2

n − 1
sd =

√

s2
d ŜE{D} = sD =

sd√
n
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A (1 − α)100% Confidence Interval for the population mean difference µD is given below.

d ± tα/2,n−1ŜE{D} ≡ d ± tα/2,n−1
sd√
n

The test is conducted as follows.

1. H0 : µ1 − µ2 = µD = 0

2. HA : µD 6= 0 or HA : µD > 0 or HA : µD < 0 (which alternative is appropriate should be clear from
the setting).

3. T.S.: tobs = d

ŜE{D} = d
(

sd√
n

)

4. R.R.: |tobs| ≥ tα/2,n−1 or tobs ≥ tα,n−1 or tobs ≤ −tα,n−1 (which R.R. depends on which alternative
hypothesis you are using).

5. p-value: 2P (tn−1 ≥ |tobs|) or P (tn−1 ≥ tobs) or P (tn−1 ≤ tobs) (again, depending on which alternative
you are using).

Example 6.5: Comparison of Two Analytic Methods for Determining Wine Isotope

A study was conducted to compare two analytic methods for determining 87Sr/86Sr isotope ratios in
wine samples (Durante, et al (2015), [21]). These are used in geographic tracing of wine. The two methods
are microwave (method 1) and low temperature (method 2). The data, and the differences (microwave -
lowtemp) are given in Table 6.2.

As there are n = 18 differences, the degrees of freedom are n− 1 = 17. The 95% Confidence Interval for
µD is computed below, where t.025,17 = 2.110. First, the mean and standard deviation of the differences are
multiplied by 100000 (remove first 5 0s after decimal) to reduce the risk of calculation error. This is legitimate

as the mean and standard deviation are of the same units. This leads to d
∗

= 0.3667 and s∗d = 2.46466.

0.3667± 2.110
2.4646√

18
≡ 0.3667± 2.110(0.5809) ≡ 0.3667± 1.2257 ≡ (−0.8590, 1.5924)

In the original units the interval is of the form of (-.00000859,.000015924). Since the interval contains
0, there is no evidence that one method tends to score higher (or lower) than the other on average.

The test of whether there is a difference in the true mean determinations between the two methods (with
α = 0.05) is conducted by completing the steps outlined below.

1. H0 : µ1 − µ2 = µD = 0

2. HA : µD 6= 0

3. T.S.: tobs = 0.3667
(

2.4646√
18

) = 0.3667
0.5809 = 0.631
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sample id microwave lowtemp diff(m-l)
1 0.70866 0.70861 0.000050000
2 0.708762 0.708792 -0.00003000
3 0.708725 0.708734 -0.00000900
4 0.708668 0.708662 0.000006000
5 0.708675 0.70867 0.000005000
6 0.708702 0.708713 -0.00001100
7 0.708647 0.708661 -0.00001400
8 0.708677 0.708667 0.000010000
9 0.709145 0.709176 -0.00003100
10 0.709017 0.709024 -0.00000700
11 0.70882 0.708814 0.000006000
12 0.709402 0.709364 0.000038000
13 0.709374 0.709378 -0.00000400
14 0.709508 0.709517 -0.00000900
15 0.70907 0.709063 0.000007000
16 0.709061 0.709079 -0.00001800
17 0.709096 0.709039 0.000057000
18 0.70872 0.7087 0.000020000

Mean 0.708929 0.708926 0.000003667

SD 0.000287 0.000288 0.000024646

Table 6.2: 87SR/86SR Isotope ratios for 18 wine samples by Microwave and Low Temperature Methods

4. R.R.: tobs > tα/2,n−1 = t.025,17 = 2.110

5. P -value: 2P (t17 ≥ 0.631) = .5364

There is definitely no evidence that the two methods differ in terms of determinations of wine isotope ratios.

R Commands and Output

## Commands

wine1 <- read.csv("http://www.stat.ufl.edu/~winner/data/wine_isotope.csv")

attach(wine1); names(wine1)

## t.test Function

t.test(microwave, lowtemp, paired=TRUE)

## Output

> round(wine.out, 6)

ybar1 s1 ybar2 s2 cor(y1,y2)

[1,] 0.708929 0.000287 0.708926 0.000288 0.996329

> round(diff.out,9)

mean SD Std Err t P(>|t|) LB UB

[1,] 3.667e-06 2.4646e-05 5.809e-06 0.6311987 0.5363058 -8.589e-06 1.5923e-05

> t.test(microwave, lowtemp, paired=TRUE)
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Paired t-test

data: microwave and lowtemp

t = 0.6312, df = 17, p-value = 0.5363

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-8.589364e-06 1.592270e-05

sample estimates:

mean of the differences

3.666667e-06

∇

6.3 Nonparametric Tests

When data are highly skewed, the extreme measurements can have large impacts on the group means and
standard deviations. Two rank-based tests that are not effected by outliers are the Wilcoxon Rank-Sum
Test for independent samples and the Wilcoxon Signed-Rank Test for paired samples. Note that for
independent samples there is an alternative, but mathematically equivalent Mann-Whitney U-Test that
is often reported. These tests require special tables for small samples and have normal approximations for
larger samples. We briefly describe them here and use R for the computations.

6.3.1 Independent Samples - Rank-Sum Test

For the Rank-Sum test, let the sample sizes for groups 1 and 2 be n1 and n2, respectively. Let the combined
sample size be n. = n1 + n2.

1. Rank the measurements across treatments from 1 (smallest) to n. (largest), adjusting for ties by giving
the average rank for tied cases.

2. Obtain the rank sums for each treatment: T1 and T2 with T1 + T2 = 1 + 2 + . . . + n. = n.×(n.+1)
2

3. The test involves looking for discrepancies between T1 and T2 with what would be expected under the

hypothesis of equal medians, namely E {Ti} = ni×(n.+1)
2

4. Special tables or statistical software packages can be used for the tests.

Example 6.6: Abdominal Quilting to Reduce Drainage in Breast Reconstruction Surgery

With sample sizes of n1 = 27 and n2 = 26 being well above the limits of standard tables, we will use
R for the test. The rank sums are T1 = 962.5 and T2 = 468.5, respectively, with expected values under
the hypothesis of equal medians being 729 and 702, respectively. These actual values are much higher than
expected for the control group and much lower than expected for the treatment group. The approximate
p-value is very small, implying a higher median for Controls than Treated patients.
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## Commands

quilt <- read.csv("http://www.stat.ufl.edu/~winner/data/breast_diep.csv")

attach(quilt); names(quilt)

trt.f <- factor(trt)

levels(trt.f) <- c("Control", "Treatment")

wilcox.test(totvol ~ trt.f)

## Output

> wilcox.test(totvol ~ trt.f)

Wilcoxon rank sum test with continuity correction

data: totvol by trt.f

W = 584.5, p-value = 3.384e-05

alternative hypothesis: true location shift is not equal to 0

Warning message:

In wilcox.test.default(x = c(550L, 160L, 250L, 600L, 720L, 680L, :

cannot compute exact p-value with ties

∇

6.3.2 Paired Samples - Signed Rank Test

When the data are paired, differences are taken within the pairs as in the paired t-test. Then the absolute
values of the differences are ranked from smallest (1) to largest (n), again with tied differences receiving
average ranks. The rank sum for positive differences (T+) and negative differences (T−) are obtained with
T+ + T− = 1 + · · ·+ n = n(n + 1)/2. Then T+ and T− can be compared with their expected values which
are both n(n + 1)/4. Again, special tables are available, or statistical software packages can be used for the
test.

Example 6.7: Comparison of Two Analytic Methods for Determining Wine Isotope

For the wine samples, there were n = 18 pairs analyzed by the microwave and low temperature methods.
The ranks sums for the positive and negative differences were T+ = 87.5 and T− = 83.5, respectively, each
with expected value equal to 18(19)/4 = 85.5. The observed values are very close to their expected values
under the hypothesis of equal medians. The p-value is .9479, implying no evidence of difference in location
for the two analytic methods.

## Commands

wine1 <- read.csv("http://www.stat.ufl.edu/~winner/data/wine_isotope.csv")

attach(wine1); names(wine1)

wilcox.test(microwave, lowtemp, paired=TRUE)

## Output

> wilcox.test(microwave, lowtemp, paired=TRUE)
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Wilcoxon signed rank test with continuity correction

data: microwave and lowtemp

V = 87.5, p-value = 0.9479

alternative hypothesis: true location shift is not equal to 0

Warning message:

In wilcox.test.default(microwave, lowtemp, paired = TRUE) :

cannot compute exact p-value with ties

∇



Chapter 7

Experimental Design and the Analysis
of Variance

Chapter 6 covered methods to make comparisons between the means of a numeric response variable for two
treatments or groups. The cases were considered where the experiment was conducted as an independent
samples (aka parallel groups, between subjects) design, as well as a paired (aka crossover, within subjects)
design.

This chapter will introduce methods that can be used to compare more than two groups (that is, when
the explanatory variable has more than two levels). In this chapter, we will refer to explanatory variable as
a factor, and their levels as treatments. The following situations will be covered.

• 1–Factor, Independent Samples Designs (Completely Randomized Design)

• 1– Treatment Factor, Paired Designs (Randomized Block Design)

In all situations, there will be a numeric response variable, and at least one categorical (or possibly
numeric, with several levels) independent variable. The goal will always be to compare mean (or median)
responses among several populations. When all factor levels for a factor are included in the experiment, the
factor is said to be fixed. When a sample of a larger population of factor levels are included, the factor is
said to be random. Only fixed effects designs are considered here.

7.1 Completely Randomized Design (CRD) For Independent Sam-
ples

In the Completely Randomized Design, there is one factor that is controlled. This factor has k levels (which
are often treatment groups), and ni units are measured for the ith level of the factor. Observed responses
are defined as yij, representing the measurement on the jth experimental unit (subject), receiving the ith
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treatment. We will write this in model form based on random responses as follows where the factor is fixed
(all levels of interest are included in the experiment).

Yij = µ + αi + εij = µi + εij i = 1, . . . , k; j = 1, . . . , ni

Here, µ is the overall mean measurement across all treatments, αi is the effect of the ith treatment (µi =
µ + αi), and εij is a random error component that has mean 0 and variance σ2. This εij allows for the
fact that there will be variation among the measurements of different subjects (units) receiving the same
treatment. A common parameterization that has nice properties is to assume

∑

niαi = 0.

Of interest to the experimenter is whether or not there is a treatment effect, that is do any of the
levels of the treatment provide higher (lower) mean response than other levels. This can be hypothesized
symbolically as H0 : α1 = α2 = · · · = αk = 0 (no treatment effect) against the alternative HA : Not all αi =
0 (treatment effects exist). Note that if α1 = α2 = · · · = αk = 0 then µ1 = · · · = µk.

As with the case where there are two treatments to compare, tests based on the assumption that the
k populations are normal (mound–shaped) will be used, either assuming equal or unequal variances. Also,
alternative tests (based on ranks) that do not assume that the k populations are normal can be used to
compare population medians. These are the Kruskal-Wallis Test for the CRD and Friedman’s Test for
the RBD. These tests will not be covered in these notes.

7.1.1 Tests Based on Normally Distributed Data

When the underlying populations of measurements that are to be compared are approximately normal,
with equal variances, the F –test is appropriate. To conduct this test, partition the total variation in the
sample data to variation within and among treatments. This partitioning is referred to as the Analysis
of Variance and is an important tool in many statistical procedures. First, define the following items,
based on random outcomes Yij where i indexes treatment and j represents the replicate number, with ni

observations for treatment i and n. = n1 + · · ·+ nk.

Yij ∼ N (µi, σ)

Y i. =

∑ni

j=1 Yij

ni
Y i. ∼ N

(

µi,
σ√
ni

)

Y .. =

∑k
i=1

∑ni

j=1 Yij

n.
=

∑k
i=1 niY i.

n.

Total (Corrected) Sum of Squares: TSS =

k
∑

i=1

ni
∑

j=1

(

Yij − Y ..

)2
dfTotal = n. − 1

Between Treatment Sum of Squares: SST =

k
∑

i=1

ni
∑

j=1

(

Y i. − Y ..

)2
=

k
∑

i=1

ni

(

Y i. − Y ..

)2
dfT = k − 1
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Within Treatment (Error) Sum of Squares: SSE =

k
∑

i=1

ni
∑

j=1

(

Yij − Y i.

)2
=

k
∑

i=1

(ni − 1)S2
i dfE = n. − k

Under the null hypothesis of no treatment effects (µ1 = · · · = µk = µ), or equivalently (α1 = · · · = αk =
0) the following results are obtained, where MST and MSE are mean squares for treatments and error,
respectively.

E {MST} = E

{

SST

k − 1

}

= σ2

E {MSE} = E

{

SSE

n. − k

}

= σ2

Under the null hypothesis of no treatment effects, E {MST} = E {MSE} = σ2 and the ratio MST/MSE
follows the F -distribution with k − 1 numerator and n. − k denominator degrees of freedom. When the null
is not true and not all αi = 0, then the ratio follows the non-central F -distribution with parameter λ given
below.

MST

MSE
∼ Fν1,ν2,λ λ =

∑k
i=1 niα

2
i

σ2
ν1 = k − 1 ν2 = n. − k

Once samples have been obtained and the yij are observed, the F -test is conducted as follows.

yi. =

∑ni

j=1 yij

ni

si =

√

∑ni

j=1(yij − yi.)
2

ni − 1

n. = n1 + · · ·+ nk

y.. =

∑k
i=1

∑ni

j=1 yij

n.

TSS =

k
∑

i=1

ni
∑

j=1

(yij − y..)
2

SST =

k
∑

i=1

ni (yi. − y..)
2

SSE =

k
∑

i=1

(ni − 1)s2
i
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Here, yi. and si are the mean and standard deviation of measurements in the ith treatment group, and
y.. and n. are the overall mean and total number of all measurements. TSS is the total variability in the data
(ignoring treatments), SST measures the variability in the sample means among the treatments (weighted
by the sample sizes), and SSE measures the variability within the treatments.

Note that the goal is to determine whether or not the population means differ. If they do, we would
expect SST to be large, since that sum of squares is measuring differences in the sample means. A test for
treatment effects is conducted after constructing an Analysis of Variance table, as shown in Table 7.1. In
that table, there are sums of squares for treatments (SST ), for error (SSE), and total (TSS). Also, there
are degrees of freedom, which represent the number of “independent” terms in the sum of squares. Then, the
mean squares, are sums of squares divided by their degrees of freedom. Finally, the F –statistic is computed
as F = MST/MSE. This will serve as the test statistic. Note that MSE is an extension of the pooled
variance computed in Chapter 6 for two groups, and often it is written as MSE = s2.

ANOVA
Source of Sum of Degrees of Mean
Variation Squares Freedom Square F

TREATMENTS SST =
∑k

i=1 ni (yi. − y..)
2

k − 1 MST = SST
k−1 F = MST

MSE

ERROR SSE =
∑k

i=1 (ni − 1) s2
i n. − k MSE = SSE

n.−k

TOTAL TSS =
∑k

i=1

∑ni

j=1 (yij − y..)
2

n. − 1

Table 7.1: The Analysis of Variance Table for the Completely Randomized (Parallel Groups) Design

The formal method of testing this hypothesis is as follows.

1. H0 : α1 = · · · = αk = 0 (µ1 = · · · = µk) (No treatment effect)

2. HA : Not all αi are 0 (Treatment effects exist)

3. T.S. Fobs = MST
MSE

4. R.R.: Fobs ≥ Fα,k−1,n.−k

5. p-value: P (Fk−1,n.−k ≥ Fobs)

Example 7.1: Body Mass Indices of NHL, NBA, and EPL, Players

Consider an extension of the Body Mass Index analysis to include National Basketball Association
players. The populations are NHL (i = 1), NBA (i = 2), and EPL (i = 3). Histograms for the three
populations are given in Figure 7.1. The population sizes, means, and standard deviations are given below.

N1 = 707 N2 = 505 N3 = 526 µ1 = 26.50 µ2 = 24.74 µ3 = 23.02 σ1 = 1.45 σ2 = 1.72 σ3 = 1.71
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Figure 7.1: Histograms of NHL, NBA, and EPL Body Mass Indices

While the population standard deviations (and thus variances) are not all equal, a “pooled” variance is
used for computational purposes. Also, µ and αi are computed.

σ2 =
717

(

1.452
)

+ 505
(

1.722
)

+ 526
(

1.712
)2

717 + 505 + 526
= 2.60 µ =

717(26.50)+ 505(24.74)+ 526(23.02)

717 + 505 + 526
= 24.94

α1 = 26.50− 24.94 = 1.56 α2 = 24.74− 24.94 = −0.20 α3 = 23.02− 24.94 = −1.92

Note that these αi are obtained under the assumption
∑

Niαi = 0. If samples of sizes n1 = n2 = n3 = 4
and n1 = n2 = n3 = 12 are taken, the following F -distributions for the ratio MST/MSE are obtained.

ni = 4 :
MST

MSE
∼ Fν1,ν2,λ1

λ1 =
4
(

1.562 + (−0.20)2 + (−1.92)2
)

2.60
= 9.48 ν1 = 3−1 = 2 ν2 = 12−3 = 9

ni = 12 :
MST

MSE
∼ Fν1,ν2,λ2

λ2 =
12
(

1.562 + (−0.20)2 + (−1.92)2
)

2.60
= 28.43 ν1 = 3−1 = 2 ν2 = 36−3 = 33

When n1 = n2 = n3 = 4, the critical value for testing H0 : α1 = α2 = α3 = 0 at α = 0.05 significance
level is F.05,2,9 = 4.256. The power of the F -test under this configuration is π1 = .636. When n1 = n2 =
n3 = 12, the critical value for testing H0 : α1 = α2 = α3 = 0 at α = 0.05 significance level is F.05,2,33 = 3.285.
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Figure 7.2: Central and non-central F -distributions for Body Mass Index example

The power of the F -test under this configuration is π2 = .997. The central F -densities and the non-central
F -densities with λ1 = 9.48 and λ2 = 28.43 for the denominator degrees of freedom of 9 and 33 are given in
Figure 7.2.

Based on 100000 random sample of size ni = 4 from each league, the F -test rejected the null hypothesis
of no league differences in 63.4% of the samples. With samples of size ni = 12, 99.7% of the F -tests
rejected the null hypothesis. Despite the fact that the populations of measurements are not exactly normally
distributed with equal variances, the test performs as expected. Computations for the first samples of size
n1 = n2 = n3 = 12 are given below.

y1. = 26.666 y2. = 24.986 y3. = 22.449 y.. = 24.701 s1 = 1.968 s2 = 1.762 s3 = 1.149

SST = 12
[

(26.666− 24.701)2 + (24.986− 24.701)2 + (22.449− 24.701)2
]

= 108.167

dfT = 3 − 1 = 2 MST =
108.167

2
= 54.084

SSE = (12− 1)
[

1.9682 + 1.7622 + 1.1492
]

= 91.277 dfE = 3(12) − 3 = 33 MSE =
91.277

33
= 2.766

H0 : µ1 = µ2 = µ3 TS : Fobs =
54.084

2.766
= 19.55 RR : Fobs ≥ 3.285 P = P (F2,33 ≥ 19.55) < .0001
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R Output

### Output

> round(ftest.out, 4)

df_T df_E F(>05) P(F_obs>F(.05))

[1,] 2 33 3.2849 0.9942

> F[1]

[1] 19.55004

> cbind(ybar1[1], ybar2[1], ybar3[1], ybar[1], sd1[1], sd2[1], sd3[1])

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 26.66637 24.98606 22.44932 24.70058 1.968428 1.762007 1.148883

∇

Example 7.2: Comparison of 5 Mosquito Repellents

A study compared k = 5 mosquito repellent patches on fabric for soldiers in military operations (Bhat-
nagar and Mehta (2007), [9]). The 5 treatments were: Odomos (1), Deltamethrin (2), Cyfluthrin (3),
Deltamethrin+Odomos (4), and Cyfluthrin+Odomos (5), with ni = 30 subjects per treatment, and a to-
tal of n. = 150 measurements. The response observed was the “Per Man-Hour Mosquito Catch.” Sample
statistics are given in Table 7.2, and the Analysis of Variance is given in Table 7.3. Data that have been
generated to match the means and standard deviations are plotted in Figure 7.3. The overall mean (long
line) and individual treatment means (short lines) are included.

Treatment ni yi. si

Odomos (1) 30 7.900 3.367
Deltamethrin (2) 30 8.133 3.461
Cyfluthrin (3) 30 8.033 3.011
D+O(4) 30 6.333 3.122
C+O (5) 30 5.367 3.068

Table 7.2: Sample statistics for Mosquito Repellent study

ANOVA
Source of Degrees of Sum of Mean
Variation Freedom Squares Square Fobs F.05 P

TREATMENTS 4 184.650 46.163 4.478 2.434 .0019
ERROR 145 1494.680 10.308
TOTAL 149 1679.334

Table 7.3: The Analysis of Variance table for the Mosquito Repellent study

1. H0 : α1 = α2 = α3 = α4 = α5 = 0 (µ1 = µ2 = µ3 = µ4 = µ5) (No treatment effect)

2. HA : Not all αi are 0 (Treatment effects exist)

3. T.S. Fobs = MST
MSE = 4.478
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Figure 7.3: Mosquito catch by repellent treatment - data generated to match treatment means and standard
deviations
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4. R.R.: Fobs > Fα,k−1,n−k = F0.05,4,145 = 2.434

5. P -value: P (Fk−1,n.−k ≥ Fobs) = P (F4,145 ≥ 4.478) = .0019

The following R output gives the Analysis of Variance and the F -test.

R Output

### Output

> round(aov.out, 4)

df SS MS F F(.05) P(>F)

Treatment 4 184.6501 46.1625 4.4782 2.4341 0.0019

Error 145 1494.6843 10.3082 NA NA NA

Total 149 1679.3345 NA NA NA NA

The following R commands use the aov function to obtain the Analysis of Variance based on the raw
data (not summary statistics).

R Commands and Output

## Commands

mp <- read.csv("http://www.stat.ufl.edu/~winner/data/mosquito_patch.csv")

attach(mp); names(mp)

trt.mosq <- factor(trt.mosq)

mosq.mod <- aov(y.mosq ~ trt.mosq)

summary(mosq.mod)

## Output

> summary(mosq.mod)

Df Sum Sq Mean Sq F value Pr(>F)

trt.mosq 4 184.6 46.16 4.48 0.00192 **

Residuals 145 1494.1 10.30

Since the F -statistic is sufficiently large, conclude that the means differ, then the following methods are
used to make comparisons among treatments.

∇

Comparisons among Treatment Means

Assuming that it has been concluded that treatment means differ, we generally would like to know which
means are significantly different. This is generally done by making contrasts among treatments. Special
cases of contrasts include pre–planned or all pairwise comparisons between pairs of treatments.
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A contrast is a linear function of treatment means, where the coefficients sum to 0. A contrast among
population means can be estimated with the same contrast among sample means, and inferences can be made
based on the sampling distribution of the contrast. Let C be the contrast among the population means, and
Ĉ be its estimator based on means of the independent random samples.

C = a1µ1 + · · ·+ akµk =
k
∑

i=1

aiµi where
k
∑

i=1

ai = 0 Ĉ = a1Y 1. + · · ·+ akY k. =
k
∑

i=1

aiY i

V {Ĉ} = σ2

[

a2
1

n1
+ · · ·+ a2

k

nk

]

= σ2
k
∑

i=1

a2
i

ni

When the sample sizes are balanced (all ni are equal), the formula for the variance clearly simplifies.
Contrasts are specific to particular research questions, so the general rules for tests and Confidence Intervals
are given here, followed by an application to the Mosquito Repellent study. Since the coefficients sum to 0,
we are virtually always testing H0 : C = 0 in practice.

Once samples are obtained, obtain ĉ, the contrast based on the observed sample means among the
treatments.

ĉ = a1y1. + · · ·+ akyk. =

k
∑

i=1

aiyi. ŜE{Ĉ} =

√

√

√

√MSE

k
∑

i=1

a2
i

ni

Testing whether a contrast is equal to 0 and obtaining a (1−α)100% Confidence Interval for C are done
as follow.

H0 : C = 0 HA : C 6= 0 TS : tC =
ĉ

ŜE{Ĉ}
RR : |tC| ≥ tα/2,n.−k P = 2P (tn.−k ≥ |tC|)

(1 − α)100% Confidence Interval for C : ĉ ± tα/2,n.−kŜE{Ĉ}

The test can be conducted as upper or lower-tailed with obvious adjustments. An alternative approach
is to compute the sums of squares for the contrast SSC, and use an F -test, comparing its Mean Square to
MSE.

SSC =
(ĉ)

2

∑k
i=1

a2

i

ni

dfC = 1 MSC =
SSC

1
= SSC

H0 : C = 0 HA : C 6= 0 TS : FC =
MSC

MSE
RR : FC ≥ Fα,1,n.−k P = P (F1,n.−k ≥ FC)
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Example 7.3: Comparison of 5 Mosquito Repellents

Suppose the researchers are interested in comparing the two treatments that use Deltamethrin (2 and
4) with the two treatments that use Cyfluthrin (3 and 5). Then, the following calculations are made.

C1 = (µ2 + µ4) − (µ3 + µ5) a1 = 0 a2 = a4 = 1 a3 = a5 = −1 ni = 30 MSE = 10.308

y2. = 8.133 y4. = 6.333 y3. = 8.033 y5. = 5.367 ĉ1 = (8.133 + 6.333)− (8.033 + 5.367) = 1.066

ŜE{Ĉ1} =

√

10.308

(

02 + 12 + (−1)2 + 12 + (−1)2

30

)

= 1.172

For a test (α = 0.05) of H0 : C1 = 0, the test statistic, rejection region and P -value, along with a 95%
Confidence Interval for C are given below.

TS : tC1
=

1.066

1.172
= 0.910 RR : |tC1

| ≥ t.025,145 = 1.976 P = 2P (t145 ≥ |0.910|) = .364

95% CI for C : 1.066± 1.976(1.172) ≡ 1.066± 2.316 ≡ (−1.250, 3.382)

There is no evidence of any difference between the effects of these two types of repellents. Next, we
conduct the F -test, knowing in advance that its conclusion and P -value will be equivalent to 2-tailed t-test
performed above (the only difference due to rounding is in third decimal place).

SSC1 =
1.0662

4
30

= 8.523 = MSC1 TS : FC1
=

8.523

10.308
= 0.827 RR : FC1

≥ F.05,1,145 = 3.906

P = P (F1,145 ≥ 0.827) = .365

For a second contrast (C2), without going through all calculations, consider comparing Deltamethrin
and Cyfluthrin (each without Odomos: 2 and 3) with Deltamethrin and Cyfluthrin (each with Odomos: 4
and 5). This involves: a1 = 0, a2 = a3 = 1, a4 = a5 = −1. Note that the standard error of the contrast will
be exactly the same as that for contrast ĉ1.

ĉ2 = 4.466 TS : tC2
=

4.466

1.172
= 3.811 P = 2P (t145 ≥ |3.811|) = .0002 95% CI: 4.466±2.316 ≡ (2.150, 6.782)

There is evidence that the combined mean is higher without Odomos than with Odomos. Since low
values are better (mosquito contacts), Odomos as an additive to the two chemicals (individually) is better
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than no additive to the two chemicals individually. The F -test is given below. The R output that follows
extends the calculations made in Example 7.2.

SSC2 =
4.4662

4
30

= 149.59 = MSC2 TS : FC2
=

149.59

10.308
= 14.51 P = P (F1,145 ≥ 14.51) = .0005

R Output

## Output

> round(contrast.out, 4)

Estimate Std Err t 2P(>|t|) LB UB Sum Sq F P(>F)

[1,] 1.066 1.1724 0.9093 0.3647 -1.2511 3.3831 8.5227 0.8268 0.3647

> round(contrast.out, 4)

Estimate Std Err t 2P(>|t|) LB UB Sum Sq F P(>F)

[1,] 4.466 1.1724 3.8094 2e-04 2.1489 6.7831 149.5887 14.5117 2e-04

∇

A special class of contrasts are orthogonal contrasts. Two contrasts are orthogonal if the sum of the
products of their ai coefficients, divided by the sample sizes ni, is 0. This concept is shown below.

C1 =

k
∑

i=1

a1iµi C2 =

k
∑

i=1

a2iµi C1 and C2 are orthogonal if

k
∑

i=1

a1ia2i

ni
= 0

Note that if the sample sizes are all equal (balanced design), this simplifies to
∑k

i=1 a1ia2i = 0. The two
contrasts in Example 7.3 are orthogonal (check this). If there are k treatments, and k−1 degrees of freedom
for Treatments, any k − 1 pairwise orthogonal contrasts’ sums of squares will add up to the Treatment
sum of squares. That is, SST can be decomposed into the sums of squares for the k − 1 contrasts. The
decomposition is not unique, there may be various sets of orthogonal contrasts.

Example 7.4: Comparison of 5 Mosquito Repellents

Consider these two other contrasts.

• (D versus C without O) vs (D versus C with Odomos): C3 = (µ2 − µ3)−(µ4 − µ5) = µ2−µ3 −µ4 +µ5

• Odomos only versus the four other treatments: C4 = 4µ1 − µ2 − µ3 − µ4 − µ5

Table 7.4 gives the contrast coefficients for these four contrasts. For all six pairs,
∑k

i=1 ajiaj′i = 0,
j 6= j′. Also given are the estimates, standard errors, t-tests, 95% Confidence Intervals, Sums of Squares
and F -statistics.
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Treatment (i) C1 (j = 1) C2 (j = 2) C3 (j = 3) C4 (j = 4) yi.

1 0 0 0 4 7.900
2 1 1 1 -1 8.133
3 -1 1 -1 -1 8.033
4 1 -1 -1 -1 6.333
5 -1 -1 1 -1 5.367

ĉj 1.066 4.466 -0.866 3.734

ŜE{Ĉj} 1.172 1.172 1.172 2.621
tCj

0.909 3.809 -0.739 1.424

P -value .3642 .0002 .4613 .1565
95% CI (-1.251,3.383) (2.149,6.783) (-3.183,1.451) (-1.447,8.915)

SSCj 8.523 149.589 5.625 20.914
FCj

0.827 14.512 0.546 2.029

Table 7.4: Orthogonal Contrasts for the Mosquito Repellent study

From Table 7.3, see that the Treatment sum of squares is SST = 184.650. As these four contrasts are
pairwise orthogonal, their sums of squares add up to SST : 8.523 + 149.589 + 5.625 + 20.914 = 184.650.
Note that virtually all of the differences among the treatments (based on this set of contrasts) is contrast
2, comparing the average of D and C without O versus the average of D and C with O. The commands for
Contrasts 3 and 4 are identical as that for Example 7.3 (with changes to the as), and are not included here.

∇

Bonferroni Method of Multiple Comparisons

The Bonferroni method is used in many situations and is based on the following premise: If there are c
comparisons to be made simultaneously, and desire to be (1 − αE) 100% confident that all are correct, each
comparison should be made at a higher level of confidence (lower probability of type I error). If individual
comparisons are made at αI = αE/c level of significance, there is an overall error rate no larger than αE.
This method is conservative and can run into difficulties (low power) as the number of comparisons gets
very large. The general procedures for simultaneous tests and Confidence Intervals are as follow in terms of
comparing pairs of treatment means.

Define: Bii′ = tαE/(2c),νŜE{Y i. − Y i′.} = tαE/(2c),ν

√

MSE

(

1

ni
+

1

ni′

)

i < i′

Conclude µi 6= µi′ if |yi. − yi′ | ≥ Bii′ Simultaneous (1 − αE) 100% CI’s for µi −µi′ : (yi. −yi′.)±Bii′

where tαE/(2c),ν, with ν being the error degrees of freedom, ν = n. − k for the Completely Randomized
Design, is obtained from the Bonferroni t–table (see chapter powerpoint slides) or from statistical packages
or EXCEL.

Tukey Method for All Pairwise Comparisons

Various methods have been developed to handle all possible comparisons and keep the overall error
rate at αE, including the widely reported Bonferroni procedure described above. Another commonly used
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procedure is Tukey’s Honest Significant Difference method, which is more powerful than the Bonferroni
method (but more limited in its applicability). Statistical computer packages can make these comparisons
automatically. Tukey’s method can be used for tests and confidence intervals for all pairs of treatment

means simultaneously. If there are k treatments, their will be k(k−1)
2

such tests or intervals. The general
forms, allowing for different sample sizes for treatments i and i′ are as follow (the unequal sample size
case is referred to as the “Tukey-Kramer” method). The procedure makes use of the Studentized Range
Distribution with critical values, qαE ,k,ν, indexed by the number of treatments (k) and error degrees of
freedom ν = n. − k for the Completely Randomized Design. The R functions qtukey and ptukey in R
give quantiles and probabilities for the distribution. A table of critical values for αE = 0.05 is given in this
chapter’s powerpoint slides.

Define: HSDii′ =
qαE,k,ν

2
ŜE{Y i. − Y i′.} =

qαE,k,ν

2

√

MSE

(

1

ni
+

1

ni′

)

i < i′

Conclude µi 6= µi′ if |yi. − yi′.| ≥ HSDii′ Simultaneous (1 − αE) 100% CI’s for µi−µi′ : (yi. − yi′.)±HSDii′

When the sample sizes are equal (ni = ni′), the formula for HSDii′ can be simplified as follows.

HSDii′ = qαE,k,ν

√

MSE

(

1

ni

)

i < i′

Example 7.7: Comparison of 5 Mosquito Repellents

The Bonferroni and Tukey methods are used to obtain simultaneous 95% CI’s for each difference in mean
mosquito contacts. The general form for the Bonferroni simultaneous 95% CI’s (with c = 5(4)/2 = 10 and
ν = 150 − 4 = 145)) is given below. Recall that MSE = 10.308 and ni = 30 for each treatment.

Bii′ = t.05/(2(10)),145

√

10.308

(

1

30
+

1

30

)

= 2.851(0.829) = 2.363 Simultaneous 95% CIs: (yi. − yi′.)±2.363

For Tukey’s method, the confidence intervals are of the following form.

HSDii′ = q0.05,5,145

√

10.308

(

1

30

)

= 3.907(0.586) = 2.290 Simultaneous 95% CIs: (yi. − yi′.) ± 2.290

The corresponding confidence intervals are given in Table 7.5.

Based on the intervals in Table 7.5, it can be concluded that treatments 1 (Odomos) and 5 (Cyfluthrin +
Odomos) are significantly different, as are treatments 2 (Deltamethrin) and 5, and treatments 3 (Cyfluthrin)
and 5.

While it is easy to write a function in R to conduct the Bonferroni method, there does not appear an
easy “follow up” to the ANOVA. There is an easy one for Tukey’s honest significant difference method, the
TukeyHSD function. Note that R takes the mean with the higher subscript minus the mean with the lower
subscript.
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Simultaneous 95% CI’s
Comparison yi. − yi′. Bonferroni Tukey

1 vs 2 7.900− 8.133 = −0.233 (−2.596, 2.130) (−2.523, 2.057)
1 vs 3 7.900− 8.033 = −0.133 (−2.496, 2, 230) (−2.423, 2.157)
1 vs 4 7.900− 6.333 = 1.567 (−0.796, 3.930) (−0.723, 3.857)
1 vs 5 7.900− 5.367 = 2.533 (0.170, 4.896) (0.243, 4.823)
2 vs 3 8.133− 8.033 = 0.100 (−2.263, 2.463) (−2.190, 2.390)
2 vs 4 8.133− 6.333 = 1.800 (−0.563, 4.163) (−0.490, 4.090)
2 vs 5 8.133− 5.367 = 2.766 (0.403, 5.129) (0.476, 5.056)
3 vs 4 8.033− 6.333 = 1.700 (−0.663, 4.063) (−0.590, 3.990)
3 vs 5 8.033− 5.367 = 2.666 (0.303, 5.029) (0.376, 4.956)
4 vs 5 6.333− 5.367 = 0.966 (−1.397, 3.329) (−1.324, 3.256)

Table 7.5: Bonferroni and Tukey multiple comparisons for the mosquito repellent study

R Commands and Output

## Commands

### Tukey follow-up to 1-Way ANOVA

mp <- read.csv("http://www.stat.ufl.edu/~winner/data/mosquito_patch.csv")

attach(mp); names(mp)

trt.mosq <- factor(trt.mosq)

mosq.mod1 <- aov(y.mosq ~ trt.mosq)

anova(mosq.mod1)

TukeyHSD(mosq.mod1, "trt.mosq")

### Output

> TukeyHSD(mosq.mod1, "trt.mosq")

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = y ~ trt.mosq)

$trt.mosq

diff lwr upr p adj

2-1 0.233 -2.056985 2.5229848 0.9986197

3-1 0.133 -2.156985 2.4229848 0.9998497

4-1 -1.567 -3.856985 0.7229848 0.3272067

5-1 -2.533 -4.822985 -0.2430152 0.0221285

3-2 -0.100 -2.389985 2.1899848 0.9999517

4-2 -1.800 -4.089985 0.4899848 0.1965250

5-2 -2.766 -5.055985 -0.4760152 0.0093768

4-3 -1.700 -3.989985 0.5899848 0.2474716

5-3 -2.666 -4.955985 -0.3760152 0.0136760

5-4 -0.966 -3.255985 1.3239848 0.7710691

> bon.ci(0.05, y.mosq, trt.mosq)

Trt i Trt i’ Diff Lower Bound Upper Bound p adjusted

[1,] 1 2 -0.232 -2.595 2.130 1.000

[2,] 1 3 -0.132 -2.495 2.231 1.000

[3,] 1 4 1.567 -0.795 3.930 0.606

[4,] 1 5 2.534 0.171 4.896 0.027

[5,] 2 3 0.100 -2.262 2.463 1.000

[6,] 2 4 1.800 -0.563 4.162 0.315

[7,] 2 5 2.766 0.403 5.129 0.011

[8,] 3 4 1.699 -0.663 4.062 0.421



100 CHAPTER 7. EXPERIMENTAL DESIGN AND THE ANALYSIS OF VARIANCE

[9,] 3 5 2.666 0.303 5.028 0.016

[10,] 4 5 0.966 -1.396 3.329 1.000

∇

7.2 Randomized Block Design (RBD) For Studies Based on Matched

Units

In crossover designs (aka within subjects designs), each unit or subject receives each treatment. In these
cases, units are referred to as blocks. In other studies, units or subjects may be matched based on external
criteria. The notation for the Randomized Block Design (RBD) is very similar to that of the CRD, with
additional elements. The model we are assuming here is written as follows.

Yij = µ + αi + βj + εij = µi + βj + εij i = 1, . . . , k; j = 1, . . . , b

Here, µ represents the overall mean measurement, αi is the (fixed) effect of the ith treatment, βj is the
(typically random) effect of the jth block, and εij is a random error component that can be thought of as the
variation in measurements if the same experimental unit received the same treatment repeatedly. Note that
just as before, µi represents the mean measurement for the ith treatment (across all blocks). The general
situation will consist of an experiment with k treatments being received by each of b blocks. Blocks can be
fixed or random, typically they are random.

7.2.1 Test Based on Normally Distributed Data

When the (random) block effects (βj) and random error terms (εij) are independent and normally distributed,
an F –test is conducted that is similar to that described for the Completely Randomized Design, but with
an extra source of variation. If blocks are fixed, the analysis is the same. The notation used is as follows.

yi. =

∑b
j=1 yij

b

y.j =

∑k
i=1 yij

k
n. = b · k

y.. =

∑k
i=1

∑b
j=1 yij

bk

TSS =
k
∑

i=1

b
∑

j=1

(yij − y..)
2

SST =

k
∑

i=1

b (yi. − y..)
2

SSB =

b
∑

j=1

k
(

y.j − y..

)2
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SSE =

k
∑

i=1

b
∑

j=1

(

yij − yi. − y.j + y..

)2

Note that the Analysis of Variance simply has added items representing the block means
(

y.j

)

and variation
among the block means (SSB). We can further think of this as decomposing the total variation into
differences among the treatment means (SST ), differences among the block means (SSB), and random
variation not explained by either differences among treatment or block means (SSE). Also, note that
SSE = TSS − SST − SSB.

ANOVA
Source of Sum of Degrees of Mean
Variation Squares Freedom Square F

TREATMENTS SST k − 1 MST = SST
k−1 F = MST

MSE

BLOCKS SSB b − 1 MSB = SSB
b−1

ERROR SSE (b − 1)(k − 1) MSE = SSE
(b−1)(k−1)

TOTAL TSS bk − 1

Table 7.6: The Analysis of Variance Table for the Randomized Block Design

Once again, the main purpose for conducting this type of experiment is to detect differences among
the treatment means (treatment effects). The test is very similar to that of the CRD, with only minor
adjustments. We often are not interested in testing for differences among blocks, since we expect there to be
differences among them (that’s why the design was set up this way), and they were just a random sample
from a population of such experimental units. However, in some cases, estimating the unit to unit (subject
to subject) variance component is of interest. The testing procedure can be described as follows.

1. H0 : α1 = · · · = αk = 0 (µ1 = · · · = µk) (No treatment effect)

2. HA : Not all αi are 0 (Treatment effects exist)

3. T.S. Fobs = MST
MSE

4. R.R.: Fobs ≥ Fα,k−1,(b−1)(k−1)

5. p-value: P (Fk−1,(b−1)(k−1) ≥ Fobs)

The procedures to make comparisons among means are very similar to the methods used for the CRD. In
each formula described previously for Bonferroni’s, and Tukey’s methods, ni is replaced by b, when making
comparisons among treatment means, and ν = (b − 1)(k − 1) is the error degrees of freedom.

Example 7.10: Comparison of 3 Methods for Estimating Value of Wood Logs
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A study compared 3 methods of assessing the lumber value of logs (Lin and Wang (2012), [39]). The
k = 3 treatments the authors compared was the actual sawmill value of the log, a value based on a heuristic
programming algorithm, and a value based on a dynamic programming algorithm. Each “treatment” was
measured on b = 30 logs (acting as the blocks). The goal was to compare the 3 treatments at valuating the
logs. Data are given in Table 7.7. A crude interaction plot is given in Figure 7.4, which plots the valuation
versus log ID, with seperate lines for the three methods.

Log ID Actual Heuristic Dynamic LogMean

1 17.67 20.83 21.03 19.8433
2 31.76 35.05 34.24 33.6833
3 30.77 33.60 34.87 33.0800
4 40.27 42.52 42.89 41.8933
5 33.51 35.06 36.48 35.0167
6 23.07 25.37 26.34 24.9267
7 21.33 21.95 23.00 22.0933
8 26.28 28.07 28.69 27.6800
9 28.89 31.94 32.49 31.1067
10 18.46 19.14 21.76 19.7867
11 35.61 38.18 39.87 37.8867
12 23.15 25.67 27.22 25.3467
13 18.03 19.58 20.70 19.4367
14 28.22 30.89 30.05 29.7200
15 20.33 21.36 21.62 21.1033
16 12.42 13.01 14.02 13.1500
17 21.90 24.52 25.06 23.8267
18 36.16 38.12 38.86 37.7133
19 13.73 14.74 15.12 14.5300
20 15.74 17.96 18.00 17.2333
21 19.22 20.69 20.83 20.2467
22 17.12 19.12 19.31 18.5167
23 15.21 16.42 16.63 16.0867
24 22.03 23.58 24.24 23.2833
25 31.22 32.66 32.90 32.2600
26 25.69 28.39 28.81 27.6300
27 29.25 31.63 30.72 30.5333
28 32.77 33.29 35.87 33.9767
29 31.88 34.79 34.82 33.8300
30 24.54 26.23 26.54 25.7700

Trt Mean 24.8743 26.8120 27.4327 26.3730

Table 7.7: Log Values for 3 Methods of Valuation

TSS = (17.67− 26.3730)2 + · · ·+ (26.54− 26.3730)2 = 5170.073 df = 30(3) − 1 = 89

SST = 30
[

(24.8743− 26.3730)2 + (26.8120− 26.3730)2 + (27.4327− 26.3730)2
]

= 106.8536 dfT = 3−1 = 2

SSB = 3
[

(19.8433− 26.3730)2 + · · ·+ (25.7700− 26.3730)2
]

= 5042.772 dfB = 30 − 1 = 29

SSE = (17.67− 19.8433− 24.8743 + 26.3730)2 + · · ·+ (26.54− 25.7700− 26.4327 + 26.3730)2 =

5170.073− 106.8536− 5042.772 = 20.448 dfE = (30 − 1)(3 − 1) = 58

We can now test for treatment effects, and if necessary use Tukey’s method to make pairwise comparisons
among the three methods (αE = 0.05 significance level).
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Figure 7.4: Plot of valuation versus log ID, with separate lines for valuation method

ANOVA
Source of Sum of Degrees of Mean
Variation Squares Freedom Square Fobs

TREATMENTS 106.854 2 53.427 151.546

BLOCKS 5042.772 29 173.889

ERROR 20.448 58 0.353

TOTAL 5170.073 89

Table 7.8: Analysis of Variance table for log valuation data (RBD)
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1. H0 : α1 = α2 = α3 = 0 (µ1 = µ2 = µ3) (No differences among valuation method means)

2. HA : Not all αi are 0 (Valuation differences exist)

3. T.S. Fobs = MST
MSE = 151.546

4. R.R.: Fobs ≥ Fα,k−1,(b−1)(k−1) = F0.05,2,58 = 3.156

5. P -value: P (F2,58 ≥ Fobs) = P (F2,58 ≥ 151.546) = 0.0000

Tukey’s method is used to determine which valuation methods differ significantly. Recall that for Tukey’s
method, simultaneous confidence intervals of the form given below are computed, with k being the number of
treatments (k=3), b being the number of blocks, and ni the number of measurements per valuation method
(ni = b = 30).

(yi. − yi′.)± qα,k,(b−1)(k−1)

√

MSE

(

1

ni

)

=⇒ (yi. − yi′.)±3.402

√

0.353

(

1

30

)

=⇒ (yi. − yi′.)±0.369

The corresponding simultaneous 95% confidence intervals and conclusions are given in Table 7.9. Conclude

Comparison yi. − yi′. CI Conclusion

Actual vs Heuristic 24.874− 26.812 = −1.938 (−2.307,−1.569) µA < µH

Actual vs Dynamic 24.874− 27.433 = −2.559 (−2.928,−2.190) µA < µD

Heuristic vs Dynamic 26.812− 27.433 = −0.621 (−0.990,−0.252) µH < µD

Table 7.9: Tukey’s simultaneous 95% CI’s for wood log valuation data (RBD)

that Actual sawmill valuation is significantly lower than Heuristic, which is significantly lower than Dynamic.

Note that to run this in R, it is necessary to have a separate row for each observation, along with a
treatment ID and block ID.

R Commands and Output

## Commands

saw <- read.csv("http://www.stat.ufl.edu/~winner/data/sawmill1.csv")

attach(saw); names(saw)

lumTrt <- factor(lumTrt)

lumBlk <- factor(lumBlk)

levels(lumTrt) <- c("Actual", "Heuristic", "Dynamic")

saw.mod1 <- aov(lumVal ~ lumTrt + lumBlk)

anova(saw.mod1)

TukeyHSD(saw.mod1, "lumTrt")

interaction.plot(lumBlk, lumTrt, lumVal)

## Output

> anova(saw.mod1)

Analysis of Variance Table

Response: lumVal

Df Sum Sq Mean Sq F value Pr(>F)
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lumTrt 2 106.8 53.424 151.53 < 2.2e-16 ***

lumBlk 29 5042.8 173.889 493.21 < 2.2e-16 ***

Residuals 58 20.4 0.353

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> TukeyHSD(saw.mod1, "lumTrt")

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = lumVal ~ lumTrt + lumBlk)

$lumTrt

diff lwr upr p adj

Heuristic-Actual 1.9376667 1.5689056 2.3064277 0.000000

Dynamic-Actual 2.5583333 2.1895723 2.9270944 0.000000

Dynamic-Heuristic 0.6206667 0.2519056 0.9894277 0.000449

7.3 Factorial Designs

In many cases, the research is interested in whether multiple factors have effects on responses, and whether
the effects of the individual factor levels depend on the levels of the remaining factor(s). We will consider
only the case of two treatment factors: A with a levels and B with b levels. Further, we will only consider
the case where there are n observation within each of the ab treatments (the crossing of the levels of factors
A and B).

In this section, models with two factors are considered. Denoting the kth measurement observed under
the ith level of factor A and the jth level of factor B, the model is written as follows.

Yijk = µij + εijk = µ + αi + βj + (αβ)ij + εijk i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , n εijk ∼ N
(

0, σ2
)

Here µ is the overall mean, αi is the effect of the ith level of factor A, βj is the effect of the jth level of factor
B, (αβ)ij is the effect of the interaction of the ith level of factor A and the jth level of factor B, and εijk is
the random error term representing the fact that units within each treatment combination will vary, as well
as if the same unit were measured repeatedly, its measurements would vary. Here, we consider the model
where both factors A and B are fixed, with all levels of interest present in the study.

Note that an interaction represents the fact that the effect of a particular level of factor A depends on
the level of factor B, and vice versa. As before, we assume that εijk is normally distributed with mean 0
and variance σ2.

When factors A and B are fixed, the effects are unknown parameters to be estimated. One common way
of parameterizing the model is as follows.

E {Yijk} = µ + αi + βj + (αβ)ij V {Yijk} = σ2
a
∑

i=1

αi =

b
∑

j=1

βj =

a
∑

i=1

(αβ)ij =

b
∑

j=1

(αβ)ij = 0

Some interesting hypotheses to test are as follows.

1. H0 : (αβ)11 = · · · = (αβ)ab = 0 (No interaction effect).
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2. H0 : α1 = · · · = αa = 0 (No effects among the levels of factor A)

3. H0 : β1 = · · · = βb = 0 (No effects among the levels of factor B)

The total variation in the set of observed measurements can be decomposed into four parts: variation
in the means of the levels of factor A, variation in the means of the levels of factor B, variation due to the
interaction of factors A and B, and error variation. The formulas for the sums of squares are given here.

yij. =

∑n
k=1 yijk

n

yi.. =

∑b
j=1

∑n
k=1 yijk

bn

y.j. =

∑a
i=1

∑n
k=1 yijk

an

y... =

∑a
i=1

∑b
j=1

∑n
k=1 yijk

abn
n.. = a · b · n

s2
ij =

∑n
k=1

(

yijk − yij.

)2

n − 1

TSS =

a
∑

i=1

b
∑

j=1

n
∑

k=1

(yijk − y...)
2

SSA = bn

a
∑

i=1

(yi.. − y...)
2

SSB = an

b
∑

j=1

(y.j. − y...)
2

SSAB = n

a
∑

i=1

b
∑

j=1

(yij. − yi.. − y.j. + y...)
2

SSE =

a
∑

i=1

b
∑

j=1

n
∑

k=1

(yijk − yij.)
2

The error sum of squares can also be computed from the within cell standard deviations, which is helpful
as many research articles provide the treatment means and standard deviations.

SSE =

a
∑

i=1

b
∑

j=1

n
∑

k=1

(yijk − yij.)
2 = (n − 1)

a
∑

i=1

b
∑

j=1

s2
ij

Note that this type of analysis, is almost always done on a computer. The analysis of variance can be
set up as shown in Table 7.10, assuming that n measurements are made at each combination of levels of the
two factors.

The tests for interactions and for effects of factors A and B involve the three F –statistics, and can be
conducted as follow. Note that under each of the three null hypotheses, the corresponding expected mean
square in the numerator simplifies to σ2 = E {MSE}.
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ANOVA
Source of Degrees of Sum of Mean
Variation Freedom Squares Square F Pr(> F )

FACTOR A a − 1 SSA MSA = SSA
a−1

FA = MSA
MSE

P (F ≥ FA)

FACTOR B b − 1 SSB MSB = SSB
b−1

FB = MSB
MSE

P (F ≥ FB)

INTERACTION AB (a − 1)(b − 1) SSAB MSAB = SSAB
(a−1)(b−1)

FAB = MSAB
MSE

P (F ≥ FAB)

ERROR ab(n − 1) SSE MSE = SSE
ab(n−1)

TOTAL abn − 1 TSS

Table 7.10: The Analysis of Variance Table for a Balanced 2-Factor Factorial Design with Fixed Effects

1. HAB
0 : (αβ)11 = · · · = (αβ)ab = 0 (No interaction effect).

2. HAB
A : Not all (αβ)ij = 0 (Interaction effects exist)

3. T.S. FAB = MSAB
MSE

4. R.R.: FAB ≥ Fα,(a−1)(b−1),ab(n−1)

5. p-value: P
(

F(a−1)(b−1),ab(n−1) ≥ FAB

)

Assuming no interaction effects exist, we can test for differences among the effects of the levels of factor A
as follows.

1. HA
0 : α1 = · · · = αa = 0 (No factor A effect).

2. HA
A : Not all αi = 0 (Factor A effects exist)

3. T.S. FA = MSA
MSE

4. R.R.: FA ≥ Fα,(a−1),ab(n−1)

5. p-value: P
(

Fa−1,ab(n−1) ≥ FA

)

Assuming no interaction effects exist, we can test for differences among the effects of the levels of factor B
as follows.

1. HB
0 : β1 = · · · = βb = 0 (No factor B effect).

2. HB
A : Not all βj = 0 (Factor B effects exist)

3. T.S. FB = MSB
MSE

4. R.R.: FB ≥ Fα,(b−1),ab(n−1)

5. p-value: P
(

F(b−1),ab(n−1) ≥ Fobs

)
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Note that if we conclude interaction effects exist, we usually look at the individual combinations of factors
A and B separately (as in the Completely Randomized Design), and don’t conduct the last two tests.

Example 7.11: Espresso Foam Index by Temperature and Extraction Pressure

An experiment was conducted to measure foam index (Y ) of espresso samples brewed at a = 3 levels of
temperature (factor A: 75C, 85C, 95C) and b = 2 extraction pressures (factor B: 15bar, 20bar) with n = 9
replicates per treatment (Masella, et al (2015), [41]). The sample means (standard deviations), temperature
means, pressure means, and overall mean are given in Table 7.11. Note that at 75C, Foam Index increases
by 135.0− 113.4 = 21.6 when pressure increases from 15 to 20. Similarly, the changes are 11.4 and 26.5 for
85C and 95C, respectively. Those are fairly similar increases, but we will test formally for the interaction
below.

Pressure (B)

Temperature (A) 15bar 20bar Temp Mean
75C 113.4 (15.0) 135.0 (27.5) 124.20

85C 102.4 (12.2) 113.8 (20.5) 108.10
95C 91.1 (12.9) 117.6 (21.7) 104.35

Press Mean 102.30 122.13 112.22

Table 7.11: Espresso Foam Index Mean (SD) by Temperature and Pressure

The sums of squares are set-up below, as well as the Analysis of Variance in Table 7.12.

SSA = 2(9)
[

(124.20− 112.22)2 + (108.10− 112.22)2 + (104.35− 112.22)2
]

= 4004 dfA = 3 − 1 = 2

SSB = 3(9)
[

(102.30− 112.22)2 + (122.13− 112.22)2
]

= 5309 dfB = 2 − 1 = 1

SSAB = 9
[

(113.4− 124.20− 102.30 + 112.22)2 + · · ·+ (117.6− 104.35− 122.13 + 112.22)2
]

= 534 dfAB = 2(1) = 2

SSE = (9 − 1)
[

15.02 + · · ·+ 21.72
]

= 17501 dfE = 3(2)(9 − 1) = 48

ANOVA
Source of Degrees of Sum of Mean
Variation Freedom Squares Square F Pr(> F )

Temperature (A) 2 4004 4004
2

= 2002 2002
365

= 5.485 .0072

Pressure (B) 1 5309 5309
1

= 5309 5309
365

= 14.545 .0004

Interaction (AB) 2 534 534
2

= 267 267
365

= 0.732 .4862

ERROR 48 17501 17501
48

= 365

TOTAL 53 27348

Table 7.12: Analysis of Variance Table for Espresso Foam Index experiment

Thus, there are significant main effects for Temperature and Pressure, but the interaction is not sig-
nificant. The R code for the analysis and output (including Tukey’s comparisons among Temperature and
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Pressure effects individually is given below). Note, the R program uses more internal decimal places than
the computations above. Foam Index is significantly higher at 75C than 85C and 95C. The Foam Index at
85C and 95C are not significantly different. It is significantly higher at 20bar than 15bar.

An interaction plot is given in Figure 7.5.

R Commands and Output

## Commands

espresso1 <- read.csv("http://www.stat.ufl.edu/~winner/data/espresso2.csv")

attach(espresso1); names(espresso1)

tempC <- factor(tempC)

prssBar <- factor(prssBar)

fi.mod <- aov(foamIndx ~ tempC * prssBar)

summary(fi.mod)

TukeyHSD(fi.mod, "tempC")

TukeyHSD(fi.mod, "prssBar")

interaction.plot(tempC, prssBar, foamIndx)

## Output

> fi.mod <- aov(foamIndx ~ tempC * prssBar)

> summary(fi.mod)

Df Sum Sq Mean Sq F value Pr(>F)

tempC 2 4004 2002 5.491 0.007123 **

prssBar 1 5310 5310 14.564 0.000388 ***

tempC:prssBar 2 534 267 0.732 0.486075

Residuals 48 17501 365

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> TukeyHSD(fi.mod, "tempC")

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = foamIndx ~ tempC * prssBar)

$tempC

diff lwr upr p adj

85-75 -16.100556 -31.49407 -0.7070449 0.0385233

95-75 -19.850000 -35.24351 -4.4564893 0.0084704

95-85 -3.749444 -19.14296 11.6440662 0.8266145

> TukeyHSD(fi.mod, "prssBar")

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = foamIndx ~ tempC * prssBar)

$prssBar

diff lwr upr p adj

20-15 19.83333 9.384174 30.28249 0.0003876

∇
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Figure 7.5: Mean Foam Index for espresso by Temperature and Pressure



Chapter 8

Categorical Data Analysis

Recall that variables can be categorical or numeric. Chapters 4, 6, and 7 dealt with making inferences for
quantitative responses. In this chapter, methods commonly used to analyze data when the response variable
is categorical are introduced. First, consider estimating and testing proportions corresponding to a single
binomial (2 possible outcomes) or multinomial (k > 2 possible outcomes) variable. Then, cases of testing
for associations among two or more categorical variables are covered.

8.1 Inference Concerning a Single Variable

A single variable can have two levels, and counts are modeled by the Binomial distribution, or it can have
k > 2 levels and counts are modeled by the Multinomial distribution. Note that the Binomial is a special
case of the Multinomial, however there are many methods that apply strictly to binary outcomes.

8.1.1 Variables with Two Possible Outcomes

In the case of a binary variable, the goal is typically to estimate the true underlying probability of success,
π. The sample proportion π̂ = Y/n from a binomial experiment with n trials and Y successes has a sampling
distribution with mean π and standard error

√

π(1 − π)/n. In large samples, the sampling distribution is
approximately normal. One commonly used rule of thumb is that nπ ≥ 5 and n(1−π) ≥ 5. When estimating
π, the estimated standard error must be used, where π is replaced with π̂. Note that the standard error is
maximized for a given n when π = 1 − π = 0.5, so a conservative case uses π = 0.5 in the standard error.
The large-sample (1 − α)100% Confidence Interval for π and the sample size needed for a given margin of
error, E, are given below.

(1 − α)100%CI for π : π̂ ± zα/2

√

π̂ (1 − π̂)

n
E = zα/2

√

π (1 − π)

n
⇒ n =

z2
α/2π(1 − π)

E2

111
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In small samples, the large-sample normal approximation does poorly in terms of coverage rates for π.
It has been seen that making an adjustment to the success count and the sample size performs well. This is
referred to as the Wilson-Agresti-Coull method. Let y be the observed number of successes in the n trials,
then the Confidence Interval is obtained as follows. Note that since z.025 = 1.96 ≈ 2, for a 95% Confidence
Interval, this can be thought of as adding 2 Successes and 2 Failures to the observed data (Agresti and Coull
(1998), [2]).

ỹ = y + 0.5z2
α/2 ñ = n + z2

α/2 π̃ =
ỹ

ñ
(1 − α)100%CI for π : π̃ ± zα/2

√

π̃ (1 − π̃)

ñ

Example 8.1: Estimating Shaquille O’Neal’s Free Throw Success Probability

During Shaquille O’Neal’s NBA regular season career, he took 11252 free throws, successfully making
5935, so that π = 5935/11252 = .5275. Stringing out his within game free throw attempts into a sequence
of 1s and 0s, and taking 100000 random samples of size n = 10, the coverage rates for the two methods are
88.5% for the “traditional” large-sample method and 94.8% for the Wilson-Agresti-Coull method. For the
small-sample case, the adjustment performs very well. When the samples are of size n = 30, the coverage
rates are 93.2% and 95.9%, respectively. For samples of size n = 100, they are 94.3% and 95.3%, respectively.

R Output

## Output

> round(ft.out, 4)

pi pi-hat cover pi-tilde cover pi-hat mean width pi-tilde mean width

n=10 0.5275 0.8836 0.9455 0.5842 0.5120

n=30 0.5275 0.9321 0.9588 0.3510 0.3319

n=100 0.5275 0.9436 0.9538 0.1946 0.1911

For the first sample of size n = 10, y = 7 free throws were successes and the following calculations are
used to obtain the 95% Confidence Intervals for π.

π̂ =
7

10
= 0.7 ŜE{π̂} =

√

0.7 (1 − 0.7)

10
= 0.145 0.70± 1.96(0.145) ≡ 0.70± 0.284 ≡ (0.416, 0.984)

ỹ = 7 + 0.5(1.96)2 = 8.92 ñ = 10 + (1.96)2 = 13.84 π̃ =
8.92

13.84
= 0.645

√

0.645 (1 − 0.645)

13.84
= 0.129

0.645± 1.96(0.129) ≡ 0.645± 0.253 ≡ (0.392, 0.898)

Both intervals contain π = 0.5275.

∇
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A large-sample test of whether π = π0 can also be conducted. For instance, a test may be whether
a majority of people favor a political candidate or referendum, or whether a defective rate is below some
tolerance level.

2-tailed test: H0 : π = π0 HA : π 6= π0 TS : zobs =
π̂ − π0

√

π0(1−π0)
n

RR : |zobs| ≥ zα/2 P = 2P (Z ≥ |zobs|)

Upper-tailed test: H0 : π ≤ π0 HA : π > π0 TS : zobs =
π̂ − π0

√

π0(1−π0)
n

RR : zobs ≥ zα P = P (Z ≥ zobs)

Lower-tailed test: H0 : π ≥ π0 HA : π < π0 TS : zobs =
π̂ − π0

√

π0(1−π0)
n

RR : zobs ≤ −zα P = P (Z ≤ zobs)

An exact test can be conducted by use of the binomial distribution and statistical packages by obtaining
the exact probability that the count could be more extreme than the observed count y under the null
hypothesis. See the examples below.

Example 8.2: NBA Point Spread and Over/Under Outcomes for 2014-2015 Regular Season

For each NBA game there is a “point spread” for bettors to wager on. If the home team is favored to
win the game by 5 points, it must win by 6 or more points to “cover the spread,” if it loses the game or wins
by less than 5 points, the home team loses the bet, and if it wins by 5 points, the bet is a tie or “push.”
For the 2014-2015 regular season games, the home team covered the spread in 588 games, failed to cover the
spread in 615 games, and “tied” the spread in 27 games. We treat these games as a sample of the infinite
population of games that could be played among NBA teams, and eliminate the 27 “pushes.” The test is
whether the true underlying probability that the home team covers is 0.50. Otherwise bettors could have an
advantage over bookmakers. H0 : π = 0.50 versus HA : π 6= 0.50.

y = 588 n = 615 + 588 = 1203 π̂ =
588

1203
= 0.4888 SE {π̂}H0

=

√

0.5(1 − 0.5)

1203
= 0.0144

zobs =
0.4888− 0.5

0.0144
= −0.78 P = 2P (Z ≥ 0.78) = 2(0.2177) = 0.4354

There is no evidence of a “bias” (positive or negative) in terms of the home team performance against the
spread. An exact test is given here. Under the null hypothesis, the expected value of Y is nπ0 = 1203(0.5) =
601.5. The observed y is 588, which is 13.5 below its expected value. Had y been 615, it would have been
13.5 above its expected value. The exact 2-tailed P -value is obtained as follows.

P = P (Y ≤ 588|Y ∼ Bin(1203, 0.5)) + P (Y ≥ 615|Y ∼ Bin(1203, 0.5)) = 0.22675 + 0.22675 = .4535
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A similar test can be done for the “Over/Under” bet. Bookmakers set a total score for the two teams,
and if the combined points exceed this line the Over wins, if it falls short, the Under wins, and if it ties, it
is a “Push.” For the Over/Under bet for that season, Under won 633 times, Over won 583 times, and there
were 14 Pushes. Again, we eliminate the Pushes, and test H0 : π = 0.50 versus HA : π 6= 0.50, where π is
the probability Over wins.

y = 583 n = 633 + 583 = 1216 π̂ =
583

1216
= 0.4794 SE {π̂}H0

=

√

0.5(1 − 0.5)

1216
= 0.0143

zobs =
0.4794− 0.5

0.0143
= −1.44 P = 2P (Z ≥ 1.44) = 2(.0749) = 0.1498

Again there is no evidence of a bias. An exact P -value is obtained below.

P = P (Y ≤ 583|Y ∼ Bin(1216, 0.5)) + P (Y ≥ 633|Y ∼ Bin(1216, 0.5)) = 0.07997 + 0.07997 = 0.1599

R Output

### Output

> round(cov.out, 4)

pi(H0) y n pihat SE{H0} Z P(Z) P(Exact) SE{pihat} Lower Upper

[1,] 0.5 588 1203 0.4888 0.0144 -0.7785 0.4363 0.4535 0.0144 0.4605 0.517

> ### Exact Tests

> binom.test(Y.Cov,n.Cov,p=0.5,alternative="two.sided")

Exact binomial test

data: Y.Cov and n.Cov

number of successes = 588, number of trials = 1203, p-value = 0.4535

alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

0.4601721 0.5174390

sample estimates:

probability of success

0.4887781

∇

8.2 Introduction to Tests for Association for Two Categorical Vari-

ables

The data are generally counts of individuals or units, and are given in the form of an r × c contingency
table. Throughout these notes, the rows of the table will represent the r levels of the explanatory variable,
and the columns will represent the c levels of the response variable. The numbers within the table are
the counts of the numbers of individuals falling in that cell’s combination of levels of the explanatory and
response variables. The general set–up of an r × c contingency table is given in Table 8.1.
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Response Variable
1 2 · · · c

1 n11 n12 · · · n1c n1.

Explanatory 2 n21 n22 · · · n2c n2.

Variable
...

...
...

. . .
...

...
r nr1 nr2 · · · nrc nr.

n.1 n.2 · · · n.c n..

Table 8.1: An r × c Contingency Table

Recall that categorical variables can be nominal or ordinal. Nominal variables have levels that have no
inherent ordering, such as gender (male, female) or hair color (black, blonde, brown, red). Ordinal variables
have levels that do have a distinct ordering such as reviewer’s assessment of a movie (negative opinion, mixed
opinion, positive opinion).

In this chapter, the following cases are covered.

• 2 × 2 tables (both variables have two levels)

• Both variables are nominal.

8.3 2 × 2 Tables

There are many situations where both the independent and dependent variables have two levels. One example
is efficacy studies for drugs, where subjects are assigned at random to active drug or placebo (explanatory
variable) and the outcome measure is whether or not the patient is cured (response variable). A second
example is epidemiological studies where disease state is observed (response variable), as well as exposure to
risk factor (explanatory variable). Drug efficacy studies are generally conducted as randomized clinical trials,
while epidemiological studies are generally conducted in cohort (prospective) and case–control (retrospective)
settings.

For this particular case, we will generalize the explanatory variable’s levels to exposed (E) and not
exposed (E), and the response variable’s levels as disease (D) and no disease (D). These interpretations can
be applied in either of the two settings described above and can be generalized to virtually any application.
The data for this case will be of the form of Table 8.2.

Disease State
D (Present) D (Absent) Total

Exposure E (Present) n11 = y1 n12 = n1 − y1 n1. = n1

State E (Absent) n21 = y2 n22 = n2 − y2 n2. = n2

Total n.1 = y1 + y2 n.2 = (n1 − y1) + (n2 − y2) n.. = n1 + n2

Table 8.2: A 2 × 2 Contingency Table

In the case of drug efficacy studies, the exposure state can be thought of as the drug the subject is
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randomly assigned to. Exposure could imply that a subject was given the active drug, while non–exposure
could imply having received placebo. In either type study, there are three measures of association commonly
estimated and reported. These are the absolute risk (aka difference in proportions), the relative risk and
the odds ratio.

These methods are also used when the explanatory variable has more than two levels, and the response
variable has two levels. The methods described below are computed within pairs of levels of the explanatory
variables, with one level forming the “baseline” group in comparisons.

8.3.1 Difference in Proportions: π1 − π2

In many studies, the goal is to compare the Success probabilities for two groups. These studies can be based
on large samples or small samples, and can be based on independent or paired samples.

For the large sample case, based on independent samples, the estimators π̂1 = Y1/n1 and π̂2 = Y2/n2

for the two groups are independent and have sampling distributions that are approximately normal. The
relevant results are given below.

E {π̂1 − π̂2} = π1−π2 SE {π̂1 − π̂2} =

√

π1 (1 − π1)

n1
+

π2 (1 − π2)

n2
ŜE {π̂1 − π̂2} =

√

π̂1 (1 − π̂1)

n1
+

π̂2 (1 − π̂2)

n2

(1−α)100% CI for π1−π2 : (π̂1 − π̂2)±zα/2ŜE {π̂1 − π̂2} ≡ (π̂1 − π̂2)±zα/2

√

π̂1 (1 − π̂1)

n1
+

π̂2 (1 − π̂2)

n2

In terms of testing the hypothesis H0 : π1 − π2 = 0, an adjustment is made to the standard error of
π̂1 − π̂2. In this case the overall combined proportion of successes is obtained and used in the “pooled”
standard error.

π̂ =
y1 + y2

n1 + n2
ŜEp {π̂1 − π̂2} =

√

π̂ (1 − π̂)

[

1

n1
+

1

n2

]

The test statistic for testing H0 : π1 − π2 = 0 is given below with the usual rules for rejection regions
and P -values for 2-tailed and 1-tailed tests.

TS : zobs =
π̂1 − π̂2

ŜEp {π̂1 − π̂2}
=

π̂1 − π̂2
√

π̂ (1 − π̂)
[

1
n1

+ 1
n2

]

Example 8.6: Risk Taking After Large Financial Losses
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An Australian natural experiment considered the effect of large losses on subsequent risk taking behavior
(Page, Savage, and Torgler (2014), [45]). The study included a sample of n1 = 94 people who had been
effected by the flood in Brisbane during 2011 and a sample of n2 = 107 people who had not been effected.
The subjects in the experiment were given the choice between a certain $10 and a scratch card valued at
$10, but with a maximum prize of $500,000. The scratch card is considered the “high risk” choice. Of the
effected participants, y1 = 75 chose the scratch card, of the uneffected, y2 = 53 chose the scratch card.

π̂1 =
75

94
= .7979 π̂2 =

53

107
= 0.4953 π̂1 − π̂2 = .7979− .4953 = .3026 π̂ =

75 + 53

94 + 107
=

128

201
= 0.6368

ŜE {π̂1 − π̂2} =

√

.7979(.2021)

94
+

.4953(.5047)

107
= .0637 .3026±1.96(.0637) ≡ .3026±.1248 ≡ (.1778, .4274)

ŜEp {π̂1 − π̂2} =

√

.6368(.3632)

[

1

94
+

1

107

]

= .0680 zobs =
.3026

.0680
= 4.451 P = 2P (Z ≥ 4.451) ≈ 0

This provides empirical evidence consistent with prospect theory that states that people adopt risk
taking attitudes after losses.

R Commands and Output

### Commands

y1 <- 75; n1 <- 94 ## Successes and Total for Group 1 (Affected by Flood)

y2 <- 53; n2 <- 107 ## Successes and Total for Group 2 (Unaffected)

pihat.1 <- y1/n1

pihat.2 <- y2/n2

pihat <- (y1+y2)/(n1+n2)

se.pihat.12 <- sqrt((pihat.1*(1-pihat.1)/n1)+(pihat.2*(1-pihat.2)/n2))

se.pihat.12p <- sqrt(pihat*(1-pihat)*(1/n1+1/n2))

z025 <- qnorm(.975,0,1)

pi12.ci <- (pihat.1-pihat.2) + c(-z025,z025)*se.pihat.12 # 95%CI for pi1-pi2

pi12.z <- (pihat.1-pihat.2)/se.pihat.12p # Z_obs for H0:pi1-pi2=0

pi12.p <- 2 * (1-pnorm(abs(pi12.z))) # 2-sided P-value

pi12.out <- cbind(y1, y2, n1, n2, pihat.1, pihat.2, pihat, se.pihat.12, pi12.ci[1],

pi12.ci[2], se.pihat.12p, pi12.z, pi12.p)

colnames(pi12.out) <- c("y1", "y2", "n1", "n2", "pihat1", "pihat2", "pooled",

"SE{Diff}", "Lower", "Upper", "SE{(H0)}", "Z", "P-value")

round(pi12.out, 4)

prop.test(c(y1,y2),c(n1,n2),correct=F)

### Output

> round(pi12.out, 4)

y1 y2 n1 n2 pihat1 pihat2 pooled SE{Diff} Lower Upper SE{(H0)} Z P-value

[1,] 75 53 94 107 0.7979 0.4953 0.6368 0.0637 0.1778 0.4273 0.068 4.4502 0
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>

> prop.test(c(y1,y2),c(n1,n2),correct=F)

2-sample test for equality of proportions without continuity correction

data: c(y1, y2) out of c(n1, n2)

X-squared = 19.804, df = 1, p-value = 8.58e-06

alternative hypothesis: two.sided

95 percent confidence interval:

0.1777846 0.4273059

sample estimates:

prop 1 prop 2

0.7978723 0.4953271

Note that R presents the “Z-test” as a chi-square test (with 1 degree of freedom), z2
obs = 4.45022 = 19.804.

The P -values are identical for a 2-tailed test.

∇

8.3.2 McNemar’s Test for Paired Designs

When the same units are being observed under both experimental treatments (or units have been matched
based on some criteria), McNemar’s test can be used to test for treatment effects. The relevant subjects
(pairs) are the ones who respond differently under the two conditions. Counts will appear as in Table 8.3.

Trt 2 Outcome
Present Absent

Trt 1 Present n11 n12 n1.

Outcome Absent n21 n22 n2.

n.1 n.2 n..

Table 8.3: Notation for McNemar’s Test

Note that n11 is the number of units that have the outcome characteristic present under both treat-
ments, while n22 is the number having the outcome characteristic absent under both treatments. None of
these subjects offer any information regarding the difference in treatment effects. The units that provide
information are the n12 cases that have the outcome present under treatment 1, and absent under treatment
2; and the n21 units that have the outcome absent under treatment 1, and present under treatment 2. Note
that treatment 1 and treatment 2 can also be “Before” and “After” treatment, or any two conditions.

A large-sample test for treatment effects can be conducted as follows.

• H0 : Pr(Outcome Present|Trt 1)=Pr(Outcome Present|Trt 2) ⇒ No Trt effect

• HA : The probabilities differ (Trt effects - This can be 1-sided also)

• TS : zobs = n12−n21√
n12+n21

• RR : |zobs| ≥ zα/2 (For 2-sided test)
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• P -value: 2P (Z ≥ |zobs|) (For 2-sided test)

Often this test is reported as a chi-square test. The statistic is the square of the z-statistic above, and its
treated as a chi-square random variable with one degree of freedom. The 2-sided z-test, and the chi-square
test are mathematically equivalent.

An exact test is based on the binomial distribution. Under the null hypothesis of no treatment effect,
the count n12 is distributed binomial with n = n12 + n21 and π = 0.5. The P -value is computed as follows.

H0 : π1 = π2 HA : π1 6= π2 P = 2 min[P (Y ≤ n12) , P (Y ≥ n12)] Y ∼ Bin (n = n12 + n21, π = 0.5)

If trying to demonstrate that π1 > π2, we would expect n12 > n21 and P = P (Y ≥ n12). If the goal is
to demonstrate that π1 < π2 , we would expect n12 < n21 and P = P (Y ≤ n12).

Example 8.11: Framing of Risky Outcomes

In one of many studies testing prospect theory, subjects were asked to make two decisions regarding
risky gambles (Kahneman and Tversky (1984), [34]). The decision choices are given below.

• Decision 1: Choose between (A): a sure gain of $240 and (B): a 25% chance of winning $1000 and 75%
chance of winning $0.

• Decision 2: Choose between (C): a sure loss of $750 and (D): a 75% chance of losing $1000 and a 25%
chance of losing $0.

The results are given below. Decision 1 is a Positive frame, Decision 2 is Negative. Choices A and C are
“sure thing” selections, B and D are “risky.”

• In 16 subjects, both sure things (A and C) were chosen.

• In 110 subjects, the Positive sure thing (A) and Negative risky bet (D) were chosen.

• In 4 subjects, the Positive risky bet (B) and Negative sure thing (C) were chosen.

• In 20 subjects, both risky bets (B and D) were chosen.

The data are summarized in Table 8.4.

We can test whether the tendency to choose between a sure thing and risky bet depends on whether the
choice is framed positive (gain) or negative (loss) based on McNemar’s test, since both outcomes are being
observed on the same subjects.

• H0 : No differences in tendency to choose between sure thing and risky bet under the two frames
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Negative Frame
Sure Thing Risky Bet

Positive Sure Thing 16 110 126
Frame Risky Bet 4 20 24

20 130 150

Table 8.4: Positive and Negative frames and subjects’ selections between sure thing and risky bet

• HA : The probabilities differ

• TS : zobs = 110−4√
110+4

= 106
10.6771

= 9.9278

• RR : |zobs| ≥ z.025 = 1.96 (For 2-sided test, with α = 0.05)

• P -value: 2P (Z ≥ 9.9278) ≈ 0 (For 2-sided test)

Thus, we conclude that the tendencies differ. People tend to choose the sure thing when posed as a gain,
and the risky bet when posed as a loss. The exact P -value is set-up below.

P = 2P (Y ≥ 110|Y ∼ Bin(n = 114, π = 0.5)) ≈ 0

R Commands and Output

## Commands

(bet <- matrix(c(16,110,4,20),byrow=T,ncol=2))

mcnemar.test(bet,correct=F)

z.stat <- (bet[1,2]-bet[2,1])/sqrt(bet[1,2]+bet[2,1])

z.p <- 2*(1-pnorm(abs(z.stat),0,1))

binom.p <- 2*(1-pbinom(max(bet[1,2],bet[2,1])-1,bet[1,2]+bet[2,1],0.5))

bet.out <- cbind(bet[1,2], bet[2,1], z.stat, z.stat^2, z.p, binom.p)

colnames(bet.out) <- c("n12=+R/-S", "n21=+S/-R", "z", "z^2", "P(z)", "P(exact)")

round(bet.out, 4)

### Output

> (bet <- matrix(c(16,110,4,20),byrow=T,,ncol=2))

[,1] [,2]

[1,] 16 110

[2,] 4 20

>

>> mcnemar.test(bet,correct=F)

McNemar’s Chi-squared test

data: bet

McNemar’s chi-squared = 98.561, df = 1, p-value < 2.2e-16

> round(bet.out, 4)

n12=+R/-S n21=+S/-R z z^2 P(z) P(exact)

[1,] 110 4 9.9278 98.5614 0 0
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The chi-square statistic from mcnemar.test is the square of the z-statistic. They give identical P -values
for a 2-tailed test.

∇

8.4 Nominal Explanatory and Response Variables

In cases where both the explanatory and response variables are nominal, the most commonly used method
of testing for association between the variables is the Pearson Chi–Squared Test. In these situations,
we are interested if the probability distributions of the response variable are the same at each level of the
explanatory variable.

As we have seen before, the data represent counts, and appear as in Table 8.1. The nij values are referred
to as the observed counts. If the variables are independent (not associated), then the population probability
distributions for the response variable will be identical within each level of the explanatory variable, as in
Table 8.5.

Response Variable
1 2 · · · c

1 p1 p2 · · · pc 1.0
Explanatory 2 p1 p2 · · · pc 1.0

Variable
...

...
...

. . .
...

...
r p1 p2 · · · pc 1.0

Table 8.5: Probability distributions of response variable within levels of explanatory variable under condition
of no association between the two variables.

The special case of 2×2 tables has already been covered. Now generalize to r groups (treatments) and c
possible outcomes. To perform Pearson’s Chi–square test, compute the expected values for each cell count
under the hypothesis of independence, and obtain a statistic based on discrepancies between the observed
and expected values.

observed = nij expected = Eij =
ni.n.j

n..

The expected values represent how many individuals would have fallen in cell (i, j) if the probability distri-
butions of the response variable were the same for each level of the explanatory (grouping) variable. They
apply the marginal proportion of cases in column j, n.j/n.. to the number of units in row i, ni.. The test is
conducted as follows:

1. H0 : No association between the explanatory and response variables (see Table 8.5).

2. HA : Explanatory and response variables are associated

3. T.S.: X2
obs =

∑

all cells
(observed−expected)2

expected
=
∑

i,j
(nij−Eij)2

Eij
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4. RR: X2
obs > χ2

α,(r−1)(c−1)

5. P –value: P (χ2
(r−1)(c−1) ≥ X2

obs)

If the chi-square test rejects the null hypothesis, standardized (adjusted) residuals can be used to
determine which cells are the “cause” of the association between the variables. These are like Z-statistics.
Generally, standardized residuals larger than 2 or 3 in absolute values are considered to be evidence against
independence in that cell.

Rij =
nij − Eij

√

Eij

(

1 − ni.

n..

)(

1 − n.j

n..

)

Example 8.13: Jury Decisions in Product Liability Cases

An experiment was conducted regarding jurors’ decisions to award plaintiffs in product liability trials
(Culp and Pollage (2002) [17]). The observed and expected values are given in Table 8.6. There were r = 5
treatments and c = 2 outcomes (award in favor of plaintiff, or not). The five conditions were as follows (all
conditions included the jurors hearing the facts of the case).

1. Judge’s instruction on strict liability and lawyer’s oral arguments

2. Judge’s instruction on negligence and lawyer’s oral arguments

3. No judge’s instruction or lawyer’s oral arguments (Control)

4. Judge’s instruction on strict liability but no lawyer’s oral arguments

5. Judge’s instruction on negligence but no lawyer’s oral arguments

Jury Condition (i) Award No Award Total
Strict Liability/Oral Argument (1) 15 (21.80) 43 (36.20) 58
Negligence/Oral Argument (2) 18 (17.66) 29 (29.34) 47
Control (3) 7 (14.66) 32 (24.34) 39
Strict Liability/No Oral Argument (4) 37 (28.19) 38 (46.81) 75
Negligence/No Oral Argument (5) 38 (32.70) 49 (54.30) 87
Total 115 191 306

Table 8.6: Observed (expected) values of numbers of jurors voting to award or not award plaintiff in product
liability trial)

Overall, the proportion of jurors voting to award the plaintiff is 115/206 = .3758, and the proportion
voting no award is .6242. These proportions are applied to the row totals to obtain the expected counts
under the hypothesis of no association between juror condition and voting outcome.

E11 =

(

115

306

)

(58) = 21.80 E12 =

(

191

306

)

(58) = 36.20 · · ·E51 =

(

115

306

)

(87) = 32.70 E52 =

(

191

306

)

(87) = 54.30



8.4. NOMINAL EXPLANATORY AND RESPONSE VARIABLES 123

The test of whether there is an association between jury condition and vote outcome is conducted below.

H0:Jury condition and voting outcome are independent vs HA: Jury condition and voting outcome are
associated.

TS : X2
obs =

5
∑

i=1

2
∑

j=1

(nij − Eij)
2

Eij
=

(15 − 21.80)2

21.80
+ · · ·+ (49 − 54.30)2

54.30
= 2.121 + · · ·+ 0.517 = 15.609

RR : X2
obs ≥ χ2

.05,(5−1)(2−1) = 9.488 P = P
(

χ2
4 ≥ 15.609

)

= .0036

The standardized residuals for the control treatment (Jury Condition 3) are −2.71 for Award and +2.71
for No Award, while those for Jury Condition 4 are +2.42 and −2.42, respectively. While these do not
exceed 3 in absolute value, they are well above 2. Fewer jurors in the Control Group voted to award the
plaintiff than expected under independence, and more voted to award the plaintiff in Jury Condition 4. The
calculations for the Control Group are given below.

R31 =
7 − 14.66

√

14.66(1− 39/306)(1− 115/306)
=

−7.66

2.83
= −2.71 R32 =

32 − 24.34
√

24.34(1− 39/306)(1− 191/306)
=

7.66

2.83
= 2.71

R Commands and Output

## Commands

pla <- read.csv("http://www.stat.ufl.edu/~winner/data/productliability_award.csv")

attach(pla); names(pla)

(jury_award <- table(jury,award))

X2_ja <- chisq.test(jury_award, correct=F)

X2_ja

X2_ja$stdres

## Output

> (jury_award <- table(jury,award))

award

jury 0 1

1 43 15

2 29 18

3 32 7

4 38 37

5 49 38

> X2_ja

Pearson’s Chi-squared test

data: jury_award

X-squared = 15.608, df = 4, p-value = 0.003592

> X2_ja$stdres

award

jury 0 1

1 2.0470036 -2.0470036

2 -0.1101878 0.1101878

3 2.7100635 -2.7100635

4 -2.4184629 2.4184629

5 -1.3878162 1.3878162
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Chapter 9

Regression Models

Linear regression is used when there is a numeric response variable and numeric (and possibly categorical)
predictor (explanatory) variable(s). The mean of the response variable is to be related to the predictor(s) with
random error terms typically assumed to be independent and normally distributed with constant variance.
The fitting of linear regression models is very flexible, allowing for fitting curvature, categorical predictors,
and interactions between factors.

Logistic Regression is used when the outcome is binary, and there are one or more numeric (or possibly
categorical) predictor variable(s). These models are used to determine whether there the probability the
outcome of interest is associated with the predictor variable(s).

9.1 Simple Linear Regression

When there is a single numeric predictor, the model is referred to as Simple Regression. The response
variable is denoted as Y and the predictor variable is denoted as X. The model is written as follows.

Y = β0 + β1X + ε ε ∼ N(0, σ) independent

Here β0 is the intercept (mean of Y when X=0) and β1 is the slope (the change in the mean of Y when
X increases by 1 unit). Of primary concern is whether β1 = 0, which implies the mean of Y is constant (β0),
and thus Y and X are not associated.

9.1.1 Estimation of Model Parameters

A sample of pairs (Xi, Yi) i = 1, . . . , n is observed. The goal is to choose estimators of β0 and β1 that
minimize the error sum of squares: Q =

∑n
i=1 ε2i . The resulting ordinary least squares estimators are

given below (the formulas are derived making use of calculus).

125
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Yi = β0 + β1Xi + εi i = 1, . . . , n εi = Yi − (β0 + β1Xi)

β̂1 =

∑n
i=1(Xi − X)(Yi − Y )
∑n

i=1(Xi − X)2
β̂0 = Y − β̂1X

Once estimates have been computed, fitted values and residuals are obtained for each observation.
The error sum of squares (SSE) is obtained as the sum of the squared residuals from the regression fit.

Fitted Values: Ŷi = β̂0+β̂1Xi Residuals: ei = Yi−Ŷi SSE =

n
∑

i=1

(Yi−Ŷi)
2 =

n
∑

i=1

(Yi−Y )2−β̂2
1

n
∑

i=1

(Xi−X)2

The (unbiased) estimator of the error variance σ2 is s2 = MSE = SSE
n−2 , where MSE is the Mean

Square Error. The subtraction of 2 can be thought of as the fact two parameters have been estimated: β0

and β1.

The estimators β̂1 and β̂0 are linear functions of Y1, . . . , Yn and thus using basic rules of mathematical
statistics, their sampling distributions are as follow, assuming the error terms are normal, independent, with
constant variance.

β̂1 ∼ N

(

β1,

√

σ2

∑n
i=1(Xi − X)2

)

β̂0 ∼ N



β0,

√

√

√

√σ2

[

1

n
+

X
2

∑n
i=1(Xi − X)2

]





The estimated standard errors are the standard error with the unknown σ2 replaced by MSE.

ŜE{β̂1} =

√

MSE
∑n

i=1(Xi − X)2
ŜE{β̂0} =

√

√

√

√MSE

[

1

n
+

X
2

∑n
i=1(Xi − X)2

]

Example 9.1: Bollywood Films’ Revenues and Budgets 2013-2017

Box office data for n = 190 Bollywood films, as well as their approximate budgets (production and
advertising) were obtained from bollywoodmoviereviewz.com. These films are being treated as a random
sample of all movies that could have been made under similar conditions. Plots of gross revenues versus
budget are given in Figure 9.1. As is often seen with this type of data, logarithmic transformations on Y
and/or X can be helpful in linearizing the relationship. All four possibilities are considered.

Based on the plots, the model with both variables transformed to the logarithmic scale is fit. This is due
to the linear relation with approximately constant variance. When both variables have been transformed
this way, the slope can be interpreted as percent change in Y when X is increased by 1%. Calculations for
the linear regression are given below.
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Figure 9.1: Bollywood Film Revenues and Budgets 2013-2017.

n = 190 X = 3.5049 Y = 3.1846

n
∑

i=1

(Xi − X)2 = 131.043

n
∑

i=1

(Yi − Y )2 = 381.436

n
∑

i=1

(Xi − X)(Yi − Y ) = 172.9174

β̂1 =
172.9174

131.043
= 1.3195 β̂0 = 3.1846−1.3195(3.5049) = −1.4401 SSE = 381.436−(1.3195)2(131.043) = 153.2796

s2 = MSE =
SSE

n − 2
=

153.2796

190− 2
= 0.8153

ŜE{β̂1} =

√

0.8153

131.043
= 0.0789 ŜE{β̂0} =

√

0.8153

[

1

190
+

3.50492

131.043

]

= 0.2841

R Output
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## Output

> round(ss.out, 4)

SSYY SSXX SSXY SSE MSE beta1-hat b0-hat SE{b1} SE{b0}

[1,] 381.436 131.043 172.9174 153.2636 0.8152 1.3195 -1.4402 0.0789 0.2841

∇

9.1.2 Inference Regarding β1 and β0

Primarily of interest are inferences regarding β1. Note that if β1 = 0, Y and X are not linearly associated. We
can test hypotheses and construct confidence intervals based on the estimate β1 and its estimated standard
error. The t-test is conducted as follows. Note that the null value β10 is almost always 0, and that software
packages that report these tests always are treating β10 as 0.

H0 : β1 = β10 HA : β1 6= β10 TS : tobs =
β̂1 − β10

ŜE{β̂1}
RR : |tobs| ≥ tα/2,n−2 P = 2P (tn−2 ≥ |tobs|)

One-sided tests use the same test statistic, but the Rejection Region and P -value are changed to reflect
the alternative hypothesis.

H+
A : β1 > β10 RR : tobs ≥ tα,n−2 P = P (tn−2 ≥ tobs)

H−
A : β1 < β10 RR : tobs ≤ −tα,n−2 P = P (tn−2 ≤ tobs)

A (1 − α)100% confidence interval for β1 is obtained as:

β̂1 ± tα/2,n−2ŜE{β̂1}

Note that the confidence interval represents the values of β10 for which the two-sided test: H0 : β1 =
β10 HA : β1 6= β10 fails to reject the null hypothesis.

Inferences regarding β0 are of less interest in practice, but can be conducted in analogous manner, using
the estimate β̂0 and its estimated standard error ŜE{β̂0}.

Example 9.2: Bollywood Films’ Revenues and Budgets 2013-2017

Continuing with the Bollywood data with both Revenues and Budget on logarithmic scales, a test of
H0 : β1 = 0 and a 95% Confidence Interval for β1 are obtained.
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H0 : β1 = 0 HA : β1 6= 0 TS : tobs =
1.3195

0.0789
= 16.72 RR : |tobs| ≥ 1.973 P ≈ 0

95% Confidence Interval for β1 : 1.3195± 1.973(0.0789) ≡ 1.3195± 0.1557 ≡ (1.1638, 1.4752)

There is strong evidence of an association between log(Revenue) and log(Budget). Similarly, inference
regarding the intercept β0 can be made as well (although is of less interest as no movies had log(Budget)=0).

H0 : β0 = 0 HA : β0 6= 0 TS : tobs =
−1.4402

0.2841
= −5.069 RR : |tobs| ≥ 1.973 P ≈ 0

95% Confidence Interval for β0 : −1.4402± 1.973(0.2841) ≡ −1.4402± 0.5605 ≡ (−2.0007,−0.8797)

R Commands and Output

## Commands

## Analysis using lm (linear model) function in R

bolly.mod1 <- lm(Y ~ X)

summary(bolly.mod1)

confint(bolly.mod1)

## Output

> round(b.out, 4)

Estimate Std. Error t P-Value Lower Bound Upper Bound

Intercept -1.4402 0.2841 -5.0695 0 -2.0007 -0.8798

log(Budget) 1.3195 0.0789 16.7298 0 1.1640 1.4751

> summary(bolly.mod1)

Call:

lm(formula = Y ~ X)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.44023 0.28410 -5.069 9.51e-07 ***

X 1.31955 0.07887 16.730 < 2e-16 ***

Residual standard error: 0.9029 on 188 degrees of freedom

Multiple R-squared: 0.5982, Adjusted R-squared: 0.5961

F-statistic: 279.9 on 1 and 188 DF, p-value: < 2.2e-16

> confint(bolly.mod1)

2.5 % 97.5 %

(Intercept) -2.000665 -0.879805

X 1.163955 1.475138

∇
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9.1.3 Estimating a Mean and Predicting a New Observation @ X = X∗

There may be interest in estimating the mean response at a specific level X∗. The parameter of interest is
µ∗ = β0 +β1X

∗. The point estimator, standard error, and (1−α)100% Confidence Interval are given below.

Ŷ ∗ = β̂0 + β̂1X
∗ ŜE

{

Ŷ ∗
}

=

√

√

√

√MSE

[

1

n
+

(

X∗ − X
)2

∑n
i=1(Xi − X)2

]

(1 − α)100% CI : Ŷ ∗ ± tα/2,n−2ŜE
{

Ŷ ∗
}

To obtain a simultaneous (1−α)100% Confidence Interval for the entire regression line (not just a single
point), the Working-Hotelling method can be used.

Ŷ ∗ ±
√

2Fα,2,n−2ŜE
{

Ŷ ∗
}

If the goal is to predict a new observation when X = X∗, uncertainty with respect to estimating the
mean (as seen by the Confidence Interval above), and the random error for the new case (with standard
deviation σ) must be taken into account. The point prediction is the same as for the mean. The prediction,
standard error of prediction, and (1 − α)100% Prediction Interval are given below.

Ŷ ∗
New = β̂0 + β̂1X

∗ ŜE
{

Ŷ ∗
New

}

=

√

√

√

√MSE

[

1 +
1

n
+

(

X∗ − X
)2

∑n
i=1(Xi − X)2

]

(1 − α)100% PI : Ŷ ∗
New ± tα/2,n−2ŜE

{

Ŷ ∗
New

}

Note that the Prediction Interval will tend to be much wider than the Confidence Interval for the mean.

Example 9.3: Bollywood Films’ Revenues and Budgets 2013-2017

Continuing with the Bollywood data with both Revenues and Budget on logarithmic scales, a 95%
Confidence Interval for the mean log(Revenue) of all possible films with a Budget of 60 (X∗ = log(60) =
4.0943) is obtained. Also a Prediction Interval for a single new movie with a budget of 60 is computed.
The predicted value is Ŷ ∗ = −1.4401 + 1.3195(4.0943) = 3.9623. A plot of the data, fitted equation, 95%
Confidence and Prediction Intervals is given in Figure 9.2.

ŜE
{

Ŷ ∗
}

=

√

√

√

√0.8153

[

1

190
+

(4.0943− 3.5049)
2

131.043

]

=
√

0.8153(0.0079) = 0.0803

ŜE
{

Ŷ ∗
New

}

=
√

0.8153(1.0079) = 0.9065
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Figure 9.2: Bollywood Data, Fitted Equation 95% Confidence Interval for the mean and Prediction Interval
for individual films

95% CI for Mean: 3.9623± 1.973(0.0803)≡ 3.9623± 0.1585 ≡ (3.8038, 4.1208)

95% PI for Individual: 3.9623± 1.973(0.9065)≡ 3.9623± 1.7885 ≡ (2.1738, 5.7508)

To convert back to the original units, the bounds of the Confidence and Prediction Intervals are expo-
nentiated. The predicted revenue is e3.9623 = 52.58 and the 95% Confidence Interval and Prediction Interval
are given below.

95% CI for Mean:
(

e3.8038 = 44.87, e4.1208 = 61.61
)

95% PI for Individual:
(

e2.1738 = 8.79, e5.7508 = 314.44
)

R Commands and Output

## Commands

## Using predict function based on bolly.mod1 object with X*=log(60)

# CI for mean

ci.log60 <- predict(bolly.mod1, list(X=log(60)), interval="c")

# PI for individual movie

pi.log60 <- predict(bolly.mod1, list(X=log(60)), interval="p")

cipi.out1 <- rbind(ci.log60, pi.log60, exp(ci.log60), exp(pi.log60))
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colnames(cipi.out1) <- c("Estimate", "Lower Bound", "Upper Bound")

rownames(cipi.out1) <- c("CI(log scale)", "PI(log scale)",

"CI(original scale)", "PI(original scale)")

round(cipi.out1, 4)

## Output

> round(cipi.out,4)

X* Y-hat* CI Lower CI Upper PI Lower PI Upper

Log Scale 4.0943 3.9624 3.8040 4.1209 2.1743 5.7506

Original Scale 60.0000 52.5856 44.8797 61.6147 8.7959 314.3788

> round(cipi.out1, 4)

Estimate Lower Bound Upper Bound

CI(log scale) 3.9624 3.8040 4.1209

PI(log scale) 3.9624 2.1743 5.7506

CI(original scale) 52.5856 44.8797 61.6147

PI(original scale) 52.5856 8.7959 314.3788

∇

9.1.4 Analysis of Variance

When there is no association between Y and X (β1 = 0), the best predictor of each observation is Y = β̂0

(in terms of minimizing sum of squares of prediction errors). In this case, the total variation can be denoted
as TSS =

∑n
i=1(Yi − Y )2, the Total Sum of Squares.

When there is an association between Y and X (β1 6= 0), the best predictor of each observation is

Ŷi = β̂0 + β̂1Xi (in terms of minimizing sum of squares of prediction errors). In this case, the error variation
can be denoted as SSE =

∑n
i=1(Yi − Ŷi)

2, the Error Sum of Squares.

The difference between TSS and SSE is the variation “explained” by the regression of Y on X (as
opposed to having ignored X). It represents the difference between the fitted values and the mean: SSR =
∑n

i=1(Ŷi − Y )2 the Regression Sum of Squares.

TSS = SSE + SSR

n
∑

i=1

(Yi − Y )2 =

n
∑

i=1

(Yi − Ŷi)
2 +

n
∑

i=1

(Ŷi − Y )2

A plot including the data (Y ), the horizontal line at the mean response (Y ) and the fitted equation is
given in Figure 9.3. The sum of the squared vertical distances from the data Yi to Y is the Total Sum of
Squares TSS. The sum of the squared vertical distances from Yi to their fitted values Ŷi is the Error Sum
of Squares SSE. The sum of the squared vertical distances from Ŷi to Y is the Regression Sum of Squares
SSR.

Each sum of squares has a degrees of freedom associated with it. The Total Degrees of Freedom
is dfTotal = n − 1. The Error Degrees of Freedom is dfError = n − 2 (for simple regression). The
Regression Degrees of Freedom is dfRegression = 1 (for simple regression).
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Figure 9.3: Plot of Data (points), Fitted Equation and Mean of Y - Bollywood movie regression with
Y =log(Revenue) and X=log(Budget)
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Source df SS MS Fobs P -value

Regression (Model) 1 SSR =
∑n

i=1(Ŷi − Y )2 MSR = SSR
1 Fobs = MSR

MSE P (F1,n−2 ≥ Fobs)

Error (Residual) n − 2 SSE =
∑n

i=1(Yi − Ŷi)
2 MSE = SSE

n−2

Total (Corrected) n − 1 TSS =
∑n

i=1(Yi − Y )2

Table 9.1: Analysis of Variance Table for Simple Linear Regression

dfTotal = dfError + dfRegression n − 1 = n − 2 + 1

The Error and Regression sums of squares have Mean Squares, which are the sum of squares divided
by their corresponding degrees of freedom: MSE = SSE/(n − 2) and MSR = SSR/1. It can be shown
that these mean squares have the following Expected Values, average values in repeated sampling at the
same observed X levels.

E{MSE} = σ2 E{MSR} = σ2 + β2
1

n
∑

i=1

(Xi − X)2

Note that when β1 = 0, then E{MSR} = E{MSE}, otherwise E{MSR} > E{MSE}. A second way
of testing whether β1 = 0 is by the following F -test.

H0 : β1 = 0 HA : β1 6= 0 TS : Fobs =
MSR

MSE
RR : Fobs ≥ Fα,1,n−2 P = P (F1,n−2 ≥ Fobs)

The Analysis of Variance is typically set up in a table as in Table 9.1.

A measure often reported from a regression analysis is the Coefficient of Determination or r2. This
represents the variation in Y “explained” by X, divided by the total variation in Y .

r2 =

∑n
i=1(Ŷi − Y )2

∑n
i=1(Yi − Y )2

=
SSR

TSS
= 1 − SSE

TSS
0 ≤ r2 ≤ 1

The interpretation of r2 is the proportion of variation in Y that is “explained” by X, and is often
reported as a percentage (100r2).

Example 9.4: Bollywood Films’ Revenues and Budgets 2013-2017

Continuing with the Bollywood data with both Revenues and Budget on logarithmic scales, the Analysis
of Variance and F -test are given Table 9.2. Note that the Total Sum of Squares and Error Sum of Squares
were computed in Example 9.1. The Regression Sum of Squares is the difference SSR = TSS − SSE =
381.4360− 153.2636 = 228.1725.
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Source df SS MS Fobs P -value
Regression (Model) 1 228.1725 228.1725 279.8667 ≈ 0
Error (Residual) 188 153.2676 0.8152
Total (Corrected) 189 381.4360

Table 9.2: Analysis of Variance Table for Bollywood Box Office Data

The coefficient of determination, r2, is 228.1725/381.4360=0.5982. Approximately 60% of the variation
in log Revenue is “explained” by log Budget.

R Commands and Output

## Commands

bolly.mod1 <- lm(Y ~ X)

summary(bolly.mod1)

anova(bolly.mod1)

## Output

> round(aov.out,4)

TSS SSE SSR MSE F_obs F(.05) P-value R^2

[1,] 381.436 153.2636 228.1725 0.8152 279.8867 3.8914 0 0.5982

> summary(bolly.mod1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.44023 0.28410 -5.069 9.51e-07 ***

X 1.31955 0.07887 16.730 < 2e-16 ***

Residual standard error: 0.9029 on 188 degrees of freedom

Multiple R-squared: 0.5982, Adjusted R-squared: 0.5961

F-statistic: 279.9 on 1 and 188 DF, p-value: < 2.2e-16

> anova(bolly.mod1)

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

X 1 228.17 228.172 279.89 < 2.2e-16 ***

Residuals 188 153.26 0.815

∇

9.1.5 Correlation

The regression coefficient β1 depends on the units of Y and X. It also depends on which variable is the
dependent variable and which is the independent variable. A second widely reported measure is the Pearson
Product Moment Coefficient of Correlation. It is invariant to linear transformations of Y and X, and
does not distinguish which is the dependent and which is the independent variable. This makes it a widely
reported measure when researchers are interested in how two random variables vary together in a population.
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The population correlation coefficient is labeled ρ, and the sample correlation is labeled r, and its formula
is given below.

r =

∑n
i=1(Xi − X)(Yi − Y )

√

∑n
i=1(Xi − X)2

∑n
i=1(Yi − Y )2

=

(

sX

sY

)

β̂1

where sX and sY are the standard deviations of X and Y , respectively. While β̂1 can take on any value, r
lies between −1 and +1, taking on the extreme values if all of the points fall on a straight line. The test
of whether ρ = 0 is mathematically equivalent to the t-test for testing whether β1 = 0. The 2-sided test is
given below.

H0 : ρ = 0 HA : ρ 6= 0 TS : tobs =
r

√

1−r2

n−2

RR : |tobs| ≥ tα/2,n−2 P = 2P (tn−2 ≥ |tobs|)

To construct a large-sample confidence interval, Fisher’s z transform is used to make the transformed
r to have a sampling distribution that is approximately normal. A confidence interval is obtained on the
transformed correlation, then “back transformed” to the end points in terms of ρ.

z′ =
1

2
ln

(

1 + r

1 − r

)

(1 − α)100% CI for
1

2
ln

(

1 + ρ

1 − ρ

)

: z′ ± zα/2

√

1

n − 3

Labeling the endpoints of the Confidence Interval as (a, b), the Confidence Interval for ρ is computed as
follows.

(1 − α)100% Confidence Interval for ρ :

(

e2a − 1

e2a + 1
,
e2b − 1

e2b + 1

)

Example 9.5: Bollywood Films’ Revenues and Budgets 2013-2017

Continuing with the Bollywood data with both Revenues and Budget on logarithmic scales, the sample
correlation, a test of whether ρ = 0, and a 95% Confidence Interval for ρ are computed below.

r =
172.9174

√

131.0430(381.4360)
= 0.7734 tobs =

0.7734
√

1−0.77342

190−2

= 16.73

z′ =
1

2
ln

(

1 + 0.7734

1 − 0.7734

)

= 1.0287 1.0287± 1.96

√

1

190− 3
≡ 1.0287± 0.1433 ≡ (0.8854, 1.1720)

⇒ (1 − α)100% CI for ρ :

(

e2(0.8854) − 1

e2(0.8854) + 1
,
e2(1.1720) − 1

e2(1.1720) + 1

)

≡
(

4.8756

6.8756
,

9.4228

11.4228

)

≡ (.7091, .8249)

R Commands and Output
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## Commands

cor.test(X,Y)

## Output

> cor.test(X,Y)

Pearson’s product-moment correlation

data: X and Y

t = 16.73, df = 188, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.7091543 0.8249551

sample estimates:

cor

0.7734296

9.2 Multiple Linear Regression

When there is more than one predictor variable, the model generalizes to multiple linear regression. The
calculations become more complex, but conceptually, the ideas remain the same. We will use the notation of
p as the number of predictors, and p′ = p+1 as the number of regression coefficients in the model (including
the intercept). The model can be written as follows with the same assumptions about the errors as in simple
regression.

Y = β0 + β1X1 + · · ·+ βpXp + ε ε ∼ N(0, σ2) independent

Least squares (and maximum likelihood) estimates β̂0 , β̂1, . . . , β̂p minimize the error sum of squares. The
fitted values, residuals, and error sum of squares are given below.

Ŷi = β̂0 + β̂1Xi1 + · · · β̂pXip ei = Yi − Ŷi SSE =

n
∑

i=1

e2
i

The degrees of freedom for error are now n − p′ = n − (p + 1), as the model estimates p′ = p + 1
parameters. The degrees of freedom for regression is p.

In the multiple linear regression model, βj represents the change in E{Y } when Xj increases by 1 unit,
with all other predictor variables being held constant. It is referred to as the partial regression coefficient.

9.2.1 Testing and Estimation for Partial Regression Coefficients

Once the model is fit, for each predictor variable, the estimated regression coefficient, its estimated standard
error, t-statistic and confidence interval are obtained. Technically, the estimated variance-covariance matrix
for the vector of regression coefficients is computed, with the standard errors being the square root of the
variances of the individual coefficients.
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To test whether Y is associated with Xj , after controlling for the remaining p− 1 predictors, the test is
whether βj = 0. This is equivalent to the t-test from simple regression (in general, the test can be whether
a regression coefficient is any specific number, although software packages are testing whether it is 0).

H0 : βj = βj0 HA : βj 6= βj0 TS : tobs =
β̂j − βj0

ŜE{β̂j}
RR : |tobs| ≥ tα/2,n−p′ P = 2P (tn−p′ ≥ |tobs|)

One-sided tests make the same adjustments as in simple linear regression.

H+
A : βj > βj0 RR : tobs ≥ tα,n−p′ P = P (tn−p′ ≥ tobs)

H−
A : βj < βj0 RR : tobs ≤ −tα,n−p′ P = P (tn−p′ ≤ tobs)

A (1 − α)100% confidence interval for βj is obtained as:

β̂j ± tα/2,n−p′ŜE{β̂j}

Note that the confidence interval represents the values of βj0 for which the two-sided test: H0 : βj =
βj0 HA : βj 6= βj0 fails to reject the null hypothesis.

Example 9.7: How Stature (Height) Relates to Hand and Foot Length among Females

A regression model was fit, relating stature (Y , height, in mm) to hand length (X1 , mm) and foot length
(X2, mm) for a sample of n = 75 female adult Turks (Sanli, Kizilkanat, Boyan, et al. (2005), [51]). The
data have been simulated to match means, standard deviations, and bivariate correlations. A matrix plot of
the variables is given in Figure 9.4. The model, fitted equation, Error sum of squares and mean square are
given below (n = 75, p′ = 2 + 1 = 3).

Yi = β0 + β1Xi1 + β2Xi2 + εi Ŷi = 743.970 + 2.375X1 + 1.727X2 SSE = 68924.42 MSE = 957.284

The estimated standard errors are 0.486 for β̂1 and 0.375 for β̂2, respectively. The t-tests and 95% Confidence
Intervals for β1 and β2 are given below.

Hand: H0 : β1 = 0 HA : β1 6= 0 TS : tobs =
2.375

0.486
= 4.89 RR : |tobs| ≥ t.025,72 = 1.993 P = P (t72 ≥ 5.63) ≈ 0

Foot: H0 : β2 = 0 HA : β2 6= 0 TS : tobs =
1.727

0.375
= 4.61 RR : |tobs| ≥ t.025,72 = 1.993 P = P (t72 ≥ 4.61) ≈ 0

95% CI for β1: 2.375± 1.993(0.486) ≡ 2.375± 0.969 ≡ (1.406, 3.344)

95% CI for β2: 1.727± 1.993(0.375) ≡ 1.727± 0.747 ≡ (0.980, 2.474)

R Commands and Output
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Figure 9.4: Heights, Hand Lengths and Foot Lengths among a Sample of 75 Adult Female Turks

### Commands

shf1 <- read.table("http://www.stat.ufl.edu/~winner/data/stature_hand_foot.dat",

header=F, col.names=c("idnum", "gender", "height", "hand", "foot"))

attach(shf1)

f.height <- height[gender == 2] ### Female Heights

f.hand <- hand[gender == 2] ### Female Hand Lengths

f.foot <- foot[gender == 2] ### Female Foot Lengths

f.stature <- data.frame(f.height, f.hand, f.foot)

plot(f.stature)

shf.mod1 <- lm(f.height ~ f.hand + f.foot)

summary(shf.mod1)

confint(shf.mod1)

#### Output

> summary(shf.mod1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 743.9696 79.7499 9.329 5.12e-14 ***

f.hand 2.3748 0.4858 4.888 5.99e-06 ***

f.foot 1.7271 0.3745 4.611 1.69e-05 ***

Residual standard error: 30.94 on 72 degrees of freedom

Multiple R-squared: 0.6159, Adjusted R-squared: 0.6053

F-statistic: 57.73 on 2 and 72 DF, p-value: 1.093e-15

> confint(shf.mod1)

2.5 % 97.5 %

(Intercept) 584.9911070 902.948034
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f.hand 1.4062645 3.343310

f.foot 0.9804939 2.473711

∇

9.2.2 Analysis of Variance

When there is no association between Y and X1, . . . , Xp (β1 = · · · = βp = 0), the best predictor of each

observation is Y = β̂0 (in terms of minimizing sum of squares of prediction errors). In this case, the total
variation can be denoted as TSS =

∑n
i=1(Yi − Y )2, the Total Sum of Squares, just as with simple

regression.

When there is an association between Y and at least one of X1, . . . , Xp (not all βi = 0), the best predictor

of each observation is Ŷi = β̂0 + β̂1Xi1 + · · ·+ β̂pXip (in terms of minimizing the sum of squares of prediction

errors). In this case, the error variation can be denoted as SSE =
∑n

i=1(Yi − Ŷi)
2, the Error Sum of

Squares.

The difference between TSS and SSE is the variation “explained” by the regression of Y on X1, . . . , Xp

(as opposed to having ignored X1, . . . , Xp). It represents the difference between the fitted values and the

mean: SSR =
∑n

i=1(Ŷi − Y )2 the Regression Sum of Squares. Note that when there are p > 1
predictors, the fitted equation is no longer a straight line in 2-dimensions. This makes visualization more
difficult, but the concept of distance from observed to predicted value is the same. For the stature example,
Ŷ = β̂0 + β̂1X1 + β̂2X2 represents a 2-dimensional plane in 3-dimensional space.

TSS = SSE + SSR

n
∑

i=1

(Yi − Y )2 =

n
∑

i=1

(Yi − Ŷi)
2 +

n
∑

i=1

(Ŷi − Y )2

The Total Degrees of Freedom remains dfTotal = n − 1. The Error Degrees of Freedom is
dfError = n − p′. The Regression Degrees of Freedom is dfRegression = p. Note that when there is

p = 1 predictor, this generalizes to simple regression.

dfTotal = dfError + dfRegression n − 1 = n − p′ + p

The Mean Squares for Error and Regression are: MSE = SSE/(n − p′) and MSR = SSR/p. It can be
shown that these mean squares have the following Expected Values, average values in repeated sampling
at the same observed X levels.

E{MSE} = σ2 E{MSR} ≥ σ2

Note that when β1 = · · ·βp = 0, then E{MSR} = E{MSE}, otherwise E{MSR} > E{MSE}. A way
of testing whether β1 = · · ·βp = 0 is by the F -test.
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Source df SS MS Fobs P (> F )

Regression (Model) p SSR =
∑n

i=1(Ŷi − Y )2 MSR = SSR
p Fobs = MSR

MSE P (Fp,n−p′ ≥ Fobs)

Error (Residual) n − p′ SSE =
∑n

i=1(Yi − Ŷi)
2 MSE = SSE

n−p′

Total (Corrected) n − 1 TSS =
∑n

i=1(Yi − Y )2

Table 9.3: Analysis of Variance Table for Multiple Linear Regression

H0 : β1 = · · ·βp = 0 HA : Not all βj = 0

TS : Fobs =
MSR

MSE
RR : Fobs ≥ Fα,p,n−p′ P = P (Fp,n−p′ ≥ Fobs)

The Analysis of Variance is typically set up in a table as in Table 9.3.

The Coefficient of Determination is labeled R2 for the multiple regression model. This represents
the variation in Y “explained” by X1, . . . , Xp, divided by the total variation in Y . Note that the summary
function in R reports “Multiple R-squared” even when there is only a single predictor.

R2 =

∑n
i=1(Ŷi − Y )2

∑n
i=1(Yi − Y )2

=
SSR

TSS
= 1 − SSE

TSS
0 ≤ R2 ≤ 1

Example 9.8: Stature (Height) as Function of Hand and Foot Length among Females

In a continuation of the Turkish adult females’ model relating stature to hand and foot lengths, the
following sums of squares and F -test are computed.

TSS =

n
∑

i=1

(Yi − Y )2 = 179409 SSE =

n
∑

i=1

(Yi − Ŷi)
2 = 68924 SSR =

n
∑

i=1

(Ŷi − Y )2 = 110504

MSE =
68924

75− 3
= 957.3 MSR =

110504

2
= 55252

H0 : β1 = β2 = 0 TS : Fobs =
55252

957.3
= 57.72 RR : Fobs ≥ F.05,2,72 = 3.124 P (F2,72 ≥ 57.72) ≈ 0

The Coefficient of Determination is R2 = 110504/179409 = .616, approximately 62% of the variation in
height is “explained” by hand and foot length.

R Commands and Output

### Commands

shf.mod1 <- lm(f.height ~ f.hand + f.foot)
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summary(shf.mod1)

anova(shf.mod1)

drop1(shf.mod1, test="F")

### Output

> summary(shf.mod1)

Residual standard error: 30.94 on 72 degrees of freedom

Multiple R-squared: 0.6159, Adjusted R-squared: 0.6053

F-statistic: 57.73 on 2 and 72 DF, p-value: 1.093e-15

> anova(shf.mod1)

Analysis of Variance Table

Response: f.height

Df Sum Sq Mean Sq F value Pr(>F)

f.hand 1 90153 90153 94.203 1.027e-14 ***

f.foot 1 20351 20351 21.265 1.694e-05 ***

Residuals 72 68905 957

Note that SSR = SSR(X1) + SSR(X2 |X1) = 90153 + 20351 = 110504. The sums of squares for the
anova function are the Sequential Sums of Squares and sum up to the Regression Sum of Squares.

∇

9.2.3 Testing a Subset of βs = 0

The F -test from the Analysis of Variance and the t-tests represent extremes of model testing (all variables
simultaneously versus one-at-a-time). Often interest lies in testing whether a group of predictors do not
improve prediction, after controlling for the remaining predictors.

Suppose that after controlling for g predictors, we wish to test whether the remaining p − g predictors
are associated with Y . That is, we wish to test the following hypotheses.

H0 : βg+1 = · · ·βp = 0 HA : Not all of βg+1 , . . . , βp = 0

Note that, the t-tests control for all other predictors, while here, we want to control for only X1, . . . , Xg.
To do this, fit two models: the Complete or Full Model with all p predictors, and the Reduced Model
with only the g “control” variables. For each model, obtain the Regression and Error sums of squares, as well
as R2. Let (F ) represent the Full model and (R) represent the Reduced model. This leads to the following
test statistic and rejection region.

TS : Fobs =

[

SSE(R)−SSE(F )
(n−g′)−(n−p′)

]

[

SSE(F )
n−p′

] =

[

SSR(F )−SSR(R)
p−g

]

[

SSE(F )
n−p′

] =

[

R2

F −R2

R

p−g

]

[

1−R2

F

n−p′

]

RR : Fobs ≥ Fα,p−g,n−p′ P = P (Fp−g,n−p′ ≥ Fobs)
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Example 9.9: Energy Consumption of Luxury Hotels

A study considered factors relating to Energy Consumption (Y , in millions of kilowatt-hours) for a
sample of n = 19 luxury hotels in Hainan Province, China (Xin, Lu, Xu, and Wu (2012), [61]). The model
had 3 predictors: Area (X1, in 1000s of square meters), Age (X2 , in years), and Effective number of guest
rooms (X3, # rooms times occupancy rate).

Consider two models: Model 1 with X1, X2, X3 as predictors and Model 2 with only X1 as a predictor.
The goal is to determine whether age and/or effective guest rooms is associated with energy consumption,
after controlling for the hotel’s size (Area). The data, fitted values and residuals for Models 1 and 2 are given
in Table 9.4. The fitted equations and Error Sums of Squares are given below (n = 19, p = 3, p′ = 4, g = 1).

Model 1: Full: ŶF = −2.1320+0.1540X1+0.0959X2+0.0075X3 SSE(F ) = 67.846 dfE(F ) = n−p′ = 19−4 = 15

Model 2: Reduced: ŶR = −0.5380+0.1593X1 SSE(R) = 75.129 dfE(R) = n−g′ = 19−2 = 17 p−g = 3−1 = 2

The test of H0 : β2 = β3 = 0 versus HA : β2 and/or β3 6= 0 is given below.

TS : Fobs =

[

75.129−67.846
17−15

]

[

67.846
15

] =
3.642

4.523
= 0.805 RR : Fobs ≥ F.05,2,15 = 3.682 P (F2,15 ≥ 0.805) = .4634

After controlling for Area, neither Age or Effective guest rooms are associated with Energy Consumption.

R Commands and Output

### Commands

hotel_ec <- read.csv("http://www.stat.ufl.edu/~winner/data/hotel_energy.csv")

attach(hotel_ec); names(hotel_ec)

enrgcons <- enrgcons/1000000

area <- area/1000

## Full Model

hec.mod1 <- lm (enrgcons ~ area + age + effrooms)

summary(hec.mod1)

anova(hec.mod1)

## Reduced Model

hec.mod2 <- lm (enrgcons ~ area)

summary(hec.mod2)

anova(hec.mod2)

## Full versus Reduced F-test

anova(hec.mod2, hec.mod1)

### Output

> summary(hec.mod1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.252767 1.781202 -1.265 0.225260
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Hotel Y X1 X2 X3 Ŷ1 e1 Ŷ2 e2

1 1.95 43.00 6.00 44.64 5.61 -3.66 6.31 -4.36
2 1.05 19.98 16.00 85.33 3.31 -2.26 2.64 -1.60
3 4.25 46.53 7.00 115.52 6.48 -2.24 6.87 -2.63
4 2.13 20.96 6.00 110.34 2.48 -0.32 2.80 -0.67
5 2.79 24.21 5.00 230.27 3.82 -1.04 3.32 -0.53
6 13.83 112.20 4.00 188.73 17.11 -3.28 17.33 -3.50
7 5.56 45.00 3.00 78.03 5.70 -0.14 6.63 -1.07
8 4.00 28.55 6.00 54.37 3.27 0.73 4.01 -0.01
9 4.67 32.87 8.00 89.75 4.58 0.09 4.70 -0.03
10 8.92 59.41 5.00 167.23 8.82 0.10 8.92 0.00
11 6.87 45.00 10.00 368.20 7.83 -0.96 6.63 0.24
12 6.01 37.44 13.00 197.29 6.44 -0.43 5.42 0.59
13 8.19 50.83 4.00 83.31 6.74 1.45 7.56 0.63
14 11.74 68.00 13.00 187.53 11.02 0.72 10.29 1.45
15 14.84 78.87 8.00 206.12 12.25 2.58 12.02 2.82
16 5.37 28.45 13.00 128.30 4.42 0.95 3.99 1.37
17 13.52 70.00 4.00 228.74 10.56 2.95 10.61 2.91
18 3.88 20.00 5.00 85.81 2.04 1.85 2.65 1.24
19 10.57 50.00 12.00 120.28 7.67 2.90 7.42 3.15

Table 9.4: Hotel Energy Consumption Data, Fitted Values, and Residuals for Model 1 and Model 2

area 0.148709 0.029066 5.116 0.000127 ***

age 0.113045 0.134527 0.840 0.413924

effrooms 0.005777 0.007096 0.814 0.428315

Residual standard error: 2.127 on 15 degrees of freedom

Multiple R-squared: 0.7946, Adjusted R-squared: 0.7535

F-statistic: 19.35 on 3 and 15 DF, p-value: 2.049e-05

> anova(hec.mod1)

Response: enrgcons

Df Sum Sq Mean Sq F value Pr(>F)

area 1 255.218 255.218 56.4258 1.854e-06 ***

age 1 4.286 4.286 0.9475 0.3458

effrooms 1 2.998 2.998 0.6628 0.4283

Residuals 15 67.846 4.523

> summary(hec.mod2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.53804 1.08509 -0.496 0.626

area 0.15925 0.02096 7.599 7.29e-07 ***

Residual standard error: 2.102 on 17 degrees of freedom

Multiple R-squared: 0.7726, Adjusted R-squared: 0.7592

F-statistic: 57.75 on 1 and 17 DF, p-value: 7.294e-07

> anova(hec.mod2)

Response: enrgcons

Df Sum Sq Mean Sq F value Pr(>F)

area 1 255.218 255.218 57.75 7.294e-07 ***

Residuals 17 75.129 4.419

> anova(hec.mod2, hec.mod1)
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Analysis of Variance Table

Model 1: enrgcons ~ area

Model 2: enrgcons ~ area + age + effrooms

Res.Df RSS Df Sum of Sq F Pr(>F)

1 17 75.129

2 15 67.846 2 7.2834 0.8051 0.4654

∇

9.2.4 Models With Categorical (Qualitative) Predictors

Often, one or more categorical variables are included in a model. If a categorical variable has m levels, there
will need to be m − 1 dummy or indicator variables to reflect the effects of the variable’s levels. The
variable will take on 1 if the ith observation is in that level of the variable, 0 otherwise. Note that one level
of the variable will have 0s for all m − 1 dummy variables, making it the reference category. The βs for the
other groups (levels of the qualitative variable) reflect the difference in the mean for that group with the
reference group, controlling for all other predictors.

Note that if the qualitative variable has 2 levels, there will be a single dummy variable, and we can test
for differences in the effects of the 2 levels with a t-test, controlling for all other predictors. If there are
m − 1 > 2 dummy variables, the F -test can be used to test whether all m − 1 βs are 0, controlling for all
other predictors. An example is given below.

9.2.5 Models With Interaction Terms

When the effect of one predictor depends on the level of another predictor (and vice versa), the predictors
are said to interact. The way to model interaction(s) is to create a new variable that is the product of
the 2 predictors. Suppose the model has Y , and 2 numeric predictors: X1 and X2. Create a new predictor
X3 = X1X2. Now, consider the following model.

E{Y } = β0 + β1X1 + β2X2 + β3X3 = β0 + β1X1 + β2X2 + β3X1X2 = β0 + β2X2 + (β1 + β3X2) X1

The slope with respect to X1 depends on the level of X2, unless β3 = 0, which can be tested with a
t-test of H0 : β3 = 0. This logic extends to qualitative variables as well. Create cross-product terms between
numeric (or other categorical) predictors with the m − 1 dummy variables representing the qualitative
predictor. Then the t-test (m−1 = 1) or F -test (m−1 ≥ 2) can be conducted to test for interactions among
predictors. This is demonstrated by adding males to the stature data below.

Example 9.10: Heights, Hand and Foot Lengths in Males and Females

In the stature study (Sanli, Kizilkanat, Boyan, et al. (2005), [51]), there were also 80 males, for a total
of n = 75+80 = 155 adults. For these models, Y is height, X1 is hand length, and X2 is foot length. Create
the dummy (indicator) variable X3 = 1 if male, X3 = 0 if female. Then consider three models: Common
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slopes and intercept by gender (Model 1), Common slopes but different intercepts by gender (Model 2), and
Different slopes and intercepts by gender (Model 3). The models are given below.

Model 1: E{Y } = β0 + β1X1 + β2X2

Model 2: E{Y } = β0 + β1X1 + β2X2 + β3X3

Females: E{Y } = β0 + β1X1 + β2X2 Males: E{Y } = (β0 + β3) + β1X1 + β2X2

Model 3: E{Y } = β0 + β1X1 + β2X2 + β3X3 + β4X1X3 + β5X2X3

Males: E{Y } = (β0 + β3) + (β1 + β4)X1 + (β2 + β5)X2

The fitted equations and their Error Sums of Squares are given below (the regression coefficients are
taken from the R output given below).

Model 1: ŶF = ŶM = 372.64 + 3.32X1 + 2.58X2 SSE1 = 189029 dfE1 = 155 − 3 = 152

Model 2: ŶF = 581.99+2.81X1+2.06X2 ŶM = 621.55+2.81X1+2.06X2 SSE2 = 165341 dfE2 = 155−4 = 151

Model 3: ŶF = 743.97+2.38X1+1.73X2 ŶM = 439.27+3.29X1+2.38X2 SSE3 = 157360 dfE3 = 155−6 = 149

Tests comparing the different models include Model 2 versus Model 1, where the null hypothesis is
common slopes and intercepts (Model 1) and the alternative is common slopes and different intercepts
(Model 2). The null hypothesis is H0 : β3 = 0.

TS : F12 =

[

189029−165341
152−151

]

[

165341
151

] =
23688

1095
= 21.63 RR : F12 ≥ F.05,1,151 = 3.904

A second test comparing the different models include Model 3 versus Model 2, where the null hypothesis
is common slopes and different intercepts (Model 2) and the alternative is different slopes and intercepts
(Model 3). The null hypothesis is H0 : β4 = β5 = 0.

TS : F23 =

[

165341−157360
151−149

]

[

157360
149

] =
3990.5

1056
= 3.78 RR : F23 ≥ F.05,2,149 = 3.057 P = .0251

The “full model” allowing for different slopes and intercepts for males and females gives the best fit.

R Commands and Output

### Commands

shf1 <- read.table("http://www.stat.ufl.edu/~winner/data/stature_hand_foot.dat",

header=F, col.names=c("idnum", "gender", "height", "hand", "foot"))

attach(shf1)
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male <- 2-gender ### male = 1 if male, 0 if female

## Model 1: Common slope/intercept

shf.mod1 <- lm(height ~ hand + foot)

summary(shf.mod1)

anova(shf.mod1)

## Model 2: Common slope/Different intercept

shf.mod2 <- lm(height ~ hand + foot + male)

summary(shf.mod2)

anova(shf.mod2)

## Model 3: Different slope/intercept

shf.mod3 <- lm(height ~ hand + foot + male + I(hand*male) + I(foot*male))

summary(shf.mod3)

anova(shf.mod3)

anova(shf.mod1,shf.mod2) ### Compare Models 1 and 2

anova(shf.mod2,shf.mod3) ### Compare Models 2 and 3

### Output

> ## Model 1: Common slope/intercept

> shf.mod1 <- lm(height ~ hand + foot)

> summary(shf.mod1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 372.6378 43.2581 8.614 8.41e-15 ***

hand 3.3175 0.3461 9.586 < 2e-16 ***

foot 2.5816 0.2490 10.370 < 2e-16 ***

Residual standard error: 35.26 on 152 degrees of freedom

Multiple R-squared: 0.8608, Adjusted R-squared: 0.859

F-statistic: 470.1 on 2 and 152 DF, p-value: < 2.2e-16

> anova(shf.mod1)

Analysis of Variance Table

Response: height

Df Sum Sq Mean Sq F value Pr(>F)

hand 1 1035412 1035412 832.59 < 2.2e-16 ***

foot 1 133728 133728 107.53 < 2.2e-16 ***

Residuals 152 189029 1244

> ## Model 2: Common slope/Different intercept

> shf.mod2 <- lm(height ~ hand + foot + male)

> summary(shf.mod2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 581.9858 60.6099 9.602 < 2e-16 ***

hand 2.8116 0.3425 8.210 9.11e-14 ***

foot 2.0643 0.2587 7.979 3.43e-13 ***

male 39.5640 8.5064 4.651 7.16e-06 ***

Residual standard error: 33.09 on 151 degrees of freedom

Multiple R-squared: 0.8783, Adjusted R-squared: 0.8758

F-statistic: 363.1 on 3 and 151 DF, p-value: < 2.2e-16

> anova(shf.mod2)

Analysis of Variance Table

Response: height

Df Sum Sq Mean Sq F value Pr(>F)

hand 1 1035412 1035412 945.602 < 2.2e-16 ***
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foot 1 133728 133728 122.128 < 2.2e-16 ***

male 1 23687 23687 21.633 7.157e-06 ***

Residuals 151 165341 1095

> ## Model 3: Different slope/intercept

> shf.mod3 <- lm(height ~ hand + foot + male + I(hand*male) + I(foot*male))

> summary(shf.mod3)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 743.9696 83.7772 8.880 1.98e-15 ***

hand 2.3748 0.5104 4.653 7.17e-06 ***

foot 1.7271 0.3934 4.390 2.14e-05 ***

male -304.7039 125.5987 -2.426 0.0165 *

I(hand * male) 0.9120 0.6809 1.340 0.1824

I(foot * male) 0.6537 0.5162 1.266 0.2074

Residual standard error: 32.5 on 149 degrees of freedom

Multiple R-squared: 0.8841, Adjusted R-squared: 0.8803

F-statistic: 227.4 on 5 and 149 DF, p-value: < 2.2e-16

> anova(shf.mod3)

Analysis of Variance Table

Response: height

Df Sum Sq Mean Sq F value Pr(>F)

hand 1 1035412 1035412 980.4040 < 2.2e-16 ***

foot 1 133728 133728 126.6232 < 2.2e-16 ***

male 1 23687 23687 22.4289 5.035e-06 ***

I(hand * male) 1 6288 6288 5.9538 0.01586 *

I(foot * male) 1 1694 1694 1.6036 0.20737

Residuals 149 157360 1056

>

> anova(shf.mod1,shf.mod2) ### Compare Models 1 and 2

Analysis of Variance Table

Model 1: height ~ hand + foot

Model 2: height ~ hand + foot + male

Res.Df RSS Df Sum of Sq F Pr(>F)

1 152 189029

2 151 165341 1 23687 21.633 7.157e-06 ***

> anova(shf.mod2,shf.mod3) ### Compare Models 2 and 3

Analysis of Variance Table

Model 1: height ~ hand + foot + male

Model 2: height ~ hand + foot + male + I(hand * male) + I(foot * male)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 151 165341

2 149 157360 2 7981.4 3.7787 0.02507 *

∇

9.3 Logistic Regression

When the response variable is binary (presence/absence of a characteristic), one model that is often fit is
the logistic regression model. It fits the probability of a “Success” as an S-shaped, logistic function. In this
formulation, we let π represent the probability of Success, which is bounded between 0 and 1. Define the
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odds of Success as o = π/(1 − π) which represents the number of successes for every failure. Note that if
π = 0.9, then o = .9/.1 = 9, and we expect 9 successes for every failure. If π = 0.1, then o = .1/.9 = 1/9,
and we expect 1/9 successes for every failure. Odds can range from 0 to ∞, and log odds, also known as
logit can range from −∞ to ∞. The model is given below.

logit (π) = log

(

π

1 − π

)

= β0 + β1X1 + · · ·+ βpXp ⇒ π =
eβ0+β1X1+···+βpXp

1 + eβ0+β1X1+···+βpXp

Statistical software packages can be used to obtain maximum likelihood estimates of the βs and their
estimated standard errors. Unlike linear regression, there are no closed form solutions, and they are obtained

iteratively. The predicted probability of success for the ith observation with predictor variables Xi1, . . . , Xip

is computed as follows (recall that the observed yi is 0 or 1).

π̂i =
eβ̂0+β̂1Xi1+···+β̂pXip

1 + eβ̂0+β̂1Xi1+···+β̂pXip

i = 1, . . . , n

Tests can be conducted as in linear regression for individual coefficients, all coefficients, and subsets of
coefficients. They use different distributions for the tests (z-tests in place of t-tests and Chi-square tests in
place of F -tests).

Wald tests are printed out automatically by any standard statistical software package and can be
reported as a z-statistic (R and Stata) or as a Chi-square statistic (SAS and SPSS). These are similar to the
t-statistics in linear regression for the individual regression coefficients.

z-test: H0 : βj = 0 HA : βj 6= 0 zj =
β̂j

ŜE{β̂j}
RR : |zj| ≥ zα/2 P = 2P (Z ≥ |zj|)

χ2-test: H0 : βj = 0 HA : βj 6= 0 X2
j =

(

β̂j

ŜE{β̂j}

)2

RR : X2
j ≥ χ2

1,α P = P
(

χ2
1,α ≥ X2

j

)

Tests that all coefficients (besides β0) and that a subset of coefficients are 0 can be conducted as
Likelihood-Ratio tests. Once the regression coefficients are computed for the various models, and used
to obtain the predicted values π̂i, the likelihood and the log-likelihood for the model is obtained as follows
by standard packages.

Likelihood: L =

n
∏

i=1

π̂yi (1 − π̂i)
1−yi log-likelihood: l = log(L)

Then for any Full and Reduced models, we can compute lF and lR, where necessarily lF ≥ lR. To test
H0 : β1 = · · · = βp = 0, we fit a full model with all p predictors and a reduced model with only an intercept
(probability of success is equal for all individual cases). The test is conducted as follows.

H0 : β1 = · · · = βp = 0 HA : Not all βj = 0 TS : X2 = −2 (lR − lF ) RR : X2 ≥ χ2
α,p P = P

(

χ2
α,p ≥ X2

)
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Flight Temp(X) O-Ring Fail (Y ) Flight X Y Flight X Y
1 66 0 9 57 1 17 70 0
2 70 1 10 63 1 18 81 0
3 69 0 11 70 1 19 76 0
4 68 0 12 78 0 20 79 0
5 67 0 13 67 0 21 75 1
6 72 0 14 53 1 22 76 0
7 73 0 15 67 0 23 58 1
8 70 0 16 75 0

Table 9.5: Challenger O-Ring Failure/Temperature Data for n=23 missions pre-disaster

Figure 9.5: Data and fitted equation for Challenger O-Ring Failure/Temperature data

We will demonstrate these with two examples, one with a single predictor, the other with a set of
predictors.

Example 9.11: Pre-Challenger O-Ring Failure and Temperature

Prior to the space shuttle Challenger’s explosion after lift-off in January, 1986, the shuttle had flown on
n = 23 successful flights (Dalal, et al (1989), [18]). The flights were classified by whether there had been
field-joint O-ring failure in the connection of the shuttle to the solid rocket booster (Y=1 if yes, 0 if no)
and the temperature at lift-off (X=degrees F). Data are given in Table 9.5. Note that the ”Success” in this
case is actually an unfavorable event, and the model is relating the probability of the event occurring as a
function of temperature. The R program and output are given below. The result is that there is a significant
association between temperature and the event of O-ring failure. Also, since there is evidence that β1 < 0,
that the probability of O-ring failure decreases as temperature increases. A plot of the data and the fitted
equation is given in Figure 9.5. The fitted equation is:

π̂ =
e15.0429−0.2322X

1 + e15.0429−0.2322X
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R Commands and Output

### Commands

chal.data <- read.table("http://stat.ufl.edu/~winner/data/challenger.dat",

header=F,

col.names=c("flight","tempF","ORFnum","ORFail"))

attach(chal.data)

chal.mod <- glm(ORFail ~ tempF, binomial("logit"))

summary(chal.mod)

confint(chal.mod)

### Output

> summary(chal.mod)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 15.0429 7.3786 2.039 0.0415 *

tempF -0.2322 0.1082 -2.145 0.0320 *

> confint(chal.mod)

Waiting for profiling to be done...

2.5 % 97.5 %

(Intercept) 3.3305848 34.34215133

tempF -0.5154718 -0.06082076

∇

Example 9.12: Presence/Absence of Gold Deposits in India

A study was conducted (Sahoo and Pandalai (1999), [50]) to detemine whether the presence/absence
of gold at locations in India is related to three predictors: Arsenic level (X1), Antimony level (X2) and
lineament presence (X3 = 1 if yes, 0 if no) based on a sample of n = 64 locations. We consider three models:
one with only an intercept, one with only arsenic as a predictor, and one with all 3 predictors.

Model 0: π =
eβ0

1 + eβ0

Model 1: π =
eβ0+β1X1

1 + eβ0+β1X1

Model 3: π =
eβ0+β1X1+β2X2+β3X3

1 + eβ0+β1X1+β2X2+β3X3

First, we will compare Models 0 and 3 to test H0 : β1 = β2 = β3 = 0, that is that gold presence is not
associated with any of the predictors. Second, we will compare Models 1 and 3 to test H0 : β2 = β3 = 0,
that is that gold presence is not associated with antimony or lineament, after controlling for arsenic. The
log-likelihoods for the three models are l0 = −43.8601, l1 = −11.3014, and l3 = −7.0972, respectively. Now,
we conduct the two tests described above. Note that for the second test, the degrees of freedom is the
number of restrictions under the null hypothesis, which is 2 (β2 = β3 = 0).

H0 : β1 = β2 = β3 = 0 TS : X2 = −2 ((l0 − l3) = −2(−43.8601− (−7.0972)) = 73.526

RR : X2 ≥ χ2
.05,3 = 7.815 P = P

(

χ2
.05,3 ≥ 73.526

)

< .0001
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H0 : β2 = β3 = 0 TS : X2 = −2 ((l1 − l3) = −2(−11.3014− (−7.0972)) = 8.408

RR : X2 ≥ χ2
.05,2 = 5.991 P = P

(

χ2
.05,2 ≥ 8.408

)

= .0149

The R program and output are given below. Note that the P -values for the Wald tests of β2 = 0
(P = .0516) and β3 = 0 (P = .0909) for Model 3 are both above .0500. Those tests are controlling for each
other, while the Chi-square test above tests that they are both simultaneously 0, controlling only for Arsenic
(P = .0149).

R Commands and Output

### Commands

gold.data <- read.table("http://stat.ufl.edu/~winner/data/gold_target1.dat",

header=F,

col.names=c("arsenic","antimony","lineament","gold"))

attach(gold.data)

gold.mod0 <- glm(gold ~ 1, binomial("logit"))

summary(gold.mod0)

(ll.mod0 <- logLik(gold.mod0))

gold.mod1 <- glm(gold ~ arsenic, binomial("logit"))

summary(gold.mod1)

(ll.mod1 <- logLik(gold.mod1))

gold.mod3 <- glm(gold ~ arsenic + antimony + lineament, binomial("logit"))

summary(gold.mod3)

(ll.mod3 <- logLik(gold.mod3))

anova(gold.mod0, gold.mod3)

anova(gold.mod1, gold.mod3)

### Output

> gold.mod0 <- glm(gold ~ 1, binomial("logit"))

> summary(gold.mod0)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.2513 0.2520 -0.997 0.319

> (ll.mod0 <- logLik(gold.mod0))

’log Lik.’ -43.86011 (df=1)

>

> gold.mod1 <- glm(gold ~ arsenic, binomial("logit"))

> summary(gold.mod1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.9460 0.9641 -4.093 4.26e-05 ***

arsenic 1.3456 0.3354 4.012 6.02e-05 ***

> (ll.mod1 <- logLik(gold.mod1))

’log Lik.’ -11.30143 (df=2)

> gold.mod3 <- glm(gold ~ arsenic + antimony + lineament, binomial("logit"))

> summary(gold.mod3)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.6096 3.1661 -2.403 0.0162 *

arsenic 1.2046 0.4899 2.459 0.0139 *
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antimony 1.4210 0.7301 1.946 0.0516 .

lineament 3.1973 1.8911 1.691 0.0909 .

> (ll.mod3 <- logLik(gold.mod3))

’log Lik.’ -7.097155 (df=4)

>

> anova(gold.mod0, gold.mod3)

Analysis of Deviance Table

Model 1: gold ~ 1

Model 2: gold ~ arsenic + antimony + lineament

Resid. Df Resid. Dev Df Deviance

1 63 87.720

2 60 14.194 3 73.526

> anova(gold.mod1, gold.mod3)

Analysis of Deviance Table

Model 1: gold ~ arsenic

Model 2: gold ~ arsenic + antimony + lineament

Resid. Df Resid. Dev Df Deviance

1 62 22.603

2 60 14.194 2 8.4085

∇
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