DEGREE SPECTRA OF STRUCTURES

EKATERINA FOKINA

In [1] we introduced the following generalization of the notions of the degree spectra of structures and of theories, that allows us to study and compare various degree spectra associated with a countable structure.

Definition 1. The degree spectrum of a countable structure \mathcal{A} with universe ω under an equivalence relation E is

 $DgSp(\mathcal{A}, E) = \{ \deg(D(\mathcal{B})) \mid \mathcal{B} \text{ and } \mathcal{A} \text{ are } E \text{-equivalent} \}.$

Then the classical degree spectrum of \mathcal{A} is $DgSp(\mathcal{A},\cong)$, the \cong -spectrum of \mathcal{A} , while the degree spectra of the theory of \mathcal{A} is $DgSp(\mathcal{A},\equiv)$, the \equiv -degree spectrum of \mathcal{A} . In [1] we considered Σ_n -equivalence. We showed that there exist Σ_n -spectra that are not Σ_m -spectra for $1 \leq m < n$, and there are theory spectra that are not Σ_n -spectra.

In this talk we will explain our recent results on spectra and degrees of biembeddability. This is joint work with Dino Rossegger and Luca San Mauro.

References

[1] E. Fokina, P. Semukhin, D. Turetsky, *Degree spectra of structures under equivalence relations*, submitted.