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Abstract

There is a proper Baire category preserving forcing which adds infinitely equal
real but no Cohen real. This resolves a long-standing open problem of David
Fremlin. The forcing has a natural description in terms of infinite-dimensional
topology.
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1. Introduction

The purpose of this paper is to give a positive answer to a long-standing
open question of David Fremlin in forcing theory.

Definition 1.1. Let M be a transitive model of set theory. A function x ∈ ωω
is an infinitely equal real over M if for every y ∈ ωω ∩M , we have y ∩ x 6= 0. A
function x ∈ ωω is a Cohen real over M if it belongs to every dense Gδ set with
a code in the model M .

It is not difficult to see that a Cohen real is an infinitely equal real. The converse
implication fails badly. However, it is not clear whether one can obtain a Cohen
real from an infinitely equal real via some more or less elementary manipulations.
This leads to the following:

Question 1.2. [3, Problem DQ] Are there transitive models M ⊂ N of set
theory, N containing an infinitely equal real over M but no Cohen real over M?

I resolve this question completely by providing an example:

Theorem 1.3. There is a proper, Baire category preserving forcing which adds
an infinitely equal real over the ground model, but no Cohen real.

The solution is somewhat unusual in that the forcing is concisely defined and
analysed in terms of infinite-dimensional topology; however, its combinatorial
description is not readily available.
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Theorem 1.3 has certain repercussions in forcing iteration theory. By a result
of Bartoszynski, it implies that there is an iteration of two proper, category
preserving forcings such that neither of the iterands adds a Cohen real while the
iteration does. This phenomenon does not appear at limit stages of iterations:
if a countable support iteration of limit length of proper, category preserving
forcings is such that no intermediate stage of the iteration adds Cohen reals,
then even the whole iteration adds no Cohen reals. This is a result of Shelah
[10, Conclusion VI.2.13D(1)]. In fact, the successor case of [10, Conclusion
VI.2.13D(1)] is in error, as the present paper shows.

A remark describing the history of the result is in place here. Michal Morayne
first asked how many Cantor sets are needed to cover the Hilbert cube. Towards
the solution of this problem, Márton Elekes proposed the forcing of the form
Borel sets modulo the σ-ideal σ-generated by the compact finite-dimensional
subsets of the Hilbert cube, and asked whether this poset adds Cohen reals
(2009). This was answered by Pol and Zakrzewski in [8] in the negative via
the one-to-one or constant property of the ideal [9]. Later Banakh, Morayne,
Ra lowski and Żeberski [1] resolved the original question in a way that suggested
that the forcing must add an infinitely equal real. The present paper essentially
only connects and cleans up these pieces.

The notation of the paper follows the set theoretic standard of [5]. Every
Polish space X and every analytic subset A ⊂ X have canonical interpretations
in any forcing extension, and the forcing names for these interpretations are
denoted by adding a dot superscript to the notation for them: Ȧ, Ẋ. In the
context of spaces considered in this paper, all the basic notions of topological
dimension (small inductive, large inductive, covering) coincide, and the word
“dimension” denotes interchangeably one of them.

The author’s research is partially supported by NSF grants DMS 0801114
and 1161078 and Institutional Research Plan No. AV0Z10190503 and grant
IAA100190902 of GA AV ČR.

2. Proof of Theorem 1.3

It is not difficult to identify the proper forcing P that has the required
properties. Let X be a compact metrizable space which is infinite-dimensional,
and all of its compact subsets are either infinite-dimensional or zero-dimensional.
Such spaces have been constructed in [4, 11] and elsewhere. Let I be the σ-
ideal σ-generated by the compact zero-dimensional subsets of X. The poset P
of Borel I-positive subsets of X ordered by inclusion (denoted by PI) has the
properties advertised in Theorem 1.3 as the rest of this section shows.

The argument hinges on two lemmas that forgo the use of the forcing relation
entirely.

Lemma 2.1. For every Borel I-positive set B ⊂ X and every Borel function
f : B → ωω there is a Borel I-positive set C ⊂ B such that the set f ′′C ⊂ ωω

is meager.
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Lemma 2.2. There is a Borel function f : X → ωω such that for every point
z ∈ ωω, the set {x ∈ X : f(x) ∩ z = 0} belongs to I.

Theorem 1.3 follows from the two lemmas immediately using basic definable
forcing machinery developed in [12]. The PI -extension contains a point ẋgen ∈
X which is in the intersection of all Borel sets in the generic ultrafilter [12,
Proposition 2.1.2]. The poset PI is proper and preserves Baire category as the
σ-ideal I is σ-generated by closed sets [12, Theorem 4.1.2]. Every element of ωω

in the PI -extension is of the form f(ẋgen) where f is the canonical interpretation
of some Borel function from X to ωω coded in the ground model [12, Proposition
2.3.1].

To prove that PI adds no Cohen reals, suppose that B ∈ PI is a condition
and τ is a PI -name for an element of ωω; I have to find a condition C ⊂ B and
a meager set A in the ground model such that C 
 τ ∈ Ȧ. Thinning out the set
B if necessary, find a Borel function f : X → ωω such that B 
 τ = ḟ(ẋgen).
Use Lemma 2.1 to find a Borel I-positive set C ⊂ B such that A = f ′′C ⊂ ωω

is meager. By a Shoenfield absoluteness argument, C 
 τ = ḟ(ẋgen) ∈ Ȧ as
desired.

To prove that PI adds an infinitely equal real, find a Borel function f : X →
ωω as in Lemma 2.2, and argue that PI 
 ḟ(ẋgen) is an infinitely equal real
over the ground model. In other words, if B ∈ PI is a condition, z ∈ ωω is a
function, and n ∈ ω, I must find a condition C ⊂ B and a number m > n such
that C 
 ḟ(ẋgen)(m) = ž(m). To see this, use the σ-completeness of the ideal
I to conclude that the set {x ∈ X : ∀m > n z(m) 6= f(x)(m)} is in the ideal I.
The σ-completeness applied again provides a definite number m > n such that
the set C = {x ∈ B : f(x)(m) = z(m)} is I-positive. A Shoenfield absoluteness
argument shows that C 
 ḟ(ẋgen)(m) = ž(m) as desired.

Thus, it is only necessary to prove Lemmas 2.1 and 2.2. This is a task that
is already forcing-free, and uses only tools from basic dimension theory and
descriptive set theory. The following fact contains all the dimension theory I
will need.

Fact 2.3. [2] Let X be a compact metric space.

1. The union of a countable collection of closed zero-dimensional subsets of
X is zero-dimensional;

2. likewise for a countable product of closed zero-dimensional subsets of X;

3. the union of two zero-dimensional subsets of X has dimension at most 1;

4. every zero-dimensional subset of X is covered by zero-dimensional Gδ-
subset of X;

5. if X has finite dimension then it is homeomorphic to a compact subset of
[0, 1]n for suitable natural n ∈ ω.

Proof of Lemma 2.1. This is the heart of the matter. The argument is best
packaged using a hard canonization theorem of Pol and Zakrzewski which orig-
inally motivated the paper. I will first verify two key descriptive properties of
the ideal I. Recall [7, Section 29.E] that a σ-ideal J on a Polish space Y is
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Π1
1 on Σ1

1 if for every Polish space Z and an analytic set A ⊂ Z × Y the set
{z ∈ Z : Az ∈ J} is coanalytic.

Claim 2.4. The σ-ideal I is Π1
1 on Σ1

1.

Proof. I will first prove that I ∩ K(X), which by Fact 2.3(1) is precisely the
collection of zero-dimensional compact subsets of X, is a Gδ subset of K(X)
in the Vietoris topology. The simplest argument uses the Lebesgue covering
dimension. A compact set K ⊂ X is zero-dimensional if and only if every open
cover of K has a refinement such that every point of K belongs to exactly one
element of the refinement. Let O be a countable basis of open subsets of X,
closed under finite unions and intersections. By a straightforward compactness
argument, K is zero-dimensional if and only if every finite open cover of K
consisting of elements of O has a refinement which consists of pairwise disjoint
elements of O and still covers K. It is easy to check that this formula defines a
Gδ subset of K(X) in the Vietoris topology.

The claim now follows from a general fact [7, Theorem 35.38]: hereditary
coanalytic families of closed sets σ-generate Π1

1 on Σ1
1 σ-ideals.

Now, recall [6] that a σ-ideal J on a Polish space Y is calibrated if for every
closed set C /∈ J and every countable collection {Dn : n ∈ ω} of closed sets in
J , the set C \

⋃
nDn contains a closed J-positive set.

Claim 2.5. The σ-ideal I is calibrated.

Proof. Suppose that C ⊂ X is I-positive and closed and {Dn : n ∈ ω} are closed
sets in I. Thus, the set C is infinite-dimensional while the sets {Dn : n ∈ ω} are
zero-dimensional. The set

⋃
nDn is zero-dimensional by (1), and it is covered

by a Gδ zero-dimensional set E by Fact 2.3(4). Find compact sets Fn ⊂ X such
that

⋃
n Fn = X\E. One of these compact sets must fail to be zero-dimensional,

since otherwise
⋃
n Fn is zero-dimensional by Fact 2.3(1), the set C would break

into two zero-dimensional pieces E and
⋃
n Fn, and this contradicts its infinite

dimension by Fact 2.3(3). Thus, find n ∈ ω such that the set Fn is not zero-
dimensional. It cannot be covered by countably many compact zero-dimensional
sets by Fact 2.3(1), and therefore Fn /∈ I. The set Fn witnesses the calibration
of the σ-ideal I.

Now, I am ready to state the key tool in this proof:

Fact 2.6. [8] Let J be a Π1
1 on Σ1

1 calibrated σ-ideal on a Polish space Y , σ-
generated by closed sets . Let B ⊂ Y be a Borel J-positive set and g : B → ωω

be a Borel function. Then there is a Borel J-positive set C ⊂ B such that g � B
is constant or one-to-one.

To prove Lemma 2.1, suppose that B ⊂ X is a Borel I-positive set and
f : B → ωω is a Borel function. Write π : ω → ω for the function defined by
π(n) = 2n, and let g : B → ωω be the function defined by g(x) = f(x) ◦ π. Use
Fact 2.6 to find a Borel I-positive set C ⊂ B such that the function g is either
one-to-one or constant. In both cases, f ′′C ⊂ ωω is a meager Borel set:
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• if g � C is constant with the constant value z then f ′′C is a subset of the
meager set {y ∈ ωω : y ◦ π = z}.;

• if g � C is one-to-one then the Borel set f ′′C is meager again. If it were
not, there would be points z0 6= z1 ∈ f ′′C such that z0 ◦ π = z1 ◦ π. Since
the function g � C is one-to-one, there is only one point x ∈ C such that
g(x) = z0 ◦ π and then z0 = f(x) = z1, a contradiction.

This completes the proof.

Proof of Lemma 2.2. This is much easier than the argument for Lemma 2.1.
The original motivation was a construction of [1].

For every z ∈ ωω let Az = {y ∈ ωω : z ∩ y = 0}. I will first find a Borel
bijection h : ωω → [0, 1) such that for every point z ∈ ωω, the set h′′Az is
nowhere dense in the real interval [0, 1). For every sequence x ∈ ω≤ω let g(x)
be the binary sequence (x(0) many 1’s)0(x(1) many 1’s)0(x(2) many 1’s)0(. . . ;
in case that x is finite of length n g(x) ends with x(n − 1)-many 1’s. Define
h : ωω → [0, 1) by setting h(x) to be the point with binary expansion 0.g(x). It
is not difficult to see that the function h is a Borel bijection.

Suppose that z ∈ ωω is a point and J ⊂ [0, 1) is a nonempty open inter-
val. I must find a nonempty open interval J ′ ⊂ J containing no elements of
the set h′′Az. Find a finite sequence s ∈ ωn for some n such that the in-
terval [0.g(s)a0, 0.g(s)a1] is a subset of J . Let J ′ = [0.g(s)a0a(z(n) many
1’s)a00, 0.g(s)a0a(z(n) many 1’s)a01] and note that J ′ ⊂ J works.

Now, use the universality properties of the Hilbert cube to view the compact
space X as a compact subset of [0, 1/2]ω. Find injections πn : ω → ω for all
n ∈ ω such that the ranges of πn form a partition of ω. Let f : X → ωω be
the Borel function defined by f(x) ◦ πn = h−1(x(n)) for every n ∈ ω. The
function f works as desired in Lemma 2.2. To see this, suppose that z ∈ ωω is
an arbitrary point, and for every n ∈ ω let zn = z ◦ πn. For every n ∈ ω, the
closure Cn of the set h′′Azn is nowhere dense in [0, 1], so it is zero-dimensional,
and by Fact 2.3(2), even the product

∏
n Cn is zero-dimensional. A review of

the definitions shows that {x ∈ X : f(x) ∩ z = 0} ⊂
∏
n Cn ∈ I as desired.

3. Concluding remarks

It is instructive to see why an infinite-dimensional example must be used
to prove Theorem 1.3. Suppose that X is a compact metric space of finite
dimension say n ∈ ω, and let I be the σ-ideal σ-generated by compact subsets
of X of dimension zero. I will show that the poset PI adds a Cohen real.

The space X can be viewed as a compact subset of [0, 1]m for some m ∈ ω
by Fact 2.3(5). I claim that PI forces that one of the coordinates of the generic
m-tuple ẋgen is a Cohen element of the real interval [0, 1]. Suppose this fails;
then there is a condition B ∈ PI and ground model coded closed nowhere dense
sets Ci for i ∈ m such that B 
 ∀i ∈ m ẋgen(i) ∈ Ċi. The product

∏
i Ci is zero-

dimensional, therefore belongs to the ideal I, and thinning the set B if necessary
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we may assume that B∩
∏
i Ci = 0. Now, the condition B simultaneously forces

ẋgen ∈ Ḃ and ẋgen ∈
∏
i Ci, which is impossible as the two sets are disjoint.

On the other hand, it is not essential for the initial space X to have the
property that every compact subset is either zero-dimensional or infinitely-
dimensional. If the space X cannot be covered by countably many closed sets
of finite dimension (as is the case for the Hilbert cube, for example), then the
σ-ideal I on X σ-generated by compact sets of finite dimension has all the
properties required for the proof of Theorem 1.3, and the proof changes only in
minor, if notationaly somewhat awkward, respects.

The topological presentation of the poset PI seems to depend on certain
initial choices. It would be interesting to know whether this dependence is real
or just formal.

Question 3.1. How does the forcing PI (or its forcing properties) depend on
the initial choice of the infinite-dimensional space X?

Finally, as the usual approach towards forcing problems includes a direct
combinatorial construction of a suitable poset, the following question is natural.

Question 3.2. Is there a combinatorial description of a forcing satisfying The-
orem 1.3 which does not mention topological dimension?
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Topologically invariant σ-ideals on the Hilbert cube. ArXiv:1302.5658,
2013.

[2] Ryszard Engelking. Dimension Theory. North Holland, Amsterdam, 1978.

[3] David Fremlin. Problem list. Circulated notes, 1996.

[4] David W. Henderson. An infinite-dimensional compactum with no positive-
dimensional compact subsets–a simpler construction. American Journal of
Mathematics, 89:105–121, 1967.

[5] Thomas Jech. Set Theory. Springer Verlag, New York, 2002.

[6] Alexander Kechris and Alain Louveau. Descriptive Set Theory and the
Structure of Sets of Uniqueness. Cambridge University Press, Cambridge,
1989.

[7] Alexander S. Kechris. Classical Descriptive Set Theory. Springer Verlag,
New York, 1994.

[8] Roman Pol and Piotr Zakrzewski. On Borel mappings and σ-ideals gener-
ated by closed sets. Advances in Mathematics, 231:651–663, 2012.
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