Speaker: Timothy McNicholl

Title: isometry degrees of computable copies of ℓ^p (joint work with D. Stull)

Abstract: Suppose p is a computable real so that $p \ge 1$, and suppose \mathcal{B} is a computable Banach space that is linearly isometric to ℓ^p . The *isometry degree* of \mathcal{B} is the least powerful Turing degree that computes a linear isometry of ℓ^p onto \mathcal{B} . When p = 2, it follows from a recent result of A. Melnikov that this degree is **0**. Suppose $p \ne 2$. In this case it follows from recent work by McNicholl that every isometry degree is Δ_2^0 and every c.e. degree is an isometry degree. We discuss recent work on classifying the isometry degrees.