Title: Forcing partial orders comparable to the Mathias and Cohen forcing partial orders.

Speaker: Rose Weisshaar

Abstract: Cholak, Dzhafarov, Hirst and Slaman showed that, for $n \geq 3$, every Mathias *n*-generic computes a Cohen *n*-generic. In some sense, then, the forcing partial order associated to Mathias forcing is stronger than that associated to Cohen forcing. Motivated by this idea, we define a collection \mathcal{C} of forcing partial orders (\mathbb{P}, \leq) with $\mathbb{P} \subseteq 2^{<\omega} \times \omega$ and say that $\mathbb{P} \leq_{\mathcal{C}} \mathbb{Q}$ (\mathbb{Q} is stronger than \mathbb{P}) if, for all sufficiently large *n*, every *n*-generic for \mathbb{Q} computes an *n*-generic for \mathbb{P} . There are partial orders \mathbb{P}_{Cohen} and $\mathbb{P}_{Mathias}$ in \mathcal{C} whose *n*-generics are exactly the traditional Cohen and Mathias *n*-generics, respectively. We modify Cholak, Dzhafarov, Hirst and Slaman's result to show that $\mathbb{P}_{Cohen} \leq_{\mathcal{C}} \mathbb{P}$ for every $\mathbb{P} \in \mathcal{C}$; applying methods from later work by Cholak, Dzhafarov and Soskova, we show that $\mathbb{P} \leq_{\mathcal{C}} \mathbb{P}_{Mathias}$ for every $\mathbb{P} \in \mathcal{C}$ and characterize the other partial orders that lie on top of \mathcal{C} .