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Preface

The goal of this text is to provide a concise introduction to the combi-

natorics of Schubert polynomials. While Schubert polynomials orig-

inate in algebraic geometry and are defined algebraically, we aim to

apply a combinatorial approach whenever possible.

The reader is assumed to be familiar with the algebraic aspects of

the undergraduate curriculum. In particular, we make extensive use

of concepts from abstract algebra such as group actions and assume

familiarity with linear algebra topics that may not appear in a first

course. Our treatment of combinatorial content in the main text is

self-contained, but exercises may assume familiarity with additional

material.

Zachary Hamaker

ix





Chapter 1

Permutations

Before discussing Schubert polynomials, we require some fundamental

facts about permutations. We begin by presenting basic properties

of the symmetric group as a Coxeter group, leading to the weak and

strong Bruhat orders. Next, we give several different combinatorial

models for permutations, each of which will see use in several ways.

1.1. The symmetric group

A permutation of the set [n] := {1, 2, . . . , n} is a bijection w from [n]

to itself. The set Sn of permutations of [n] is a group under function

composition. We typically write the permutation w either in one-line

notation w = w(1) w(2) . . . w(n) or as product of other permutations.

When w(i) = k, we say k appears in the ith position of w.

Definition 1.1. For w ∈ Sn, the inversion set of w is

Inv(w) := {(i, j) : 1 ≤ i < j ≤ n,w(i) > w(j)}.

Elements of Inv(w) are inversions. The length of w is ℓ(w) := # Inv(w).

Note (i, j) is an inversion for w ∈ Sn if the value in position i is

greater than the value in position j. For example, with u = 2413 and

1



2 1. Permutations

v = 3142 we have

Inv(u) = {(1, 3), (2, 3), (2, 4)},
Inv(v) = {(1, 2), (1, 4), (3, 4)}.

Note that the inversions in v correspond the values that appear out

of order in u and visa versa. This is not a coincidence, but is instead

a consequence of the fact that v = u−1. More generally,

(1.1) Inv(w−1) = {(w(i), w(j)) : (i, j) ∈ Inv(w)}.

The inversion set Inv(w) is our first example of a diagram, which is

a subset of [n]× [n]. Diagrams are depicted using matrix coordinates.

With u = 2413 as above we have

Inv(u) =

where the blue shaded cells are elements of Inv(u). There is a natural

Sn×Sn action on diagrams – for u, v ∈ Sn and D ⊆ [n]× [n] we have

(u× v) ·D = {(u(i), v(j)) : (i, j) ∈ D}.

Similarly, we let Sn act on diagrams diagonally: u·D = (u×u)·D. For

example with u = 2413 we have 1324 · Inv(u) = {(1, 2), (3, 2), (3, 4)},
which can be visualized as

1324 · Inv(u) = .

The simple transpositions s1, s2, . . . , sn−1 in Sn are defined by

si := (i, i+1) = 1 . . . i−1 i+1 i i+2 . . . n.

Given w ∈ Sn, multiplying on the right by si changes the positions

i and i+1 while multiplying on the left exchanges the values i and

i+1 wherever they appear in w. For example, with u = 2413 we have

us2 = 2143 and s2u = 1423. The reader should verify that simple

transpositions satisfy the following relations: for i, j positive integers

s2i = 1, sisj = sjsi (|i− j| > 1), sisi+1si = si+1sisi+1.(1.2)

Relations of the second and types are called commutation and braid

relations, respectively.
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Definition 1.2. For w ∈ Sn, the right descent set of w is

DesR(w) := {k ∈ [n−1] : w(k) > w(k + 1)}.

The left descent set of w is DesL(w) := DesR(w
−1). The elements of

DesR(w) and DesL(w) are right and left descents, respectively.

For w ∈ Sn, we see k ∈ DesR(w) the ith position of w is greater

than the i+1th, while k ∈ DesL(w) if k+1 appears before k in w. For

example, with u = 2413 we have DesR(u) = {2} and DesL(u) = {1, 3}.
For w ∈ Sn and k ∈ [n−1], we have

(1.3) Inv(wsk) =

!
sk · Inv(w) ∪ {(k, k+1)} k /∈ DesR(w),

sk · Inv(w) \ {(k, k+1)} k ∈ DesR(w).

As a consequence, we have:

Corollary 1.3. Let w ∈ Sn and k ∈ [n−1]. Then

(1) ℓ(wsk) =

!
ℓ(w) + 1 k /∈ DesR(w),

ℓ(w)− 1 k ∈ DesR(w).

(2) ℓ(skw) =

!
ℓ(w) + 1 k /∈ DesL(w),

ℓ(w)− 1 k ∈ DesL(w).

Proof. Part (1) follows from Equation (1.3) while part (2) follows

from part (1), Equation (1.1) and the fact that skw = (w−1sk)
−1. □

As a consequence, we show simple transpositions generate Sn.

Proposition 1.4. We have Sn = 〈s1, . . . , sn−1〉.

Proof. Clearly Sn containsG := 〈s1, . . . , sn−1〉, so we need only show

the reverse containment. We proceed by induction on length. Note

ℓ(w) = 0 only for the identity permutation, which is in G. If ℓ(w) > 0,

we see Inv(w) ∕= ∅. Therefore, Inv(w) contains a lexicographically

maximal pair (i, j) (that is i is maximal so that some (i, k) ∈ Inv(w)

and j is maximal amongst entries such k). Either j = i+1 so w(i) >

w(i+1) or (i+1, j) /∈ Inv(w) and w(i) > w(j) > w(i+1). Therefore

i ∈ DesR(w), so by Corollary 1.3 (1) we have ℓ(wsi) = ℓ(w)− 1, and

the result follows by induction. □
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This is the first of many proofs by induction on length. In later

instances, we frequently outline the inductive step and leave the re-

maining details to the reader.

1.2. Reduced words

An expression or decomposition of w ∈ Sn is a product

sa1
sa2

. . . sap
= w,

with associated word (a1, a2, . . . , ap). The expression is reduced if p

is minimal amongst all expressions for w. Let Red(w) be the set of

reduced words for w. When w = 1, Red(w) is the empty word. With

this convention, Proposition 1.4 guarantees Red(w) is non-empty for

every permutation w.

Proposition 1.5. For w ∈ Sn and (a1, . . . , ap) ∈ Red(w), p = ℓ(w).

Proof. By Corollary (1.3) (1), for all i ∈ [p−1] we see

ℓ(sa1
. . . sai

sai+1
) ≤ ℓ(sa1

. . . sai
) + 1.

Repeated applications of this observation gives ℓ(w) ≤ p. Our proof

of Proposition 1.4 outlines an inductive construction for an expression

for w of length ℓ(w), so we see ℓ(w) ≥ p, hence we have equality. □

For example, with u = 2413 we see u = s1s3s2 = s3s1s2. One can

check that these are the only expressions for u with three terms. Since

ℓ(u) = 3, Proposition 1.5 shows Red(u) = {(1, 3, 2), (3, 1, 2)}. There

are many non-reduced expressions for u, for instance u = s3s2s1s2s1.

The permutation w
(n)
0 = n . . . 21 ∈ Sn is the longest or reverse

permutation. When the context is clear, we write w0 = w
(n)
0 . The

term ‘reverse permutation’ is apt since for w = w(1) . . . w(n) ∈ Sn

ww0 = w(n) . . . w(1) and w0w = n+1− w(1) . . . n+1− w(n).

For example, with w = 4132 we have ww0 = 2314 and w0w = 1423.

Corollary 1.6. Let w ∈ Sn. Then

(1) ℓ(w) = 0 if and only if w = 1.

(2) ℓ(w) = 1 if and only if w = sk with k ∈ [n−1].

(3) ℓ(w) = ℓ(w−1).
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(4) ℓ(w0w) = ℓ(ww0) =
"
n
2

#
− ℓ(w).

Proof. Parts (1) and (2) follow by examining Red(w). For (3), note

sa1
. . . sap

= w if and only if sap
. . . sa1

= w−1, so the result follows

by Proposition 1.5.

Now, note Inv(w0) = {(i, j) : 1 ≤ i < j ≤ n}, so ℓ(w0) =
"
n
2

#
.

Since ww0 = w(n) . . . w(1), we see Inv(ww0) = Inv(w0) \ Inv(w),

hence ℓ(ww0) =
"
n
2

#
− ℓ(w). Also, since w0 = w−1

0

ℓ(w0w) = ℓ(w−1w0) =

$
n

2

%
− ℓ(w−1) =

$
n

2

%
− ℓ(w),

with the first and last equalities by Part (3). □

Note that Part (3) implies the stronger relationship

Red(w−1) = {(ap, . . . , a1) : (a1, . . . , ap) ∈ Red(w)}.

In light of Proposition 1.5, letters in a reduced word for w and

inversions for w are equinumerous. This relationship can be realized

explicitly by a simple correspondence.

Proposition 1.7. Let w ∈ Sn and (a1, . . . , ap) ∈ Red(w). Then

Inv(w) = {sap . . . sak+1
· (ak, ak+1) : k ∈ [p]}.

Proof. Let v = wsap = sa1 . . . sap−1 . Then by Equation (1.3)

Inv(w) = sap Inv(v) ∪ {(ap, ap+1)}.

Since ℓ(w) > ℓ(v), the result follows by induction on ℓ(w). □

Proposition 1.7 has a natural visualization via certain diagrams.

When first studying functions in a set-theoretic context, they are fre-

quently visualized by drawing the domain and range side by side with

arrows illustrating the image of each value. Function composition is

performed by concatenating diagrams. Applying this perspective to

a reduced expression, one constructs its wiring diagram.
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Example 1.8. Let w = 31542. Note ℓ(w) = 6 and w = s2s4s1s3s4s,

so a = (2, 4, 1, 3, 4) ∈ Red(w). The wiring diagram of a is

1 1 1 3 3 3

2 3 3 1 1 1

3 2 2 2 5 5

4 4 5 5 2 4

5 5 4 4 4 2
s2 s4 s1 s3 s4

From the wiring diagram, it easy to see the values placed out of order

by each letter in a. For instance, s3 puts the values 2 and 5 out of

order. This means (2, 5) ∈ Inv(w−1), which in turn implies that

(w−1(5), w−1(3)) = (3, 5) ∈ Inv(w).

This is preciesly the correspondence identified by Proposition 1.7.

We now prove several important properties of reduced words. For

a = (a1, . . . , ap) a word, let (a1, . . . , &ai, . . . , ap) be the word obtained

from a by omitting the ith letter.

Lemma 1.9 (Exchange Lemma). Let w ∈ Sn with k ∈ DesR(w), and

let (a1, . . . , ap) ∈ Red(w). Then there exists i ∈ [p] such that

(a1, . . . , &ai, . . . , ap, k) ∈ Red(w).

Proof. Since k ∈ DesR(w), we have (k, k+1) ∈ I(w). By Proposi-

tion 1.7, there exists i ∈ [p] such that

(k, k+1) = sap . . . sai+1 · (ai, ai + 1).

Here, we are acting on (ai, ai+1) as an element of [n]× [n]. Then

sk = (sap . . . sai+1)sai(sap . . . sai+1)
−1

= (sap . . . sai+1)sai(sai+1 . . . sap),

so sai+1 . . . sapsk = sai . . . sap , hence sa1 . . . 'sai . . . sap = w and the

result follows. □
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The Exchange Lemma can be illustrated using wiring diagrams.

Let v = 4213. Note a = (3, 2, 1, 2) ∈ Red(v) and 1 ∈ DesR(w). The

word (3, 2, 1, 2, 1) has the wiring diagram

1 1 1 4 4 2

2 2 4 1 2 4

3 4 2 2 1 1

4 3 3 3 3 3
s3 s2 s1 s2 s1 .

The final letter undoes the inversion (1, 2), which corresponds by

Proposition 1.7 to the first instance of 2 in a. By omitting this letter

from (3, 2, 1, 2, 1) we undo the first crossing of the values 2 and 4,

resulting in the new word (3, 1, 2, 1) ∈ Red(v).

The Exchange Lemma is a key tool when working with reduced

words. We state some important consequences.

Corollary 1.10. Let w ∈ Sn.

(1) For k ∈ DesR(w), there exists (a1, . . . , ap) ∈ Red(w) with

ap = k.

(2) For ℓ ∈ DesL(w), there exists (a1, . . . , ap) ∈ Red(w) with

a1 = ℓ.

Proof. Part (1) is immediate from the Exchange Lemma, while (2)

follows from (1) and the fact that DesL(w) = DesR(w
−1). □

Corollary 1.11. Let w ∈ Sn so that w = sa1 . . . sar with r > ℓ(w).

Then there exist i ∕= j such that

w = sa1 . . . 'sai . . . 'saj . . . sap .

Proof. Since r > ℓ(w), there exists some index j such that

ℓ(sa1
. . . saj

saj+1
) < ℓ(sa1

. . . saj
).

Assume that j is minimal, so for v = sa1 . . . saj we see aj+1 ∈ DesR(v)

and (a1, . . . , aj) ∈ Red(v). The Exchange Lemma implies there exists
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i ∈ [j−1] so that sa1 . . . saj = sa1 . . . 'sai . . . sajsaj+1 . Multiplying both

sides on the right by saj+1
we see

sa1
. . . 'sai

. . . saj
= sa1

. . . saj
saj+1

,

so the result follows. □

Given two words a = (a1, . . . , ap) and b = (b1, . . . , bp), say a ∼ b

if they differ by a commutation or braid relation. For instance,

(1, 3, 2, 1) ∼ (3, 1, 2, 1) ∼ (3, 2, 1, 2),

with the first relation arising from a commutation relation at the first

two indices and the second from a braid relation at the last three.

Let GRed(w) be the graph where (a,b) is an edge if a ∼ b.

Theorem 1.12 (Matsumoto-Tits). For w ∈ Sn, the graph GRed(w)

is connected.

Equivalently, for a,b ∈ Red(w) there exists a chain of relations

so that a ∼ · · · ∼ b. We then say a is connected to b.

Proof. We argue by induction on ℓ(w). Let a = (a1, . . . , ap) and

b = (b1, . . . , bp) with a,b ∈ Red(w). If ap = bp,

(a1, . . . , ap−1), (b1, . . . , bp−1) ∈ Red(wsap
)

which are connected by the induction hypothesis. Otherwise, ap ∕= bp
with ap, bp ∈ DesR(w). The Exchange Lemma implies for some i ∈ [p]

c = (a1, . . . , &ai, . . . , ap, bp) ∈ Red(w).

Note i ∕= p, since this would imply ap = bp.

If |ap − bp| > 1, applying a commutation move at end of c gives

c′ = (a1, . . . , &ai, . . . , ap−1, bp, ap).

Since a is connected to c′, b is connected to c and c ∼ c′, we see a is

connected to b.

If |ap − bp| = 1, applying the Exchange Lemma to c implies

d = (a1, . . . , &ai, . . . , &aj , . . . , ap−1, ap, bp, ap) ∈ Red(w).
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Since (ap, bp, ap) is reduced, the inversions corresponding to these

letters are distinct so j ∕= p. Apply a braid relation to these values to

get

d = (a1, . . . , &ai, . . . , &aj , . . . , ap−1, bp, ap, bp) ∈ Red(w).

Since a is connected to d, b is connected to d′ and d ∼ d, we see a

is connected to b and the result follows. □

1.3. Weak and Strong Bruhat orders

For 1 ≤ i < j ≤ n, write tij for the transposition (i, j) ∈ Sn.

Let u, v ∈ Sn. We say u ⋖ v if ℓ(v) = ℓ(u) + 1 and there exist

i, j so that utij = v. Equivalently, u ⋖ utij if u(i) < u(j) and for

i < k < j either u(k) < u(i) or u(k) > u(j). The strong Bruhat order

or Bruhat order on Sn is the transitive closure ≤ of ⋖.

Proposition 1.13. Let u, v ∈ Sn. The following are equivalent:

(1) u ≤ v, (2) u−1 ≤ v−1, (3) vw0 ≤ uw0, (4) w0v ≤ w0u.

Proof. See Exercise (2). □

Similarly, for u, v ∈ Sn we say u⋖W v if ℓ(v) = ℓ(u)+1 and there

exists k so that usk = v. The right weak Bruhat order or weak order

on Sn is the transitive closure ≤W of ⋖W . Since u⋖W v implies u⋖v,

we see u ≤W v implies u ≤ v so Bruhat order refines weak order.

Example 1.14. The Hasse diagram of (S3,≤) is

321

312231

132213

123 .

The dashed lines indicate cover relations for Bruhat order that are

not relations for weak order.
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Proposition 1.15. For u, v ∈ Sn, u ≤W v if and only if any reduced

word of u can be extended to a reduced word for v.

Proof. Extending a reduced word for u by a single letter corresponds

to a cover relation ⋖W , so the equivalence is immediate. □

In light of Proposition 1.15, many of the results in the Section 1.2

can be reinterpreted as statements about weak order. We would like

to understand Bruhat order in terms of reduced words as well. To do

so, we first understand ⋖ in these terms.

Lemma 1.16. Let v, w ∈ Sn and (a1, . . . , ap) ∈ Red(w). Then ℓ(v) <

ℓ(w) and v−1w is a transposition if and only if there exists r ∈ [p] so

that v = sa1
. . . 'sar

, . . . , sap
.

Proof. Let v ⋖ w, so vtij = w for some transposition tij . Since

ℓ(v) < ℓ(w), we have (i, j) ∈ Inv(w). Then by Proposition 1.7

(i, j) = (sap
. . . sar+1

) · (ar, ar+1)

for some r ∈ [p]. Then

tij = (sap
. . . sar+1

)sar
(sar+1

. . . sap
)

so v = wtij = sa1 . . . 'sar . . . sap . The converse follows by reversing this

computation. □

Note the expression for v appearing in Lemma 1.16 need not be

reduced. For example, let v = 123, w = 321 and (1, 2, 1) ∈ Red(w) .

We have v−1w = w = t13 and ℓ(v) = 0 < 3 = ℓ(w), while s1 &s2s1 = v.

Corollary 1.17. Let v, w ∈ Sn and (a1, . . . , ap) ∈ Red(w).

(1) v ⋖ w if and only if there exists r ∈ [p] so that

(a1, . . . , &ar, . . . , ap) ∈ Red(v).

(2) If v ≤ w, there exist r1, . . . , rk ∈ [p] so that

(a1, . . . , 'ar1 , . . . , 'ark , . . . , ap) ∈ Red(v).

Proof. Part (1) follows immediately from Lemmat 1.16, and (2) fol-

lows from repeated application of the forwards direction in (1). □
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The converse of (2) is not obvious since one could have v, w ∈ Sn

with (a1, . . . , ap) ∈ Red(w) and

(a1, . . . , &ai, . . . , &aj , . . . , ap) ∈ Red(v),

while (a1, . . . , &ai, . . . , ap) and (a1, . . . , &aj , . . . , ap) are not reduced.

Ruling out this possibility will require several additional properties

of Bruhat order.

Lemma 1.18. For w ∈ Sn and k ∈ [n−1], either w⋖skw or skw⋖w.

Proof. The result follows from Corollary 1.3 (2) and the fact that

skw = wtij for i = w−1(k) and j = w−1(k+1). □

Lemma 1.19. Let v, w ∈ Sn so that v⋖ skv ∕= w. Then v⋖w if nad

only if w ⋖ skw and skv ⋖ skw.

Proof. For the forward direction, let v ⋖ w and a = (a1, . . . , ap) in

Red(w). Then w = vtij for some i, j. By Lemma 1.16,

a′ = (a1, . . . , &ar, . . . , ap) ∈ Red(v)

for some r ∈ [p]. Note a1 ∕= k since v ∕= skw. Therefore sk /∈ DesL(w),

so w ⋖ skw by Lemma 1.18, while prepending k to a and a′ shows

skv ⋖ skw by Lemma 1.16.

For the converse, assume w ⋖ skw and v ⋖ skv. Then

(k, a1, . . . , ap) ∈ Red(skw) and (k, a1, . . . , . . . , &ai, . . . , ap) ∈ Red(skv)

so v ⋖ w by Lemma 1.16. □

Proposition 1.20. Let v, w ∈ Sn such that skv ⋖ v and skw ⋖ w.

The following are equivalent:

(1) v ≤ w, (2) sk < w, (3) skv ≤ skw.

Proof. The equivalence (1) and (3) is Exercise 1.6.4. Also, (1) im-

plies (2) since skv ⋖ v ≤ w.

To show (2) implies (1), consider the chain

skv = v0 ⋖ v1 ⋖ v2 ⋖ · · ·⋖ vm = w.

Note v0 ⋖ skv
0 and skv

m ⋖ vm. Therefore, there exists j so that

vj ⋖ skv
j and skv

j+1 ⋖ vj+1. Also, skv
j ∕= skv

j+1 since their lengths
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differ. If we assume skv
j ∕= skv

j , then applying Lemma 1.19 with

vj ⋖ skv
j , vj ⋖ vj+1 implies vj+1⋖ skv

j+1, a contradiction. Therefore

v = skv
0 ⋖ skv

1 ⋖ · · ·⋖ skv
j = vj+1 ⋖ · · ·⋖ w,

hence v ≤ w. □

We can now prepared to prove the converse of Corollary 1.17 (2),

which says Bruhat order can be described by subword containment

of reduced words.

Theorem 1.21. For v, w ∈ Sn we have v ≤ w if and only if for any

(a1, . . . , ap) ∈ Red(w), (ai1 , . . . , aik) ∈ Red(v) for some i1 < · · · < ik.

Proof. The forward direction is Corollary 1.17. For the converse, we

proceed by induction on ℓ(v) + ℓ(w). The base case is v = w = 1,

which is vacuously true. Assume a = (a1, . . . , ap) ∈ Red(w) and there

exist i1 < · · · < ik with a′ = (ai1 , . . . , aik) ∈ Red(v).

If v⋖ sa1v, then a1 ∈ DesL(v) so i1 > 1. Then a′ is a subword of

(a2, . . . , ap) ∈ Red(sa1w). By the inductive hypothesis, we then have

v ≤ sa1
w < w.

If sa1v ⋖ v, by the Exchange Lemma there exists j ∈ [k] such

that (a1, ai1 , . . . , 'aij , . . . , aik) ∈ Red(sa1v). Then by the inductive

hypothesis sa1
v < w, so by Proposition 1.20 v ≤ w. □

We now give an important alternate description of Bruhat order.

Corollary 1.22. Let w ∈ Sn so that ℓ(w) < ℓ(wtij). Then w < wtij.

Proof. By Proposition 1.18, any reduced expression for wtij con-

tains an expression for w as a subword. By reprated application of

Corollary 1.11, this expression contains a reduced subexpression so

the result follows by Theorem 1.21. □

1.4. Combinatorial models for permutations

There are many equivalent ways to describe a permutation, each of

which provides a valuable alternate perspective. For example, the

permutation w is uniquely determined by Inv(w), and we have already

seen many benefits to understanding w by its inversions. We now

present several additional models for permutations.
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Definition 1.23 (Triangular array). For w ∈ Sn, we see

{w(1)} ⊆ {w(1), w(2)} ⊆ . . . {w(1), . . . , w(n)} = [n].

Let Tw
i• = {w(1), . . . , w(i)} and Tw

ij be the jth largest element in Tw
i• .

The triangular array for w is Tw = {Tw
ij }1≤j≤i≤n.

Since w(i) = Tw
i• \Tw

i−1•, we see w can be reconstructed from Tw.

For example, with w = 351642

Tw =

3
3 5
1 3 5
1 3 5 6
1 3 4 5 6

.

We omit the last line since it will always be 1 2 . . . n.

Theorem 1.24. For v, w ∈ Sn, v ≤ w if and only if T v
ij ≤ Tw

ij for

all 1 ≤ j ≤ i ≤ n.

Proof. Assume v ⋖ w, so w = vtkℓ with v(k) < v(ℓ). Then for i < k

and i > ℓ we have T v
ij = Tw

ij . For k ≤ i ≤ ℓ, we have

Tw
i• = T v

i• ∪ {v(ℓ)}− {v(k)},

so Tw
ij ≥ T v

ij for all j ∈ [i]. This gives the forwards direction.

For the converse, let T v
ij ≤ Tw

ij for all 1 ≤ j ≤ i ≤ n, and let

k be maximal so that T v
k• ∕= Tw

k•. We argue by downward induction

on k. Note k < n if v ∕= w. In this case, since T v
k+1• = Tw

k+1• we

have Tw
k• \ T v

k• = {q} and T v
k• \ Tw

k• = {p} with p < q. Therefore

w(k+1) = p and v(k+1) = q so T
tpqw
ℓ• = Tw

ℓ• for ℓ ≥ k and tpqw ≤ w

by Corollary 1.17, and the result follows by induction. □

Definition 1.25 (Rank matrices). For w ∈ Sn, let rw = (rwij)
n
i,j=1

where rwij = #{k ∈ [i] : w(k) ≤ j}.

Equivalently, for Mw the matrix that permutes a vector by w, rwij
counts the number of 1’s in the submatrix Mw

[i][j]. For example, with
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w = 351642 we have

Mw =

(

)))))))*

0 0 1 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 1 0 0 0 0

+

,,,,,,,-

and rw =

(

)))))))*

0 0 1 1 1 1

0 0 1 1 2 2

1 1 2 2 3 3

1 1 2 2 3 4

1 1 2 3 4 5

1 2 3 4 5 6

+

,,,,,,,-

.

Theorem 1.26. For v, w ∈ Sn, we have v ≤ w if and only if rwij ≤ rvij
for all i, j ∈ [n].

Proof. This is Exercise 1.6.5. □

The next combinatorial models for permutations are closely re-

lated to inversion sets.

Definition 1.27. For w ∈ Sn, the Rothe diagram of w is

D(w) := (1× w) · Inv(w) = {(i, w(j)) : (i, j) ∈ Inv(w)}
= {(k, ℓ) : k < w−1(ℓ), w(k) > ℓ}.

This last description says the complement of D(w) in [n]× [n] is

the set of cells weakly below or weakly to the write of a 1 in Mw.

After crossing out these cells, the remaining cells will be D(w). For

example, with w = 351642 we have

(1.4) D(w) = {(1, 1), (1, 2), (2, 1), (2, 2), (2, 4), (4, 2), (4, 4), (5, 4)}

•
•

•
•

•
•

1 2 3 4 5 6

Here, the •’s are cells with 1 in Mw and the □’s are the cells in D(w).

The following are consequences of the factD(w) = (1×w)·Inv(w).

Proposition 1.28. Let w ∈ Sn.
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(1) D(w−1) is the transpose of D(w).

(2) |D(w)| = ℓ(w).

(3) If (a1, . . . , ap) ∈ Red(w), then

D(w) = {sap
. . . sak+1

(ak), sa1
. . . sak−1

(ak+1) : k ∈ [p]}.

(4) If k ∈ DesR(w). then

D(wsk) = (sk × 1) ·D(w) ∪ {(k, w(k))}.

Proof. This is Exercise 1.6.6. □

There is a natural interpretation of Bruhat order covers for per-

mutation matrices that extends to Rothe diagrams. For v ∈ Sn,

we have v ⋖ vtij if v(i) < v(j) and the submatrix of Mv in rows

{i+1, . . . , j−1} and columns {v(i)+1, . . . , v(j)−1} is all zero. This

can be easily observed for the depiction D(v) as well. In this case,

(i, v(i)) ∈ D(vtij) \D(v):

•

•

i

j ·tij−−→

•

•

i

j

□

Note the other cells of D(vtij) may move. For example, with w as in

Equation (1.4), we see w ⋖ wt35 and (4, 4), (5, 3) ∈ D(w) \D(wt35):

•
•

•
•

•
•

1 2 3 4 5 6

In particular, D(wt35) = D(w)∪ {(3, 1), (3, 2), (4, 1)} \ {(4, 4), (5, 3)}.
We introduce one final model for permutations.

Definition 1.29 (Code). For w ∈ Sn, the Lehmer code or code of w

is c(w) := (c1(w), c2(w), . . . , cn−1(w)) where

ci(w) = #{j : (i, j) ∈ Inv(w)} = #{j > i : w(i) > w(j)}.
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For example, with w = 351642 we have c(w) = (2, 3, 0, 2, 1). At

first glance, c(w) contains significantly less information than Inv(w).

Proposition 1.30. The code is a bijection

c : Sn → {(c1, . . . , cn−1) : 0 ≤ ci ≤ n− i}.

Proof. Note 0 ≤ ci(w) ≤ n−i since there are only n−i positions to

the right of position i. Therefore c is well-defined. We invert c one

entry at a time, beginning with w(1) = c1+1. More generally, we see

w(i) is the (ci+1)th largest element in the set [n] \ Tw
i−1•. □

The code of a permutation is a weak composition, that is a se-

quence α = (α1,α2, . . . ,αk) where each αi is a non-negative integer.

The size of the weak composition α is |α| =
.k

i=1 αi. The sym-

metric group acts on weak compositions by permuting entries. Weak

compositions can be added point-wise:

(α1, . . . ,αk) + (β1, . . . ,βk) = (α1 + β1, . . . ,αk + βk).

Define εi by εij =

!
1 i = j

0 i ∕= j
.

Proposition 1.31. Let w ∈ Sn.

(1) ℓ(w) =
.

i∈[n−1] ci(w).

(2) maxDesR(w) = max{r : cr(w) > 0}.
(3) If k ∈ DesR(w), then c(wsk) = sk · c(w) + εk.

(4) If (a1, . . . , ap) ∈ Red(w), then c(w) =
.p

i=1 sap . . . sai+1ε
ai .

(5) ci(w) > ci+1(w) if and only if i ∈ DesR(w).

Proof. By definition
.

i∈[n−1] ci(w) = # Inv(w) = ℓ(w), which im-

plies (1). For Property (2), let r = maxDesR(w). Then w(r) >

w(r+1) so cr(w) > 0, while w(r+1) < w(r+2) < · · · < w(n), so

cs(w) = 0 for s > r. For (3), we have w(k) < w(k+1) so

{j > k : w(j) < wsk(k)} = {j > k : w(j) < w(k+1)} ∪ {k+1}.

Therefore ck(wsk) = ck+1(w) + 1, while a similar argument shows

ck+1(wsk) = ck(w). All other values remain unchanged, hence the

result follows. Next, (4) follows by repeated application of (3). Fi-

nally, to prove (5) note w(i+1) is the (ci+1(w)+1)th smallest entry
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in {w(i+1), . . . , w(n)} and w(i) is greater than at least that many

entries in this set. □

1.5. Important families of permutations

Many families of permutations have particularly nice descriptions

with respect to the various combinatorial models. The ones we con-

sider can all be described in terms of pattern avoidance.

For v ∈ Sm, w ∈ Sn, we say w contains v if for some i1 < · · · < im
both w(i1) . . . w(im) and v(1) . . . v(m) have the same relative order.

When w does not contain v, we say w avoids v. For example, the

permutation w = 351642 contains 2143 since

w(1)w(3)w(4)w(5) = 3164

has the same relative order. However, w avoids 4321 since it does not

contain a decreasing subsequence of length 4.

A permutation w is vexillary if it avoids 2143. There are many

equivalent descriptions.

1.6. Exercises

1.6.1. For w ∈ Sn, demonstrate a bijection from Inv(w) to Inv(w−1).

1.6.2. For w ∈ Sn, demonstrate a bijection from Inv(w) to Inv(w−1).

1.6.3. Identify and prove the properties from Proposition 1.13 that

are equivalent for ≤W .

1.6.4. Prove the equivalence of (1) and (3) in Proposition 1.20.

1.6.5. Prove Theorem 1.26. You may want to use Theorem 1.24.

1.6.6. Prove Proposition 1.28.





Chapter 2

Schubert Polynomials

To define Schubert polynomials, we first introduce basic facts about

divided difference operators. After proving some basic properties of

Schubert polynomials, we introduce Monks formula. Using Monks

formula, we introduce two combinatorial models for Schubert poly-

nomials: pipe dreams and bumpless pipe dreams.

2.1. Divided difference operators

For a polynomial f in the variables x and y, define:

∂xy(f) =
f(x, y)− f(y, x)

x− y
.

When f has more variables, we may view these as coefficients.

Let Pn = C[x1, . . . , xn], the algebra of polynomials in the vari-

ables x1, . . . , xn. Recall a weak composition is a tuple α = (α1, . . . ,αn)

where αi ∈ N for all i ∈ [n]. To each weak composition α we asso-

ciate the monomial xα =
/n

i=1 x
αi
i . For f ∈ Pn, [x

α]f denotes the

coefficient of xα in f . The permutation w ∈ Sn acts on Pn by

w · f(x1, . . . , xn) = f(xw−1(1), . . . , xw−1(n)).

The ith divided difference operator ∂i : Pn → Pn is defined by

(2.1) ∂i(f) := ∂xixi+1 =
f − sif

xi − xi+1
.

19
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The reader should check that ∂i is a linear operator. This means we

can understand ∂i by its action on monomials: for a > b

(2.2) ∂ix
a
i x

b
i+1 = −∂ix

b
ix

a
i+1 = xa

i x
a
i+1

a−b−10

j=0

xj
ix

a−b−1−i
i+1 ,

which can be verified by multiplying the righthand side by xi − xi+1.

We now establish some important basic properties of divided dif-

ference operators. All but the last follow from straightforward compu-

tations, and we encourage the reader to attempt their own proofs be-

fore reading on. Recall f ∈ Pn is symmetric in xi and xj if f = tij ·f .

Proposition 2.1. Let f ∈ C[x1, . . . , xn]. Then

(1) ∂i(f) = 0 if and only if f is symmetric in xi and xi+1.

(2) ∂i(f) is symmetric in the variables xi and xi+1.

Proof. Property (2) follows from Equation (2.2).

For (1), the converse is immediate from Equation 2.1. Now view

f as a polynomial in the variables xi and xi+1 with coefficients in

C[x1, . . . , xi−1, xi+2, . . . , xn] and assume it is not symmetric. Equiv-

alently, for some a, b we have [xa
i x

b
i+1]f = gab ∕= gba = [xb

ix
a
i+1]f . As-

sume a > b maximizes first a+ b and then |a− b|. By Equation (2.2)

[xa−1
i xb

i+1]f = gab − gba ∕= 0 so ∂i(f) ∕= 0. □

Divided difference operators satisfy a version of Leibnitz’s rule.

Proposition 2.2. Let f, g ∈ Pn and i ∈ [n−1]. Then

∂i(fg) = ∂i(f)g + (si · f)∂i(g).

Proof. We compute

∂i(fg) =
fg − si · (fg)
xi − xi+1

=
fg − (si · f)g + (si · f)g − si · (fg)

xi − xi+1

= g
f − si · f
xi − xi+1

+ (si · f)
g − si · g
xi − xi+1

= ∂i(f)g + (si · f)∂i(g).

□

Corollary 2.3. Let f, g ∈ Pn and i ∈ [n−1] so that f is symmetric

in xi and xi+1. Then ∂i(fg) = f∂i(g).
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Proof. Applying Proposition 2.2, we have

∂i(fg) = ∂i(f)g + (si · f)∂i(g) = f∂i(g)

since ∂i(f) = 0 by Proposition 2.1 (1) and si ·f = f by symmetry. □

The divided difference operators satisfy relations similar to those

for simple transpositions.

Proposition 2.4. For i, j positive integers,

(1) ∂2
i = 0, (2) ∂i∂j = ∂j∂i |i− j| > 1, (3) ∂i∂i+1∂i = ∂i+1∂i∂i+1.

Proof. The first relation follows by Proposition 2.1 (1) and (2), while

the commutation relation follows from the computation

∂i∂j(f) =
f − si · f − sj · f ++sisjf

(xi − xi+1)(xj − xj+1)

and the fact sisj = sjsi. The third relation can also be proved by

direct computation and an application of the braid relation:

∂i∂i+1∂i = ∂i+1∂i∂i+1 =
1− si − si+1 + sisi+1 + si+1si − sisi+1si

(xi − xi+1)(xi − xi+2)(xi+1 − xi+2)
.

□

For a = (a1, . . . , ap) a tuple of positive integers, define

∂a := ∂a1 . . . ∂ap .

Corollary 2.5. For w ∈ Sn and a, b ∈ Red(w), we have ∂a = ∂b.

Proof. By Proposition 2.4 and Theorem 1.12, the result follows. □

Definition 2.6. For w ∈ Sn, define ∂w := ∂a for some a ∈ Red(w).

By Corollary 2.5 ∂w is well defined. Note ∂si = ∂i and ∂1 = 1.

Proposition 2.7. Let a = (a1, . . . , ap) be non-reduced. Then ∂a = 0.

Proof. There exists some minimal j ∈ [p] so that (a1, . . . , aj) is re-

duced and (a1, . . . , aj , aj+1) is non-reduced. Let v = sa1 . . . saj . Then

aj+1 ∈ DesR(v) so by Corollary 1.10 some (b1, . . . , bj) ∈ Red(v) has

bj = aj+1. For b = (b1, . . . , bj , aj+1, . . . , ap) we see ∂a = ∂b = 0 since

∂bj∂aj+1
= 0 by Proposition 2.4 (2). □
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Corollary 2.8. For u, v ∈ Sn, ∂u∂v =

!
∂uv ℓ(uv) = ℓ(u) + ℓ(v),

0 else.

Proof. The result follows by Definition 2.6, Proposition 2.7 and prop-

erties or reduced words. □

By Definition 2.6 and Proposition 2.7, compositions of divided

difference operators are either 0 or ∂w for some w ∈ Sn. In general,

computing ∂w is non-trivial. Here is an important special case.

Theorem 2.9. Let w ∈ Sn, g ∈ Pn and f =
.n

i=1 αixi. Then

∂w(fg) = (w · f)∂w(g) +
0

u=wtij⋖w

(αi − αj)∂u(g).

Proof. Let (a1, . . . , ap) ∈ Red(w). Since f is linear, ∂i∂j(f) = 0 for

any i, j ∈ [n−1] so by repeated application of Proposition 2.2

∂w(fg) = ∂a1 . . . ∂ap(fg)

= (sa1 . . . sap) · f ∂a1 . . . ∂ap(g) +

p0

i=1

(sa1 . . . sai−1) · ∂ai((sai+1 . . . sap) · f) ∂a1 . . .
'∂ai . . . ∂ap(g).

When (a1, . . . , &ai, . . . , ap) is non-reduced, ∂a1 . . .
'∂ai . . . ∂ap = 0 by

Proposition 2.7. When (a1, . . . , &ai, . . . , ap) ∈ Red(u) for some u ∈ Sn,

we see u = wtij ⋖ w for some i < j by Lemma 1.16. Moreover, by

Proposition 1.7 we see (i, j) = sap . . . sai+1(ai, ai + 1) so

∂ai((sai+1 . . . sap) · f) = αi − αj ,

which completes our proof. □

2.2. Schubert polynomials

Recall δn = (n−1, n− 2, . . . , 2, 1, 0).

Definition 2.10. For w ∈ Sn, the Schubert polynomial Sw is

Sw := δw−1w0
(xδn).

In particular, Sw0
= xn−1

1 xn−2
2 . . . xn−1.
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From the definition, there’s no guarantee thatSw ∕= 0 for w ∈ Sn.

We will prove this fact later as Corollary 2.14, but first use it to prove

several several important properties of Schubert polynomials.

Proposition 2.11. Let w ∈ Sn and i ∈ [n−1]. Then

(1) ∂iSw = Swsi if i ∈ DesR(w) and 0 otherwise.

(2) Sw ∈ Pn is homogeneous of degree ℓ(w).

(3) If [xα]Sw ∕= 0, then xα divides xδn .

(4) Sw is symmetric in xi, xi+1 if and only if i /∈ DesR(w).

(5) If r = maxDesR(w), then Sw ∈ Pr.

Proof. Property (1) holds by Corollary 2.8 since

∂i∂w−1w0
=

!
∂siw−1w0

= ∂(wsi)−1w0
i ∈ DesL(w

−1) = DesR(w)

0 else.

Assuming Sw ∕= 0, since its degree is

deg(xδn)− ℓ(w−1w0) =

$
n

2

%
−
$
n

2

%
+ ℓ(w−1) = ℓ(w).

For (3), note for a ≤ n−i and b ≤ n−i−1 that if [xc
ix

d
i+1]∂i(x

a
i x

n
i+1) ∕=

0 then by Equation (2.2) c ≤ n− i and d ≤ n− i−1 as well. Property

(4) follows by (1) and Proposition 2.1, while (5) follows from the fact

that Sw is symmetric in xr+1, . . . , xn and xn never appears. □

Using Proposition 2.11 (1), for n = 3 we compute

S321 = x2
1x2

S231 = x1x2 S312 = x2
1

S213 = x1 S132 = x1 + x2

S123 = 1

0 0

0 0

∂1 ∂2

∂1 ∂2

∂1 ∂2

∂2 ∂1

∂2 ∂1
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Recall w ∈ Sn is dominant if c(w) is a partition.

Theorem 2.12. For w ∈ Sn dominant, Sw = xc(w).

Proof. Our proof is by descending induction on length. For w = w0,

we have Sw0 = xc(w0) since c(w0) = δn.

Assume w is dominant with ℓ(w) <
"
n
2

#
. Since

n− 1 ≥ c1(w) ≥ · · · ≥ cn(0) = 0,

the pigeonhole principle there exists i ∈ [n−1] so that ci(w) = ci+1(w).

Note i /∈ DesR(w) by Proposition 1.31 (5). Taking i minimal, we see

c(wsi) = si · c(w) + εi = c(w) + εi, which is also an integer partition.

By Proposition 2.11 (1) and the inductive hypothesis

Sw = ∂i(Swsi) = xc(w)+εi = xc(w),

and the result follows by induction. □

Define ι : Sn → Sn+1 by ι(w) = w(1) . . . w(n) n+1.

Corollary 2.13. For w ∈ Sn, Sw = Sι(w). In particular S1...n = 1.

Proof. For w
(n)
0 = n . . . 1 n+1 ∈ Sn+1, we see w

(n)
0 is dominant.

Then by Theorem 2.12 we have S
w

(n)
0

= xδn . Then for w ∈ Sn, since

ι(w)−1w
(n+1)
0 = ι(w−1)w

(n)
0 w

(n)
0 w

(n+1)
0 with

ℓ(ι(w)−1w
(n+1)
0 ) = ℓ(ι(w−1)w

(n)
0 ) + ℓ(w

(n)
0 w

(n+1)
0 )

we have

Sι(w) = ∂
w−1w

(n)
0

∂
w

(n)
0 w

(n+1)
0

xδn+1 = ∂
w−1w

(n)
0

xδn = Sw.

□

Note that Corollary 2.13 has a simple direct proof from the fact

that ∂1 . . . ∂nx
δn+1 = xδn . The key takeaway of the corollary is that

Schubert polynomials are a well-defined family of objects indexed by

permutations in S∞. In Theorem 2.31 we will show how this property

uniquely characterizes Schubert polynomials. We now show Schubert

polynomials are non-zero.

Corollary 2.14. For w ∈ Sn, Sw ∕= 0.
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Proof. Using Corollaries 2.8 and 2.13 we compute

∂wSw = ∂w∂w−1w0
xδn = ∂w0x

δn = S1 = 1.

Since ∂w(0) = 0. we see Sw ∕= 0. □

We now prove a critical lemma about the relationship between

Schubert polynomials and divided difference operators.

Lemma 2.15. Let u, v ∈ Sn with ℓ(u) = ℓ(v). Then ∂uSv = δuv.

Proof. Note ∂uSv = ∂u∂v−1w0
xδn . If u = v, then ∂u∂v−1w0

= ∂w0

so ∂uSv = 1 by Corollary 2.13. Otherwise, uv−1w0 ∕= w0 so

ℓ(uv−1w0) < ℓ(w0) = ℓ(v) + ℓ(v−1w0) = ℓ(u) + ℓ(v−1w0).

Then ∂u∂v−1w0
= 0 by Proposition 2.8, and the result follows. □

For w ∈ S∞ with ℓ(w) = p and maxDesR(w) = r, the divided

difference operator ∂w is a functional on the vector space

span({xα : α ∈ Nr, |α| = p}) ⊆ Pr.

Lemma 2.15 shows the Schubert polynomial Sw is dual to ∂w. Since

our vector space is finite dimensional, we see Schubert polynomials

are the dual basis to divided difference operators. As a consequence:

Corollary 2.16.

(1) {Sw}w∈Sn
is a basis for span(xα : α ⊆ xδn).

(2) {Sw}w∈S∞,maxDesR(w)=r is a basis for Pn.

(3) {Sw}w∈S∞ is a basis for P.

Proof. Since span(xα : α ⊆ xδn) has dimension n!, (1) follows by the

previous discussion. Properties (2) and (3) follow since for any f ∈ P,

there exists n sufficiently large so that f ∈ span(xα : α ⊆ xδn). □

2.3. Monk’s formula

Since Ssk is homogeneous of degree 1 for k > 0, in principle we can

compute the product SskSw for any w ∈ S∞ using Theorem 2.9.

Monk’s formula, originally proved in a geometric context, describes

this product. Before stating the formula, we give a formula for Ssk .
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Proposition 2.17. For k a positive integer Sk = x1 +x2 + · · ·+xk.

Proof. By Proposition 2.11 (5) the variables xk+1, xk+2, . . . do not

occur in Ssk . Since ∂kSsk = 1, we then see [xk]Ssk = 1. By Propo-

sition 2.11 (4), Ssk is symmetric in x1, . . . , xk, giving the result. □

Theorem 2.18 (Monk’s formula). For r > 0 and v ∈ S∞,

SsrSv =
0

v⋖vtis=w
i≤r<s

Sw.

Proof. Note SskSv is a polynomial of degree ℓ(v) + 1. Then

SskSv =
0

ℓ(w)=ℓ(v)+1

cwSw

since Schubert polynomials are a basis of P. For w ∈ S∞ with ℓ(w) =

ℓ(v) + 1, by Lemma 2.15 and Theorem 2.9 we compute

cw = ∂w(SsrSv) = w · (Ssr )∂w(Sv) +
0

u=wtij⋖w

(αi − αj)∂u(Sv)

where αi = 1 if i ≤ r and 0 otherwise. Since ℓ(w) > ℓ(v), we see

∂w(Sv) = 0. By Lemma 2.15 we have ∂u(Sv) = δuv. Note

αi − αj =

!
1 i ≤ r < j

0 else
, so cw =

!
1 v ⋖ vtij = w, i ≤ r < j

0 else
.

The result now follows. □

Monk’s formula in turn implies another important relation. For

v ∈ Sn and r > 0, define

I(v, r) := {i < r : v ⋖ vtir}, J(v, r) := {s > r : v ⋖ vtrs},
Φ(v, r) := {vtir : i ∈ I(v, r), Ψ(v, r) := {vtrs : s ∈ J(v, r).

See Example 2.20 for worked examples of these terms.

Corollary 2.19 (Monk’s recurrence). For r > 0 and v ∈ S∞,

xrSv =
0

w∈Ψ(v,r)

Sw −
0

u∈Φ(v,r)

Su.



2.3. Monk’s formula 27

Proof. By Proposition 2.17 and Theorem 2.18

xrSv = (Ssr −Ssr−1)Sv =
0

v⋖vtis=w
i≤r<s

Sw −
0

v⋖vtis=w
i≤r−1<s

Su.

The terms on the righthand side that don’t cancel are those in the

first summand with r = i and those in the second where r = s. These

terms correspond precisely to J(v, r) and I(v, r), respectively, so the

result follows from the definitions of Φ(v, r) and Ψ(v, r). □

Example 2.20. Let v = 4317526 and r = 5. Then

I(v, r) = {1, 2, 3}, J(v, r) = {7}

then Φ(v, r) = {u1 = 5317426, u2 = 4517326, u3 = 4357126} and

Ψ(v, r) = {w = 4317625}. Therefore, we have

x5Sv = Sw −Su1 −Su2 −Su3 ,

or equivalently Sw = x5Sv +Su1 +Su2 +Su3 .

As highlighted in Example 2.20, when Ψ(v, r) = {w}, we obtain

an expansion for Sw in terms of other Schubert polynomials. As we

will see, this observation can be applied to any permutation, leading

to a recursive formula for Schubert polynomials.

Recall lexicographic order is the total order ≤lex where

(a, b) ≤lex (c, d)

if a < c or a ≤ c and b ≤ d.

Lemma 2.21. Let w ∈ S∞ and (r, s) be ≤lex–maximal in Inv(w).

Then v := wtrs ⋖ w and Ψ(v, r) = {w}.

Proof. The result is more easily understood working with D(w). To

see v ⋖ w, we must check that the submatrix of Mw with corners

(r, w(r)) and (s, w(s)) has all other entries 0. If such an entry (k, ℓ) is

non-zero, then i < k < s with w(i) > ℓ = w(k) > w(s). This means

(ℓ, s) ∈ Inv(w), but (r, s) ≤lex (ℓ, j), a contradiction.

To see Ψ(v, r) = {w}, let vtrℓ ∈ Ψ(v, r). If ℓ < s, we see w(ℓ) =

v(ℓ) > v(r) = w(s) so (ℓ, s) ∈ Inv(w), a contradiction. If ℓ > s, we

see w(r) = v(s) > v(ℓ) = w(ℓ) so (r, ℓ) ∈ Inv(w), a contradiction.

Therefore ℓ = s and the result holds. □
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Corollary 2.22 (Transition equations). Let w ∈ S∞ and (r, s) be

≤lex–maximal in Inv(w). Then for v = wtrs

Sw = xrSv +
0

u∈Φ(v,r)

Su.

Lemma 2.23. Let w ∈ S∞, (r, s) be ≤lex–maximal in Inv(w) and

v = wtrs. Then if (k, ℓ) is the ≤lex–maximal element of Inv(v) or

Inv(u) with u ∈ Φ(v, r), we have (k, ℓ) ≤lex (r, s).

Proof. Homework for now. □

Theorem 2.24. For w ∈ S∞, Sw ∈ N[x1, x2, . . . ].

Proof. We argue by induction on the value (r, s) of the ≤lex–maximal

inversion of w. Our base case is w = 1, in which case we can

say (r, s) := (0, 0) and Sw = 1. Otherwise, by Corollary 2.22 and

Lemma 2.23 we see

w = xrSv +
0

u∈Φ(v,r)

Su

where if (k, ℓ) is the ≤lex–maximal inversion of v or u ∈ Φ(v, r) then

(k, ℓ) ≤lex (r, s). The result follows from the inductive hypothesis. □

Corollary 2.25. The Schubert polynomials {Sw}w∈S∞ are the unique

family of polynomials satisfying S1 = 1 and Monk’s formula (or the

transition equations, or Corollary 2.22).

In practice, using Corollary 2.22 is a horribly inefficient way to

compute Schubert polynomials. However, we will see it can be ex-

tended to a more useful combinatorial approach in Section ??.

Example 2.26. By repeated application of Corollary 2.22 we have

S1432 = x3S1423 +S2413

= x3(x2S1324 +S3124) + x2S2314 +S3214.

Since 1324 = s2 and 3124, 2314, 3214 are dominant, we have

S1432 = x2x3(x1 + x2) + x3(x
2
1) + x2(x1x2) + x2

1x2

= x2
1x2 + x2

1x3 + x1x
2
2 + x1x2x3 + x2

2x3
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by Proposition 2.17 and Theorem 2.12. Since

S1432 = ∂1∂2∂3(x
3
1x

2
2x3) = ∂1∂2(x

3
1x

2
2

= ∂1(x
3
1(x2 + x3)) = x1x2(x1 + x2) + x3(x

2
1 + x1x2 + x2

2)

= x2
1x2 + x2

1x3 + x1x
2
2 + x1x2x3 + x2

2x3,

we see the transition approach agrees with Definition 2.10 in this case.

We now give an alternate approach to computing Schubert poly-

nomials based on the transition equations. Starting with Monk’s

recurrence

xrSv =
0

w∈Ψ(v,r)

Sw −
0

u∈Φ(v,r)

Su,

the transition equations say given w ∈ S∞ one can choose v so that

Ψ(v, r) = {w}. An alternate approach known as co-transition says

given v ∈ Sn, we can choose r so that Φ(v, r) = ∅. So long as

Ψ(v, r) ⊆ Sn, we can then compute Sv using upward induction and

division. We will need some background to identify the correct r.

For w ∈ S∞, the dominant component ofD(w), denoted Dom(w),

is the ⊂–maximal partition λ so that Dλ ⊆ D(w). Note Dom(w) = ∅
when (1, 1) /∈ D(w). For example, with w = 351642, we see from

Equation (1.4) that Dom(w) = (2, 2).

Lemma 2.27. Let v ∈ S∞ and λ = Dom(v). If r = 1 or λr < λr−1,

then Φ(v, r) = ∅.

Proof. The r = 1 case follows from the definition of Φ(v, r). Oth-

erwise (r,λr), (r−1,λr+1) ∈ D(v) but (r,λr+1) does not. Therefore

v(r) = λr+1. Since (r, j) ∈ D(w) for j ≤ λr, we see v(i) > v(r) for

i < r. Then vtir < v for i < r so Φ(v, r) = ∅. □

Proposition 2.28 (Co-transition). For v ∈ Sn with λ = Dom(v).

Then for r = 1 or r so that λr < λr−1, we have

(2.3) xrSv =
0

w∈Ψ(v,r)

Sw.

Moreover, if λr < n− r then Ψ(v, r) ⊆ Sn.
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Proof. Let λ = Dom(v) and r = 1 or r so that λr < λr−1. By

Lemma 2.27 we see Φ(v, r) = ∅ so Monk’s recurrence becomes Equa-

tion (2.3). Now assume λr < n − r. Then ci(v) ≥ λr + 1 for i < r,

so v(i) ≥ λr +2 for such values. Additionally, we have v(r) = λr +1.

Since λr < n− r, by the pigeon hole principle there must exist some

minimal j so that r < j ≤ n and v(j) > v(r). Then v ⋖ vtrj so

vtrj ∈ Ψ(v, r). For k > n, v(k) > v(j) so ℓ(vtrk) > ℓ(v) + 1 and the

result follows. □

We now give a co-transition proof of Theorem 2.24.

Theorem. For v ∈ Sn, Sv ∈ N[x1, x2, . . . ].

Proof. We argue by downward induction on ℓ(w). For v = w0 the

result follows by definition. Otherwise, by Proposition 2.28 there

exists r so that

xrSv =
0

w∈Ψ(v,r)

Sw

with Ψ(v, r) ⊆ Sn. By the inductive hypothesis, the righthand side

is in N[x1, x2, . . . ]. Dividing by xr, we have

Sv =

1

2
0

w∈Ψ(v,r)

Sw

3

4 /xr.

Since Sv ∈ Pn, we see xr divides Sw so the result follows by the

inductive hypothesis. □

Example 2.29. By repeated application of Proposition 2.28 we have

x1S1432 = S4132 +S3412 +S2431

x2S4132 = S4312 +S4231

x1S2431 = S4231 +S3421.

The underlined permutations are dominant, so by Theorem 2.12 we

have

S4213 =
x3
1x

2
2 + x3

1x2x3

x2
and S2431 =

x3
1x2x3 + x2

1x
2
2x3

x1
,
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so

S1432 =
x3
1x

+
2 x

3
1x3 + x2

1x
2
2 + x2

1x2x3 + x1x
2
2x3

x1

= x2
1x2 + x2

1x3 + x1x
2
2 + x1x2x3 + x2

2x3.

Note our computation agrees with Example 2.20.

As a consequence of our proof of co-transition, we see certain

variables must divide Schubert polynomials.

Proposition 2.30. For w ∈ S∞, we have xDom(w) | Sw.

Proof. Let λ = Dom(w). We argue by induction on |λ|. The base

case where |λ| = 0 is true since x(0) = 1. Now assume |λ| > 0,

and let r be maximal so that λr > 0. Note for j = w−1(λr) the

position of λr in v we have j > r since otherwise (r,λr) /∈ D(w).

Therefore v := wtrj ⋖ w. Either r = 1 or for µ = Dom(v) we have

µr = λr − 1 < λr−1. Then by Lemma 2.27 we see w ∈ Ψ(v, r) and

Φ(v, r) = ∅ so xr | Sw. By the inductive hypothesis, we then have

xrx
µ = xλ | Sw. □

2.4. Schubert polynomials as a basis

One motivation for studying Schubert polynomials is that in many

combinatorial contexts they are the most natural basis for P :=

C[x1, x2, . . . ]. A direct proof based of this fact on properties of divided

difference operators appears as Exercise 2.5.1. We give a stronger

proof showing in a precise sense that the leading monomial of the

Schubert polynomial Sw is xc(w).

For α and β weak compositions, let

Theorem 2.31. The Schubert polynomials {Sw}w∈S∞ are the unique

family of polynomials satisfying:

(1) ∂iSw =

!
Swsi i ∈ DesR(w)

0 else.
for all i ≥ 1.

(2) S1 = 1 and [1]Sw = 0 for all other w ∈ S∞.
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Proof. By combining Proposition 2.11 (1) and (4) with Corollary 2.13,

we see {Sw}w∈S∞ has the desired properties. For the converse, as-

sume there exists w dominant so that Sw ∕= xc(w).

w□ = n+1 . . . 2n 1 . . . n

□

2.5. Exercises

2.5.1. Using divided difference operators, show that {Sw}w∈Sn
is

linearly independent. Explain why this implies {Sw}w∈Sn
is a basis

for {xα : α ⊆ δn} and {Sw}w∈S∞ is a basis for P.

2.5.2. Let w ∈ Sn, (r, s) be the ≤lex–maximal inversion in w and

v = wtrs. Show Φ(v, r) is empty if and only if w is dominant.



Chapter 3

Combinatorial formulas

Recall from Theorem 2.24) that for w ∈ S∞ we have

Sw =
0

α⊨ℓ(w)

cαx
α

with cα ∈ N. In combinatorics, the natural desire when encountering

non-negative integers is for them to count some combinatorial object.

In this section we give two such descriptions of Schubert polynomials:

the pipe dream formula and the bumpless pipe dream formula. Each

formula offers distinct benefits for deducing properties of Schubert

polynomials, and we will present many such applications.

3.1. Bumpless pipe dreams

We begin with a definition:

Definition 3.1. A bumpless pipe dream B is a filling of [n]× [n] with

, , , , • , ◦

so that wires are connected, entering from the bottom of the diagram

and exiting to the right. For (i, j) ∈ [n]× [n], let Bij denote the filling

of position (i, j). Let

B(□) = {(i, j) ∈ [n]× [n] : Bij = □}

33
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and likewise for the other possible fillings. Labeling the wires from

right to left as 1, 2, . . . n, the permutation of B is the permutation

obtained by reading of the wires along the right of B from top to

bottom. A bumpless pipe dream is reduced if no two wires cross more

than once. Let BPD(w) be the set of reduced bumpless pipe dreams

for w.

Example 3.2. There are five bumpless pipe dreams in BPD(1432):

(a)

•

•
•

•

1 2 3 4

(3.1) (b)

•
•

•
•

•◦

1 2 3 4 (c)

•

•

•
•

•
◦

1 2 3 4 (d)

•
•

•
•

•◦

1 2 3 4

(e)

•
•

•

•
•

•
◦

◦

1 2 3 4

Note that bumpless pipe dream (a) in Example 3.2 is the Rothe

diagram D(1432). This is not a coincidence.

Proposition 3.3. A bumpless pipe dream B has no ◦ ’s if and only

if B = D(w) for some w ∈ Sn. In particular D(w) ∈ BPD(w).

Proof. If B has no ◦ ’s, the jth wire enters the bottom, meets some
• in position (i, j) and exits row i. Therefore, if w is the permutation

of B we see B = D(w). The converse is immediate. □

Bumpless pipe dreams have many alternate descriptions.
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Definition 3.4. A vector )a = [a1 . . . ap] ∈ {−1, 0, 1}p is alternating

if the non-zero entries alternate in sign, beginning and ending with 1.

This condition implies )a is not the zero vector. An alternating sign

matrix A is a square matrix with every row and column alternating.

Let ASM(n) be the set of n× n alternating sign matrices.

Note for w ∈ Sn that the permutation matrix Mw ∈ ASM(n).

There are seven matrices in ASM(3) – six permutation matrices and

A =

(

*
0 1 0

1 −1 1

0 1 0

+

- .

Define a map ϕ on bumpless pipe dreams by

, , ,
ϕ−→ 0, • ϕ−→ 1, ◦ ϕ−→ −1.

For example, with

B =

•
•

•
•◦

1 2 3

we have ϕ(B) = A. The condition that wires enter from the bottom

ensures columns of B alternate • , ◦ , . . . , • and the condition

that wires exit to the right guarantees rows alternate in the same

way. This shows ϕ is well-defined.

Proposition 3.5. The map φ is a bijection from bumpless pipe dreams

of size n to ASM(n).

Proof. For A ∈ ASM(n), we define B = ϕ−1(A) as follows. Clearly

Bij =

5
6

7

• Aij = 1

◦ Aij = −1
.

When Aij is 0, place a vertical wire in Bij if the first non-zero entry

above Aij is 1 and a horizontal wire in Bij if the first non-zero entry

to the left of Aij is 1. By construction, ϕ−1 is the inverse of ϕ. □
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One takeaway from Proposition 3.5 is that a bumpless pipe dream

B can be reconstructed from the locations of • ’s and ◦ ’s. In fact,

since the signing is determined by their locations, we only need the

set of elbow locations to reconstruct B. We will show B can also be

reconstructed using two other collections of data.

For A ∈ ASM(n), define the rank matrix rA by

rAkℓ =
0

i∈[k], j∈[l]

Aij .

Note for w ∈ Sn that rM
w

= rw from Definition 1.25. Let B =

ϕ−1(A). With the convection that rA0j = rAi0 = 0, if rAij = k the entry

Bij determines the following values of rA:

(3.2)

Bij
• ◦

rAi−1 j−1 rAi−1 j

rAi j−1 rAij

k k
k k

k−1 k−1
k k

k−1 k
k−1 k

k−2 k−1
k−1 k

k−1 k−1
k−1 k

k−1 k
k k

.

Verifying this table is Exercise 3.5.1.

Lemma 3.6. The bumpless pipe dream B is determined by:

(1) the locations of the • ’s and the ◦ ’s;

(2) the locations of the ’s and the ’s;

(3) the locations of the ’s and the ’s.

Proof. Part (1) is a corollary of Proposition 3.5. Let A = ϕ(B),

observe using Table (3.2) that

rAij−rAi−1 j−1 =

5
886

887

2 Bij =

0 Bij =

1 else

, rAi−1 j−rAi j−1 =

5
886

887

1 Bij =

−1 Bij =

0 else

.

For (2), the first equality shows we can fill in each diagonal using

the locations of the ’s and the ’s using the initial conditions

rA0j = rAi0 = 0. Likewise, for (3) the second equality shows we can

fill in each anti-diagonal using the locations of the ’s and the ’s

using the same initial conditions. □
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One might ask whether the conditions in Lemma 3.6 can be re-

laxed. Towards this end, note

•
•

•
1 2 3 and

•
•

•
•◦

1 2 3

both have a single in position (1, 1). These bumpless pipe dreams

have different permutations. However,

•
•

•

•

•

•
•

•
•

◦
◦

◦

1 2 3 4 5 6 and

•
• •

•

•
•

•
•

•

◦
◦

◦

1 2 3 4 5 6

are distinct elements of BPD(214365) with the same set of ’s.

Definition 3.7 (Droop move). For B a bumpless pipe dream, say

[(i, j), (k, ℓ)] is an available interval if

Bij =
• , Bkℓ = , Bpq ∕= • , ◦ for i ≤ p ≤ k, j ≤ q ≤ ℓ.

Viewing B as its set of elbows, we perform a droop move on B at

the available interval [(i, j), (k, ℓ)] by removing the elbow (i, j) and

adding elbows (i, ℓ), (k, j), (k, ℓ):

(3.3)

i
j

k

ℓ
•

□ →

i
j

k

ℓ

• ◦

•□

Note the underlying permutation is unchanged since the depicted wire

enters and exits the same locations. Additionally, observe that a

droop move is invertible.

Theorem 3.8. For w ∈ Sn, BPD(w) is connected by droop moves.
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Proof. We argue by induction on the number of ◦ ’s. If B has none,

by Proposition 3.3 B = D(w). Otherwise, let (k, ℓ) be ≤lex–minimal

so that Bkℓ = ◦ . Necessarily, there exist i < k and j < ℓ so that

Biℓ = Bkj = • . Let p, q so that i ≤ p ≤ k and j ≤ q ≤ ℓ. By the

≤lex–minimality of (k, ℓ), we see:

• i and j are unique;

• if (p, q) ∕= (k, ℓ), then Bpq ∕= ◦ .

If (p, q) ∕= (i, ℓ), (k, j) and Bpq = • , we see the wire entering Bpq

from below passes through (k, q) and (p, ℓ). The wire entering Bkℓ

from the left passes through these positions as well, so B would not

be reduced:

k

p
i

j q ℓ

• ◦
•

•□

.

Therefore, Bpq ∕= • , and we can perform an inverse droop move on

the interval [(i, j), (k, ℓ)]. The resulting bumpless pipe dream has one

fewer ◦ , so the result follows by induction. □

For w ∈ Sn, the proof of Theorem 3.8 gives a canonical construc-

tion for a path from D(w) to any B ∈ BPD(w). For example, in

Example 3.2 we see there are droops from (a) to (b), (c) and (d) and

from (c), (d) to (e). The canonical path from D(1432) = (a) to (e) is

(a) – (c) – (e). Here, the middle bumpless pipe dream is (c) and not

(d) since (2, 3) is the ≤lex–minimal ◦ in (e).

For D ⊆ [n]× [n], define ρ(D) to be the ⊆–minimal partition ρ so

that D ⊆ Dρ. Abusing notation, let ρ(w) = ρ(D(w)). Since available

droop moves only move □’s northwest, by Theorem 3.8 we see for

B ∈ BPD(w) that B(□) ⊆ Dρ(w). Therefore, every available droop

move for every bumpless pipe dream occurs in D(ρ(w)) as well. Then

for (i, j) /∈ Dρ(w), we see Bij must be the same for every B ∈ BPD(w).

We call such cells frozen.

Corollary 3.9. Let w ∈ Sn be dominant. Then BPD(w) = {D(w)}.
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Proof. For w dominant, ρ(w) = c(w) so Dρ(w) = D(w). In par-

ticular, no • ’s occur in Dρ(w) so there are no available intervals.

Therefore by Theorem 3.8 we have BPD(w) = {D(w)}. □

For B a bumpless pipe dream, let

xB =
9

(i,j)∈B(□)

xi.

Theorem 3.10. For w ∈ Sn,

Sw =
0

B∈BPD(w)

xB .

Proof. For the purposes of this proof, let

Bw =
0

B∈BPD(w)

xB .

We will argue by induction on the ≤lex maximal inversion in w. For

our base case, let w be dominant. By Corollary 3.9, we see BPD(w) =

{D(w)} so Bw = xc(w) = Sw by Theorem 2.12.

Now let (r, s) be the ≤lex–maximal inversion in w. The transition

equation Theorem 2.19 says

Sw = xrSv +
0

u∈Φ(v,r)

Su

where v = wtrs. By the inductive hypothesis, we then have

Sw = xrBv +
0

u∈Φ(v,r)

Bu.

We will show the righthand side equals Bw bijectively.

To do so, let Φ(v, r) = {u(1), . . . , u(k)} where u(j) = vtijr. Recall

that D(w) = D(v) ∪ {(r, w(s)} and for all j ∈ [k] that (ij , w(ij)) is

a maximally south east • in D(w) northwest of (r, w(s)). Therefore

[(i, w(i), (r, w(s)] is an available droop move in D(w). Let I(v, r) =

{i1, . . . , ik}. Then

BPD(w) = R0 ⊔R1 ⊔ · · · ⊔Rk

where R0 = {B ∈ BPD(w) : Brw(s) = □} and Rj is the the set of

bumpless pipe dreams whose canonical path from D(w) has the first
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droop at the available interval [(ij , w(ij)), (r, w(s))]. We will identify

R0 with BPD(v) and Rj with BPD(u(j)).

Note that (r, w(s)) = (r, v(r)) is frozen for v. Therefore, for any

B ∈ BPD(v) we can perform the transformation

v(r) v(s)
r

s

•

• 0→

v(r) v(s)
r

s

•

•

□

to obtain B ∈ R0. Note this transformation is invertible. Therefore.
B∈R0

xB = xrSv.

Similarly, for j ∈ [k] and B ∈ BPD(u(j)) the transformation

ij
r

s

•
•

• 0→

ij
r

s

•
•
◦

•

•

maps B to B′ ∈ BPD(w) since all the illustrated positions are frozen

in u(j). Note this transformation is invertible. Moreover, the first

droop in a canonical path fromB′ toD(w) will always include (r, w(s))

if possible, so B′ ∈ Rj . Since B(□) = B′(□), we have Su(j) =.
B∈Rj

xB and the result follows. □

Example 3.11. For w = 1432 and labels as in Example 3.2, we have

(r, s) = (3, 4), (r, w(s)) = (3, 2), v = 1423 and Φ(v, 3) = {u(1) =

2413} Then R0 = {(a), (b), (d)}, R1 = {(c), (e)}. Figures will be

added later comparing Rothe diagrams to bumpless pipe dreams.

3.2. Vexillary bumpless pipe dreams

Recall a permutation v is vexillary if it avoids the pattern 2143. We

will show that bumpless pipe dreams for vexillary permutations have

a natural interpretation as non-intersecting lattice paths, or equiva-

lently as tableaux.

First, we prove some properties of bumpless pipe dreams for vex-

illary permutations.
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Lemma 3.12. Let w ∈ Sn and B ∈ BPD(w). Then B( )∩Dρ(w) =

∅ if and only if w is vexillary.

Proof. We argue by induction on |B( ◦ )| with D(w) as our base

case. Assume we have a in position (i, j) ∈ Dρ(w). Then there

exists (k, ℓ) ∈ D(w) with i < k, j < ℓ. Diagrammatically, we have

i

j

k

ℓ

•
•

•
•□
.

Equivalently, w contains 2143 as a pattern at positions

{w−1(j), i, w−1(ℓ), k}

so w is not vexillary.

Now let B ∈ BPD(w) with B ∕= D(w). We can perform an inverse

droop move on B at the interval [(i, j), (k, ℓ)]:

i
j

k

ℓ

• ◦

•□

B →

i
j

k

ℓ
•

□
B′

By the induction hypothesis, the resulting bumpless pipe dream B′

has no crosses in Dρ(w) if and only w is vexillary. Since [(i, j), (k, ℓ)]

is an available interval, no elbows exist inside it. Therefore, any

wire entering column j between rows i and k must continue through

column ℓ. Likewise, any wire entering row i between columns j and ℓ

must continue through row k. This guarantees any in B′ occuring

in the available interval corresponds to a in the available interval

in B. All entries outside the available interval are unchanged. Since

available intervals are contained in Dρ(w), the result follows. □

When v is vexillary, our proof shows available intervals only con-

tain wires along the boundary. Equivalently:
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Corollary 3.13. Let v ∈ Sn be vexillary, B ∈ BPD(v) and [(i, j), (k, ℓ)]

be an available interval for B. Then (i, k]× (j, ℓ] ⊆ B(□).

Corollary 3.14. Let v ∈ Sn be vexillary. Then each B ∈ BPD(v) is

determined by B(□).

Proof. By Lemma 3.12 we see B( ) is frozen. Therefore, B( )

is determined by v, so by Lemma 3.6 (2) we can reconstruct B from

B(□) and v. □

The kth diagonal of the diagram D ⊆ [n] × [n] is the subset

{(i, j) ∈ D : i− j = k}. Let dk(D) be the size of the kth diagonal of

D. Recall for α a weak composition that λ(α) is the integer partition

obtained by sorting α.

Proposition 3.15. Let v ∈ Sn vexillary. Then for B ∈ BPD(w),

dk(B(□)) = dk(Dλ(c(w))) for all k.

Proof. By Corollary 3.9, the result holds for v dominant. Otherwise,

we perform a droop. By Corollary 3.13, we see the droop move shifts

cells along diagonals. Therefore, the counts di(B□) are invariant

under droop moves. To see the counts coincide with those forDλ(c(v)),

note by Exercise 2.5.2 that the Lascoux-Sch utzenberger tree of v has

at least one dominant leaf. The shape of that permutation □

Definition 3.16 (Semistandard tableaux). Let λ = (λ1, . . . ,λk) be

an integer partition. A tableau of shape λ is a function T : Dλ → Z.
For (i, j) ∈ Dλ, we have Tij := T ((i, j)). A tableau in semistandard

if Tij ≤ Ti j+1 and Tij < Ti+1 j when T is well-defined and has type

φ = (φ1, . . . ,φk) if Tij ∈ [φi] for all (i, j) ∈ Dλ. Let SSYT(λ,φ) be

the set of semistandard tableaux of shape λ and type φ. Additionally,

define SSYTn(λ) := SSYT(λ, (nk)).

Example 3.17. We depict the tableaux in SSYT3((2, 1)):

1 1
2

1 2
2

1 1
3

1 3
2

1 2
3

1 3
3

2 2
3

2 3
3

.
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Each edge corresponds to incrementing a single entry by one.

There is alternate description of semistandard tableaux that closely

resembles bumpless pipe dreams. The rth diagonal of [n]× [n] is the

set {(i, j) ∈ [n] × [n] : i − j = r}. For D ⊆ [n] × [n], let Dr be the

rth diagonal of D. We say Dr interlaces Dr±1 interlaces if for each

(i, j), (k, ℓ) ∈ Dr+1 with i < k, j < ℓ there exists (i′, j′) ∈ Dr with

Definition 3.18. An excited Young diagram is a diagram D ⊆ [n]×
[n] that is for (i, j), (k, ℓ) in the rth diagonal

3.3. Pipe dreams

Definition 3.19. A compatible sequence is a biword

(3.4)

$
i

a

%
=

$
i1, i2, . . . , ip
a1, a2, . . . , ap

%

where 1 ≤ i1 ≤ i2 ≤ . . . ip with ik = ik+1 implying ak > ak+1 and

ik ≤ ak for all k ∈ [p]. Let K(a) denote the set of i so that
"
i
a

#
is

a compatible sequence. The permutation of a compatible sequence is

sa1 . . . sap . A compatible sequence is reduced if a is.

To the compatible sequence in Equation 3.4 we associate the di-

agram {(ik, ak+1−ik) : k ∈ [p]}, which we call its pipe dream. This

procedure is inverted by reading the entries of P from right to left

and top to bottom, mapping each (i, j) ∈ P to
"

i
i+j−1

#
. For w ∈ Sn,

let PD(w) be the set of pipe dreams whose associated compatible se-

quence is reduced with permutation w. Note a reduced pipe dream

P has |P | = ℓ(w).

For w ∈ Sn, the maximum value in a reduced word is n−1. With

P ∈ PD(w) and (i, j) ∈ P , we then see i + j ≤ n−1. Then P ⊆
Dδn . For example, Red(1423) = {(3, 2)}. The reduced compatible

sequences for 1423 and associated pipe dreams are

compatible sequence
"
22
32

#
,

"
12
32

#
,

"
11
32

#

pipe dream · · ·
++
·

, · · +
+ ·
·

, · ++
· ·
·

wiring diagram
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Here, we depict the pipe dream P by placing + in position (i, j) of

Dδn if (i, j) ∈ P . Replacing each · with gives the wiring diagram.

If we label the wires in each diagram of P from right to left across the

top, their order on the left hand side is the permutation of P . This is

true in general since the associated biword of P is read off from right

to left, top to bottom.

From the definition, it is not obvious that every permutation has

a pipe dream.

Lemma 3.20. For w ∈ S∞, we have Dc(w) ∈ PD(w).

Proof. This is Exercise 3.5.3 . □

The main objective for this section is to prove a combinatorial for-

mula for Schubert polynomials in terms of pipe dreams. Our proof is

similar to that for the bumpless pipe dream formula (Theorem 3.10)

with a key difference. While bumpless pipe dreams give a combi-

natorial realization of transition, pipe dreams give a combinatorial

realization of cotransition. In order to see this, we must analyze the

dominant component of pipe dreams.

ForD ⊆ [n]×[n], the dominant component ofD, denoted Dom(D),

is the ⊆–maximal partition λ so that Dλ ⊆ D. Note Dom(w) =

Dom(D(w)) as defined in Section 2.3. Recall a permutation v is dom-

inant if D(v) = Dλ for some partition λ, or equivalently if D(v) =

DDom(v). Moreover, the map v 0→ c(v) is a bijection from dominant

permutations in Sn to partitions λ ⊆ δn.

Lemma 3.21. Let v be a dominant. Then PD(v) = {D(v)}.

Proof. By Lemma 3.20, we see D(v) ∈ PD(v). Now assume P ∈
PD(v) is a diagram with D(v) ∕⊆ P . Let (i, j) be the ≤lex–minimal

element of P \D(v). Then the permutation of P maps j to i:

(3.5) i

j

,

but v(j) > i, a contradiction. Therefore D(v) ⊆ Dom(P ). Since

|P | = |D(v)|, we then have P = D(v). □
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Corollary 3.22. Let v, w ∈ S∞ with v dominant. Then v ≤ w if

and only if D(v) ⊆ P for all P ∈ PD(w).

Proof. By subword containment, v ≤ w if and only if P =
"
i
a

#
has a

subword
"
i′

a′

#
corresponding to P ′ ∈ PD(v). In this case, Lemma 3.21

says PD(v) = {D(v)}, so P ′ = D(v) ⊆ P . □

This says every pipe dream for w ∈ Sn has the same dominant

component. We now show this dominant component is Dom(w).

An outer corner of the partition λ is (i, j) where λ + εi is a

partition and j = λi+1. Therefore Dλ ∪ {(i, j)} = Dλ+εi . Note if

λ = Dom(w), then ci(w) = λi.

Proposition 3.23. For w ∈ Sn and P ∈ PD(w), Dom(w) = Dom(P ).

Proof. By Corollary 3.22, the result is equivalent to showing Dom(w) =

Dom(Pbot(w)). Note Dom(w) ⊆ c(w) by construction. By the same

reasoning as in the proof of Lemma 3.21, if (i, j) is an outer corner

for Dom(D(w)), then it is also an outer corner of Pbot(w). Thus

Dom(Pbot(w)) = Dom(w). □

We are now ready to prove that pipe dreams satisfy a cotransition–

type recurrence. For v ∈ S∞, recall from Section 2.3 that

Ψ(v, r) = {vtrs : v ⋖ trs, r < s}.

Theorem 3.24. Let v ∈ S∞ and (i, j) be an outer corner of Dom(v).

The following map is a bijection:

PD(v) → ∪w∈Ψ(v,i) PD(w)

P 0→ P ∪ {(i, j)}

Proof. At the level of wiring diagrams, our map sends

i

j ℓ

k −→

i

j ℓ

k .
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Here, the locations of k and ℓ are not necessarily to scale, but i < k

and j < ℓ. Therefore, P ∪ {(i, j)} has the permutation vtik. Then

v < vtjℓ by Corollary 1.22, so ℓ(vtik) ≥ ℓ(v) + 1. Moreover,

|P ∪ {(i, j)}| = ℓ(w) + 1,

so ℓ(vtik) = ℓ(v)+1 and v⋖vtik. This shows our map is well-defined.

To the see the map is invertible, let w = vtik ∈ Ψ(v, i) and λ =

Dom(v). Note ci(w) = ci(v)+ 1. Let u be the dominant permutation

with c(u) = λ. Then u ≤ v ≤ w so by Corollary 3.22 λ ⊆ Dom(w).

Since ci(w) = ci(v) + 1, we see λ+ εi ⊆ Dom(Pbot(w)), which equals

Dom(w) by Proposition 3.23. For P ∈ PD(w), we then have (i, j) ∈
P . By examining wiring diagrams, the permutation v′ of P \ {(i, j)}
must map j to i. Since w(j) = k, we have v′ = v and the result

follows. □

For P a diagram and i = (i1, . . . , ip) a word, define

xP =
9

(i,j)∈P

xi and xi = xi1 . . . xip .

Theorem 3.25. For v ∈ S∞,

Sv =
0

P∈PD(v)

xP =
0

a∈Red(v)

0

i∈K(a)

xi.

Proof. Assume v ∈ Sn. We argue by induction on
"
n
2

#
− ℓ(v). Our

base case is v = w0, where the result holds by Lemma 3.21 and

Theorem 2.12. Otherwise, let λ = Dom(v) and note λ ⊂ δn without

equality. There then exists an outer corner (i, j) of λ with (i, j) ∈ Dδn .

By Proposition 2.28 and the induction hypothersis, we compute

xiSv =
0

w∈Ψ(v,i)

Sw

=
0

w∈Ψ(v,i)

0

P∈PD(w)

xP .

Applying the inverse map from Theorem 3.24, we see
.

w∈Ψ(v,i)

.
P∈PD(w) x

P

xi
=

0

P∈PD(v)

xP

and the result follows. □
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Example 3.26. For w = 1432, note Dom(w) = () so its sole outer

corner is (1, 1). The five pipe dreams of PD(w) are:

, , , , .

Adding the cell (1, 1) to each of these, we obtain

, , , , .

The first and second of these comprise PD(4132), the third and fourth

comprise PD(2431) and the last is the sole element in PD(3412). Since

Ψ(w, 1) = {2431, 3412, 4132}, this is consistent with Theorem 3.24.

Note 3412 is dominant, so S3412 = x2
1x

2
2. Meanwhile, Dom(4132) has

the outer corner (1, 2) and Dom(2431) has the outer corner (2, 1).

Adding these to the appropriate pipe dreams, we get

, and , .

These are pipe dreams for the dominant permutations 4312, 4231

(twice!) and 3421. The proof outline of Theorem 3.25 in this case

gives the computation

Sw =

x2
1x

2
2x3+x3

1x2x3

x1
+

x3
1x2x3+x3

1x
2
2

x2
+ x2

1x
2
2

x1

= x2
2x3 + x1x2x3 + x2

1x3 + x2
1x2 + x1x

2
2

as expected.

3.4. Pipe dreams and ladder moves

Our proof of Theorem 3.10 included an efficient method of generating

the set of bumpless pipe dreams for a fixed permutation. In contrast,

our proof of Theorem 3.25 does not offer an easy path to generating

the set of pipe dreams for a permutation. In this section, we introduce

local moves that allow one to generate the set of all pipe dreams.

Definition 3.27. A chute move is the transformation on diagrams

· +. . .+ ·
++. . .+ · −→ · +. . .++

· +. . .+ · .
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Similarly, a ladder move is the transpose of a chute move. A move

that is both a chute move and a ladder move is called simple. These

moves can all be inverted.

The following follows by examining of wiring diagrams.

Lemma 3.28. Let P, P ′ be two pipe dreams differing by a chute move

(equivalently, a ladder move). Then the permutations of P and P ′ are

the same.

We depict the chute and ladder moves on PD(1432) below:

· · ·
++
+

· + ·
++
·

· · +
+ ·
+

· ++
· ·
+

· ++
· +
·

Here, the red edge is a ladder move, the blue edge is a chute move

and the other edges are simple moves.

Theorem 3.29. For w ∈ S∞,

(1) the directed graph on PD(w) given by ladder moves is con-

nected with unique source Dc(w).

(2) the directed graph on PD(w) given by chute moves is con-

nected with unique sink DT
c(w−1).

(3) the directed graph on PD(w) given by both chute and lad-

der moves is connected with unique source Dc(w) and sink

DT
c(w−1).

Proof. We first prove (a). It is easy to check that Dc(w) has no

available inverse ladder moves, so it is a sink in the graph on PD(w).

Now let P ∈ PD(w) so that P ∕= Dc(w). Note P ∕= Dc(v) for any

v ∈ S∞, so there must exist a row in P with a + after a ·. Let i be

the lowest row in P with a + after a ·, and let j be a column so that

Pij = · and Pi j+1 = +. Since P is reduced, we cannot have Pi+1 j =

Pi+1 j+1 = ·, and the maximality of i guarantees we do not have
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Pi+1 j = ·, Pi+1 j+1 = +. Therefore, either Pi+1 j = ·, Pi+1 j+1 = ·
and we have an inverse ladder move or Pi+1 j = +, Pi+1 j+1 = +, in

which case the same applies to row i+ 2 and so on. Since P is finite,

there exists minimal k ≥ 1 so that Pi+k j = ·, Pi+k j+1 = ·, giving an

available inverse ladder move. Since our directed graph has a unique

source, it must be connected.

For (b), use (a) for PD(w−1) and take the transpose. Then (c)

follows from (a) and (b). □

3.5. Exercise

3.5.1. Justify the values in Table (3.2).

3.5.2. For each pair in
:

, , , , • , ◦
;

not covered by

Lemma 3.6, find distinct bumpless pipe dreams with the same loca-

tions for these values or prove that one can reconstruct a bumpless

pipe dream using this information.

3.5.3. Prove for all w ∈ S∞ that Dc(w) ∈ PD(w).
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