Scaled Envelopes: Scale Invariant and Efficient Estimation in Multivariate Linear Regression

By R. Dennis Cook
School of Statistics, University of Minnesota, 313 Ford Hall, 224 Church Street SE, Minneapolis, Minnesota, 55455
dennis@stat.umn.edu
and Zhinua Su
Department of Statistics, University of Florida, 102 Griffin-Floyd Hall, Gainesville, Florida,
32611
zhihuasu@stat.ufl.edu

SUMMARY

Efficient estimation of the regression coefficients is a fundamental problem in multivariate linear regression. The envelope model proposed by Cook et al. (2010) was shown to have the potential to achieve substantial efficiency gains by accounting for linear combinations of the response vector that are essentially immaterial to coefficient estimation. This requires in part that the distribution of those linear combinations be invariant to changes in the non-stochastic predictor vector. However, inference based on an envelope is not invariant or equivariant under rescaling of the responses, tending to limit application to responses that are measured in the same or similar units. The efficiency gains promised by envelopes often cannot be realized when the
R. D. Cook and Z. Su responses are measured in different scales. To overcome this limitation and broaden the scope of envelope methods, we propose a scaled version of the envelope model, which preserves the potential of the original envelope methods to increase efficiency and is invariant to scale changes. Likelihood-based estimators are derived and theoretical properties of the estimators are studied in various circumstances. It is shown that estimating appropriate scales for the responses can produce substantial efficiency gains when the original envelope model offers none. Simulations and an example are given to support the theoretical claims.

Some key words: Dimension reduction, Envelope model, Reducing subspace, Similarity transformation.

1. Introduction

The standard multivariate linear regression model can be written as

$$
\begin{equation*}
Y=\alpha+\beta X+\varepsilon \tag{1}
\end{equation*}
$$

where $Y \in \mathbb{R}^{r}$ is the stochastic response vector, $X \in \mathbb{R}^{p}$ denotes the vector of non-stochastic predictors centered at 0 in the sample, the error vector $\varepsilon \in \mathbb{R}^{r}$ has mean 0 and covariance matrix $\Sigma>0, \alpha \in \mathbb{R}^{r}$ is an unknown vector of intercepts and $\beta \in \mathbb{R}^{r \times p}$ is an unknown matrix of regression coefficients. If X is stochastic, X and Y have a joint distribution, but we still condition on the observed values of X since the predictors are ancillary under model (1). The j th row of the ordinary least squares estimator of β is equal to the coefficient vector from the ordinary least squares regression of the j th element of Y on $X(j=1, \ldots, r)$. Stochastic relationships among the elements of Y are not used in this standard estimator of β. However, the relationships among the elements of Y play a central role in envelope estimation.

The envelope model proposed by Cook et al. (2010) has the potential to yield an estimator of β that is substantially less variable than the ordinary least squares estimator. In many datasets,
the distribution of some linear combinations of Y may be invariant to changes in X and uncorrelated with a complementary set of linear combinations. When this occurs, Y can be divided into a material part, whose distribution depends on X, and an immaterial part, whose distribution does not depend on X. The immaterial part of Y contains no information on β, but it induces extraneous variation into the estimation of β via model (1). The envelope model was designed to account for the immaterial response variation, resulting in an estimator of β that may be more efficient than the standard estimator and substantially more efficient when the immaterial variation is substantially greater than the material variation in Y. The envelope estimator of β reduces to the ordinary least squares estimator when there is no immaterial variation in Y.

We define a scale transformation of the response to be of the form $Y \longmapsto A Y$, where $A \in \mathbb{R}^{r \times r}$ is a non-singular diagonal matrix. Like principal component analysis, partial least squares and other methods, the envelope model is not invariant or equivariant under scale transformations: if we perform a scale transformation on the responses, the envelope estimator of the new β could reduce to the ordinary least squares estimator. This property tends to limit application of the envelope model to responses that are in the same or similar scales.

In this article we propose a scaled envelope model, which is scale-invariant and can achieve efficiency gains beyond those possible from the original envelope model. This is accomplished by incorporating a scaling matrix into the model and so scale transformations are considered during estimation. Scaling is a common practice in chemometrics and in many other applications.

The following notations and definitions will be used in our discussion. For positive integers a and $b, \mathbb{R}^{a \times b}$ denotes the class of all $a \times b$ matrices. If $A \in \mathbb{R}^{a \times b}$, then $\operatorname{span}(A)$ is the subspace spanned by the columns of A. For a subspace $\mathcal{S}, \mathcal{S}^{\perp}$ stands for its orthogonal complement. With $A \in \mathbb{R}^{a \times a}$ and a subspace $\mathcal{S} \subseteq \mathbb{R}^{a}, A \mathcal{S}=\{A s: s \in \mathcal{S}\}$. The spectral norm of a matrix of A is denoted by $\|A\|$ and the Moore-Penrose inverse of A is denoted by A^{\dagger}. For a positive definite matrix $\Delta \in \mathbb{R}^{a \times a}$, the inner product in \mathbb{R}^{a} defined by $\left\langle x_{1}, x_{2}\right\rangle_{\Delta}=x_{1}^{T} \Delta x_{2}$ is called the Δ inner product, where x_{1} and x_{2} are two arbitrary vectors in \mathbb{R}^{a}. The symbol $P_{A(\Delta)}$ is a projection operator onto A or $\operatorname{span}(A)$ in the Δ inner product if A is a space or a matrix, and $P_{A(\Delta)}=A\left(A^{T} \Delta A\right)^{\dagger} A^{T} \Delta$ if A is a matrix. We use $Q_{A(\Delta)}=I-P_{A(\Delta)}$. Projection operators employing the identity inner product are written as P_{A}, i.e., $P_{A}=P_{A(I)}$, and $Q_{A}=I-P_{A}$. The notation \sim means identically distributed, and \otimes stands for the Kronecker product.

2. ENVELOPE MODEL

Following Cook et al. (2010), let \mathcal{S} be a subspace of \mathbb{R}^{r} with the properties that (i) $Q_{\mathcal{S}} Y \mid$ $X \sim Q_{\mathcal{S}} Y$, and (ii) $P_{\mathcal{S}} Y$ is uncorrelated with $Q_{\mathcal{S}} Y$ given X. Condition (i) indicates that $Q_{\mathcal{S}} Y$ carries no marginal information about β, and condition (ii) requires that $Q_{\mathcal{S}} Y$ does not carry information about β through its conditional correlation with $P_{\mathcal{S}} Y$. Let $\mathcal{B}=\operatorname{span}(\beta)$. Conditions (i) and (ii) are equivalent to

$$
\begin{equation*}
\text { (a) } \mathcal{B} \subseteq \mathcal{S}, \quad \text { (b) } \Sigma=P_{\mathcal{S}} \Sigma P_{\mathcal{S}}+Q_{\mathcal{S}} \Sigma Q_{\mathcal{S}} \tag{2}
\end{equation*}
$$

where $P_{\mathcal{S}} \Sigma P_{\mathcal{S}}=\operatorname{var}\left(P_{\mathcal{S}} Y\right)$ and $Q_{\mathcal{S}} \Sigma Q_{\mathcal{S}}=\operatorname{var}\left(Q_{\mathcal{S}} Y\right)$. Following standard terminology in the literature on invariant subspaces and functional analysis (Conway, 1990), the decomposition of Σ shown in (2b) is equivalent to requiring that \mathcal{S} be a reducing subspace of Σ, although this notion of reduction is incompatible with how reduction is usually understood in statistics. The Σ-envelope of \mathcal{B}, denoted by $\mathcal{E}_{\boldsymbol{\Sigma}}(\mathcal{B})$ and by the abbreviated version \mathcal{E} if it appears in a subscript, is defined as the intersection of all $\mathcal{S} \subseteq \mathbb{R}^{r}$ that satisfies condition (2), and thus $\mathcal{E}_{\boldsymbol{\Sigma}}(\mathcal{B})$ is the subspace of minimal dimension that reduces Σ and contains \mathcal{B}. To describe this structure succinctly, we refer to $P_{\mathcal{E}} Y$ as the part of Y that is material to the estimation of β, and to $Q_{\mathcal{E}} Y$ as the part of Y that is immaterial to the estimation of β. We call (1) the ordinary envelope model
when conditions (2) are imposed. We also refer to it as the envelope model when there is no chance of confusing it with the scaled envelope model of the next section.

Let u denote the dimension of $\mathcal{E}_{\boldsymbol{\Sigma}}(\mathcal{B})$, let $\Gamma \in \mathbb{R}^{r \times u}$ be an orthogonal basis of $\mathcal{E}_{\boldsymbol{\Sigma}}(\mathcal{B})$, and let $\Gamma_{0} \in \mathbb{R}^{r \times(r-u)}$ be an orthogonal basis of $\mathcal{E} \frac{\perp}{\boldsymbol{\Sigma}}(\mathcal{B})$. The coordinate form of an envelope model can then be written as

$$
\begin{equation*}
Y=\alpha+\Gamma \eta X+\varepsilon, \quad \Sigma=\Gamma \Omega \Gamma^{T}+\Gamma_{0} \Omega_{0} \Gamma_{0}^{T} \tag{3}
\end{equation*}
$$

where the coefficients $\beta=\Gamma \eta$. The positive definite matrix $\Omega=\operatorname{var}\left(\Gamma^{T} Y\right) \in \mathbb{R}^{u \times u}$ represents the variation in the material part of Y; similarly, $\Omega_{0}=\operatorname{var}\left(\Gamma_{0}^{T} Y\right) \in \mathbb{R}^{(r-u) \times(r-u)}$ represents the variation in the immaterial part. When $u=r, \mathcal{E}_{\boldsymbol{\Sigma}}(\mathcal{B})=\mathbb{R}^{r}$, the envelope model reduces to the standard model and there is no gain in efficiency. However, substantial efficiency gains can be obtained when $\left\|\Gamma_{0} \Omega_{0} \Gamma_{0}^{T}\right\|=\left\|\Omega_{0}\right\| \gg\left\|\Gamma \Omega \Gamma^{T}\right\|=\|\Omega\|$.

The parameters in (3) are estimated by maximizing a normal likelihood function. Let $\widetilde{\Sigma}_{Y}$, $\widetilde{\beta}$ and $\widetilde{\Sigma}_{\text {res }}$ denote the sample covariance matrix of Y, the least squares estimator of β, and the sample covariance matrix of the residuals from the least squares regression of Y on X. The estimator of the envelope subspace is then the span of $\arg \min \left\{\log \left|\Gamma^{T} \widetilde{\Sigma}_{\mathrm{res}} \Gamma\right|+\log \left|\Gamma^{T} \widetilde{\Sigma}_{Y}^{-1} \Gamma\right|\right\}$, where the minimization is over the $r \times u$ Grassmannian (Cook et al., 2010). Let $\widehat{\Gamma}$ be a basis of the estimated envelope subspace. The envelope estimators of the regression coefficients and the error covariance matrix are then $\widehat{\beta}=P_{\widehat{\Gamma}} \widetilde{\beta}$ and $\widehat{\Sigma}=P_{\widehat{\Gamma}} \widetilde{\Sigma}_{\text {res }} P_{\widehat{\Gamma}}+Q_{\widehat{\Gamma}} \widetilde{\Sigma}_{Y} Q_{\widehat{\Gamma}}$. The forms of the estimators are consistent with the conditions in (2).

Figure 1 provides a graphical illustration of the working mechanism of the envelope model. In both panels, the two ellipses represent two populations. The predictor $X \in \mathbb{R}^{1}$ is an indicator variable taking values 0 or 1 to denote the different populations, Y_{1} and Y_{2} are two responses representing two characteristics of the populations, and β is the difference between the two population means. The left panel represents the analysis under the standard model. For inference on
β_{2}, the second element of β, a data point y is directly projected onto the Y_{2} axis following the dashed line marked A. The two curves in the left panel stand for the two projected distributions from the two populations. There is considerable overlap between the two projected distributions, so it may take a large sample size to infer that $\beta_{2} \neq 0$ in a least squares analysis. The right panel presents the analysis under the envelope model. Cook et al. (2010) proved that $\mathcal{E}_{\boldsymbol{\Sigma}}(\mathcal{B})$ is spanned by some subset of the eigenvectors of Σ. In this case, the eigenvector corresponding to the smaller eigenvalue of Σ provides all the material information, since the distribution of Y does not depend on X in the direction of $\mathcal{E} \frac{\perp}{\boldsymbol{\Sigma}}(\mathcal{B})$, which corresponds to the other eigenvector of Σ and to the immaterial information. So $\mathcal{E}_{\Sigma}(\mathcal{B})$ is spanned by the second eigenvector of Σ and $u=1$. For inference on β_{2} under the envelope model, a data point y is first projected onto $\mathcal{E}_{\boldsymbol{\Sigma}}(\mathcal{B})$ to remove the immaterial information $Q_{\Gamma} y$ and simultaneously extract the material information $P_{\Gamma} y$, which is then projected onto the Y_{2} axis following the dashed lines marked B. The two curves at the bottom stand for the projected distributions for the two populations, which are now well separated. This indicates that by accounting for the immaterial information, the envelope model achieves substantial efficiency gains compared to the standard model.

3. Scaled Envelope Model

3.1. Motivation

The ordinary envelope model (3) is not invariant or equivariant under linear transformations of the response. In particular, suppose that we rescale Y by multiplication by a non-singular diagonal matrix A. Let $Y_{N}=A Y$ denote the new response, let $\widehat{\beta}$ and $\widehat{\Sigma}$ denote the estimators of β and Σ based on the envelope model for Y on X, and let $\widehat{\beta}_{N}$ and $\widehat{\Sigma}_{N}$ denote the estimators of β and Σ based on the envelope model for Y_{N} on X. Then we do not generally have invariance, i.e., $\widehat{\beta}_{N}=\widehat{\beta}, \widehat{\Sigma}_{N}=\widehat{\Sigma}$, or equivariance, i.e., $\widehat{\beta}_{N}=A \widehat{\beta}, \widehat{\Sigma}_{N}=A \widehat{\Sigma} A$. In fact, the dimension of

Fig. 1: Left panel: Inference on β_{2} under the standard model. Right panel: Inference on β_{2} under the envelope model.
the envelope subspace may change because of the transformation. We illustrate this using the example in Fig. 1. Suppose we multiply Y_{2} by 2 and leave Y_{1} unchanged, so A is a 2×2 diagonal matrix with diagonal elements 1 and 2. The distribution of $A Y \mid X$ is displayed in Fig. 2. We denote the two eigenvectors of the new covariance matrix Σ_{N} as v_{1} and v_{2} and let $\mathcal{B}_{N}=\operatorname{span}\left(\beta_{N}\right)$ as marked in the left panel. Since \mathcal{B}_{N} aligns with neither v_{1} nor v_{2}, the envelope is two dimensional: $\mathcal{E}_{\boldsymbol{\Sigma}_{N}}\left(\mathcal{B}_{N}\right)=\mathbb{R}^{2}$. In this case, all linear combinations of Y are material to the regression, the envelope model is the same as the standard model and no efficiency gains are achieved.

The scaled envelope model as described formally in $\S 3 \cdot 2$ seeks a rescaling that converts Fig. 2 to Fig. 1, performs the envelope estimation as in the right panel of Fig. 1, and then transforms the estimators back to the original scales, which is the scale in Fig. 2. This process results in the material part of Y being represented as $A P_{\Gamma} A^{-1} Y$, while it is represented as $P_{\Gamma} Y$ in an envelope analysis. In linear algebra, the transformation matrices $A P_{\Gamma} A^{-1}$ and P_{Γ} are said to

$p u+r(r+1) / 2$. Compared to an envelope model with the same dimension, the scaled envelope model has $r-1$ additional parameters because of the diagonal scaling matrix Λ.

4. Estimators and Their Properties

4.1. Maximum likelihood estimation when Λ is known

As background, we first discuss estimation when Λ is known. In this case, we transform the response Y in (4) to $\Lambda^{-1} Y$ and write the resulting ordinary envelope model as

$$
\begin{equation*}
\Lambda^{-1} Y=\alpha_{o}+\Gamma \eta X+\epsilon_{o}, \quad \operatorname{var}\left(\epsilon_{o}\right)=\Sigma_{o}=\Gamma \Omega \Gamma^{T}+\Gamma_{0} \Omega_{0} \Gamma_{0}^{T} \tag{5}
\end{equation*}
$$

This leads to scaled envelope estimators $\widehat{\beta}_{\Lambda}$ and $\widehat{\Sigma}_{\Lambda}$ of β and Σ, when Λ is known: first transform Y to $\Lambda^{-1} Y$ and estimate $\beta_{o}=\Gamma \eta$ and Σ_{o} from model (5) following Cook et al. (2010). Then $\widehat{\beta}_{\Lambda}=\Lambda \widehat{\beta}_{o}$ and $\widehat{\Sigma}_{\Lambda}=\Lambda \widehat{\Sigma}_{o} \Lambda$.

Model (5) is just an ordinary envelope model with response $\Lambda^{-1} Y$. We use the subscript o to stand for quantities from this model, which occur within the context of the scaled envelope model, to distinguish it from the ordinary envelope model (3) when $\Lambda=I_{r}$. For instance, $\beta_{o}=$ $\Gamma \eta$. It will be seen later that calculations based on model (5) are informative ingredients for the scaled envelope model.

4.2. Maximum likelihood estimation

In this section, we assume for the purpose of developing estimators of β and Σ that the errors ε in (4) are normally distributed. Normality is not required for the definition of scaled envelopes, but this assumption results in estimators that perform well when normality does not hold, as discussed in $\S 6 \cdot 2$.

Suppose that the observed data $\left(X_{i}, Y_{i}\right)(i=1, \ldots, n)$, are independent, and n is the sample size. Let \bar{Y} denote the sample mean of Y. Then the maximum likelihood estimators $\widehat{\Gamma}$ and $\widehat{\Lambda}$ of
Γ and Λ can be obtained by minimizing the objective function,

$$
\begin{equation*}
L(\Lambda, \Gamma)=\log \left|\Gamma^{T} \Lambda^{-1} \widetilde{\Sigma}_{\text {res }} \Lambda^{-1} \Gamma\right|+\log \left|\Gamma^{T} \Lambda \widetilde{\Sigma}_{Y}^{-1} \Lambda \Gamma\right| \tag{6}
\end{equation*}
$$

Technical details are given in Appendix A.
The maximum likelihood estimators of the rest of the parameters are as follows: $\widehat{\Gamma}_{0}$ can be any orthogonal basis of the orthogonal complement of $\operatorname{span}(\widehat{\Gamma}), \widehat{\alpha}=\bar{Y}, \hat{\eta}=\widehat{\Gamma}^{T} \widehat{\Lambda}^{-1} \widetilde{\beta}, \widehat{\Omega}=$ $\widehat{\Gamma}^{T} \widehat{\Lambda}^{-1} \widetilde{\Sigma}_{\mathrm{res}} \widehat{\Lambda}^{-1} \widehat{\Gamma}, \widehat{\Omega}_{0}=\widehat{\Gamma}_{0}^{T} \widehat{\Lambda}^{-1} \widetilde{\Sigma}_{Y} \widehat{\Lambda}^{-1} \widehat{\Gamma}_{0}, \widehat{\beta}=\widehat{\Lambda} \widehat{P}_{\Gamma} \widehat{\Lambda}^{-1} \widetilde{\beta}$, and

$$
\begin{aligned}
\widehat{\Sigma} & =\widehat{\Lambda} \widehat{P}_{\Gamma} \widehat{\Lambda}^{-1} \widetilde{\Sigma}_{\mathrm{res}} \widehat{\Lambda}^{-1} \widehat{P}_{\Gamma} \widehat{\Lambda}^{T}+\widehat{\Lambda} \widehat{P}_{\Gamma_{0}} \widehat{\Lambda}^{-1} \widetilde{\Sigma}_{Y} \widehat{\Lambda}^{-1} \widehat{P}_{\Gamma_{0}} \widehat{\Lambda} \\
& =\widehat{\Lambda} \widehat{\Gamma} \widehat{\Omega} \widehat{\Gamma}^{T} \widehat{\Lambda}^{T}+\widehat{\Lambda} \widehat{\Gamma}_{0} \widehat{\Omega}_{0} \widehat{\Gamma}_{0}^{T} \widehat{\Lambda}
\end{aligned}
$$

The forms of $\widehat{\beta}$ and $\widehat{\Sigma}$ reveal the working process of estimation under the scaled envelope model, as introduced in $\S 3 \cdot 1$. For instance, consider $\widehat{\beta}=\widehat{\Lambda} \widehat{P}_{\Gamma} \widehat{\Lambda}^{-1} U^{T} F\left(F^{T} F\right)^{-1}$, where U is the $n \times r$ matrix whose i-th row is $\left(Y_{i}-\bar{Y}\right)^{T}$, and F is the $n \times p$ matrix whose i-th row is $X_{i}^{T}(i=$ $1, \ldots, n)$. The response is first rescaled $Y \rightarrow \widehat{\Lambda}^{-1} Y$ and centered to get $\widehat{\Lambda}^{-1} U^{T}$ and then ordinary envelope estimation is performed using the rescaled response to get $\widehat{P}_{\Gamma} \widehat{\Lambda}^{-1} U^{T} F\left(F^{T} F\right)^{-1}$. After that the estimator is transformed back to the original scales to get $\widehat{\beta}$. This confirms the discussion in $\S 3 \cdot 1$: the scaled envelope model transforms Y to $\widehat{\Lambda} \widehat{P}_{\Gamma} \widehat{\Lambda}^{-1} Y$, and the process $\widehat{\Lambda} \widehat{P}_{\Gamma} \widehat{\Lambda}^{-1}$ is the same as treating $\widehat{\Lambda}^{-1}$ as a similarity transformation to the original scale of Y_{N}.

4.3. Parameter identifiability

In our experience, the objective function (6) nearly always has a unique pair $\{\widehat{\Lambda}, \operatorname{span}(\widehat{\Gamma})\}$ as the global minimizer. However, occasionally we may find that Λ and $\operatorname{span}(\Gamma)$ are not identifiable. When this happens, the objective function will typically be flat along some directions, and any value may be returned in those directions. But this potential non-uniqueness is not an issue, as the parameters that we are interested in are β and Σ. Proposition 1 ensures that the maximizers in β and Σ with respect to the log-likelihood function are in fact uniquely defined. This implies that
we will get the same estimators $\widehat{\beta}$ and $\widehat{\Sigma}$ whether the global minimizer $\{\widehat{\Lambda}, \operatorname{span}(\widehat{\Gamma})\}$ is unique or not, which is also confirmed in our numerical experiments.

Following Henderson \& Searle (1979), the operator vec: $\mathbb{R}^{a \times b} \rightarrow \mathbb{R}^{a b}$ stacks the columns of a matrix, and the operator vech: $\mathbb{R}^{a \times a} \rightarrow \mathbb{R}^{a(a+1) / 2}$ stacks the lower triangular part of a symmetric matrix. Then we combine the constituent parameters $\Lambda, \eta, \Gamma, \Omega$ and Ω_{0} in the scaled envelope models (4) into the vector $\phi=\left\{\lambda^{T}, \operatorname{vec}(\eta)^{T}, \operatorname{vec}(\Gamma)^{T}, \operatorname{vech}(\Omega)^{T}, \operatorname{vech}\left(\Omega_{0}\right)^{T}\right\}^{T}=\left(\lambda^{T}, \phi_{o}^{T}\right)^{T}$, where $\phi_{0}=\left\{\operatorname{vec}(\eta)^{T}, \operatorname{vec}(\Gamma)^{T}, \operatorname{vech}(\Omega)^{T}, \operatorname{vech}\left(\Omega_{0}\right)^{T}\right\}^{T}$ contains the constituent parameters from model (5) and $\lambda=\left(\lambda_{2}, \ldots, \lambda_{r}\right)^{T}$ is the vector of the 2nd to the r th diagonal elements of Λ. Let L denote the $r^{2} \times(r-1)$ matrix with columns $e_{j} \otimes e_{j}$, where $e_{j} \in \mathbb{R}^{r}$ contains a 1 in the j-th position and 0 's elsewhere, $j=2, \ldots, r$. Then, for later use, $\lambda=L^{T} \operatorname{vec}(\Lambda)$. As $\beta=\Lambda \Gamma \eta=\Lambda \beta_{o}$ and $\Sigma=\Lambda\left(\Gamma \Omega \Gamma^{T}+\Gamma_{0} \Omega_{0} \Gamma_{0}^{T}\right) \Lambda=\Lambda \Sigma_{o} \Lambda, \beta$ and Σ are both functions of ϕ.

Proposition 1. Assume that model (4) has independent but not necessarily normal errors with finite second moments, and that $n^{-1} \sum_{i=1}^{n} X_{i} X_{i}^{T}>0$. Then $\beta(\phi)$ and $\Sigma(\phi)$ are identifiable and $\widehat{\beta}$ and $\widehat{\Sigma}$ are uniquely defined.

Proposition 1 says that even when ϕ is not identifiable, β and Σ are identifiable. Further, we can get unique estimators $\widehat{\beta}=\beta(\widehat{\phi})$ and $\widehat{\Sigma}=\Sigma(\widehat{\phi})$. This provides the foundation for our discussion of the asymptotic distribution and consistency of $\widehat{\beta}$ and $\widehat{\Sigma}$ in $\S 4 \cdot 4$ and $\S 4 \cdot 5$. The proof of Proposition 1 is included in Appendix B.

Although Λ and $\operatorname{span}(\Gamma)$ are not of particular interest, a discussion of identifiability may result in a better understanding of the scaled envelope model (4). In the supplementary material, we show that under some weak conditions, Λ is identifiable if and only if $\operatorname{span}(\Gamma)$ is identifiable.

Scaled envelopes

In this section, we give the asymptotic distribution of the scaled envelope estimator
$\left\{\operatorname{vec}(\widehat{\beta})^{T}, \operatorname{vech}(\widehat{\Sigma})^{T}\right\}^{T}$ under normality. Several definitions are needed in preparation for the result. The contraction matrix $C_{r} \in \mathbb{R}^{r(r+1) / 2 \times r^{2}}$ and the expansion matrix $E_{r} \in \mathbb{R}^{r^{2} \times r(r+1) / 2}$ link the vec and vech operators: for any symmetric matrix $A \in \mathbb{R}^{r \times r}, \operatorname{vec}(A)=E_{r} \operatorname{vech}(A)$, and $\operatorname{vech}(A)=C_{r} \operatorname{vec}(A)$. Let $\Sigma_{X}=\lim _{n \rightarrow \infty} n^{-1} \sum_{i=1}^{n} X_{i} X_{i}^{T}$, and let $p_{i i}$ denote the i th diagonal element of the projection matrix P_{F}, where F was defined in $\S 4 \cdot 2$.

We write the asymptotic covariance matrix in terms of quantities designated with subscripts o that stem from model (5), which has response $\Lambda^{-1} Y$, and one quantity that depends on Λ. We next describe these constructions. The gradient matrix $G_{o}=\partial\left\{\operatorname{vec}\left(\beta_{o}\right)^{T}, \operatorname{vech}\left(\Sigma_{o}\right)^{T}\right\}^{T} / \partial \phi_{o}^{T}$ for model (5) has dimension $\{p r+r(r+1) / 2\} \times\{p u+r(r+1) / 2\}$ and is equal to (Cook et al., 2010)

The Fisher information for $\left\{\operatorname{vec}\left(\beta_{o}\right)^{T} \text {, } \operatorname{vech}\left(\Sigma_{o}\right)^{T}\right\}^{T}$ from model (5) is the $\{r p+r(r+$ 1) $/ 2\} \times\{r p+r(r+1) / 2\}$ block diagonal matrix $J_{o}=\operatorname{bdiag}\left\{\Sigma_{X} \otimes \Sigma_{o}^{-1}, 2^{-1} E_{r}^{T}\left(\Sigma_{o}^{-1} \otimes\right.\right.$ $\left.\left.\Sigma_{o}^{-1}\right) E_{r}\right\}$, where $\operatorname{bdiag}(\cdot)$ indicates a block diagonal matrix with the diagonal blocks as arguments. Let $h_{o}=\left\{\left(\beta_{o} \otimes I_{r}\right), 2\left(\Sigma_{o} \otimes I_{r}\right) C_{r}^{T}\right\}^{T}$, which is the gradient component $h_{o}=$ $\partial\left\{\operatorname{vec}(\beta)^{T}, \operatorname{vech}(\Sigma)^{T}\right\}^{T} / \partial \Lambda$ for the scaled model (4) evaluated at $\Lambda=I_{r}$. Let $A_{o}=$ $Q_{G_{o}\left(J_{o}\right)} h_{o} L$ and let $D_{\Lambda}=\operatorname{bdiag}\left\{I_{p} \otimes \Lambda, C_{r}(\Lambda \otimes \Lambda) \mathrm{E}_{r}\right\}$, which is a block diagonal matrix with the same dimensions as J_{o}. Of the quantities defined here, only D_{Λ} depends on Λ.

The gradient matrix $H=\partial\left\{\operatorname{vec}(\beta)^{T}, \operatorname{vech}(\Sigma)^{T}\right\}^{T} / \partial \phi^{T}$ for the scaled envelope model (4) has dimension $\{p r+r(r+1) / 2\} \times\{r-1+p u+r(r+1) / 2\}$ and can be represented as $H=$
$\left\{D_{\Lambda} h_{o}\left(I_{r} \otimes \Lambda^{-1}\right) L, D_{\Lambda} G_{o}\right\}$. The Fisher information J under the scaled envelope model can be obtained by replacing Σ_{o} with Σ in $J_{o}, J=\operatorname{bdiag}\left\{\Sigma_{X} \otimes \Sigma^{-1}, 2^{-1} E_{r}^{T}\left(\Sigma^{-1} \otimes \Sigma^{-1}\right) E_{r}\right\}$.

Proposition 2. Under model (4) with normal errors, assume that $\max _{i \leq n} p_{i i} \rightarrow 0$ as $n \rightarrow$ ∞. Then $\sqrt{ } n\left[\{\operatorname{vec}(\widehat{\beta})-\operatorname{vec}(\beta)\}^{T},\{\operatorname{vech}(\widehat{\Sigma})-\operatorname{vech}(\Sigma)\}^{T}\right]^{T}$ converges in distribution to a normal random vector with mean zero and covariance matrix
$V=H\left(H^{T} J H\right)^{\dagger} H^{T}=D_{\Lambda}\left\{A_{o}\left(A_{o}^{T} J_{o} A_{o}\right)^{\dagger} A_{o}^{T}\right\} D_{\Lambda}+D_{\Lambda}\left\{G_{o}\left(G_{o}^{T} J_{o} G_{o}\right)^{\dagger} G_{o}^{T}\right\} D_{\Lambda}=V_{1}+V_{2}$, where $V_{1}=D_{\Lambda}\left\{A_{o}\left(A_{o}^{T} J_{o} A_{o}\right)^{\dagger} A_{o}^{T}\right\} D_{\Lambda}$ and $V_{2}=D_{\Lambda}\left\{G_{o}\left(G_{o}^{T} J_{o} G_{o}\right)^{\dagger} G_{o}^{T}\right\} D_{\Lambda}$.

The proof of Proposition 2 is included in Appendix B. Since $J^{-1}-H\left(H^{T} J H\right)^{\dagger} H^{T}=$ $J^{-1 / 2} Q_{J^{1 / 2} H} J^{-1 / 2} \geq 0$, it follows that $V \leq J^{-1}$, where J^{-1} is the asymptotic covariance matrix of $\left\{\operatorname{vec}(\widetilde{\beta})^{T}, \operatorname{vech}\left(\widetilde{\Sigma}_{\mathrm{res}}\right)^{T}\right\}^{T}$. Consequently,

Corollary 1. Assume that the conditions in Proposition 2 hold. Then the scaled envelope model (4) is asymptotically more efficient than or as efficient as the standard model (1) in estimating β and Σ.

The factor $G_{o}\left(G_{o}^{T} J_{o} G_{o}\right)^{\dagger} G_{o}^{T}$ that occurs in V_{2} is the asymptotic covariance matrix for the ordinary envelope estimator of $\left\{\operatorname{vec}\left(\widehat{\beta}_{o}\right), \operatorname{vech}\left(\widehat{\Sigma}_{o}\right)\right\}$ under model (5) (Cook et al., 2010). Consequently, V_{2} is the asymptotic covariance of $\left\{\operatorname{vec}\left(\widehat{\beta}_{\Lambda}\right), \operatorname{vech}\left(\widehat{\Sigma}_{\Lambda}\right)\right\}$ under the scaled envelope model assuming that Λ is known. This implies that V_{1} can then be interpreted as the asymptotic cost of estimating Λ; that is, the part of V that is due to the estimation of Λ. Since $\operatorname{tr}\left(V_{1} V_{2}^{-1}\right)$ does not depend on Λ, the relative cost of estimating Λ is constant in Λ, although it can depend on the other parameters in the model.

These asymptotic results are for the estimators of β and Σ jointly. The regression coefficients β are often of special interest in practice, so we next focus on this aspect of the regression. The following notational convention will facilitate the discussion. If $\sqrt{ } n(T-\theta)$ converges in
distribution to a random variable with mean 0 and variance A, we write the asymptotic variance of T as $\operatorname{avar}(\sqrt{ } n T)=A$.

The asymptotic variance $\operatorname{avar}\{\sqrt{ } n \operatorname{vec}(\widehat{\beta})\}$ of the scaled envelope estimator of β is the upper $p r \times p r$ diagonal block of V, $\operatorname{avar}\{\sqrt{ } n \operatorname{vec}(\widehat{\beta})\}=\left(I_{p r}, 0\right) V_{1}\left(I_{p r}, 0\right)^{T}+\operatorname{avar}\left\{\sqrt{ } n \operatorname{vec}\left(\widehat{\beta}_{\Lambda}\right)\right\}$, where $\left(I_{p r}, 0\right)$ has dimension $p r \times\{p r+r(r+1) / 2\}$.

Corollary 2. Assume that the conditions in Proposition 2 hold and that $\Sigma_{o}=\sigma^{2} I_{r}$, so $\Sigma=$ $\sigma^{2} \Lambda^{2}$. Then $\operatorname{avar}\{\operatorname{vec}(\widehat{\beta})\}=\operatorname{avar}\left\{\operatorname{vec}\left(\widehat{\beta}_{\Lambda}\right)\right\}=\operatorname{avar}\{\operatorname{vec}(\widetilde{\beta})\}$, where, as defined previously, $\widetilde{\beta}$ denotes the ordinary least squares estimator of β from the standard model (1).

This corollary says that in the special case where the scaled responses $\Lambda^{-1} Y$ have error covariance matrix $\Sigma_{o}=\sigma^{2} I_{r}$, the asymptotic variance of the scale envelope estimator $\widehat{\beta}$ is the same as that of the scaled envelope estimator $\widehat{\beta}_{\Lambda}$ when Λ is known, which is the same as the asymptotic variance of the ordinary least squares estimator from the standard model. Consequently, scaling offers no gains and, since $\operatorname{avar}\{\operatorname{vec}(\widehat{\beta})\}=\left(I_{p r}, 0\right) V_{1}\left(I_{p r}, 0\right)^{T}+\operatorname{avar}\left\{\sqrt{ } n \operatorname{vec}\left(\widehat{\beta}_{\Lambda}\right)\right\} \leq$ $\operatorname{avar}\{\operatorname{vec}(\widetilde{\beta})\}$, there is also no asymptotic cost of estimating Λ for the ultimate goal of estimating $\beta,\left(I_{p r}, 0\right) V_{1}\left(I_{p r}, 0\right)^{T}=0$. However, in other cases there can be considerable gain in pursuing scaling, particularly when $\left\|\Omega_{0}\right\| \gg\|\Omega\|$. These results are illustrated in $\S 6$.

4.5. Consistency

As the scaled envelope estimators are obtained using the normal likelihood as an objective function, a natural question is on the consistency of these estimators when the normality assumption fails. The next proposition gives conditions for $\sqrt{ } n$ consistency of $\widehat{\beta}$ and $\widehat{\Sigma}$.

Proposition 3. Assume that model (4) has independent but not necessary normal errors with mean zero and finite fourth moments, and that $\max _{i \leq n} p_{i i} \rightarrow 0$ as $n \rightarrow \infty$. Then

$$
\sqrt{ } n\left\{\left(\operatorname{vec}(\widehat{\beta})^{T}, \operatorname{vech}(\widehat{\Sigma})^{T}\right)^{T}-\left(\operatorname{vec}(\beta)^{T}, \operatorname{vech}(\Sigma)^{T}\right)^{T}\right\}
$$

is asymptotically normally distributed, and $\widehat{\beta}$ and $\widehat{\Sigma}$ are $\sqrt{ } n$ consistent estimators of β and Σ.

The assumption on $p_{i i}$ is the same condition that Huber (1973) used to establish consistency for the standard model estimator $\operatorname{vec}(\widetilde{\beta})$, which basically requires that the maximum leverage goes to zero as $n \rightarrow \infty$. Additionally, in finite samples the estimators are robust to moderate departure from normality as demonstrated in the simulations in $\S 6 \cdot 2$. The proof of Proposition 3 is included in Appendix B.

5. Selection of u

Likelihood-based methods, such as the Akaike information criterion AIC, the Bayesian information criterion BIC, or other information criteria, can be used to select the dimension u for the scaled envelope model. Non-parametric methods as cross validation or permutation tests (Cook \& Yin, 2001) can also be used to select u. We will use BIC in data examples, but will discuss properties of both AIC and BIC.

The AIC estimator of u is $\arg \min -2 \hat{L}(u)+2 N(u)$, where the minimum is taken over the set of integers $0,1, \ldots, r, N(u)=2 r-1+p u+r(r+1) / 2$ is the number of parameters, as discussed in $\S 3 \cdot 3$, and $\hat{L}(u)$ is the maximized log likelihood under the scaled envelope model with dimension u,

$$
\hat{L}(u)=-\frac{n r}{2} \log (2 \pi)-\frac{n}{2} \log \left|\widetilde{\Sigma}_{Y}\right|-\frac{n}{2} \log \left|\widehat{\Gamma}^{T} \widehat{\Lambda}^{-1} \widetilde{\Sigma}_{\mathrm{res}} \widehat{\Lambda}^{-1} \widehat{\Gamma}\right|-\frac{n}{2} \log \left|\widehat{\Gamma}^{T} \widehat{\Lambda} \widetilde{\Sigma}_{Y}^{-1} \widehat{\Lambda} \widehat{\Gamma}\right|
$$

Here $\operatorname{span}(\widehat{\Gamma})$ and $\widehat{\Lambda}$ are maximum likelihood estimators for $\mathcal{E}_{\Lambda^{-1} \Sigma \Lambda^{-1}}\left(\Lambda^{-1} \mathcal{B}\right)$ and Λ under the scaled envelope model. BIC works similarly, except its objective function is $-2 \hat{L}(u)+$ $\log (n) N(u)$.

In univariate linear regression, the asymptotic properties of AIC and BIC have been studied in detail. Briefly, if the true model is among the candidate models, BIC selects the true model
with probability approaching 1 as $n \rightarrow \infty$ (Yang, 2005), and AIC will have positive probability of selecting models that properly include the true model (Nishii, 1984). These properties can be generalized straightforwardly to multivariate linear regression. The next proposition gives the properties of AIC and BIC in the framework of the scaled envelope model. The candidate set is the set of scaled envelope models having dimensions varying from 0 to r.

Proposition 4. Under the scaled envelope model (4) assuming normal errors, if there is one and only one true model in the candidate set, as $n \rightarrow \infty$, BIC will select the true model with probability tending to 1, and AIC will select a model that at least contains the true model.

The proof of Proposition 4 is similar to the proof in Nishii (1984): Scaled envelope models with dimension smaller than the true model introduce bias into the mean function that dominates the penalty term asymptotically, and scaled envelope models with dimension larger than the true model have larger penalty terms which will be not selected by BIC but selected by AIC with positive probabilities.

6. Simulations and Data Example

6.1. Computing

Given u, to estimate the scales Λ and $\operatorname{span}(\Gamma)$, we apply an alternating algorithm to (6). We can start with $\Lambda=I_{r}$ or any reasonable guess, and our numerical experience suggests that the alternating algorithm is not sensitive to the choice of starting values. When Λ is specified, $\Lambda^{-1} Y$ follows an envelope model with mean $\Gamma \eta X$ and covariance matrix $\Sigma_{o}=\Gamma \Omega \Gamma^{T}+\Gamma_{0} \Omega_{0} \Gamma_{0}^{T}$. When Γ is specified, Λ can be estimated by minimizing (6) using a standard optimization algorithm. We continue the process until the absolute value of the percentage increment of (6) between two consecutive iterations is less than a pre-specified value.

R. D. Cook and Z. Su

A simulation study was conducted to compare the scaled envelope estimator with the standard model estimator on finite sample size performance. We simulated data from model (4), with $r=$ $10, u=5$ and $p=5$. The elements in X were generated once as independent $N(0,5)$ random variables, but the analysis was still conditioned on their observed values. We took $\Omega=\sigma^{2} I_{5}$ and $\Omega_{0}=\sigma_{0}^{2} I_{5}$. The matrix η was generated as a 5×5 matrix of independent $N(0,2)$ random variables, and Γ was obtained by orthogonalizing a 10×5 matrix of independent $U(0,1)$ random variables. The scale matrix Λ was a diagonal matrix with diagonal elements $1,2^{0.5}, 2^{1}, 2^{1.5}$, $\ldots, 2^{4.5}$. We took σ^{2} as 0.25 and σ_{0}^{2} as 5 and 25 . The sample sizes were $100,200,300,500$, 800,1200 , and 200 replicates were generated for each sample size. With each sample size, the standard deviation of each element in $\widehat{\beta}$ over the replicates is computed, which we call the actual standard deviations of the elements in $\widehat{\beta}$. We also computed the bootstrap standard deviations by bootstrapping the residuals 200 times.

We applied the ordinary envelope model to the data and inferred that $u=10$, so the envelope estimator is the same as the standard estimator, and no efficiency gains were offered. The scaled envelope model effectively removed the immaterial part of Y relative to X, and obtained efficiency gains compared to the standard model, both asymptotically and with finite sample sizes. The scaled envelope model was fitted according to the discussion in $\S 6 \cdot 1$. The left panel of Fig. 3 plots the standard deviations of a selected element in $\widehat{\beta}$ with $\sigma_{0}^{2}=5$. We took the logarithm of both the sample size and the standard deviation to linearize their relationship. The simulations for the right panel were based on the same setting as for the left panel, except $\sigma_{0}^{2}=25$. With sample size larger than 200 , the efficiency gain remains roughly constant as sample size increases, and it is also about the same as the asymptotic difference between the scaled envelope

Table 1: Mean of base 2 logarithms of the diagonal elements in $\widehat{\Lambda}$, the number in parentheses are their standard deviations, $\sigma_{0}^{2}=5$.

n	100	500	1200
$\log _{2} \hat{\lambda}_{2}$	$0.50(0.073)$	$0.50(0.032)$	$0.50(0.020)$
$\log _{2} \hat{\lambda}_{3}$	$0.99(0.085)$	$1.00(0.039)$	$1.00(0.022)$
$\log _{2} \hat{\lambda}_{4}$	$1.50(0.067)$	$1.50(0.029)$	$1.50(0.019)$
$\log _{2} \hat{\lambda}_{5}$	$2.00(0.051)$	$2.00(0.024)$	$2.00(0.016)$
$\log _{2} \hat{\lambda}_{6}$	$2.50(0.062)$	$2.50(0.029)$	$2.50(0.017)$
$\log _{2} \hat{\lambda}_{7}$	$2.99(0.065)$	$3.00(0.029)$	$3.00(0.019)$
$\log _{2} \hat{\lambda}_{8}$	$3.50(0.055)$	$3.50(0.023)$	$3.50(0.016)$
$\log _{2} \hat{\lambda}_{9}$	$3.99(0.057)$	$4.00(0.025)$	$4.00(0.016)$
$\log _{2} \hat{\lambda}_{10}$	$4.50(0.054)$	$4.50(0.025)$	$4.50(0.016)$

errors, the estimator is no longer the maximum likelihood estimator, but efficiency gains are still realized.

As discussed following Proposition 2, the asymptotic variance of $\operatorname{vec}(\widehat{\beta})$ depends on $\left(I_{p r}, 0\right) V_{1}\left(I_{p r}, 0\right)^{T}$, the cost of estimating the scaling parameters, and avar $\left\{\sqrt{ } n \operatorname{vec}\left(\widehat{\beta}_{\Lambda}\right)\right\}$, the asymptotic variance of $\operatorname{vec}(\widehat{\beta})$ assuming that Λ is known. Fig. 5 displays the relative cost $C=\operatorname{tr}^{1 / 2}\left[\left(I_{p r}, 0\right) V_{1}\left(I_{p r}, 0\right)^{T} \operatorname{avar}^{-1}\left\{\sqrt{ } n \operatorname{vec}\left(\widehat{\beta}_{\Lambda}\right)\right\}\right]$ in different settings. We used the same model as the one used to generate the left panel of Fig. 3. While σ_{0} was fixed at $\sqrt{ } 5$, we evaluated the relative cost with σ equal to $0 \cdot 1,0 \cdot 2,0 \cdot 5,1, \sqrt{ } 5,5$ and 10 . We also multiplied the original η by $0 \cdot 25,1$ and 4 to represent different signal levels. Fig. 5 indicates that the relative cost is lower with a stronger signal and less discrepancy between σ and σ_{0}. It confirms Corollary 2 that when

961

Fig. 5: Relative cost C versus the variation of the material part of $\Lambda^{-1} Y, \sigma=\sqrt{ }\|\Omega\| .-\square,-$ and \rightarrow^{*} correspond to η multiplied by $0 \cdot 25,1$ and 4 respectively. The horizontal line is at $C=\sqrt{ }(p r)$, which corresponds to equal costs, $\left(I_{p r}, 0\right) V_{1}\left(I_{p r}, 0\right)^{T}=\operatorname{avar}\left\{\sqrt{ } n \operatorname{vec}\left(\widehat{\beta}_{\Lambda}\right)\right\}$. staff also took four tests that measured creativity, mechanical reasoning, abstract reasoning and mathematical ability. Scores were recorded for these tests. We considered how sales performance X affects test scores Y, yielding $r=4$ and $p=3$, and compared the standard errors of the ordinary least squares estimator $\widetilde{\beta}$ to the standard errors of the scaled envelope estimator $\widehat{\beta}$ by using the fractions $f_{i j}=1-\operatorname{avar}^{1 / 2}\left(\sqrt{ } n \widetilde{\beta}_{i j}\right) / \operatorname{avar}^{1 / 2}\left(\sqrt{ } n \widehat{\beta}_{i j}\right)$, where the subscripts i, j indicate the elements of the estimator of β. The standard errors of the ordinary least squares estimators and the ordinary envelope estimators were compared in the same way.

We first fitted an ordinary envelope model to the data and BIC suggested that $u=3$. Compared to $\widetilde{\beta}$, the standard deviations of the elements in the ordinary envelope estimator were 1.0% to 28.7% smaller, $0.01 \leq f_{i j} \leq 0 \cdot 287$. A sample size of about $n=100$ observations would be needed to reduce the standard error of the ordinary least squares estimator by 28.7%, so using
information in the data. A scale invariant version of the inner envelope model can be developed similarly, although the procedure will be more complicated.

We confined our discussion to the class of scaling transformations represented by diagonal matrices, but depending on the application envelope methodology might also be developed for other classes of transformations. In signal processing for example, correlated signals Z that follow an envelope model might become mixed to $Y=A Z$, where A is not diagonal but is constrained to fall into a restricted class of transformations like matrices with constant diagonal and off diagonal entries.

Acknowledgement

We are grateful to the editor and three referees for their insightful suggestions and comments that helped us improve the paper. Research for this article was supported in part by a Doctoral Dissertation Fellowship from the Graduate School, University of Minnesota, and by grants from the U.S. National Science Foundation.

Appendix

Appendix A: Maximum Likelihood Estimators

The maximum likelihood estimator of α is \bar{Y}. Then, with the dimension of the $\Lambda^{-1} \Sigma \Lambda^{-1}$-envelope of $\Lambda^{-1} \mathcal{B}$ fixed at u, the log-likelihood function L_{1} is

$$
\begin{align*}
L_{1}= & -\frac{n r}{2} \log (2 \pi)-\frac{n}{2} \log |\Sigma|-\frac{1}{2} \operatorname{tr}\left\{\left(U-F \beta^{T}\right) \Sigma^{-1}\left(U-F \beta^{T}\right)^{T}\right\} \tag{A1}\\
= & -\frac{n r}{2} \log (2 \pi)-\frac{n}{2} \log |\Sigma|-\frac{1}{2} \operatorname{tr}\left[\Sigma^{-1}\left\{n \widetilde{\Sigma}_{\mathrm{res}}+(\widetilde{\beta}-\beta) F^{T} F\left(\widetilde{\beta}^{T}-\beta^{T}\right)\right\}\right] \tag{A2}\\
= & -\frac{n r}{2} \log (2 \pi)-n \log |\Lambda|-\frac{n}{2} \log \left|\Gamma \Omega \Gamma^{T}+\Gamma_{0} \Omega_{0} \Gamma_{0}^{T}\right| \\
& -\frac{1}{2} \operatorname{tr}\left\{\left(U \Lambda^{-1}-F \eta^{T} \Gamma^{T}\right)\left(\Gamma \Omega \Gamma^{T}+\Gamma_{0} \Omega_{0} \Gamma_{0}^{T}\right)^{-1}\left(U \Lambda^{-1}-F \eta^{T} \Gamma^{T}\right)^{T}\right\} . \tag{A3}
\end{align*}
$$

Here (A1), (A2) and (A3) are three versions of the likelihood function: (A1) is a general form with the observed data and parameters β and Σ; (A2) replaces the observed data in (A1) with sufficient statistics $\widetilde{\beta}$ and $\widetilde{\Sigma}_{\text {res }}$; and (A3) rewrites (A1) in terms of the constituent parameters. (A3) has the same form as the log-likelihood function from the envelope model, except we have the extra term $-n \log |\Lambda|$ and the response is $\Lambda^{-1} Y$. Thus, maximizing over all constituent parameters except Λ and Γ, we get the partially maximized form

$$
\begin{aligned}
L_{2}(\Lambda, \Gamma)= & -\frac{n r}{2} \log (2 \pi)-n \log |\Lambda|-\frac{n}{2} \log \left|\Gamma^{T} \Lambda^{-1} \widetilde{\Sigma}_{\mathrm{res}} \Lambda^{-1} \Gamma\right|-\frac{n}{2} \log \left|\Gamma_{0}^{T} \Lambda^{-1} \widetilde{\Sigma}_{Y} \Lambda^{-1} \Gamma_{0}\right| \\
= & -\frac{n r}{2} \log (2 \pi)-n \log |\Lambda|-\frac{n}{2} \log \left|\Gamma^{T} \Lambda^{-1} \widetilde{\Sigma}_{\mathrm{res}} \Lambda^{-1} \Gamma\right|-\frac{n}{2} \log \left|\Lambda^{-1} \widetilde{\Sigma}_{Y} \Lambda^{-1}\right| \\
& -\frac{n}{2} \log \left|\Gamma^{T} \Lambda \widetilde{\Sigma}_{Y}^{-1} \Lambda \Gamma\right| \\
= & -\frac{n r}{2} \log (2 \pi)-\frac{n}{2} \log \left|\widetilde{\Sigma}_{Y}\right|-\frac{n}{2} \log \left|\Gamma^{T} \Lambda^{-1} \widetilde{\Sigma}_{\mathrm{res}} \Lambda^{-1} \Gamma\right|-\frac{n}{2} \log \left|\Gamma^{T} \Lambda \widetilde{\Sigma}_{Y}^{-1} \Lambda \Gamma\right|
\end{aligned}
$$

Appendix B: Proofs

Proof of Proposition 1. We apply Proposition 3.1 in Shapiro (1986) to prove this proposition, and we will match our notations with Shapiro's during the discussion. For better distinction, we add a subscript s to Shapiro's notation. The θ_{s} in Shapiro's context is our $\phi=\left\{\lambda^{T}, \operatorname{vec}(\eta)^{T}, \operatorname{vec}(\Gamma)^{T}, \operatorname{vech}(\Omega)^{T}, \operatorname{vech}\left(\Omega_{0}\right)^{T}\right\}^{T}$. Shapiro's \hat{x}_{s} corresponds to our $\left\{\operatorname{vec}(\widetilde{\beta})^{T}, \operatorname{vech}\left(\widetilde{\Sigma}_{\text {res }}\right)^{T}\right\}^{T}$, and Shapiro's ξ_{s} is $\left\{\operatorname{vec}(\beta)^{T}, \operatorname{vech}(\Sigma)^{T}\right\}^{T}$ in our context. The discrepancy function F_{s} is our \log likelihood function, except we omit a constant factor n.

$$
\begin{aligned}
F_{s} & =L_{1} / n=-\frac{r}{2} \log (2 \pi)-\frac{1}{2} \log |\Sigma|-\frac{1}{2} \operatorname{tr}\left\{\left(U-F \beta^{T}\right) \Sigma^{-1}\left(U-F \beta^{T}\right)^{T} / n\right\} \\
& =-\frac{r}{2} \log (2 \pi)-\frac{1}{2} \log |\Sigma|-\frac{1}{2} \operatorname{tr}\left[\Sigma^{-1}\left\{n \widetilde{\Sigma}_{\mathrm{res}}+(\widetilde{\beta}-\beta)\left(F^{T} F / n\right)\left(\widetilde{\beta}^{T}-\beta^{T}\right)\right\}\right]
\end{aligned}
$$

As F_{s} is constructed under normal likelihood function, it satisfies the conditions $1-4$ in $\S 3$ of Shapiro (1986). Shapiro's Δ_{s} is the gradient matrix $\partial \xi_{s} / \partial \theta_{s}$, which is the same as H in our context. Let $e=U-F \beta^{T}$, Shapiro's $V_{s}=\operatorname{bdiag}\left\{\left(F^{T} F / n\right) \otimes \Sigma^{-1}, E_{r}^{T}\left(\Sigma^{-1} \otimes \Sigma^{-1}\right) E_{r} / 2\right\}$ is $1 / 2$ times the Hessian matrix $\partial^{2} F_{s} / \partial \xi_{s} \partial \xi_{s}^{T}$ evaluated at $\left(\xi_{s}, \xi_{s}\right)$. As we assume $\sum_{i=1}^{n} X_{i} X_{i}^{T} / n>0, V_{s}$ is full rank and
$\operatorname{rank}\left(\Delta_{s}^{T} V_{s} \Delta_{s}\right)=\operatorname{rank}\left(\Delta_{s}\right)$. Therefore, all conditions in Proposition 3.1 are satisfied, and the maximizers $\widehat{\beta}$ and $\widehat{\Sigma}$ are uniquely defined.

Proof of Proposition 3. Since Proposition 2 is a special case of Proposition 3, we prove Proposition 3 first. As we have over-parameterization in Γ, we apply Proposition 4.1 in Shapiro (1986) to establish the proof. The conditions for Proposition $4 \cdot 1$ are the same as Proposition $3 \cdot 1$ in Shapiro, except with an additional assumption that $n^{1 / 2}\left(\hat{x}_{s}-\xi_{s}\right)$ is asymptotically normal. We have shown that all the conditions in Shapiro's Proposition 3.1 are satisfied as we discussed in the proof of our Proposition 1. The condition on $p_{i i}$ guarantees that the asymptotic distribution of $n^{1 / 2}\left\{\left(\operatorname{vec}(\widetilde{\beta})^{T}, \operatorname{vech}\left(\widetilde{\widetilde{r}}_{\text {res }}\right)^{T}\right)^{T}-\right.$ $\left.\left(\operatorname{vec}(\beta)^{T}, \operatorname{vech}(\Sigma)^{T}\right)^{T}\right\}$ is multivariate normal, so the additional assumption is also satisfied. Therefore from Proposition $4 \cdot 1$ of Shapiro (1986) and using Shapiro's notation, the asymptotic variance has the from $\Delta_{s}\left(\Delta_{s}^{T} V_{s} \Delta_{s}\right)^{\dagger} \Delta_{s}^{T} V_{s} \Gamma_{s} V_{s} \Delta_{s}\left(\Delta_{s}^{T} V_{s} \Delta_{s}\right)^{\dagger} \Delta_{s}^{T}$, where Shapiro's Γ_{s} is the asymptotic variance of $\left\{\left(\operatorname{vec}(\widetilde{\beta})^{T}, \operatorname{vech}\left(\widetilde{\Sigma}_{\mathrm{res}}\right)^{T}\right\}^{T}\right.$.

Proof of Proposition 2. The proof of Proposition 2 starts with the asymptotic covariance matrix $\Delta_{s}\left(\Delta_{s}^{T} V_{s} \Delta_{s}\right)^{\dagger} \Delta_{s}^{T} V_{s} \Gamma_{s} V_{s} \Delta_{s}\left(\Delta_{s}^{T} V_{s} \Delta_{s}\right)^{\dagger} \Delta_{s}^{T}$ given at the end of Proposition 3. With the additional assumption of normality, Shaprio's $\Gamma_{s}=V_{s}^{-1}$. Therefore the asymptotic covariance matrix has the form $\Delta_{s}\left(\Delta_{s}^{T} V_{s} \Delta_{s}\right)^{\dagger} \Delta_{s}^{T}$, which is $V=H\left(H^{T} J H\right)^{\dagger} H^{T}$ in our notation. In the rest of the proof, which involves involves simplifying V, we use only our notation.

We directly calculated $H=\partial\left\{\operatorname{vec}(\beta)^{T}, \operatorname{vech}(\Sigma)^{T}\right\}^{T} / \partial \phi^{T}=\left\{D_{\Lambda} h_{o}\left(I_{p} \otimes \Lambda^{-1}\right) L, D_{\Lambda} G_{o}\right\}=$ $\left(H_{1}, H_{2}\right)$, where H_{1} and H_{2} are defined implicitly to simplify subsequent expressions. Since V is invariant under full rank linear transformations of the columns of H, we next transform the columns of H by the non-singular matrix

$$
T=\left(\begin{array}{cc}
I_{r-1} & 0 \\
-\left(H_{2}^{T} J H_{2}\right)^{\dagger} H_{2}^{T} J H_{1} & I_{r(r+1) / 2}
\end{array}\right)
$$

?

Then $H T=\left(Q_{H_{2}(J)} H_{1}, H_{2}\right)$ and $T^{T} H^{T} J H T=\operatorname{bdiag}\left(H_{1}^{T} Q_{H_{2}(J)}^{T} J Q_{H_{2}(J)} H_{1}, G_{o}^{T} J_{o} G_{o}\right)$. Then by straightforward algebra we have

$$
V=H T\left(T^{T} H^{T} J H T\right)^{\dagger} T^{T} H^{T}=J^{-1 / 2} P J^{-1 / 2}+D_{\Lambda} G_{o}\left(G_{o}^{T} J_{o} G_{o}\right)^{\dagger} G_{o}^{T} D_{\Lambda}^{T}
$$

where P is the projection onto the span of $J^{1 / 2} Q_{H_{2}(J)} H_{1}$. The second term on the right of the last expression is the same as V_{2} stated in the proposition. The first term can be expressed as V_{1} by using the identities $Q_{H_{2}(J)} H_{1}=D_{\Lambda} Q_{G_{o}\left(J_{o}\right)} D_{\Lambda}^{-1} H_{1}=D_{\Lambda} Q_{G_{o}\left(J_{o}\right)} h_{o} L \Lambda_{1}^{-1}=D_{\Lambda} A_{o} \Lambda_{1}^{-1}$, where $\Lambda_{1}=$ $\operatorname{diag}\left(\lambda_{2}, \ldots, \lambda_{r}\right)$.

Proof of Corollary 2. It follows from the discussion $\S 5 \cdot 2$ in Cook et al. (2010) that, in under model (5), $\operatorname{avar}\left\{\sqrt{ } n \operatorname{vec}\left(\widehat{\beta}_{o}\right)\right\}=\Sigma_{X}^{-1} \otimes \Sigma_{o}$, and consequently $\operatorname{avar}\left\{\sqrt{ } n \operatorname{vec}\left(\widehat{\beta}_{\Lambda}\right)\right\}=\operatorname{avar}\left\{\sqrt{ } n \operatorname{vec}\left(\Lambda \widehat{\beta}_{o}\right)\right\}=\Sigma_{X}^{-1} \otimes$ $\Lambda \Sigma_{o} \Lambda_{o}=\Sigma_{X}^{-1} \otimes \Sigma=\operatorname{avar}\{\sqrt{ } n \operatorname{vec}(\widetilde{\beta})\}$. Equality with $\operatorname{avar}\{\sqrt{ } n \operatorname{vec}(\widehat{\beta})\}$ will follow if we show that $\left(I_{p r}, 0\right) Q_{H_{2}(J)} H_{1}=0$. Equivalently, we need to show that $\left(I_{p r}, 0\right) H_{2}\left(H_{2} J H_{2}\right)^{\dagger} H_{2}^{T} J H_{1}=\left(I_{p r}, 0\right) H_{1}$, which holds if and only if $\left(I_{p r}, 0\right) D_{\Lambda} G_{o}\left(G_{o}^{T} J_{o} G_{o}\right)^{\dagger} G_{o}^{T} D_{\Lambda}^{T} J H_{1}=\left(I_{p r}, 0\right) H_{1}$. Cook et al. (2010) show that $\left(I_{p r}, 0\right) G_{o}\left(G_{o}^{T} J_{o} G_{o}\right)^{\dagger} G_{o}^{T}$ is a row block matrix with first block block $\Sigma_{X}^{-1} \otimes \Sigma_{o}$ and second block 0 . The rest of the proof follows by carrying out the necessary algebra.

REFERENCES

Conway, J. B. (1990). A Course in Functional Analysis. New York: Springer.
Cook, R. D., Li, B. \& Chiaromonte, F. (2010). Envelope models for parsimonious and efficient multivariate linear regression (with discussion). Statist. Sinica 20, 927-1010.

Cook, R. D. \& Yin, X. (2001). Dimension reduction and visualization in discriminant analysis (with discussion). Australian \& New Zealand Journal of Statistics 43, 147-199.

Harville, D. A. (2008). Matrix Algebra from a Statistician's Perspective. New York: Springer-Verlag.
Henderson, H. V. \& Searle, S. R. (1979). Vec and vech operators for matrices, with some uses in Jacobians and multivariate statistics. Can. J. Statist. 7, 65-81.

Huber, P. J. (1973). Robust regression: asymptotics, conjectures and Monte Carlo. Ann. Statist. 1, 799-821.
Johnson, R. A. \& Wichern, D. W. (2007). Applied Multivariate Statistical Analysis. Upper Saddle River, NJ: Prentice Hall, 6th ed.

NISHII, R. (1984). Asymptotic properties of criteria for selection of variables in multiple regression. The Annals of Statistics , 758-765.

Shapiro, A. (1986). Asymptotic theory of overparameterized structural models. J. Am. Statist. Assoc. 81, 142-149.
Su, Z. \& Cook, R. (2012). Inner envelopes: Efficient estimation in multivariate linear regression. Biometrika 99, 687-702.

YANG, Y. (2005). Can the strengths of AIC and BIC be shared? A conflict between model identification and regression estimation. Biometrika 92, 937-950.
[Received January 2011. Revised June 2011]

