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SUMMARY

Efficient estimation of the regression coefficients is a fundamental problem in multivariate

linear regression. The envelope model proposed by Cook et al. (2010) was shown to have the

potential to achieve substantial efficiency gains by accounting for linear combinations of the

response vector that are essentially immaterial to coefficient estimation. This requires in part

that the distribution of those linear combinations be invariant to changes in the non-stochastic

predictor vector. However, inference based on an envelope is not invariant or equivariant under

rescaling of the responses, tending to limit application to responses that are measured in the same

or similar units. The efficiency gains promised by envelopes often cannot be realized when the
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2 R. D. COOK AND Z. SU

responses are measured in different scales. To overcome this limitation and broaden the scope

of envelope methods, we propose a scaled version of the envelope model, which preserves the

potential of the original envelope methods to increase efficiency and is invariant to scale changes.

Likelihood-based estimators are derived and theoretical properties of the estimators are studied

in various circumstances. It is shown that estimating appropriate scales for the responses can

produce substantial efficiency gains when the original envelope model offers none. Simulations

and an example are given to support the theoretical claims.

Some key words: Dimension reduction, Envelope model, Reducing subspace, Similarity transformation.

1. INTRODUCTION

The standard multivariate linear regression model can be written as

Y = α+ βX + ε, (1)

where Y ∈ R
r is the stochastic response vector, X ∈ R

p denotes the vector of non-stochastic

predictors centered at 0 in the sample, the error vector ε ∈ R
r has mean 0 and covariance matrix

Σ > 0, α ∈ R
r is an unknown vector of intercepts and β ∈ R

r×p is an unknown matrix of re-

gression coefficients. If X is stochastic, X and Y have a joint distribution, but we still condition

on the observed values of X since the predictors are ancillary under model (1). The jth row of

the ordinary least squares estimator of β is equal to the coefficient vector from the ordinary least

squares regression of the jth element of Y on X (j = 1, . . . , r). Stochastic relationships among

the elements of Y are not used in this standard estimator of β. However, the relationships among

the elements of Y play a central role in envelope estimation.

The envelope model proposed by Cook et al. (2010) has the potential to yield an estimator of

β that is substantially less variable than the ordinary least squares estimator. In many datasets,
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Scaled envelopes 3

the distribution of some linear combinations of Y may be invariant to changes in X and uncor-

related with a complementary set of linear combinations. When this occurs, Y can be divided

into a material part, whose distribution depends on X, and an immaterial part, whose distribution

does not depend on X. The immaterial part of Y contains no information on β, but it induces

extraneous variation into the estimation of β via model (1). The envelope model was designed

to account for the immaterial response variation, resulting in an estimator of β that may be more

efficient than the standard estimator and substantially more efficient when the immaterial varia-

tion is substantially greater than the material variation in Y . The envelope estimator of β reduces

to the ordinary least squares estimator when there is no immaterial variation in Y .

We define a scale transformation of the response to be of the form Y 7−→ AY , where

A ∈ R
r×r is a non-singular diagonal matrix. Like principal component analysis, partial least

squares and other methods, the envelope model is not invariant or equivariant under scale trans-

formations: if we perform a scale transformation on the responses, the envelope estimator of the

new β could reduce to the ordinary least squares estimator. This property tends to limit applica-

tion of the envelope model to responses that are in the same or similar scales.

In this article we propose a scaled envelope model, which is scale-invariant and can achieve

efficiency gains beyond those possible from the original envelope model. This is accomplished by

incorporating a scaling matrix into the model and so scale transformations are considered during

estimation. Scaling is a common practice in chemometrics and in many other applications.

The following notations and definitions will be used in our discussion. For positive integers a

and b, Ra×b denotes the class of all a× b matrices. If A ∈ R
a×b, then span(A) is the subspace

spanned by the columns of A. For a subspace S , S⊥ stands for its orthogonal complement.

With A ∈ R
a×a and a subspace S ⊆ R

a, AS = {As : s ∈ S}. The spectral norm of a matrix

of A is denoted by ‖A‖ and the Moore–Penrose inverse of A is denoted by A†. For a positive
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4 R. D. COOK AND Z. SU

definite matrix ∆ ∈ R
a×a, the inner product in R

a defined by 〈x1, x2〉∆ = xT1 ∆x2 is called

the ∆ inner product, where x1 and x2 are two arbitrary vectors in R
a. The symbol PA(∆) is a

projection operator onto A or span(A) in the ∆ inner product if A is a space or a matrix, and

PA(∆) = A(AT∆A)†AT∆ if A is a matrix. We use QA(∆) = I − PA(∆). Projection operators

employing the identity inner product are written as PA, i.e., PA = PA(I), and QA = I − PA.

The notation ∼ means identically distributed, and ⊗ stands for the Kronecker product.

2. ENVELOPE MODEL

Following Cook et al. (2010), let S be a subspace of Rr with the properties that (i) QSY |

X ∼ QSY , and (ii) PSY is uncorrelated with QSY given X. Condition (i) indicates that QSY

carries no marginal information about β, and condition (ii) requires that QSY does not carry

information about β through its conditional correlation with PSY . Let B = span(β). Conditions

(i) and (ii) are equivalent to

(a) B ⊆ S, (b) Σ = PSΣPS +QSΣQS , (2)

where PSΣPS = var(PSY ) and QSΣQS = var(QSY ). Following standard terminology in the

literature on invariant subspaces and functional analysis (Conway, 1990), the decomposition

of Σ shown in (2b) is equivalent to requiring that S be a reducing subspace of Σ, although

this notion of reduction is incompatible with how reduction is usually understood in statistics.

The Σ-envelope of B, denoted by EΣ(B) and by the abbreviated version E if it appears in a

subscript, is defined as the intersection of all S ⊆ R
r that satisfies condition (2), and thus EΣ(B)

is the subspace of minimal dimension that reduces Σ and contains B. To describe this structure

succinctly, we refer to PEY as the part of Y that is material to the estimation of β, and to QEY as

the part of Y that is immaterial to the estimation of β. We call (1) the ordinary envelope model
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Scaled envelopes 5

when conditions (2) are imposed. We also refer to it as the envelope model when there is no

chance of confusing it with the scaled envelope model of the next section.

Let u denote the dimension of EΣ(B), let Γ ∈ R
r×u be an orthogonal basis of EΣ(B), and let

Γ0 ∈ R
r×(r−u) be an orthogonal basis of E⊥

Σ
(B). The coordinate form of an envelope model can

then be written as

Y = α+ ΓηX + ε, Σ = ΓΩΓT + Γ0Ω0Γ
T
0 , (3)

where the coefficients β = Γη. The positive definite matrix Ω = var(ΓTY ) ∈ R
u×u represents

the variation in the material part of Y ; similarly, Ω0 = var(ΓT
0 Y ) ∈ R

(r−u)×(r−u) represents the

variation in the immaterial part. When u = r, EΣ(B) = R
r, the envelope model reduces to the

standard model and there is no gain in efficiency. However, substantial efficiency gains can be

obtained when ‖Γ0Ω0Γ
T
0 ‖ = ‖Ω0‖ ≫ ‖ΓΩΓT ‖ = ‖Ω‖.

The parameters in (3) are estimated by maximizing a normal likelihood function. Let Σ̃Y ,

β̃ and Σ̃res denote the sample covariance matrix of Y , the least squares estimator of β, and

the sample covariance matrix of the residuals from the least squares regression of Y on X. The

estimator of the envelope subspace is then the span of argmin{log |ΓT Σ̃resΓ|+ log |ΓT Σ̃−1
Y Γ|},

where the minimization is over the r × u Grassmannian (Cook et al., 2010). Let Γ̂ be a basis of

the estimated envelope subspace. The envelope estimators of the regression coefficients and the

error covariance matrix are then β̂ = P
Γ̂
β̃ and Σ̂ = P

Γ̂
Σ̃resPΓ̂

+Q
Γ̂
Σ̃YQΓ̂

. The forms of the

estimators are consistent with the conditions in (2).

Figure 1 provides a graphical illustration of the working mechanism of the envelope model.

In both panels, the two ellipses represent two populations. The predictor X ∈ R
1 is an indicator

variable taking values 0 or 1 to denote the different populations, Y1 and Y2 are two responses

representing two characteristics of the populations, and β is the difference between the two pop-

ulation means. The left panel represents the analysis under the standard model. For inference on
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6 R. D. COOK AND Z. SU

β2, the second element of β, a data point y is directly projected onto the Y2 axis following the

dashed line marked A. The two curves in the left panel stand for the two projected distributions

from the two populations. There is considerable overlap between the two projected distributions,

so it may take a large sample size to infer that β2 6= 0 in a least squares analysis. The right

panel presents the analysis under the envelope model. Cook et al. (2010) proved that EΣ(B) is

spanned by some subset of the eigenvectors of Σ. In this case, the eigenvector corresponding

to the smaller eigenvalue of Σ provides all the material information, since the distribution of Y

does not depend on X in the direction of E⊥
Σ
(B), which corresponds to the other eigenvector of

Σ and to the immaterial information. So EΣ(B) is spanned by the second eigenvector of Σ and

u = 1. For inference on β2 under the envelope model, a data point y is first projected onto EΣ(B)

to remove the immaterial information QΓy and simultaneously extract the material information

PΓy, which is then projected onto the Y2 axis following the dashed lines marked B. The two

curves at the bottom stand for the projected distributions for the two populations, which are now

well separated. This indicates that by accounting for the immaterial information, the envelope

model achieves substantial efficiency gains compared to the standard model.

3. SCALED ENVELOPE MODEL

3·1. Motivation

The ordinary envelope model (3) is not invariant or equivariant under linear transformations

of the response. In particular, suppose that we rescale Y by multiplication by a non-singular di-

agonal matrix A. Let YN = AY denote the new response, let β̂ and Σ̂ denote the estimators of

β and Σ based on the envelope model for Y on X, and let β̂N and Σ̂N denote the estimators of

β and Σ based on the envelope model for YN on X. Then we do not generally have invariance,

i.e., β̂N = β̂, Σ̂N = Σ̂, or equivariance, i.e., β̂N = Aβ̂, Σ̂N = AΣ̂A. In fact, the dimension of
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Scaled envelopes 7

Fig. 1: Left panel: Inference on β2 under the standard model. Right panel: Inference on β2 under

the envelope model.

the envelope subspace may change because of the transformation. We illustrate this using the ex-

ample in Fig. 1. Suppose we multiply Y2 by 2 and leave Y1 unchanged, so A is a 2× 2 diagonal

matrix with diagonal elements 1 and 2. The distribution of AY | X is displayed in Fig. 2. We de-

note the two eigenvectors of the new covariance matrix ΣN as v1 and v2 and let BN = span(βN )

as marked in the left panel. Since BN aligns with neither v1 nor v2, the envelope is two dimen-

sional: EΣN
(BN ) = R

2. In this case, all linear combinations of Y are material to the regression,

the envelope model is the same as the standard model and no efficiency gains are achieved.

The scaled envelope model as described formally in §3·2 seeks a rescaling that converts Fig.

2 to Fig. 1, performs the envelope estimation as in the right panel of Fig. 1, and then transforms

the estimators back to the original scales, which is the scale in Fig. 2. This process results in

the material part of Y being represented as APΓA
−1Y , while it is represented as PΓY in an

envelope analysis. In linear algebra, the transformation matrices APΓA
−1 and PΓ are said to
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Fig. 2: Left panel: Example of the dimension of the envelope subspace changing under response

rescaling. Right panel: Inference on β2 under the scaled envelope model.

be similar: an s× s matrix M is similar to an s× s matrix N if there exists an s× s non-

singular matrix T such that N = TMT−1 (e.g., Harville, 2008). When M represents a linear

transformation from an s-dimensional linear space V to V , N is the matrix representation of the

same linear transformation but under another basis of V , and T−1 is the matrix representation of

the change of basis. Therefore the process APΓA
−1 is the same as treating A−1 as a similarity

transformation to represent PΓ in original coordinate system as APΓA
−1. This process can be

represented by the two line segments marked B in the right panel of Fig. 2. Additional discussion

is given in §4·2.

This process also has another interpretation. As APΓA
−1 = PAΓ(A−2), the first line segment

marked B in the right panel of Fig. 2 can also be considered as the projection onto the space

spanned by AΓ but in the A−2 inner product. In other words, the scaled envelope first projects

the data onto AEΣ(B) in the A−2 inner product. After this projection, the data point is projected

onto the Y2 axis in the original scales, as represented by the second line segment marked B in

Fig. 2. Again, the projected distributions for the two populations have a very good separation,

which illustrates the efficiency gains obtained by using scaled envelopes.

From the previous discussion, we notice that EΣ(B) can be very different after the response

transformation, even the dimension of EΣ(B) can change. However, EΣ(B) is equivariant under
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Scaled envelopes 9

orthogonal transformations Y → ΨY of the response, where Ψ is an orthogonal matrix. In this

case EΣN
(BN ) = ΨEΣ(B), where ΣN = ΨΣΨ is the new error covariance matrix, and BN =

span(βN ) with βN = Ψβ being the new regression coefficients.

3·2. Model Formulation

To represent a rescaling formally, we introduce a diagonal matrix Λ =diag{1, λ2, . . . , λr}∈

R
r×r with λi > 0 for i = 2, . . . , r, such that YN = Λ−1Y follows an envelope model with

the dimension of the envelope subspace EΛ−1
ΣΛ−1(Λ−1B) equal to u. Consequently, Λ−1B ⊆

span(Γ), and Λ−1ΣΛ−1 = PΓΛ
−1ΣΛ−1PΓ +QΓΛ

−1ΣΛ−1QΓ, where Γ ∈ R
r×u is now an or-

thogonal basis of EΛ−1
ΣΛ−1(Λ−1B), and Γ0 ∈ R

r×(r−u) is a completion of Γ.

The coordinate form of the scaled envelope model is then

Y = α+ ΛΓηX + ǫ, Σ = ΛΓΩΓTΛ+ ΛΓ0Ω0Γ
T
0Λ. (4)

The coefficients β = ΛΓη, where η = ΓTΛ−1β ∈ R
u×p, and the positive definite matrices

Ω = var(ΓTΛ−1Y ) = ΓTΛ−1ΣΛ−1Γ ∈ R
u×u and Ω0 = var(ΓT

0 Λ
−1Y ) = ΓT

0Λ
−1ΣΛ−1Γ0 ∈

R
(r−u)×(r−u). Setting the first element of Λ to 1 is necessary for the scaling parameters to be

identifiable. Otherwise we can multiply Λ by an arbitrary constant c and multiply η by its recip-

rocal 1/c. Computation is facilitated when Λ is identifiable, but this is not necessary for efficient

estimation of β, as discussed in §4·3.

3·3. Parameter count

With a scaled envelope model of dimension u, we need r parameters for α, (r − 1) param-

eters for Λ, pu parameters for η, u(u+ 1)/2 parameters for Ω, and (r − u)(r − u+ 1)/2 pa-

rameters for Ω0. We cannot estimate Γ, but only its span, so u(r − u) parameters are needed

for span(Γ) = EΛ−1
ΣΛ−1(Λ−1B). Then the total number of parameters is N(u) = 2r − 1 +
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10 R. D. COOK AND Z. SU

pu+ r(r + 1)/2. Compared to an envelope model with the same dimension, the scaled envelope

model has r − 1 additional parameters because of the diagonal scaling matrix Λ.

4. ESTIMATORS AND THEIR PROPERTIES

4·1. Maximum likelihood estimation when Λ is known

As background, we first discuss estimation when Λ is known. In this case, we transform the

response Y in (4) to Λ−1Y and write the resulting ordinary envelope model as

Λ−1Y = αo + ΓηX + ǫo, var(ǫo) = Σo = ΓΩΓT + Γ0Ω0Γ
T
0 . (5)

This leads to scaled envelope estimators β̂Λ and Σ̂Λ of β and Σ, when Λ is known: first transform

Y to Λ−1Y and estimate βo = Γη and Σo from model (5) following Cook et al. (2010). Then

β̂Λ = Λβ̂o and Σ̂Λ = ΛΣ̂oΛ.

Model (5) is just an ordinary envelope model with response Λ−1Y . We use the subscript o

to stand for quantities from this model, which occur within the context of the scaled envelope

model, to distinguish it from the ordinary envelope model (3) when Λ = Ir. For instance, βo =

Γη. It will be seen later that calculations based on model (5) are informative ingredients for the

scaled envelope model.

4·2. Maximum likelihood estimation

In this section, we assume for the purpose of developing estimators of β and Σ that the errors

ε in (4) are normally distributed. Normality is not required for the definition of scaled envelopes,

but this assumption results in estimators that perform well when normality does not hold, as

discussed in §6·2.

Suppose that the observed data (Xi, Yi) (i = 1, . . . , n), are independent, and n is the sample

size. Let Ȳ denote the sample mean of Y . Then the maximum likelihood estimators Γ̂ and Λ̂ of



481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507
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Γ and Λ can be obtained by minimizing the objective function,

L(Λ,Γ) = log |ΓTΛ−1Σ̃resΛ
−1Γ|+ log |ΓTΛΣ̃−1

Y ΛΓ|. (6)

Technical details are given in Appendix A.

The maximum likelihood estimators of the rest of the parameters are as follows: Γ̂0 can be

any orthogonal basis of the orthogonal complement of span(Γ̂), α̂ = Ȳ , η̂ = Γ̂T Λ̂−1β̃, Ω̂ =

Γ̂T Λ̂−1Σ̃resΛ̂
−1Γ̂, Ω̂0 = Γ̂T

0 Λ̂
−1Σ̃Y Λ̂

−1Γ̂0, β̂ = Λ̂P̂ΓΛ̂
−1β̃, and

Σ̂ = Λ̂P̂ΓΛ̂
−1Σ̃resΛ̂

−1P̂ΓΛ̂
T + Λ̂P̂Γ0

Λ̂−1Σ̃Y Λ̂
−1P̂Γ0

Λ̂

= Λ̂Γ̂Ω̂Γ̂T Λ̂T + Λ̂Γ̂0Ω̂0Γ̂
T
0 Λ̂.

The forms of β̂ and Σ̂ reveal the working process of estimation under the scaled envelope model,

as introduced in §3·1. For instance, consider β̂ = Λ̂P̂ΓΛ̂
−1UTF (F TF )−1, where U is the n× r

matrix whose i-th row is (Yi − Ȳ )T , and F is the n× p matrix whose i-th row is XT
i (i =

1, . . . , n). The response is first rescaled Y → Λ̂−1Y and centered to get Λ̂−1UT and then ordi-

nary envelope estimation is performed using the rescaled response to get P̂ΓΛ̂
−1UTF (F TF )−1.

After that the estimator is transformed back to the original scales to get β̂. This confirms the dis-

cussion in §3·1: the scaled envelope model transforms Y to Λ̂P̂ΓΛ̂
−1Y , and the process Λ̂P̂ΓΛ̂

−1

is the same as treating Λ̂−1 as a similarity transformation to the original scale of YN .

4·3. Parameter identifiability

In our experience, the objective function (6) nearly always has a unique pair {Λ̂, span(Γ̂)} as

the global minimizer. However, occasionally we may find that Λ and span(Γ) are not identifiable.

When this happens, the objective function will typically be flat along some directions, and any

value may be returned in those directions. But this potential non-uniqueness is not an issue, as

the parameters that we are interested in are β and Σ. Proposition 1 ensures that the maximizers in

β and Σ with respect to the log-likelihood function are in fact uniquely defined. This implies that
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we will get the same estimators β̂ and Σ̂ whether the global minimizer {Λ̂, span(Γ̂)} is unique

or not, which is also confirmed in our numerical experiments.

Following Henderson & Searle (1979), the operator vec: Ra×b → R
ab stacks the columns of a

matrix, and the operator vech: Ra×a → R
a(a+1)/2 stacks the lower triangular part of a symmetric

matrix. Then we combine the constituent parameters Λ, η, Γ, Ω and Ω0 in the scaled envelope

models (4) into the vector φ = {λT , vec(η)T , vec(Γ)T , vech(Ω)T , vech(Ω0)
T }T = (λT , φT

o )
T ,

where φ0 = {vec(η)T , vec(Γ)T , vech(Ω)T , vech(Ω0)
T }T contains the constituent parameters

from model (5) and λ = (λ2, . . . , λr)
T is the vector of the 2nd to the rth diagonal elements

of Λ. Let L denote the r2 × (r − 1) matrix with columns ej ⊗ ej , where ej ∈ R
r contains a

1 in the j-th position and 0’s elsewhere, j = 2, . . . , r. Then, for later use, λ = LTvec(Λ). As

β = ΛΓη = Λβo and Σ = Λ(ΓΩΓT + Γ0Ω0Γ
T
0 )Λ = ΛΣoΛ, β and Σ are both functions of φ.

PROPOSITION 1. Assume that model (4) has independent but not necessarily normal errors

with finite second moments, and that n−1
∑n

i=1XiX
T
i > 0. Then β(φ) and Σ(φ) are identifiable

and β̂ and Σ̂ are uniquely defined.

Proposition 1 says that even when φ is not identifiable, β and Σ are identifiable. Further,

we can get unique estimators β̂ = β(φ̂) and Σ̂ = Σ(φ̂). This provides the foundation for our

discussion of the asymptotic distribution and consistency of β̂ and Σ̂ in §4·4 and §4·5. The proof

of Proposition 1 is included in Appendix B.

Although Λ and span(Γ) are not of particular interest, a discussion of identifiability may result

in a better understanding of the scaled envelope model (4). In the supplementary material, we

show that under some weak conditions, Λ is identifiable if and only if span(Γ) is identifiable.
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4·4. Asymptotic distribution

In this section, we give the asymptotic distribution of the scaled envelope estimator

{vec(β̂)T , vech(Σ̂)T }T under normality. Several definitions are needed in preparation for the

result. The contraction matrix Cr ∈ R
r(r+1)/2×r2 and the expansion matrix Er ∈ R

r2×r(r+1)/2

link the vec and vech operators: for any symmetric matrix A ∈ R
r×r, vec(A) = Ervech(A), and

vech(A) = Crvec(A). Let ΣX = limn→∞ n−1
∑n

i=1 XiX
T
i , and let pii denote the ith diagonal

element of the projection matrix PF , where F was defined in §4·2.

We write the asymptotic covariance matrix in terms of quantities designated with subscripts o

that stem from model (5), which has response Λ−1Y , and one quantity that depends on Λ. We

next describe these constructions. The gradient matrix Go = ∂{vec(βo)T , vech(Σo)
T }T /∂φT

o

for model (5) has dimension {pr + r(r + 1)/2} × {pu+ r(r + 1)/2} and is equal to (Cook et

al., 2010)




Ip ⊗ Γ ηT ⊗ Ir 0 0

0 2Cr(ΓΩ⊗ Ir − Γ⊗ Γ0Ω0Γ
T
0 ) Cr(Γ⊗ Γ)Eu Cr(Γ0 ⊗ Γ0)Er−u


.

The Fisher information for {vec(βo)T , vech(Σo)
T }T from model (5) is the {rp+ r(r +

1)/2} × {rp+ r(r + 1)/2} block diagonal matrix Jo = bdiag{ΣX ⊗ Σ−1
o , 2−1ET

r (Σ
−1
o ⊗

Σ−1
o )Er}, where bdiag(·) indicates a block diagonal matrix with the diagonal blocks as

arguments. Let ho = {(βo ⊗ Ir), 2(Σo ⊗ Ir)C
T
r }T , which is the gradient component ho =

∂{vec(β)T , vech(Σ)T }T /∂Λ for the scaled model (4) evaluated at Λ = Ir. Let Ao =

QGo(Jo)hoL and let DΛ = bdiag{Ip ⊗ Λ, Cr(Λ⊗ Λ)Er}, which is a block diagonal matrix with

the same dimensions as Jo. Of the quantities defined here, only DΛ depends on Λ.

The gradient matrix H = ∂{vec(β)T , vech(Σ)T }T /∂φT for the scaled envelope model (4)

has dimension {pr + r(r + 1)/2} × {r − 1 + pu+ r(r + 1)/2} and can be represented as H =



625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

14 R. D. COOK AND Z. SU

{DΛho(Ir ⊗ Λ−1)L,DΛGo}. The Fisher information J under the scaled envelope model can be

obtained by replacing Σo with Σ in Jo, J = bdiag{ΣX ⊗ Σ−1, 2−1ET
r (Σ

−1 ⊗ Σ−1)Er}.

PROPOSITION 2. Under model (4) with normal errors, assume that maxi≤n pii → 0 as n →

∞. Then
√
n[{vec(β̂)− vec(β)}T , {vech(Σ̂)− vech(Σ)}T ]T converges in distribution to a nor-

mal random vector with mean zero and covariance matrix

V = H(HTJH)†HT = DΛ{Ao(A
T
o JoAo)

†AT
o }DΛ +DΛ{Go(G

T
o JoGo)

†GT
o }DΛ = V1 + V2,

where V1 = DΛ{Ao(A
T
o JoAo)

†AT
o }DΛ and V2 = DΛ{Go(G

T
o JoGo)

†GT
o }DΛ.

The proof of Proposition 2 is included in Appendix B. Since J−1 −H(HTJH)†HT =

J−1/2QJ1/2HJ−1/2 ≥ 0, it follows that V ≤ J−1, where J−1 is the asymptotic covariance ma-

trix of {vec(β̃)T , vech(Σ̃res)
T }T . Consequently,

COROLLARY 1. Assume that the conditions in Proposition 2 hold. Then the scaled envelope

model (4) is asymptotically more efficient than or as efficient as the standard model (1) in esti-

mating β and Σ.

The factor Go(G
T
o JoGo)

†GT
o that occurs in V2 is the asymptotic covariance matrix for the

ordinary envelope estimator of {vec(β̂o), vech(Σ̂o)} under model (5) (Cook et al., 2010). Con-

sequently, V2 is the asymptotic covariance of {vec(β̂Λ), vech(Σ̂Λ)} under the scaled envelope

model assuming that Λ is known. This implies that V1 can then be interpreted as the asymptotic

cost of estimating Λ; that is, the part of V that is due to the estimation of Λ. Since tr(V1V
−1
2 )

does not depend on Λ, the relative cost of estimating Λ is constant in Λ, although it can depend

on the other parameters in the model.

These asymptotic results are for the estimators of β and Σ jointly. The regression coefficients

β are often of special interest in practice, so we next focus on this aspect of the regression.

The following notational convention will facilitate the discussion. If
√
n(T − θ) converges in



673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

Scaled envelopes 15

distribution to a random variable with mean 0 and variance A, we write the asymptotic variance

of T as avar(
√
nT ) = A.

The asymptotic variance avar{√nvec(β̂)} of the scaled envelope estimator of β is the up-

per pr × pr diagonal block of V , avar{√nvec(β̂)} = (Ipr, 0)V1(Ipr, 0)
T + avar{√nvec(β̂Λ)},

where (Ipr, 0) has dimension pr × {pr + r(r + 1)/2}.

COROLLARY 2. Assume that the conditions in Proposition 2 hold and that Σo = σ2Ir, so Σ =

σ2Λ2. Then avar{vec(β̂)} = avar{vec(β̂Λ)} = avar{vec(β̃)}, where, as defined previously, β̃

denotes the ordinary least squares estimator of β from the standard model (1).

This corollary says that in the special case where the scaled responses Λ−1Y have error covari-

ance matrix Σo = σ2Ir, the asymptotic variance of the scale envelope estimator β̂ is the same

as that of the scaled envelope estimator β̂Λ when Λ is known, which is the same as the asymp-

totic variance of the ordinary least squares estimator from the standard model. Consequently,

scaling offers no gains and, since avar{vec(β̂)} = (Ipr, 0)V1(Ipr, 0)
T + avar{√nvec(β̂Λ)} ≤

avar{vec(β̃)}, there is also no asymptotic cost of estimating Λ for the ultimate goal of esti-

mating β, (Ipr, 0)V1(Ipr, 0)
T = 0. However, in other cases there can be considerable gain in

pursuing scaling, particularly when ‖Ω0‖ ≫ ‖Ω‖. These results are illustrated in §6.

4·5. Consistency

As the scaled envelope estimators are obtained using the normal likelihood as an objective

function, a natural question is on the consistency of these estimators when the normality as-

sumption fails. The next proposition gives conditions for
√
n consistency of β̂ and Σ̂.

PROPOSITION 3. Assume that model (4) has independent but not necessary normal errors

with mean zero and finite fourth moments, and that maxi≤n pii → 0 as n → ∞. Then

√
n{(vec(β̂)T , vech(Σ̂)T )T − (vec(β)T , vech(Σ)T )T }
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is asymptotically normally distributed, and β̂ and Σ̂ are
√
n consistent estimators of β and Σ.

The assumption on pii is the same condition that Huber (1973) used to establish consistency for

the standard model estimator vec(β̃), which basically requires that the maximum leverage goes

to zero as n → ∞. Additionally, in finite samples the estimators are robust to moderate departure

from normality as demonstrated in the simulations in §6·2. The proof of Proposition 3 is included

in Appendix B.

5. SELECTION OF u

Likelihood-based methods, such as the Akaike information criterion AIC, the Bayesian infor-

mation criterion BIC, or other information criteria, can be used to select the dimension u for the

scaled envelope model. Non-parametric methods as cross validation or permutation tests (Cook

& Yin, 2001) can also be used to select u. We will use BIC in data examples, but will discuss

properties of both AIC and BIC.

The AIC estimator of u is argmin−2L̂(u) + 2N(u), where the minimum is taken over the

set of integers 0, 1, . . . , r, N(u) = 2r − 1 + pu+ r(r + 1)/2 is the number of parameters, as

discussed in §3·3, and L̂(u) is the maximized log likelihood under the scaled envelope model

with dimension u,

L̂(u) = −nr

2
log(2π)− n

2
log |Σ̃Y | −

n

2
log |Γ̂T Λ̂−1Σ̃resΛ̂

−1Γ̂| − n

2
log |Γ̂T Λ̂Σ̃−1

Y Λ̂Γ̂|.

Here span(Γ̂) and Λ̂ are maximum likelihood estimators for EΛ−1
ΣΛ−1(Λ−1B) and Λ under

the scaled envelope model. BIC works similarly, except its objective function is −2L̂(u) +

log(n)N(u).

In univariate linear regression, the asymptotic properties of AIC and BIC have been studied

in detail. Briefly, if the true model is among the candidate models, BIC selects the true model
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with probability approaching 1 as n → ∞ (Yang, 2005), and AIC will have positive probability

of selecting models that properly include the true model (Nishii, 1984). These properties can be

generalized straightforwardly to multivariate linear regression. The next proposition gives the

properties of AIC and BIC in the framework of the scaled envelope model. The candidate set is

the set of scaled envelope models having dimensions varying from 0 to r.

PROPOSITION 4. Under the scaled envelope model (4) assuming normal errors, if there is

one and only one true model in the candidate set, as n → ∞, BIC will select the true model with

probability tending to 1, and AIC will select a model that at least contains the true model.

The proof of Proposition 4 is similar to the proof in Nishii (1984): Scaled envelope models with

dimension smaller than the true model introduce bias into the mean function that dominates the

penalty term asymptotically, and scaled envelope models with dimension larger than the true

model have larger penalty terms which will be not selected by BIC but selected by AIC with

positive probabilities.

6. SIMULATIONS AND DATA EXAMPLE

6·1. Computing

Given u, to estimate the scales Λ and span(Γ), we apply an alternating algorithm to (6). We

can start with Λ = Ir or any reasonable guess, and our numerical experience suggests that the

alternating algorithm is not sensitive to the choice of starting values. When Λ is specified, Λ−1Y

follows an envelope model with mean ΓηX and covariance matrix Σo = ΓΩΓT + Γ0Ω0Γ
T
0 .

When Γ is specified, Λ can be estimated by minimizing (6) using a standard optimization al-

gorithm. We continue the process until the absolute value of the percentage increment of (6)

between two consecutive iterations is less than a pre-specified value.
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6·2. Simulations

A simulation study was conducted to compare the scaled envelope estimator with the standard

model estimator on finite sample size performance. We simulated data from model (4), with r =

10, u = 5 and p = 5. The elements in X were generated once as independent N(0, 5) random

variables, but the analysis was still conditioned on their observed values. We took Ω = σ2I5

and Ω0 = σ2
0I5. The matrix η was generated as a 5× 5 matrix of independent N(0, 2) random

variables, and Γ was obtained by orthogonalizing a 10× 5 matrix of independent U(0, 1) random

variables. The scale matrix Λ was a diagonal matrix with diagonal elements 1, 20·5, 21, 21·5,

. . ., 24·5. We took σ2 as 0.25 and σ2
0 as 5 and 25. The sample sizes were 100, 200, 300, 500,

800, 1200, and 200 replicates were generated for each sample size. With each sample size, the

standard deviation of each element in β̂ over the replicates is computed, which we call the actual

standard deviations of the elements in β̂. We also computed the bootstrap standard deviations by

bootstrapping the residuals 200 times.

We applied the ordinary envelope model to the data and inferred that u = 10, so the envelope

estimator is the same as the standard estimator, and no efficiency gains were offered. The scaled

envelope model effectively removed the immaterial part of Y relative to X, and obtained effi-

ciency gains compared to the standard model, both asymptotically and with finite sample sizes.

The scaled envelope model was fitted according to the discussion in §6·1. The left panel of Fig.

3 plots the standard deviations of a selected element in β̂ with σ2
0 = 5. We took the logarithm

of both the sample size and the standard deviation to linearize their relationship. The simula-

tions for the right panel were based on the same setting as for the left panel, except σ2
0 = 25.

With sample size larger than 200, the efficiency gain remains roughly constant as sample size

increases, and it is also about the same as the asymptotic difference between the scaled envelope
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Fig. 3: Logarithmic comparison of the scaled envelope estimators and standard model estimators:

−− the actual standard deviation of scaled envelope estimators; −∗− actual standard deviation of

standard model estimators; −◦− bootstrap standard deviation of the scaled envelope estimators; –

– asymptotic standard deviation of scaled envelope estimators; − · − asymptotic standard devi-

ation of the standard model estimators.

estimator and the least squares estimator. Figure 3 suggests that the bootstrap standard deviation

is a good estimator of the actual standard deviation.

Table 1 provides the mean and standard deviation of 200 estimated scales with σ2
0 = 5. The

results for σ2
0 = 25 are similar. From the table, we find that our algorithm is quite stable.

Figure 4 presents the asymptotic behavior of the scaled envelope estimators under non-normal

errors. We performed the same simulations as in the right panel of Fig. 3, except the errors were

generated as centered and consistently scaled t6, U(0, 1), and χ2
4 random variables to represent

distributions with longer tails, shorter tails and skewness. We used six degrees of freedom for

the t distribution to ensure the existence of fourth moments, as required by Proposition 3. Figure

4 does not show notable differences caused by the different error distributions, so we conclude

that a moderate departure from normality does not much affect the results. With non-normal
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Table 1: Mean of base 2 logarithms of the diagonal elements in Λ̂, the number in parentheses are

their standard deviations, σ2
0 = 5.

n 100 500 1200

log2 λ̂2 0·50 (0·073) 0·50 (0·032) 0·50 (0·020)

log2 λ̂3 0·99 (0·085) 1·00 (0·039) 1·00 (0·022)

log2 λ̂4 1·50 (0·067) 1·50 (0·029) 1·50 (0·019)

log2 λ̂5 2·00 (0·051) 2·00 (0·024) 2·00 (0·016)

log2 λ̂6 2·50 (0·062) 2·50 (0·029) 2·50 (0·017)

log2 λ̂7 2·99 (0·065) 3·00 (0·029) 3·00 (0·019)

log2 λ̂8 3·50 (0·055) 3·50 (0·023) 3·50 (0·016)

log2 λ̂9 3·99 (0·057) 4·00 (0·025) 4·00 (0·016)

log2 λ̂10 4·50 (0·054) 4·50 (0·025) 4·50 (0·016)

errors, the estimator is no longer the maximum likelihood estimator, but efficiency gains are still

realized.

As discussed following Proposition 2, the asymptotic variance of vec(β̂) depends on

(Ipr, 0)V1(Ipr, 0)
T , the cost of estimating the scaling parameters, and avar{√nvec(β̂Λ)}, the

asymptotic variance of vec(β̂) assuming that Λ is known. Fig. 5 displays the relative cost

C = tr1/2[(Ipr, 0)V1(Ipr, 0)
T avar−1{√nvec(β̂Λ)}] in different settings. We used the same

model as the one used to generate the left panel of Fig. 3. While σ0 was fixed at
√
5, we evaluated

the relative cost with σ equal to 0·1, 0·2, 0·5, 1,
√
5, 5 and 10. We also multiplied the original η

by 0·25, 1 and 4 to represent different signal levels. Fig. 5 indicates that the relative cost is lower

with a stronger signal and less discrepancy between σ and σ0. It confirms Corollary 2 that when
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Fig. 4: Comparison of the scaled envelope estimators with normal, t6, U(0, 1), and χ2
4 errors.

The line marks are the same as those in Fig. 3.

σ = σ0, there is no relative cost in estimating Λ. The relative cost is the highest when the gain

from scaled envelopes is the greatest, σ ≪ σ0. It is the lowest when there is little to gain from

using scaled envelopes, σ ≈ σ0.

6·3. Data example

For this illustration we used a data set from Johnson & Wichern (2007) on the performance

of a firm’s sales staff. Fifty sales persons were selected at random and their performance was

measured on growth of sales, profitability of sales, and new account sales. The selected sales
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Fig. 5: Relative cost C versus the variation of the material part of Λ−1Y , σ =
√‖Ω‖. −◦−, −−

and −∗− correspond to η multiplied by 0·25, 1 and 4 respectively. The horizontal line is at

C =
√
(pr), which corresponds to equal costs, (Ipr, 0)V1(Ipr, 0)

T = avar{√nvec(β̂Λ)}.

staff also took four tests that measured creativity, mechanical reasoning, abstract reasoning and

mathematical ability. Scores were recorded for these tests. We considered how sales performance

X affects test scores Y , yielding r = 4 and p = 3, and compared the standard errors of the ordi-

nary least squares estimator β̃ to the standard errors of the scaled envelope estimator β̂ by using

the fractions fij = 1− ˆavar1/2(
√
nβ̃ij)/ ˆavar1/2(

√
nβ̂ij), where the subscripts i, j indicate the

elements of the estimator of β. The standard errors of the ordinary least squares estimators and

the ordinary envelope estimators were compared in the same way.

We first fitted an ordinary envelope model to the data and BIC suggested that u = 3. Compared

to β̃, the standard deviations of the elements in the ordinary envelope estimator were 1·0% to

28·7% smaller, 0·01 ≤ fij ≤ 0·287. A sample size of about n = 100 observations would be

needed to reduce the standard error of the ordinary least squares estimator by 28·7%, so using
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the ordinary envelope estimator is roughly equivalent to doubling the sample size for inference

on some elements of β with the ordinary least squares estimator.

When the scaled envelope model was fitted to the data, BIC suggested that u = 2. The scale

transformation matrix Λwas estimated with diagonal elements 1, 0·97, 0·81 and 1·70. Compared

to β̃, the standard deviations of the elements in the scaled envelope estimator were 12·7% to 68·

2% smaller, 0·127 ≤ fij ≤ 0·682, which is a significant improvement over the gains provided by

the ordinary envelope model. For instance, a sample size of about n = 500 observations would

be needed to reduce the standard error of the ordinary least squares estimator by 68%. These

gains are reflected by the estimates of ‖Ω0‖ and ‖Ω‖: ‖Ω̂‖ = 1·10 and ‖Ω̂0‖ = 13·17.

7. DISCUSSION

By introducing a scaling parameter for each response, the scaled envelope estimator broadens

the effective scope of envelope constructions, and can bring efficiency gains that are not offered

by the ordinary envelope estimator. While scaled envelopes are applicable in any multivariate

linear regression where (1) is a useful model, we have found them particularly serviceable when

the ordinary envelope offers only modest gains. The specific estimation procedure proposed here

should give good results when the error distribution does not deviate substantially from the multi-

variate normal; otherwise, a different, perhaps robust, estimator may be desirable. Although rare,

we have observed the alternating algorithm described in §6·1 can get caught in a local minimum,

resulting in a modified estimator that does not maximize the likelihood-based objective func-

tion and that might then be less efficient than the ordinary least squares estimator. Fortunately,

this can be studied by using the bootstrap to compare performance, so the issue is trackable in

practice.
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The partial envelope model was proposed by Su and Cook (2011) for efficient estimation

of a part of β when a subset of the predictors is of special interest. Under model (1), divide

X ∈ R
p into X1 ∈ R

p1 and X2 ∈ R
p2 with p1 + p2 = p, so that Y = α+ β1X1 + β2X2 + ε,

where X1 is of main interest, β1 ∈ R
r×p1 and β2 ∈ R

r×p2. Instead of enveloping β, we can

envelop only the key parameter β1. Again we can divide Y into a material part and an immaterial

part, but the distribution of the immaterial part is now invariant to changes in X1, instead of

invariant to changes in X as under the envelope model. Let B1 = span(β1). Then the smallest

reducing subspace S of Σ that satisfies B1 ⊆ S and Σ = PSΣPS +QSΣQS is called a partial

Σ-envelope of B1, which is denoted by EΣ(B1). Model (1) is called partial envelope model when

these conditions are imposed with S = EΣ(B1). Compared with the envelope model, the partial

envelope model is more flexible in application and is often more efficient for the purpose of

estimating β1.

Scaling can be incorporated with a partial envelope model as follows. Given a dimen-

sion u1, we can find a scale transformation Λ, such that Λ−1B1 ⊆ span(Γ), Λ−1ΣΛ−1 =

PΓΛ
−1ΣΛ−1PΓ +QΓΛ

−1ΣΛ−1QΓ, where Λ is a diagonal matrix having positive diagonal ele-

ments and first element equal to 1, and Γ ∈ R
r×u1 is an orthogonal basis of the partial Λ−1ΣΛ−1-

envelope of Λ−1B1. We call (1) the scaled partial envelope model if the preceding two conditions

are imposed. The estimation of the parameters and the asymptotic distribution of the estimators

can be developed in parallel to the scaled envelope model. Compared to the scaled envelope

model, as B1 ⊆ B, it is very likely that we come up with a smaller envelope subspace, and

achieves greater efficiency gains for the purpose of estimating β1.

The inner envelope model, introduced in Su & Cook (2012), uses a different construction from

the envelope model and can achieve efficient estimation of β even when there is no immaterial
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information in the data. A scale invariant version of the inner envelope model can be developed

similarly, although the procedure will be more complicated.

We confined our discussion to the class of scaling transformations represented by diagonal ma-

trices, but depending on the application envelope methodology might also be developed for other

classes of transformations. In signal processing for example, correlated signals Z that follow an

envelope model might become mixed to Y = AZ , where A is not diagonal but is constrained to

fall into a restricted class of transformations like matrices with constant diagonal and off diagonal

entries.
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APPENDIX

Appendix A: Maximum Likelihood Estimators

The maximum likelihood estimator of α is Ȳ . Then, with the dimension of the Λ−1ΣΛ−1-envelope of

Λ−1B fixed at u, the log-likelihood function L1 is

L1 = −nr

2
log(2π)− n

2
log |Σ| − 1

2
tr{(U − FβT )Σ−1(U − FβT )T } (A1)

= −nr

2
log(2π)− n

2
log |Σ| − 1

2
tr[Σ−1{nΣ̃res + (β̃ − β)FTF (β̃T − βT )}] (A2)

= −nr

2
log(2π)− n log |Λ| − n

2
log |ΓΩΓT + Γ0Ω0Γ

T
0 |

−1

2
tr{(UΛ−1 − FηTΓT )(ΓΩΓT + Γ0Ω0Γ

T
0 )

−1(UΛ−1 − FηTΓT )T }. (A3)
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Here (A1), (A2) and (A3) are three versions of the likelihood function: (A1) is a general form with the

observed data and parameters β and Σ; (A2) replaces the observed data in (A1) with sufficient statistics

β̃ and Σ̃res; and (A3) rewrites (A1) in terms of the constituent parameters. (A3) has the same form as

the log-likelihood function from the envelope model, except we have the extra term −n log |Λ| and the

response is Λ−1Y . Thus, maximizing over all constituent parameters except Λ and Γ, we get the partially

maximized form

L2(Λ,Γ) = −nr

2
log(2π)− n log |Λ| − n

2
log |ΓTΛ−1Σ̃resΛ

−1Γ| − n

2
log |ΓT

0 Λ
−1Σ̃Y Λ

−1Γ0|

= −nr

2
log(2π)− n log |Λ| − n

2
log |ΓTΛ−1Σ̃resΛ

−1Γ| − n

2
log |Λ−1Σ̃Y Λ

−1|

−n

2
log |ΓTΛΣ̃−1

Y ΛΓ|

= −nr

2
log(2π)− n

2
log |Σ̃Y | −

n

2
log |ΓTΛ−1Σ̃resΛ

−1Γ| − n

2
log |ΓTΛΣ̃−1

Y ΛΓ|.

Appendix B: Proofs

Proof of Proposition 1. We apply Proposition 3.1 in Shapiro (1986) to prove this propo-

sition, and we will match our notations with Shapiro’s during the discussion. For bet-

ter distinction, we add a subscript s to Shapiro’s notation. The θs in Shapiro’s con-

text is our φ = {λT , vec(η)T , vec(Γ)T , vech(Ω)T , vech(Ω0)
T }T . Shapiro’s x̂s corresponds to our

{vec(β̃)T , vech(Σ̃res)
T }T , and Shapiro’s ξs is {vec(β)T , vech(Σ)T }T in our context. The discrepancy

function Fs is our log likelihood function, except we omit a constant factor n.

Fs = L1/n = − r

2
log(2π)− 1

2
log |Σ| − 1

2
tr{(U − FβT )Σ−1(U − FβT )T /n}

= − r

2
log(2π)− 1

2
log |Σ| − 1

2
tr[Σ−1{nΣ̃res + (β̃ − β)(FTF/n)(β̃T − βT )}].

As Fs is constructed under normal likelihood function, it satisfies the conditions 1– 4 in §3 of Shapiro

(1986). Shapiro’s ∆s is the gradient matrix ∂ξs/∂θs, which is the same as H in our context. Let

e = U − FβT , Shapiro’s Vs = bdiag{(FTF/n)⊗ Σ−1, ET
r (Σ

−1 ⊗ Σ−1)Er/2} is 1/2 times the Hes-

sian matrix ∂2Fs/∂ξs∂ξ
T
s evaluated at (ξs, ξs). As we assume

∑n
i=1 XiX

T
i /n > 0, Vs is full rank and
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rank(∆T
s Vs∆s)=rank(∆s). Therefore, all conditions in Proposition 3.1 are satisfied, and the maximizers

β̂ and Σ̂ are uniquely defined. �

Proof of Proposition 3. Since Proposition 2 is a special case of Proposition 3, we prove Proposition

3 first. As we have over-parameterization in Γ, we apply Proposition 4·1 in Shapiro (1986) to estab-

lish the proof. The conditions for Proposition 4·1 are the same as Proposition 3·1 in Shapiro, except

with an additional assumption that n1/2(x̂s − ξs) is asymptotically normal. We have shown that all the

conditions in Shapiro’s Proposition 3·1 are satisfied as we discussed in the proof of our Proposition 1.

The condition on pii guarantees that the asymptotic distribution of n1/2{(vec(β̃)T , vech(Σ̃res)
T )T −

(vec(β)T , vech(Σ)T )T } is multivariate normal, so the additional assumption is also satisfied. There-

fore from Proposition 4·1 of Shapiro (1986) and using Shapiro’s notation, the asymptotic variance has

the from ∆s(∆
T
s Vs∆s)

†∆T
s VsΓsVs∆s(∆

T
s Vs∆s)

†∆T
s , where Shapiro’s Γs is the asymptotic variance of

{(vec(β̃)T , vech(Σ̃res)
T }T . �

Proof of Proposition 2. The proof of Proposition 2 starts with the asymptotic covariance matrix

∆s(∆
T
s Vs∆s)

†∆T
s VsΓsVs∆s(∆

T
s Vs∆s)

†∆T
s given at the end of Proposition 3. With the additional as-

sumption of normality, Shaprio’s Γs = V −1
s . Therefore the asymptotic covariance matrix has the form

∆s(∆
T
s Vs∆s)

†∆T
s , which is V = H(HTJH)†HT in our notation. In the rest of the proof , which in-

volves involves simplifying V , we use only our notation.

We directly calculated H = ∂{vec(β)T , vech(Σ)T }T /∂φT = {DΛho(Ip ⊗ Λ−1)L,DΛGo} =

(H1, H2), where H1 and H2 are defined implicitly to simplify subsequent expressions. Since V is

invariant under full rank linear transformations of the columns of H , we next transform the columns of

H by the non-singular matrix

T =




Ir−1 0

−(HT
2 JH2)

†HT
2 JH1 Ir(r+1)/2


 .
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Then HT = (QH2(J)H1, H2) and T THTJHT = bdiag(HT
1 QT

H2(J)
JQH2(J)H1, G

T
o JoGo). Then by

straightforward algebra we have

V = HT (T THTJHT )†T THT = J−1/2PJ−1/2 +DΛGo(G
T
o JoGo)

†GT
o D

T
Λ ,

where P is the projection onto the span of J1/2QH2(J)H1. The second term on the right of the last

expression is the same as V2 stated in the proposition. The first term can be expressed as V1 by us-

ing the identities QH2(J)H1 = DΛQGo(Jo)D
−1
Λ H1 = DΛQGo(Jo)hoLΛ

−1
1 = DΛAoΛ

−1
1 , where Λ1 =

diag(λ2, . . . , λr). �

Proof of Corollary 2. It follows from the discussion §5·2 in Cook et al. (2010) that, in under model (5),

avar{√nvec(β̂o)} = Σ−1
X ⊗ Σo, and consequently avar{√nvec(β̂Λ)} = avar{√nvec(Λβ̂o)} = Σ−1

X ⊗

ΛΣoΛo = Σ−1
X ⊗ Σ = avar{√nvec(β̃)}. Equality with avar{√nvec(β̂)} will follow if we show that

(Ipr , 0)QH2(J)H1 = 0. Equivalently, we need to show that (Ipr , 0)H2(H2JH2)
†HT

2 JH1 = (Ipr, 0)H1,

which holds if and only if (Ipr, 0)DΛGo(G
T
o JoGo)

†GT
o D

T
ΛJH1 = (Ipr , 0)H1. Cook et al. (2010) show

that (Ipr , 0)Go(G
T
o JoGo)

†GT
o is a row block matrix with first block block Σ−1

X ⊗ Σo and second block

0. The rest of the proof follows by carrying out the necessary algebra. �
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