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SUMMARY: Motivated by searching for associations between genetic variants and brain imaging phenotypes, the aim of this

paper is to develop a groupwise envelope model for multivariate linear regression in order to establish the association between both

multivariate responses and covariates. The groupwise envelope model allows for both distinct regression coefficients and distinct

error structures for different groups. Statistically, the proposed envelope model can dramatically improve efficiency of tests and

of estimation. Theoretical properties of the proposed model are established. Numerical experiments as well as the analysis of an

imaging genetic data set obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study show the effectiveness of

the model in efficient estimation. Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database.
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1. Introduction

To motivate the proposed methodology, we consider an imaging genetic data set from 745 subjects

collected by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study (http://www.adni-

info.org/) in order to advance the discovery in detection, invention, prevention as well as treatments

of the Alzheimer’s disease. Specifically, each subject has brain volumes of 93 regions of interest,

single nucleotide polymorphisms (SNPs) on candidate genes of the Alzheimer’s Disease, and other

covariates including gender, age, education level, marital status and handedness. Alzheimer’s Dis-

ease (AD) is characterized by death of nerve cells and accelerated cerebral atrophy, leading to the

shrinkage of various brain volumes, such as hippocampus. Similar to a recent large-scale imaging

study for schizophrenia in Franke et al. (2016), we are interested in characterizing the genetic

influences of the top 40 AD candidate genes listed on the AlzGene database (www.alzgene.org) as

of June 10, 2010 on structural brain phenotypes in ADNI.

A standard model in the imaging genetic literature (Vounou et al., 2010; Thompson et al., 2013;

Sun et al., 2015) is the multivariate linear regression given by

Y = µ+ βX + ε, (1)

where Y is a r × 1 vector of multiple responses (e.g., brain volumes), X is a p × 1 vector of

covariates, and the errors ε follows a distribution with mean 0 and positive definite covariance

matrix Σ ∈ Rr×r. Moreover, µ ∈ Rr and β ∈ Rr×p are unknown intercept and regression

coefficients. It is common to calculate the ordinary least squares estimator of β by regressing each

element in Y on the predictors of interest. This method, however, ignores the relationship among

different response components. A novel envelope modeling framework introduced in Cook et al.

(2010) explicitly uses such relationship to identify a part of the responses that is immaterial to the
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estimation of β, while bringing extraneous variation. This immaterial part is then accounted for in

the subsequent estimation, making the estimation more efficient. After the original development,

advances have been taken place to extend the scope of envelope model (Su and Cook, 2011, 2012,

2013; Cook et al., 2013; Cook and Zhang, 2015; Khare et al., 2016).

However, model (1) is not sufficient for addressing a more specific question of interest. Specif-

ically, it is interesting to investigate how the associations between AD genetic variants and sub-

cortical volume measures differ across male and female groups. Suppose that we observe imaging

genetic data from subjects in L different groups. For each l = 1, . . . , L, the l−th group has n(l)

observations and the total sample size is n =
∑L

l=1 n(l). By incorporating such group information,

we can reformulate model (1) as

Y(l)j = µ(l) + β(l)X(l)j + ε(l)j for l = 1, . . . , L and j = 1, . . . , nl, (2)

where Y(l)j ∈ Rr is the jth observed response vector in the l−th population, µ(l) ∈ Rr is the mean

of the l−th population, X(l)j ∈ Rp is the jth observed covariate vector in the l−th population,

β(l) ∈ Rr×p contains the regression coefficients for the l−th population, and ε(l)j follows some

distribution with mean 0 and covariance matrix Σ(l). Throughout this paper, we use subscript

(l) to denote the l−th population and subscripts without parenthesis to number the observations.

Without loss of generality, we assume that X(l) = (XT
(l)1, . . . ,X

T
(l)n(l)

)T , l = 1, . . . , L are centered

at 0 in the sample for each group. Model (2) is referred to as the standard model in later discussion.

The aim of this paper is to develop a new groupwise envelope modelling framework for model (2),

which allows for distinct regression coefficients and the heteroscedastic error structure across

groups. Compared with the existing literature (Su and Cook, 2013; Cook et al., 2010), we make

at least three major contributions. First, we develop an efficient estimation method to estimate
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distinct genetic-volume associations across groups under the heteroscedastic error structure. In

contrast, the existing envelope models assume either a homogenous error structure or distinct

means across groups without covariate X. Second, we examine the asymptotic properties of the

proposed estimates under some mild conditions. Third, our simulation studies and the ADNI

data analysis confirm the efficiency gains obtained by using the groupwise envelope model. An

alternative way to gain estimation efficiency in model (2) is to fit a separate envelope model to

each group. However, as will be shown in Sections 3 and 5, efficiency is lost due to ignoring the

common characteristics in response variables across groups.

The article is organized as follows. Section 2 reviews the envelope model and introduces the

groupwise envelope model and its estimation procedure. Section 3 systematically investigates the

asymptotic properties of all estimators. Simulation studies are conducted in Section 4. A real data

analysis of the imaging genetic data set from ADNI is described in Section 5. Conclusion remarks

are given in Section 6.

2. Methods

2.1 A Review of Envelope Models

We first introduce some notation. We use PS to denote the projection matrix onto span(S) or S if

S is a matrix or a subspace, and QS = I − PS. With a matrix A ∈ Rm×n, vec(A) ∈ Rmn stacks

the columns of A into a vector. The Kronecker product is denoted by ⊗, X ∼ Y means X and Y

has the same distribution, and X Y means that X and Y are independent.

The original envelope model (Cook et al., 2010) was developed for model (1). Under (1), we

partition the response vector Y into a material part and an immaterial part, where the distribution of

the material part changes with the predictor X and the distribution of the immaterial part does not.
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More specifically, let S be a subspace of Rr, L be an orthogonal basis of S and L0 be an orthogonal

basis of S⊥. The linear combinations of the responses LTY and LT
0 Y are called the material part

and the immaterial part if the following two conditions are satisfy: (a) LT
0 Y | X ∼ LT

0 Y and (b)

cov(LTY,LT
0 Y | X) = 0. Condition (a) indicates that the distribution of the immaterial part does

not depend on X, and condition (b) indicates that given X, the material part and immaterial part are

uncorrelated. Let B = span(β). Conditions (a) and (b) are also equivalent to: (I) B ⊆ S and (II)

Σ = PSΣPS + QSΣQS (Cook et al., 2010). Condition (I) indicates that the immaterial part does

not contain information on β and condition (II) indicates that the variation Σ can be decomposed

into the variation due to the material part and the variation due to the immaterial part. When Σ

has the structure in condition (II), S is a reducing subspace of Σ (Conway, 1990). Then, the Σ-

envelope of B, denoted by EΣ(B), is defined to be the smallest reducing subspace of Σ containing

B. Model (1) is called the envelope model when conditions (I) and (II) are imposed.

Let u denote the dimension of EΣ(B), Γ ∈ Rr×u be an orthogonal basis of EΣ(B), and Γ0 ∈

Rr×(r−u) be an orthogonal basis of EΣ(B)⊥. The coordinate form of the envelope model is

Y = µ+ ΓηX + ε, Σ = Σ1 + Σ2 = ΓΩΓT + Γ0Ω0Γ
T
0 ,

where β = Γη, η ∈ Ru×p carries the coordinates of β with respect to Γ, and Ω = ΓTΣΓ and

Ω0 = ΓT
0 ΣΓ0 carry the coordinates of Σ with respect to Γ and Γ0, respectively. When u = r,

EΣ(B) = Rr, the envelope model degenerates to the standard multivariate linear regression model.

As shown in Cook et al. (2010), the envelope estimator of β is more efficient than or at least as

efficient as the standard estimator. The efficiency gains can be substantial when ‖Σ1‖ � ‖Σ2‖,

where ‖ · ‖ denotes the spectral norm of a matrix or vector.
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2.2 Formulation of Groupwise Envelop Model

Under model (2), let S be a subspace of Rr, L be an orthogonal basis of S and L0 be an orthogonal

basis of S⊥. Then for each l, the material part LTY(l)j and the immaterial part LT
0 Y(l)j should

satisfy (A) LT
0 Y(l)j | X(l) ∼ LT

0 Y(l)j and (B) LTY(l)j LT
0 Y(l)j | X(l). From conditions (A) and

(B), S is a reducing subspace of all Σ(l) and span(β(l)) ⊆ S for l = 1, . . . , L. Therefore, we define

the groupwise envelope to be the intersection of all such S. More specifically, letM = {Σ(1), . . . ,

Σ(L)} denote the collection of all covariance matrices, and B = span(β(1), . . . ,β(L)). Then the

M-envelope of B, denoted by EM(B), is the smallest subspace that reduces each matrix inM and

contains B. When EM(B) appears in subscripts, it is shortened to E . From the definition of EM(B),

we have

span(β(l)) ⊆ EM(B) and Σ(l) = PEΣ(l)PE + QEΣ(l)QE , for l = 1, . . . , L. (3)

Model (2) is called the groupwise envelope model if conditions in (3) are imposed.

Let Γ ∈ Rr×u be an orthogonal basis of EM(B) and Γ0 ∈ Rr×(r−u) be its completion. The

coordinate form of the groupwise envelope model is given by

Y(l)j = µ(l) + Γη(l)X(l)j + ε(l)j and Σ(l) = ΓΩ(l)Γ
T + Γ0Ω0Γ

T
0 (4)

for each l = 1, . . . , L, where β(l) = Γη(l), η(l) ∈ Ru×p carries the coordinate of β(l) with respect

to Γ, and Ω(l) ∈ Ru×u and Ω0 ∈ R(r−u)×(r−u) are symmetric matrices that carry the coordinates

of Σ(l) with respect to Γ and Γ0, respectively. The groupwise envelope model degenerates to the

envelope model in Cook et al. (2010) if L = 1.

For a fixed dimension u, the number of parameters in the groupwise envelope model (4) is

N(u) = Lr+Lup+Lu(u+ 1)/2 + (r− u)(r− u+ 1)/2 + u(r− u). This is because we need Lr

parameters for all µ(l)s’, Lup parameters for all η(l)s’, Lu(u+ 1)/2 parameters for all Ω(l)s’, and
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(r− u)(r− u+ 1)/2 parameters for Ω0. The envelope subspace EM(B) is on an r× u Grassmann

manifold, which is the set of all u dimensional subspaces in an r dimensional space, so it has

u(r − u) free parameters.

2.3 Estimation Procedure

The groupwise envelope model does not require normality, but we will use the normal likelihood

function as a pseudo likelihood function to calculate estimators. Technical details are included

in Supplemental Section A. Let θ = (µ,η,Ω,Ω0) be a collection of parameters, where µ =

(µ(1), . . . ,µ(L)), η = (η(1), . . . ,η(L)), and Ω = (Ω(1), . . . ,Ω(L)). For a fixed dimension u, u =

0, . . . , r, the normal log likelihood of the groupwise envelope model is given by

`(θ) = −nr
2

log(2π)− n

2
log |Ω0| −

1

2

L∑
l=1

n(l) log |Ω(l)|

−1

2

L∑
l=1

n(l)∑
j=1

{
ΓT (Y(l)j − µ(l) − Γη(l)X(l)j)

}T
Ω−1(l)

{
ΓT (Y(l)j − µ(l) − Γη(l)X(l)j)

}
−1

2

L∑
l=1

n(l)∑
j=1

(Y(l)j − µ(l))
TΓ0Ω

−1
0 ΓT

0 (Y(l)j − µ(l)). (5)

When Γ is fixed, the estimators of µ(l),η(l),Ω(l), and Ω0, which maximize `(θ), can be written as

explicit expressions of Γ. Let Σ̂res,(l) = (1/n(l))YT
(l)cQX(l)

Y(l)c, and Σ̂Y = (1/n)
∑L

l=1YT
(l)cY(l)c,

where X(l) ∈ Rn(l)×p is the centered data matrix for X and Y(l)c ∈ Rn(l)×r is the centered data

matrix for Y for group l. Substitute them back to `(θ), we get

ÊM(BΓ) = argmin
span(Γ)∈Lr×u

L∑
l=1

n(l)

n
log |ΓT Σ̂res,(l)Γ|+ log |ΓT Σ̂

−1
Y Γ|,

where Lr×u denotes the r × u Grassmann manifold. To emphasize that Γ is an orthogonal basis

of EM(B), we put subscript Γ on B. After we obtained ÊM(BΓ), Γ̂ can be any orthogonal basis of

ÊM(BΓ). For l = 1, . . . , L, the estimators for all other parameters are given as follows:
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• µ̂(l) = Ȳ(l), where Ȳ(l) = (1/n(l))
∑n(l)

j=1 Y(l)j;

• η̂(l) = Γ̂
T

(YT
(l)cX(l))(XT

(l)X(l))
−1;

• Ω̂(l) = Γ̂
T
Σ̂res,(l)Γ̂;

• Ω̂0 = Γ̂
T

0 Σ̂YΓ̂0, where Γ̂0 is the completion of Γ̂;

• β̂(l) = Γ̂η̂(l) = PΓ̂β̂(l),ols, where β̂(l),ols is the ordinary least squares estimator of β(l);

• Σ̂(l) = Γ̂Ω̂(l)Γ̂
T

+ Γ̂0Ω̂0Γ̂
T

0 .

To estimate the dimension of EM(BΓ), we apply the Bayesian information criterion (BIC). Let

l∗(u) be the maximized l for a fixed u, and N(u) be the number of parameters discussed in Section

2.2. We choose a value uopt that minimizes BIC(u) = −2l∗(u) + log(n)N(u).

3. Theoretical Properties

In this section, we examine the theoretical properties of the groupwise envelope estimators. We

present the following theoretical properties, whose proofs are included in Supplemental Section B.

PROPOSITION 1: Under the groupwise envelope model (4), assume that the errors are indepen-

dent and have finite fourth moments. Then β̂(l) is a
√
n consistent estimator of β(l) and Σ̂(l) is a

√
n consistent estimator of Σ(l) for l = 1, . . . , L.

Proposition 1 establishes the
√
n consistency of the groupwise envelope estimators. Notice

that normality is not required even though the estimators are derived by maximizing the normal

likelihood function.

PROPOSITION 2: Suppose that the conditions of Proposition 1 hold and f(l) = n(l)/n does not

change with n. Then, vec(β̂(l)−β(l)) converges in distribution to a multivariate normal distribution
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with mean 0 for each l = 1, . . . , L. Furthermore, under the normality, we have

√
n
[
vec(β̂(l))− vec(β(l))

] d→ N(0,V(l)),

where d→ denotes convergence in distribution and V(l) = f−1(l) Σ−1X(l)
⊗ΓΩ(l)Γ

T+(ηT
(l)⊗Γ0)T

−1(η(l)⊗

ΓT
0 ) for l = 1, . . . , L, in which T is given by

T =
L∑
l=1

f(l)
(
η(l)ΣX(l)

ηT
(l) ⊗Ω−10 + Ω(l) ⊗Ω−10 + Ω−1(l) ⊗Ω0 − 2Iu ⊗ Ir−u

)
.

Proposition 2 provides the asymptotic distribution of the groupwise envelope estimator and

derives explicit form of the asymptotic variance under the normality. The first term f−1(l) Σ−1X(l)
⊗

ΓΩ(l)Γ
T is the asymptotic variance of β̂(l) for known Γ, and the second term (ηT

(l)⊗Γ0)T
−1(η(l)⊗

ΓT
0 ) is the cost of estimating the envelope subspace EM(B).

Suppose that we fit separate envelope model to the data in each group, and we denote their

estimators as β̂(l),senv for l = 1, . . . , L. We have the following results.

PROPOSITION 3: Suppose that the conditions of Proposition 1 hold, then vec(β̂(l),senv)−vec(β(l))

converges in distribution to a multivariate normal distribution with mean 0 for l = 1, . . . , L.

Furthermore, under the normality, we have

√
n
[
vec(β̂(l),senv)− vec(β(l))

] d→ N(0,V(l),senv),

where V(l),senv = f−1(l) Σ−1X(l)
⊗ ΓΩ(l)Γ

T + (ηT
(l) ⊗ Γ0)T

−1
2 (η(l) ⊗ ΓT

0 ) for l = 1, . . . , L, in which

T2 = f(l)
(
η(l)ΣX(l)

ηT
(l) ⊗Ω−10 + Ω(l) ⊗Ω−10 + Ω−1(l) ⊗Ω0 − 2Iu ⊗ Ir−u

)
.

COROLLARY 4: V(l),senv > V(l) for l = 1, . . . , L.

Proposition 3 gives the asymptotic distribution of vec(β̂(l),senv). Corollary 4 indicates that the

groupwise envelope estimator is more efficient. A close examination reveals that V(l) and V(l),env
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differ only in terms of T and T2. This suggests that if Γ is known, the asymptotic variance for η̂(l)

is the same. However, the cost of estimating EM(B) is smaller for the groupwise envelope model.

This is because that the groupwise envelope model uses all the data to estimate EM(B), whereas

the separate envelope model only uses the data from the l−th group to estimate EM(B). We also

notice that with finite sample, the envelope subspace EM(B) calculated by fitting separate envelope

model varies across groups.

4. Simulation Study

In this section, we use Monte Carlo simulations to evaluate the finite-sample performance of the

groupwise envelope model (4). We generated the data from model (4) with two groups (L = 2),

which have 40% and 60% of the observations. We set r = 10, p = 3, and u = 1. The matrix

(Γ,Γ0) was obtained by normalizing an r × r matrix of independent normal variates, µ(1) was

a vector of 3 and µ(2) was a vector of 10, η(1) was a vector of independent χ2
10 variates and

η(2) was a vector of independent χ2
20 variates. Let A ∈ R(r−u)×(r−u) be a matrix of independent

normal (5, 12) variates, Ω(1) and Ω(2) both be χ2
1 variates, and Ω0 = AAT . The predictors were

independent normal (0, 52) variates for the first group and independent normal (0, 102) variates

for the second group. We varied the sample size from 100, 300, 1000 and 3000. For each sample

size, 200 replications were generated. The standard model (2), the envelope model (Cook et al.,

2010), separate envelope model and the groupwise envelope model (4) were fit to the data. Standard

deviation of each element in β(1) and β(2) was calculated based on the 200 replications for each

method at each sample size. We also computed the bootstrap standard deviations of each element

in β(1) and β(2) based on 200 bootstrap samples. The results for a randomly chosen element in

β(1) and a randomly chosen element in β(2) are summarized in Figure 1. For clarity, we did not
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draw the line for the standard deviation of the standard model, but only displayed its asymptotic

standard deviation.

[Figure 1 about here.]

We have the following observations from Figure 1. The groupwise envelope estimator is con-

sistent and its standard deviation approaches to the asymptotic standard deviation as sample size

increases, which agrees with Proposition 1. It is also observed that the groupwise envelope model

achieves substantial efficiency gains over the standard model. Take the element in the right panel

of Figure 1 for example, the standard deviation of the groupwise envelope estimator is already

smaller than the asymptotic standard deviation of the standard estimator with n = 100. This means

by using the groupwise envelope model, with 100 samples we have achieved the efficiency of

taking infinity number of samples under the standard model. We also notice that the bootstrap

standard deviation is a good estimation of the sample standard deviation. The envelope model with

constant covariance structure (Cook et al., 2010) has standard deviation about five times as large

as the groupwise envelope model, indicating that accommodating the groupwise error structure

brings extra efficiency gains. The separate envelope model also has larger standard deviations than

the groupwise envelope model, as asserted in Corollary 4. The difference is more pronounced in

one group than the other.

We investigated the numerical properties of the groupwise envelope model under non-normal er-

rors in Web Appendix A and Web Appendix B. In Web Appendix A, we considered the estimation

standard deviation of the groupwise envelope model under different non-normal error distributions

including t distribution with degrees of freedom 6, uniform distribution defined on the unit interval,

and chi-squared distribution with degrees of freedom 4. We examined the selection performance

of BIC under non-normal errors in Web Appendix B.
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5. The Alzheimer’s Disease Neuroimaging Initiative

We applied the groupwise envelope model to the imaging genetic data set obtained from ADNI

study as described in Section 1. We used the image processing pipeline and quality control methods

described in Zhu et al. (2014) to process the structural Magnetic Resonance Imaging (MRI) data

and genetic data downloaded from the ADNI publicly available database (http://adni.loni.usc.edu/).

Our problem of interest is to investigate the genetic effects of the SNPs on the top 40 AD candidate

genes on the brain volumes of 93 regions of interest (ROI), whose names and abbreviation are

given in the supplementary material in Zhu et al. (2014) across male and female groups. The top

40 AD candidate genes are listed on the AlzGene database (www.alzgene.org) as of June 10, 2010

on the brain volumes of 93 ROIs across male and female groups. The selection of the genes is

described in Section 4.1 in Zhu et al. (2014). To correct for normal variation in head size, we used

the proportion method to calculate ROI tissue-to-intracranial volume ratios and then took logarithm

of these ratios. We selected the 1071 SNPs on the 37 top genes and Apolipoprotein E (APOE) ε4.

We first performed a principal component analysis on the 1071 SNP predictors. Figure 2 presents

the 1071× 1071 correlation matrix of all 1071 SNPs. We selected 205 principal components (PCs)

whose loadings have corresponding eigenvalues greater than 1, and these 205 PCs explain 89.76%

of the total variation of all SNP predictors.

[Figure 2 about here.]

We fit a linear regression of the logarithm of the ratios for the brain volumes on five PCs obtained

from the entire SNP data accounting for the population stratification. The residuals are used for

multivariate responses in the groupwise envelop model (4). We used gender (male versus female)

as the group variable and the SNP PCs and all covariates except gender as predictors. Note that

the responses are unitless. The covariates include APOE ε4, age (years, from 55 to 91), education
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level (years, from 6 to 20), marriage status (married, widowed, divorced, other) and handedness

(right-handed, other). All variables were standardized. BIC suggests u = 1. For each element in

β(l), we computed the ratio of the bootstrap standard deviation under the standard model versus the

bootstrap standard deviation under the groupwise envelope model. As demonstrated in Figure 1,

this ratio is a good approximation to the ratio of actual standard deviations. The ratios range from

4.56 to 136.80, with an average of 29.71 for the male group, and from 6.06 to 351.82 with an

average of 56.99 for the female group. This indicates that the groupwise envelope model obtains

substantial efficiency gains over the standard model (2). A boxplot of the ratios is given in Figure 3.

The efficiency gains can be explained by the covariance structure: Ω̂(1) = 1.27 × 10−4, Ω̂(2) =

0.1579 and ‖Ω̂0‖ = 19.29. This indicates that the variation of the immaterial part is much larger

than that of the material part, and by identifying and accounting for the immaterial variation, the

groupwise envelope model achieves substantial efficient estimation in this case. The efficiency

gains in estimation lead to better prediction performance. The prediction error is estimated by

the average of 50 five-fold cross validations with random splits, and the identity inner product is

used to bind the responses. The standard model has a prediction error of 21.27, and the groupwise

envelope model has a prediction error of 9.65, which is more than a 50% reduction.

[Figure 3 about here.]

We also fitted the separate envelope model to the data. BIC suggested u = 1 for both male

and female groups. The ratios of the bootstrap standard deviation under the standard model to

that under the separate envelope model range from 1.05 to 16.63 with an average of 3.16 for the

male group, and range from 1.01 to 13.93 with average of 2.68 for the female group. The ratios are

also displayed in Figure 3. The boxplot reveals that the groupwise envelope model and the separate

envelope model are both more efficient than the standard model. But by using the information from
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all the groups in the estimation of EM(B), the groupwise envelope model achieves substantially

more efficiency gains than the separate envelope model, which confirms the results in Corollary 4.

To investigate the genetic effects of the SNPs on the brain volumes of 93 ROIs through the

groupwise envelope model, we looked at a submatrix of β̂, say β̂sub, which consisted of columns

corresponding to the 205 PCs and APOE ε4. And we calculated cj,i = |β̂sub,j,i|/‖β̂sub,j·‖, where

β̂sub,j,i denotes the (j, i)th element of β̂sub and β̂sub,j· denotes the jth row of β̂sub, j = 1, . . . , 93

and i = 1, . . . , 206. In particular, j = 30 and j = 69 correspond to the right and left part of

hippocampal formation region, which are important ROIs. Figure 4 shows c30,i and c69,i for the

hippocampal formation region. In particular, the 206th element in the horizontal axis corresponds

to APOE ε4. We have c30,206 = c69,206 = 0.077 for the male group and c30,206 = c69,206 = 0.110

for the female group.

[Figure 4 about here.]

To consider the relationship between SNPs and ROI volumes in the coefficient matrix, we

focused on the PCs with large coefficients based on the 98th quantile of the absolute values of

the estimated regression coefficients. After thresholding, 42 PCs were selected for the male group

and 49 PCs were selected for the female group. The heatmaps of regression coefficients for each

group under the groupwise envelope model and the standard model are displayed in Figure 5. The

horizontal axes in Figure 5 include the selected PCs as well as APOE ε4. Under the groupwise

envelope model, it is easier to identify the regions with diminishing regression coefficients.

[Figure 5 about here.]

We also tested if a coefficient equals to 0 for all elements in β. An ROI is chosen if at least

one of the p-values in the corresponding coefficients is smaller than 0.05. Based on this crite-
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rion, all ROIs are selected under the standard model. Under the groupwise envelope model, 41

ROIs are selected for the male group. And eight additional ROIs lat.f-o.gy.R, sup.f.gy.R, hiopp.R,

caud.neuc.R, mid.t.gy.L, prec.gy.L, par.lb.WM.R, and ant.caps.R are selected for female group, i.e.

49 ROIs are selected for female group. This indicates that the unselected ROIs are significant under

the homogeneous model, but not under the model that considers heteroscedasticity. The selected

ROIs are listed in Table 1. Among the selected ROIs, (i) me.f-o.gy.L/R, lat.f-o.gy.R, inf.f.gy.L/R,

f.lob.WM.L, sup.f.gy.L/R and me.f.gy.R are related to the function of management (making a

decision and carrying out tasks), attention (interest and concentration) and working memory; (ii)

tmp.pl.R, sup.gy.R, sup.t.gy.L/R, mid.t.gy.L/R, inf.t.gy.L are related to memory and language; (iii)

sup.p.lb.L/R and par.lb.WM.R are related to the sense of the space and size; and (iv) sup.o.gy.L/R,

mid.o.gy.R, me.o.gy.L/R are located in the back of the brain playing an important role in vision.

[Table 1 about here.]

We then use the polygenic score to study the genetic relationship between the SNPs and the brain

volumes on 93 ROIs. The genetic effects in our setting are contained in the 205 PCs obtained from

the SNPs as well as APOE ε4. Let l be the gender indicator, l = 1 for male and l = 2 for female.

Then for group l, Yl = (Yl,1, . . . , Yl,93)
T is the response vector and Zl denotes the vector of 205

PCs and all the covariates. For each response Yl,j , j = 1, . . . , 93, we fit the linear regression model

of Yl,j on Zl, and obtained the estimated coefficients β̂l,j and the p-values for each element in β̂l,j .

We set the significance level at 0.05. Suppose Z∗l,j are the significant genetic effects and β̂∗l are their

coefficients, we can construct the polygenic score as Ŝl,j = β̂∗l,jZ
∗
l,j . We then fit the regression of

Yl,j on Ŝl,j , and calculated the total sum of squares SSTl,j and regression sum of squares SSRl,j . We

then computed R1 =
∑93

j=1 SSR1,j/
∑93

j=1 SST1,j and R2 =
∑93

j=1 SSR2,j/
∑93

j=1 SST2,j . Based on

the value of R1 and R2, the genetic effects of SNPs explain 9.55% and 9.60% of the variation
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in the male and female groups, respectively. The association of the polygenic score with the

phenotypical variation is tested based on the chi-squared distribution with non-centrality parameter

λl and degrees of freedom 1, where λl =
(
n(l)R

2
l

)
/(1−R2

l ), n(1) = 441 and n(2) = 304. Then the

power of the two-tailed chi-squared test with significance level α is obtained from

1− Φ
[
Φ−1(1− α/2)−

√
λl
]

+ Φ
[
Φ−1(α/2)−

√
λl
]
, l = 1, 2,

where Φ is the cumulative distribution function for the standard normal distribution. We found both

groups have power 1 with α = 0.05 in the testing.

6. Conclusion

We have proposed a groupwise envelope model, which is an efficient model for estimating re-

gression coefficients for heterogeneous groups. Since the interest of research in heterogeneity

soars, such as the great attention in precision medicine, the development of models dealing with

heterogeneity is desired in multivariate response analysis. The groupwise envelope model allows

for distinct regression coefficients and heteroscedastic error structure for different groups. Our

simulation studies and ADNI data analysis demonstrates the efficiency gains obtained by the

groupwise envelope model, compared to both standard model and separate envelope model. The

groupwise envelope model leads to a better understanding of the genetic effects of the top 40 AD

candidate genes for male and female groups on brain volumes of 93 ROIs in the ADNI dataset.

For future research, a sparse groupwise envelope model that pinpoints the immaterial responses

is desired for real applications, as it is more interpretable. If we consider the spatial structure of the

brains, we would have a multi-dimensional array (tensor) response. Li and Zhang (2016) developed

a tensor response envelope model that achieves efficient estimation in tensor regression. We can

expand our methodology to handle heteroscedastic error structure in the tensor envelope model. In
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addition, a Bayesian version of this model that incorporates prior information from earlier studies

is also worth exploration. As longitudinal data and missing data appear in Alzheimer’s study, a

groupwise envelope model that can handle these data structures would also be of practical use.

SUPPLEMENTARY MATERIALS

Web Appendix A and Web Appendix B referenced in Section 4 are available with this paper at the

Biometrics website on Wiley Online Library. An R package implementing the groupwise envelope

model with simulating data is available at https://github.com/BIG-S2/GENV.
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APPENDIX

A: Estimation of the groupwise envelope model

we first hold Γ fixed and derive the estimators of parameters µ(l),η(l),Ω(l), l = 1, . . . , L, and Ω0

as a function of Γ. The derivative of the log likelihood l = l(θ) in (5) with respect to µ(l) is

∂l

∂µ(l)

= n(l)ΓΩ−1(l)

(
ΓT Ȳ(l) − ΓTµ(l) − η(l)X̄(l)

)
+ n(l)Γ0Ω

−1
0 ΓT

0 (Ȳ(l) − µ(l)). (A.1)

Setting the derivative in (A.1) to 0 and using the fact that X(l) is centered at 0, we have µ̂(l) = Ȳ(l).

Substitute µ̂(l) into the likelihood, we now consider the derivative of l in (5) with respect to η(l):

∂l

∂η(l)

=

n(l)∑
j=1

Ω−1(l)

(
ΓTY(l)j − ΓT Ȳ(l) − η(l)X(l)j

)
XT

(l)j. (A.2)

We set the the derivative in (A.2) to be 0 and obtain

η̂(l) =

( n(l)∑
j=1

ΓT (Y(l)j − Ȳ(l))X
T
(l)j

)( n(l)∑
j=1

X(l)jX
T
(l)j

)−1
= ΓT

(
YT

(l)cX(l)

)(
XT

(l)X(l)

)−1
,
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where X(l) is an n(l) × p matrix with its ith row being XT
(l),i, Y(l)c is an n(l) × r matrix with its ith

row being YT
(l),i − ȲT

(l). Substitute µ̂(l) and η̂(l) to the log likelihood function, we have

l = −nr
2

log(2π)− n

2
log |Ω0| −

1

2

L∑
l=1

n(l) log |Ω(l)| (A.3)

−1

2

L∑
l=1

tr(QX(l)
Y(l)cΓΩ−1(l) Γ

TYT
(l)cQX(l)

)− 1

2

L∑
l=1

tr(Y(l)cΓ0Ω
−1
0 ΓT

0YT
(l)c).

We can easily get the estimators of Ω(l) and Ω0 by taking the derivatives, and the estimators are

Ω̂(l) =
1

n(l)

ΓTYT
(l)cQX(l)

Y(l)cΓ = ΓT Σ̂res,(l)Γ and Ω̂0 =
1

n

L∑
l=1

ΓT
0YT

(l)cY(l)cΓ0 = ΓT
0 Σ̂YΓ0.

(A.4)

Substitution of (A.4) into (A.3) gives

l = constant− 1

2

L∑
l=1

n(l) log |ΓT Σ̂res,(l)Γ| −
n

2
log |Γ0Σ̂YΓ0|. (A.5)

By Lemma 6.2 of Cook et al. (2010), we rewrite the function in (A.5) as

l(Γ) = constant− n

2
log |Σ̂Y| −

1

2

L∑
l=1

n(l) log |ΓT Σ̂res,(l)Γ| −
n

2
log |ΓT Σ̂

−1
Y Γ|.

Then the objective function for Γ is

L∑
l=1

n(l)

n
log |ΓT Σ̂res,(l)Γ|+ log |ΓT Σ̂

−1
Y Γ|,

and Γ̂ can be obtained by minimizing the preceding objective function.

B: Proofs of theoretical results in Section 3

Proof of Proposition 1 and Proposition 2 For preparation, if A ∈ Rm×m is a symmetric matrix,

vech(A) ∈ Rm(m+1)/2 denotes the vector that stacks the lower triangle of A into a vector. The

notations Em ∈ Rm2×m(m+1)/2 and Cm ∈ Rm(m+1)/2×m2 are expansion and contraction operators

that connect vec and vech: vec(A) = Em vech(A) and vech(A) = Cm vec(A).
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We use Proposition 4.1 in Shapiro (1986) to prove Proposition 1. Let h denote the parameters

under the standard model, and let φ denote the parameters under the groupwise envelope model.

Then h = vec
[{
µT

(1), . . . ,µ
T
(L), vecT (β(1)), . . . , vecT (β(L)), vechT (Σ(1)), . . . , vechT (Σ(L))

}T ],
andφ = vec

{
µT

(1), . . . ,µ
T
(L), vecT (η(1)), . . . , vecT (η(L)), vechT (Ω(1)), . . . , vechT (Ω(L)), vecT (Γ),

vechT (Ω0)
}T . We use J to denote the Fisher information matrix under the standard model, and G

to denote the gradient matrix. Then

G ≡ ∂h

∂φT
=


g1 0 0 0 0

0 g2 0 g3 0

0 0 g4 g5 g6

 ,

where g1 = ILr, g2 is a Lpr × Lpu block diagonal matrix whose all diagonal blocks are Ip ⊗ Γ,

g3 = (η(1) ⊗ Ir, . . . ,η(L) ⊗ Ir)
T , g4 is a Lr(r + 1)/2 × ur block diagonal matrix whose all

diagonal blocks are Cr(Γ⊗ Γ)Eu, g5 =
{

2(Ω(1)Γ
T ⊗ Ir − ΓT ⊗ Γ0Ω0Γ

T
0 )CT

r , . . . , 2(Ω(L)Γ
T ⊗

Ir − ΓT ⊗ Γ0Ω0Γ
T
0 )CT

r

}T , and g6 =
{
ET

r−u(ΓT
0 ⊗ ΓT

0 )CT
r , . . . , E

T
r−u(ΓT

0 ⊗ ΓT
0 )CT

r

}T . Now we

match Shapiro’s notations with our notations. Shapiro’s θ is our φ; Shapiro’s ξ is our h; Shapiro’s

x̂ is the standard estimator of h; Shapiro’s ∆ is our gradient matrix G; Shapiro’s V is our J; and

Shapiro’s discrepancy function F is lmax − l, where l is the log likelihood function and lmax is the

maximum value of l attained when h is the standard estimator of h. Specifically,

lmax − l = lmax +
nr

2
log(2π) +

1

2

L∑
l=1

[
n(l) log |Σ(l)|

+ tr
{

(Y(l) − 1n(l)
µT

(l) − X(l)β
T
(l))Σ

−1
(l) (Y(l) − 1n(l)

µT
(l) − X(l)β

T
(l))

T
}]

= lmax +
nr

2
log(2π) +

1

2

L∑
l=1

(
n(l) log |Σ(l)|+ tr

[
Σ−1(l)

{
nΣ̂res(l)

+(β(l) − β̂(l),ols)XT
(l)X(l)(β̂(l) − β̂(l),ols)

T + n(l)(µ(l) − Ȳ(l))(µ(l) − Ȳ(l))
T
}])

.

It is easy to see that lmax − l satisfies the conditions 1 – 4 in Section 3 of Shapiro (1986).
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Since J is full rank, we have rank(GTJG) = rank(J). As the standard estimator of h is
√
n

consistent and converges in distribution to a normal distribution with mean 0 and covariance

J−1, all the conditions in Proposition 4.1 of Shapiro (1986) are satisfied. Thus, the groupwise

envelope estimator ĥ is a
√
n consistent estimator of h, and

√
n(ĥ−h) has asymptotically normal

distribution with mean 0.

When the errors are normally distributed, then J has a closed form:

J =


J1 0 0

0 J2 0

0 0 J3

 ,

where f(l) = n(l)/n is the proportion of the l−th population, J1 is a Lr × Lr block diagonal

matrix whose diagonal blocks are f(1)Σ−1(1), . . . , f(L)Σ
−1
(L), J2 is a Lpr×Lpr block diagonal matrix

whose diagonal blocks are f(1)ΣX(1)
⊗Σ−1(1), . . . , f(L)ΣX(L)

⊗Σ−1(L), and J3 is a {Lr(r + 1)/2} ×

{Lr(r+1)/2} block diagonal matrix whose diagonal blocks are (1/2)f(1)E
T
r (Σ−1(1)⊗Σ−1(1))Er, . . . ,

(1/2)f(L)E
T
r (Σ−1(L) ⊗Σ−1(L))Er. The asymptotic variance of ĥ under the groupwise envelope model

then has a closed form Venv = G(GTJG)†GT , where A† denotes the Moore-Penrose generalized

inverse of a matrix A. After some straightforward calculations, the asymptotic variance of vec(β̂(l))

is (1/f(l))Σ
−1
X(l)
⊗ΓΩ(l)Γ

T +(ηT
(l)⊗Γ0)

{∑L
l=1 f(l)

(
η(l)ΣX(l)

ηT
(l)⊗Ω−10 +Ω(l)⊗Ω−10 +Ω−1(l) ⊗Ω0−

2Iu ⊗ Ir−u
)}−1

(η(l) ⊗ ΓT
0 ), and the asymptotic variance of µ̂(l) is (1/f(l))Σ(l), for l = 1, . . . , L.

Proof of Proposition 3 Proof of Proposition 3 follows directly from (5.7) in Cook et al. (2010).
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Figure 1: Left panel: Standard deviations for a random picked element in β(1). Right panel:
Standard deviations for a random picked element in β(2). The magenta –o–, – · – and — lines
mark the actual, bootstrap and asymptotic standard deviations of the groupwise envelope model.
The black –∗– and – – lines mark the actual and asymptotic standard deviation of the separate
envelope model. The black –o– line marks the standard deviations of the envelope estimator in
Cook et al. (2010). The black · · · line marks the asymptotic standard deviations of the standard
model.
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Figure 2: Plot of the correlation matrix. The top panel shows the correlation of 1071 SNPs and the
bottom panel is the enlarged version for the first 200 SNPs.
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Figure 3: Boxplot of the ratio of the bootstrap standard deviation under the standard model to the
bootstrap standard deviation under the groupwise envelope model or separate envelope model. The
left panel is boxplot of the ratios for the male group, and the right panel is boxplot of the ratios for
the female group. The horizontal blue line is at 1.
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Figure 4: Plot of the proportions of the absolute value of coefficient for SNPs in the Euclidean
norm of the coefficient vector corresponding to the region: the last on the horizontal axis denotes
APOE ε4 and the remaining is for 205 PCs. The first row is for left hippocampal formation region,
and the second row is for the right hippocampal formation region. The left panel is for the male
group, and the right panel is for the female group.
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Figure 5: Heatmaps of the regression coefficients: the last on the horizontal axis denotes APOE ε4
and the remaining is for the selected PCs. The first row is for groupwsie envelope model, and the
second row is for the standard model (2). The left panel is for the male group, and the right panel
is for the female group.
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Table 1: The selected ROIs based on the p-value of βred. The italic ROIs in groupwise envelope
model are regions additionally selected from female group except 41 common selected ROIs.

Groupwise Envelope model Standard model
me.f-o.gy.R pstc.gy.R me.f-o.gy.R sup.o.gy.R tmp.pl.L

lat.ve.L ling.gy.R mid.f.gy.R caud.neuc.L ent.cort.L
insula.R me.f.gy.R lat.ve.L sup.gy.L inf.o.gy.R
lat.ve.R amyg.L insula.R ant.caps.L sup.o.gy.L

glob.pal.R me.o.gy.L prec.gy.R oc.lb.WM.R lat.o.t.gy.R
glob.pal.L mid.t.gy.R lat.f-o.gy.R mid.f.gy.L ent.cort.R
inf.f.gy.L corp.col cing.R sup.p.lb.L hiopp.L
ang.gyr.R sup.t.gy.R lat.ve.R caud.neuc.R thal.L
tmp.pl.R me.o.gy.R me.f.gy.L cun.L par.lb.WM.R
nuc.acc.R thal.R sup.f.gy.R prec.L insula.L

f.lob.WM.L lat.f-o.gy.R glob.pal.R par.lb.WM.L pstc.gy.R
subtha.nuc.L sup.f.gy.R glob.pal.L tmp.lb.WM.R ling.gy.R
sup.o.gy.R hiopp.R putamen.L sup.gy.R me.f.gy.R

caud.neuc.L caud.neuc.R inf.f.gy.L sup.t.gy.L amyg.L
sup.p.lb.L mid.t.gy.L putamen.R unc.L me.o.gy.L

prec.L prec.gy.L f.lob.WM.R mid.o.gy.R parah.gy.R
sup.gy.R par.lb.WM.R parah.gy.L mid.t.gy.L ant.caps.R
sup.t.gy.L ant.caps.R ang.gyr.R ling.gy.L mid.t.gy.R

unc.L tmp.pl.R sup.f.gy.L occ.pol.R
mid.o.gy.R subtha.nuc.R nuc.acc.L corp.col
ling.gy.L nuc.acc.R oc.lb.WM.L amyg.R
sup.f.gy.L unc.R pstc.gy.L inf.t.gy.R
nuc.acc.L cing.L inf.f.gy.R sup.t.gy.R
inf.f.gy.R fornix.L prec.gy.L mid.o.gy.L

me.f-o.gy.L f.lob.WM.L tmp.lb.WM.L ang.gyr.L
per.cort.R pec.R me.f-o.gy.L me.o.gy.R
sup.p.lb.R subtha.nuc.L per.cort.R cun.R
per.cort.L post.limb.L sup.p.lb.R lat.o.t.gy.L
inf.t.gy.L post.limb.R lat.f-o.gy.L thal.R
ent.cort.L hiopp.R per.cort.L occ.pol.L
ent.cort.R inf.o.gy.L inf.t.gy.L fornix.R


