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SUMMARY 15

The envelope model is a method for efficient estimation in multivariate linear regression. In
this article, we propose the sparse envelope model, which ismotivated by applications where
some response variables are invariant to changes of the predictors and have zero regression co-
efficients. The envelope estimator is consistent but not sparse, and in many situations it is impor-
tant to identify the response variables for which the regression coefficients are zero. The sparse20

envelope model performs variable selection on the responses and preserves the efficiency gains
offered by the envelope model. Response variable selectionarises naturally in many applications,
but has not been studied as thoroughly as predictor variableselection. In this article, we discuss
response variable selection in both the standard multivariate linear regression and the envelope
contexts. In response variable selection, even if a response has zero coefficients, it still should be25

retained to improve the estimation efficiency of the nonzerocoefficients. This is different from
the practice in predictor variable selection. We establishconsistency, the oracle property and
obtain the asymptotic distribution of the sparse envelope estimator.

Some key words: Canonical correlation, Dimension reduction, Envelope model, Grassmann manifold, Oracle property

1. INTRODUCTION 30

1·1. Background
Throughout the article, we consider multivariate linear regression

Y = α + β(X − µX) + ε, (1)

whereY ∈ R
r is a multivariate response vector,X ∈ R

p denotes the vector of random predictors
with meanµX ∈ R

p and covariance matrixΣX ∈ R
p×p. The error vectorε ∈ R

r has mean0 and
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positive definite covariance matrixΣ ∈ R
r×r, and is independent of the predictor vectorX. The35

interceptα ∈ R
r and regression coefficientsβ ∈ R

r×p are unknown parameters.
The standard approach estimates each row ofβ separately by regressing the corresponding

element ofY on X, and relationships among the elements ofY are not used. The envelope
model (Cook et al., 2010) makes use of the stochastic relationships among the elements ofY ,
and identifies a part of the response that is immaterial to changes inX. Excluding this immaterial40

part in the estimation ofβ leads to gains in efficiency. Building on the development in Cook
et al. (2010), several papers have applied the idea of enveloping to more general contexts, and
have proposed new models to achieve even greater gains in efficiency; see, e.g. Su & Cook
(2011), Cook & Su (2013), and Cook & Zhang (2015). Moreover, aconnection between the
envelope model and partial least squares that has allowed for a new understanding of the working45

mechanism of partial least squares was established by Cook et al. (2013).
Compared to predictor variable selection, the literature on response variable selection is lim-

ited. Response variable selection is motivated by applications in which some response variables
do not depend on any of the predictors and have zero regression coefficients. For example, the
expression levels for some genes of the fission yeastSchizosaccharomyces pombeshow little50

variation in a cell cycle while the expression levels for other genes have large variation, see
Section 3·2. Finding inactive response variables can lead to more interpretable results and also
improve estimation efficiency; see Section 2·5. The standard procedure for identifying inactive
responses is to evaluate, fori = 1, . . . , r, whetherYi depends onX via theF test, adjusting
for multiple testing (see, e.g. Benjamini & Yekutieli 2001). However, since the relationship be-55

tween the response variables is not used, this procedure is not efficient, as is demonstrated in the
simulations in Section 3·1.

In this article, we develop a sparse envelope model that performs response variable selection
efficiently under the envelope model. We also discuss issuesin response variable selection, espe-
cially how to use the inactive responses to improve estimation efficiency for nonzero regression60

coefficients. Our theoretical discussion addresses both large-sample and high-dimensional sce-
narios. Throughout the article, we assume that the number ofpredictorsp is fixed and smaller
than the sample sizen. If p is large, we can apply a standard approach like the lasso to reducep
before applying our method.

We usePA to indicate the projection matrix ontoA or span(A) if A is a subspace or a matrix,65

andQA = I − PA. The symbol∼ stands for equality in distribution. IfV1 andV2 are random
variables,V1 V2 indicates that they are independent. TheL2 norm of a vectorv is denoted by
‖v‖2. For a matrixM , we use‖M‖ for its spectral norm and‖M‖F for its Frobenius norm. The
operatorvec stacks a matrix into a vector column-wise. The Kronecker product for matricesA
andB is indicated byA⊗B. A notation table is in the Supplement.70

1·2. Envelopes
Let (Γ,Γ0) ∈ R

r×r be an orthogonal matrix. ThenY can be decomposed into two parts,
PΓY and QΓY . We assume that these satisfy the conditions: (i)QΓY | X ∼ QΓY and (ii)
cov(PΓY,QΓY | X) = 0. Condition (i) implies that the distribution ofQΓY does not depend
on X. SoQΓY does not carry any information aboutβ. Condition (ii) implies thatQΓY does75

not carry any information aboutβ through its conditional correlation withPΓY . Together these
conditions imply thatQΓY does not carry any information aboutβ directly or indirectly, and
thereforeQΓY is immaterial to the regression. Thus we callPΓY andQΓY the material part
and immaterial part, respectively. Cook et al. (2010) showed that (i) and (ii) are equivalent
to the following conditions: (a)B ⊆ span(Γ), whereB = span(β), and (b)Σ = Σ1 + Σ2 =80

PΓΣPΓ + QΓΣQΓ. When (b) holds,span(Γ) is a reducing subspace ofΣ (Conway, 2013, Sec-
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tion 2·3). TheΣ-envelope ofB, denoted byEΣ(B), is defined as the smallest reducing subspace
of Σ that containsB (Cook et al., 2010). Consequently,EΣ(B) decomposesΣ into variation re-
lated to the material and immaterial parts ofY : Σ1 = var(PΓY | X) andΣ2 = var(QΓY ). We
call (1) an envelope model when conditions (a) and (b) are imposed. Becauseβ is related only to 85

the material variation, the decomposition ofΣ suggests that excluding the immaterial informa-
tion makes estimation ofβ more efficient. In particular, massive efficiency gains can be obtained
when‖Σ2‖ ≫ ‖Σ1‖. Based on (a) and (b), the coordinate form of the envelope model is

Y = α + Γη(X − µX) + ε, Σ = Σ1 + Σ2 = ΓΩΓT + Γ0Ω0Γ
T
0 , (2)

whereβ = Γη, Γ ∈ R
r×u is an orthogonal basis forEΣ(B), Γ0 is a completion ofΓ, andu is

the dimension ofEΣ(B). The matrixη ∈ R
u×p holds the coordinates ofβ relative toΓ, andΩ ∈ 90

R
u×u andΩ0 ∈ R

(r−u)×(r−u) are positive definite. Ifu = r, thenEΣ(B) = R
r, which implies

that there is no immaterial information and the envelope model reduces to the standard model.
To estimate the envelopeEΣ(B), Cook et al. (2010) solved the manifold optimization problem

ÊΣ(B) = arg min
span(Γ)∈G(r,u)

{log |ΓT Σ̂resΓ|+ log |ΓT Σ̂−1
Y Γ|} (3)

where| · | denotes determinant,G(r, u) denotes anr × u Grassmann manifold, which is the set of
all u-dimensional subspaces in anr-dimensional space. The matrix̂ΣY is the sample covariance 95

matrix ofY andΣ̂res denotes the sample covariance matrix of the residuals from the regression of
Y onX. As the search ofEΣ(B) is onG(r, u), (3) is a Grassmann manifold optimization problem.
The objective function is non-convex. Tools for solving non-convex optimization problems on
manifolds, especially whenr is large, are quite limited. Cook et al. (2016) addressed this issue
by converting (3) to a non-Grassmann manifold optimization, which is faster and more reliable100

in such cases. Without loss of generality, we assume thatΓ1, the submatrix that consists of the
first u rows ofΓ, is non-singular. Then

Γ =

(
Γ1

Γ2

)
=

(
Iu

A

)
Γ1 ≡ GAΓ1,

whereA = Γ2Γ
−1
1 . Notice thatA depends onΓ only throughspan(Γ): for an orthogonal matrix

O ∈ R
u×u, if Γ∗ = ΓO, thenΓ∗

1 = Γ1O, Γ∗
2 = Γ2O, andA∗ = Γ2OO−1Γ−1

1 = A. BecauseA
is unconstrained, (3) can be converted to the non-Grassmannoptimization 105

Â = arg min
A∈R(r−u)×u

{−2 log |GT
AGA|+ log |GT

AΣ̂resGA|+ log |GT
AΣ̂−1

Y GA|}. (4)

Cook et al. (2015) developed an effective algorithm and a good starting value for solving (4).
Once we haveÂ, ÊΣ(B) = span(ĜA), and the envelope estimator ofβ is β̂env = P

Ê
β̂ols,

whereβ̂ols is the ordinary least squares estimator ofβ andEΣ(B) is abbreviated asE if it appears
in subscripts. Cook et al. (2010) showed thatβ̂env is asymptotically at least as efficient asβ̂ols. A
more detailed review about the envelope models can be found in (Cook & Su, 2013, Section 2). 110

2. SPARSEENVELOPE MODEL

2·1. Response Variable Selection
In some cases, certain response variables are immaterial toX, i.e., the corresponding rows of

Γ consist of zeros. We call such response variables inactive.We call a response variable active
if its corresponding row inΓ is nonzero. Since different orthogonal bases of a subspace have 115
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the same row-wise sparsity pattern, the active and inactiveresponses are invariant under col-
umn transformation ofΓ. Becauseβ = Γη, the regression coefficients of the inactive responses
are zero. However, an active response may also have zero regression coefficients. Proposition 1
characterizes the active responses, and shows their relationship with responses that have non-zero
regression coefficients.120

In preparation, we use the covariance graph model (Cox & Wermuth, 1993) to represent the
structure ofΣ. The covariance graph model was recently used in Chen et al. (2012) to con-
struct a graph-guided fused lasso penalty for predictor variable selection. LetG = (V,E) be an
undirected graph with verticesV = {1, . . . , r} and an edge setE consisting of all pairs(i, j)
for which the(i, j)th element inΣ is nonzero. The response variablesYi andYj are said to be125

connected if there is a sequence of edges in the graph connecting verticesi andj.

PROPOSITION1. If the regression coefficients of an active response are all zero, then the
response must be connected with a response that has non-zeroregression coefficients.

Proposition 1 indicates that if an active response has zero regression coefficients, it still offers
information in estimating the non-zero regression coefficients. This is a new feature of response130

variable selection. In predictor variable selection, if a predictor has zero regression coefficients,
it offers no information in estimating any non-zero regression coefficients. More discussion on
Proposition 1 is in the Supplement.

In this article, we are not trying to identify the responses having zero regression coefficients
and the responses having non-zero regression coefficients;rather we are interested in identifying135

the active and inactive responses, i.e., whether or not a response contributes in the material part.

2·2. Formulation
We useYA andYI to denote the active and inactive responses. The subscriptsA andI are used

if a quantity is associated with the active or inactive responses. Without loss of generality, let
Y = (Y T

A , Y T
I )T , and letq denote the dimension ofYA (q ≤ r). ThusYA ∈ R

q andYI ∈ R
r−q.140

ThenΓ andΓ0 should have the following structure:

Γ =

(
ΓA

0

)
, Γ0 =

(
ΓA,0 0

0 Ir−q

)
R ≡ Γ̃0R, (5)

whereΓA ∈ R
q×u is a semi-orthogonal matrix,ΓA,0 ∈ R

q×(q−u) is its completion, andR ∈
R

(r−u)×(r−u) is an orthogonal matrix. SinceΓT Y = ΓT
AYA, the inactive responses do not appear

in the material part. Becauseβ = Γη, we haveβ = (βT
A, 0)T , whereβA = ΓAη ∈ R

q×p and the
zero matrix has dimension(r − q)× p. The completion ofΓ has the general formΓ0 = Γ̃0R,145

whereΓ̃0 ∈ R
r×(r−u) is a completion with a block diagonal structure, andR represents a rotation

of the orthogonal basis. BecauseΓ̃0 ∈ R
r×(r−u) has a simple block diagonal structure, it will be

convenient to use it in some of our later development. From the structure of̃Γ0, it is easy to
see that the immaterial partΓ̃T

0 Y =
(
(ΓT

A,0YA)T , Y T
I

)T
has two parts, one from the immaterial

information of the active responsesΓT
A,0YA, and the other from the inactive responsesYI .150

We call (2) the sparse envelope model ifΓ andΓ0 have the structures given by (5). We require
u ≤ q because the dimension ofΓT

AYA should be at most the dimension ofYA. Whenu = q,
there is no immaterial information in the active responses,andΓA = Iq. Therefore, up to an
orthogonal transformation,ΓT Y = YA andΓT

0 Y = YI , andΣ has a block diagonal structure. If
q = r, there are no inactive responses and all rows inΓ are non-zero. The sparse envelope model155

is then equivalent to the envelope model.
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2·3. Response Variable Selection via Penalized Likelihood
SinceΓ = GAΓ1, a row inΓ is zero if and only if the corresponding row inA is zero. To

induce row-wise sparsity inA, we add a group lasso penalty (Yuan & Lin, 2006) to (4), so that
the optimization problem becomes 160

Â = arg min
A∈R(r−u)×u

{−2 log |GT
AGA|+ log |GT

AΣ̂resGA|+ log |GT
AΣ̂−1

Y GA|+
r−u∑

i=1

λi‖ai‖2}, (6)

whereaT
i denotes theith row ofA and theλi’s are tuning parameters.

We choose this penalty function for the following reasons. First, it treats each row ofΓ as
a group, so the sparsity is row-wise instead of element-wise. This fits the response variable
selection context:‖ai‖2 = 0 means the(i + u)th row of Γ is zero, so the(i + u)th response is
inactive. Second, it is invariant to a change of basis. SinceA depends onΓ only through its span, 165∑r−u

i=1 λi‖ai‖2 is unchanged if a different orthogonal basis ofEΣ(B) is used. Third, the estimator
(6) has the desirable features of

√
n-consistency, asymptotic normality, selection consistency, and

has an optimal estimation rate; see Section 2·5. Finally, its numerical performance is substantially
better than the performance of some alternatives, in particular the method that involves applying
F tests to each row of̂βols, or hard-thresholding the envelope estimator; see Section3·1. 170

Whenr tends to infinity withn, we denoter by rn. If rn > n, bothΣ̂Y andΣ̂res are singular,
which is problematic because the objective function in (6) depends on̂Σ−1

Y and the optimiza-
tion algorithm used to solve (6) requireŝΣ−1

res; see Section 2·4. We can resolve these issues by
obtaining estimators forΣ−1

Y andΣ−1 directly using methods like sparse permutation invari-
ant covariance estimation (Rothman et al., 2008), lasso penalized D-trace estimation (Zhang &175

Zou, 2014), or convex pseudo-likelihood based partial correlation graph estimation (Khare et al.,
2015). Among these methods, sparse permutation invariant covariance estimation is the only
one that does not require a sparsity structure for the targetparameter in order to establish the
consistency of its estimator. Cook et al. (2012) used this method to estimate a target parameter
which is not necessarily sparse, and their numerical experiments showed that the estimator is180

very stable. In the sparse envelope model,Σ−1
Y andΣ−1 may not contain zero elements. We

then use sparse permutation invariant covariance estimators of Σ−1
Y andΣ−1, and denote them

by Σ̂−1
Y,sp and Σ̂−1

res,sp. ThenΣ̂Y,sp and Σ̂res,sp are obtained by taking the inverses ofΣ̂−1
Y,sp and

Σ̂−1
res,sp. ReplacingΣ̂res andΣ̂−1

Y by Σ̂res,sp andΣ̂−1
Y,sp in (6), the optimization problem is

Â = arg min
A∈R(rn−u)×u

{−2 log |GT
AGA|+ log |GT

AΣ̂res,spGA|+ log |GT
AΣ̂−1

Y,spGA|+
rn−u∑

i=1

λi‖ai‖2}.

(7)
Optimization of (6) and (7) is discussed in Section 2·4. After we haveÂ, an orthogonal basis 185

of span(ĜA) is used to formΓ̂, and Γ̂0 is taken as a completion of̂Γ. The sparse envelope
estimators ofβ andΣ are

β̂ = P
Γ̂
β̂ols, Σ̂ = P

Γ̂
Σ̂resPΓ̂

+ Q
Γ̂
Σ̂Y Q

Γ̂
.

The estimators for the constituent parameters areη̂ = Γ̂Tβ̂ols, Ω̂ = Γ̂TΣ̂resΓ̂ andΩ̂0 = Γ̂T
0 Σ̂Y Γ̂0.

The sparse envelope estimators have the same form as the envelope estimators, except thatΓ̂ and
Γ̂0 have the special structures specified in (5). 190
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2·4. Algorithm
We first discuss the algorithm for solving (6). Since selection of r − u tuning parameters can

be computationally intensive, we use the idea of the adaptive lasso (Zou, 2006) and setλi = λωi,
where theωi are adaptive weights. Then the optimization becomes

Â = arg min
A∈R(r−u)×u

{−2 log |GT
AGA|+ log |GT

AΣ̂resGA|+ log |GT
AΣ̂−1

Y GA|+ λ

r−u∑

i=1

ωi‖ai‖2}.

(8)
The optimization problem in (8) is non-convex and the objective function is not differen-195

tiable due to the group lasso penalty. Blockwise coordinatedescent algorithms have been very
successful in solving a wide class of group lasso penalized high-dimensional learning prob-
lems (Friedman et al., 2008; Simon et al., 2013; Yang & Zou, 2015). Cook et al. (2015) used
a blockwise coordinate descent algorithm to optimize the envelope objective function (4), and
the method worked well. Here we develop a fast blockwise coordinate descent algorithm for200

efficiently solving (8). Our algorithm cyclically updates each row ofA, such that after each op-
eration the objective function (8) strictly decreases. LetA−i ∈ R

(r−u−1)×u be the submatrix of
A with row aT

i removed. Without loss of generality, we consider the case whenaT
i is the last row

of A. Form the partitions

GA =

(
Iu

A

)
=

(
G
aT

i

)
, Σ̂res =

(
U11 U12

U21 U22

)
, Σ̂−1

Y =

(
V11 V12

V21 V22

)
.

LetL(A) = −2 log |GT
AGA|+ log |GT

AΣ̂resGA|+ log |GT
AΣ̂−1

Y GA|. We can writeL(A) in terms205

of ai up to a constant while holding all the other rows ofA at their current valuẽA−i: we have

L(ai | Ã−i) =− 2 log(1 + aT
i B1ai) + log{1 + (ai + v2)

TB2(ai + v2)}
+ log{1 + (ai + v3)

TB3(ai + v3)}+ const,
(9)

where v2 = U−1
22 GTU12, v3 = V −1

22 GTV12, B1 = (Iu + AT
−iA−i)

−1, B2 = U22(G
TU11G−

U−1
22 GTU12U21G)−1 andB3 = V22(G

TV11G− V −1
22 GTV12V21G)−1. Within the blockwise co-

ordinate descent loops, we need to solve the optimization problem

âi = arg min
ai

L(ai | Ã−i) + λωi‖ai‖2. (10)

Unfortunately, there is no closed-form solution to (10), sowe apply the majorization-210

minimization principle (Wu & Lange, 2010; Lange et al., 2000; Hunter & Lange, 2004; Zhou
& Lange, 2010) within the blockwise coordinate descent loopby iteratively minimizing a func-
tion that majorizes the objective function in (9). The majorization functionQ(ai) is equal to
L(ai | Ã−i) at the current valuẽai and lies strictly aboveL(ai | Ã−i) whenai 6= ãi. Specifi-
cally, the majorization functionQ(ai) has the form215

Q(ai) = L(ãi | Ã−i) + (ai − ãi)
T dL(ai|Ã−i)

dai

∣∣∣
ai=ãi

+ 0.5δi(ai − ãi)
T(ai − ãi),

where

dL(ai|Ã−i)

dai

∣∣∣
ai=ãi

=
−4B1ãi

1 + ãT
i B1ãi

+
2B2(ãi + v2)

1 + (ãi + v2)TB2(ãi + v2)
+

2B3(ãi + v3)

1 + (ãi + v3)TB3(ãi + v3)
,

δi = (1 + ε∗){4γmax(B1) + 2γmax(B2) + 2γmax(B3)}, andγmax(·) denotes the largest eigen-
value of the corresponding matrix. We must haveε∗ > 0 such thatQ(ai) > L(ai | Ã−i) holds
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for anyai 6= ãi. In this article we setε∗ = 10−6. Then instead of minimizing (10) we solve

min
ai

{Q(ai) + λωi‖ai‖2}. (11)

The solution to (11) has a simple closed-form expression. Algorithm 1 summarizes our blockwise220

coordinate descent algorithm. It takesO(u3 + ru) flops to computeδi, and each update of̃ai to
ãi,new takesO(u2) flops. The starting value can be taken as the envelope estimator of A, which
is the minimizer of (4).

Algorithm 1 The blockwise coordinate descent algorithm for solving (8).

Initialize Ã

Repeat until convergence of̃A
For i = 1 to i = r − u

δi ← (1 + ε∗){4γmax(B1) + 2γmax(B2) + 2γmax(B3)}
Repeat until convergence ofãi

ãi,new ← 1
δi

{
δiãi − dL(ai|Ã−i)

dai

∣∣∣
ai=ãi

}
1− λωi∥∥δiãi−

dL(ai|Ã−i)

dai

∣∣
ai=ãi

∥∥
2





+
ãi ← ãi,new

OutputÃ

Theorem 1 shows that Algorithm 1 has a descent property and the updates converge to a sta-
tionary point of the objective function in (8). A figure that empirically confirms the convergence225

of Algorithm 1 is in the Supplement.

THEOREM 1. After updating̃ai, if ãi,new 6= ãi, the objective function in (10) strictly decreases
after updating the block:

L(ãi,new | Ã−i) + λωi‖ãi,new‖2 < L(ãi) + λωi‖ãi‖2.
If the solution stays unchanged after each blockwise coordinate update, i.e.,̃ai,new = ãi for
all i, then this solution satisfies the Karush–Kuhn–Tucker conditions, and this indicates that the230

algorithm has converged to a stationary point.

We solve the adaptive group lasso problem (8) by applying Algorithm 1 in a two-stage proce-
dure. In the first stage, we set allωi to be 1 in Algorithm 1 and obtain the group lasso estimator
Âstage1. In the second stage, we set weightsωi = ‖âi,stage1‖ν2 and obtain the weighted group
lasso estimator̂A. If ‖âi,stage1‖ = 0, we excludeai in the second stage and setâi = 0. The 235

parameterν can be selected by cross-validation. Based on the discussion in Zou (2006), it is
sufficient to chooseν from a small candidate set like{0·5, 1, 2, 4}. To choose the tuning pa-
rameterλ, we use the Bayesian information criterion. For a fixedλ, the criterion is defined as
−2lλ + (qλ − u)u log n, wherelλ is the log likelihood givenλ andqλ is the number of active
responses givenλ. We choose theλ that minimizes the criterion. This criterion is used in Chen240

et al. (2010) and its consistency is proved in Zou & Chen (2012). We use the warm-start trick of
Friedman et al. (2010) to compute the solution paths along a sequence ofK values ofλ, with
log λ equally spaced betweenlog λmax andlog λmin. The solutionÂ(λk) computed atλk is used
as the initial value for computing the solution forλk+1 in Algorithm 1. An expression for the
smallestλ that yields the null model is given in the Supplement. Since the sparse envelope esti-245

mator is asymptotically equivalent to the maximum likelihood estimator of the oracle envelope
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model, see Section 2·5, we can use likelihood-based procedures such as the Akaikeinformation
criterion, the Bayesian information criterion or likelihood ratio testing to selectu. We compare
the performance of these procedures in the Supplement.

Solving (7) follows the same procedure as solving (6). For choosingλ andu we prefer cross-250

validation over the Bayesian information criterion and other likelihood-based procedures because
these require the sample size to be at least moderately largein order to give good performance.

2·5. Theoretical Properties of the Sparse Envelope Estimator
Theorems 2–4 gives results regarding consistency and oracle properties of the sparse envelope

estimator in the large-sample case, i.e., whenr is fixed andn tends to infinity. Theorems 5 and 6255

address selection consistency and the convergence rate when bothrn andn tend to infinity.
If S is a subspace and̂S is an estimator ofS, we say thatŜ is a

√
n-consistent estimator

of S if P
Ŝ

is a
√

n-consistent estimator ofPS . Let λmax,n = max(λ1, . . . , λq−u) andλmin,n =
min(λq−u+1, . . . , λr−u) at sample sizen.

THEOREM 2. Assume that the sparse envelope model (2) and (5) holds, the errorsε are in-260

dependent and have finite fourth moment, andn1/2λmax,n → 0 asn tends to infinity. Then there
exists a local minimizer̂A of (6), such thatP

Γ̂
is a
√

n-consistent estimator ofPΓ, and β̂ is a√
n-consistent estimator ofβ.

Theorem 2 implies that although the objective function for the sparse envelope estimator is
based on a normal likelihood, normality is not required to establish

√
n-consistency of̂EΣ(B) and265

β̂. Theorem 3 regards selection consistency and states that the sparse envelope model identifies
the inactive responses with probability tending to 1.

THEOREM 3. Assume that the conditions in Theorem2 hold, and thatn1/2λmin,n →∞. Then
pr(âi = 0)→ 1 for i = q − u + 1, . . . , r − u.

An oracle estimator must consistently select the active responses, and estimate them with an270

optimal rate. While the oracle property is well studied in predictor variable selection (Fan & Li,
2001; Zou, 2006), it has not been studied in response variable selection. Therefore we first discuss
how to define the oracle model for response variable selection under the standard model (1) and
then define the oracle envelope model.

Because the definitions of active and inactive responses rely on the envelope construction, we275

introduce some new definitions for the standard model. Underthe standard model (1), we call a
response variable dynamic if its regression coefficients are not zero. We call a response variable
static if its regression coefficients are zero. Letd denote the number of dynamic responses,
and letYD ∈ R

d and YS ∈ R
r−d denote the dynamic and static responses. The subscriptsD

or S are attached to a quantity if it is associated with the dynamic or static responses. Without280

loss of generality, letY = (Y T
D , Y T

S )T. Thenβ ∈ R
r×p has the structureβ = (βT

D, 0)T, where
βD ∈ R

d×p contains the regression coefficients for the dynamic responses. The oracle model is
defined by

(
YD

YS

)
= α +

(
βD

0

)
(X − µX) + ε, var(ε) = Σ =

(
ΣD ΣDS

ΣT
DS ΣS

)
, (12)

whereα ∈ R
r, βD ∈ R

d×p, d is now known, and the partition ofΣ corresponds to the allocation
of YD andYS. The oracle model includes the static responsesYS . This is in contrast to the oracle285

model for predictor variable selection, where predictors which are inactive are not included in
the model. SinceYS may be correlated withYD, including this information can improve the
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efficiency in estimatingβD. ExcludingYS leads to the model

YD = αD + βD(X − µX) + εD, (13)

whereαD andεD are the firstd elements ofα andε in (12). We call (13) the dynamic model
because it includes only the dynamic responses. It is tempting to view (13) rather than (12) as290

the target model for oracle estimation, but we do not do so because (13) ignores information
available fromYS which may be used to devise a more efficient estimator in the current context.
To compare models (13) and (12), we assume normality of the error distributions in Proposi-
tions 2 and 3 in order to get an explicit form for the asymptotic variance. Let̂βD,ols andβ̂S,ols be
the ordinary least squares estimators of the coefficients from the regression ofYD on X and the 295

regression ofYS on X respectively, and letRD andRS be the residuals from the regression of
YD onX and the regression ofYS onX respectively. DefineΣD|S = ΣD − ΣDSΣ−1

S ΣSD.

PROPOSITION2. Assume that the oracle model (12) holds and that the errors are nor-
mally distributed. The maximum likelihood estimator ofβD under the oracle model iŝβD,1 =

β̂D,ols − β̂D|S β̂S,ols, whereβ̂D|S is the ordinary least squares estimator of the coefficients from 300

the regression ofRD onRS ; and asn→∞,
√

n{vec(β̂D,1)− vec(βD)} is asymptotically nor-
mally distributed with mean0 and covariance matrixV1 = Σ−1

X ⊗ ΣD|S.

PROPOSITION3. Under the conditions in Proposition2, the maximum likelihood estimator of
βD under the dynamic model (13) is β̂D,2 = β̂D,ols; and asn→∞,

√
n{vec(β̂D,2)− vec(βD)}

is asymptotically normally distributed with mean0 and covariance matrixV2 = Σ−1
X ⊗ ΣD. 305

COROLLARY 1. Under the conditions in Proposition2,

V2 − V1 = Σ−1
X ⊗ Σ

1/2
D ρΣ

1/2
D ,

whereρ = Σ
−1/2
D ΣDSΣ−1

S ΣSDΣ
−1/2
D . The eigenvalues ofρ are the squared canonical correla-

tions betweenYD andYS .

Corollary 1 quantifies the efficiency gains obtained by including YS . The result states that
the stronger the correlation betweenYD andYS , the greater is the variance reduction obtained310

by includingYS . WhenYD andYS are uncorrelated,̂βD,1 and β̂D,2 have the same asymptotic
variance. In that case, we can ignoreYS , since it does not carry information onβD throughYD.

Under the envelope model, the inactive response contains information onβA through its co-
variance with the active response. We then define the oracle envelope model as

(
YA

YI

)
= α + Γη(X − µX) + ε, Σ = ΓΩΓT + Γ0Ω0Γ

T
0 , Γ =

(
ΓA

0

)
. (14)

The oracle envelope model (14) appears similar to the sparseenvelope model (2) and (5), but315

in (14) we knowq and which rows inΓ consist of only zeros. We attach a subscriptO if an
estimator is the oracle envelope estimator. LetΣ̂YA|X ∈ R

q×q be the sample covariance matrix

of the residuals from the regression ofYA on X, and(Σ̂−1
Y )A ∈ R

q×q be theq × q upper left
block of Σ̂−1

Y . Let Ω̃0 = Γ̃T
0ΣΓ̃0. Based on the structure ofΓ̃0, we partitionΩ̃0 into

Ω̃0 =

(
Ω̃0,A Ω̃0,AI

Ω̃T
0,AI Ω̃0,I

)
, Ω̃0,A ∈ R

(q−u)×(q−u), Ω̃0,I ∈ R
(r−q)×(r−q).
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Let Ω̃0,A|I = Ω̃0,A − Ω̃0,AIΩ̃−1
0,IΩ̃0,IA. Proposition 4 gives the maximum likelihood estimator320

β̂A,O and its asymptotic distribution.

PROPOSITION4. Assume that the oracle envelope model (14) holds and the errors are nor-
mally distributed. Then the maximum likelihood estimator of βA under the oracle model is
β̂A,O = P

Γ̂A,O
β̂A,ols, where

span(Γ̂A,O) = arg min
span(G)∈G(q,u)

log |GTΣ̂YA|XG|+ log |GT(Σ̂−1
Y )AG|.

Additionally, asn→∞,
√

n{vec(β̂A,O)− vec(βA)} is asymptotically normally distributed325

with mean0 and covariance matrixVO = Σ−1
X ⊗ ΓAΩΓT

A + (ηT ⊗ ΓA,0)T
−1(η ⊗ ΓT

A,0), where

T = ηΣXηT ⊗ Ω̃−1
0,A|I + Ω⊗ Ω̃−1

0,A|I + Ω−1 ⊗ Ω̃0,A − 2Iu ⊗ Iq−u.

From Proposition 4, we see thatYI appears in the objective function forspan(Γ̂A,O), and
therefore affectŝβA,O. We now define the active envelope model, which contains onlythe active
responses:330

YA = αA + ΓAη(X − µX) + εA, ΣA = ΓAΩΓT
A + ΓA,0Ω̃0,AΓT

A,0. (15)

PROPOSITION5. Assume that the conditions in Proposition4 hold. Then the maximum likeli-
hood estimator ofβA under the active envelope model isβ̂A,2 = P

Γ̂A,2
β̂A,ols, where

span(Γ̂A,2) = arg min
span(G)∈G(q,u)

log |GTΣ̂YA|XG|+ log |GTΣ̂−1
YA

G|.

Additionally, asn→∞,
√

n{vec(β̂A,2)− vec(βA)} is asymptotically normally distributed with
mean0 and covariance matrixV3 = Σ−1

X ⊗ ΓAΩΓT
A + (ηT ⊗ ΓA,0)T

−1
2 (η ⊗ ΓT

A,0), whereT2 =

ηΣXηT ⊗ Ω̃−1
0,A + Ω⊗ Ω̃−1

0,A + Ω−1 ⊗ Ω̃0,A − 2Iu ⊗ Iq−u.335

ComparingVO andV3, we see that becausẽΩ−1
0,A|I ≥ Ω̃−1

0,A, T−1
2 ≥ T−1, the oracle envelope

model (14) is more efficient than the active envelope model (15) in estimatingβA. Therefore in
the envelope context, includingYI also improves efficiency.

We now return to the discussion of the theoretical properties of the sparse envelope estimator.

THEOREM 4. Assume that the conditions in Theorem3 hold. Then as n→∞,340 √
n{vec(β̂A)− vec(βA)} is asymptotically normally distributed with mean0 and asymptotic

variance equal to that of̂βA,O. If we further assume that the errors are normally distributed, then
the asymptotic varianceV is given in closed form:V = Σ−1

X ⊗ ΓAΩΓT
A + (ηT ⊗ ΓA,0)T

−1(η ⊗
ΓT
A,0), whereT = ηΣXηT ⊗ Ω̃−1

0,A|I + Ω⊗ Ω̃−1
0,A|I + Ω−1 ⊗ Ω̃0,A − 2Iu ⊗ Iq−u.

Theorem 4 indicates that the sparse envelope estimator is asymptotically normal, and has the345

asymptotic distribution we would have if we knew in advance which responses are active and
which are inactive. The optimal estimation rate asserted inTheorem 4 combined with selection
consistency shows that the sparse envelope estimator has the oracle property: the sparse envelope
model selects the inactive responses with probability tending to 1 and estimates the coefficients
for the active responses as efficiently as does the oracle envelope model.350

Now we discuss the convergence rate and selection consistency of the sparse envelope estima-
tor whenrn tends to infinity withn. We first make a few assumptions about the true model: (A1)
There exist positive constantsk̄ andk such thatγmax(Σ) ≤ k̄ andγmin(Σ) ≥ k, whereγmax(Σ)
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andγmin(Σ) be the largest and smallest eigenvalue ofΣ. (A2) The samples ofε are independent
and identically sampled from a sub-gaussian distribution,i.e., E

{
exp(tT1 ε)

}
≤ exp(c1t

T
1Σt1) 355

for some constantc1 > 0 and everyt1 ∈ R
rn . Samples ofX are independent and identically

distributed, andX − µX follows a sub-gaussian distribution, i.e.,E
[
exp{tT2 (X − µX)}

]
≤

exp(c2t
T
2ΣXt2) for some constantc2 > 0 and everyt2 ∈ R

p.
Let s1 ands2 denote the number of nonzero elements in the lower triangle (not including the

diagonal elements) ofΣ−1 andΣ−1
Y respectively, ands = max{s1, s2}. 360

THEOREM 5. Assume the sparse envelope model (2) and (5) holds. Under Assumptions A1
and A2, ifλmax,n = o[{(rn + s) log rn/n}1/2], then asn→∞, there exists a solution̂A of the
optimization problem (7) such that‖Â−A‖F = Op[{(rn + s) log rn/n}1/2], and the sparse
envelope estimator̂β satisfies that‖β̂ − β‖F = Op[{(rn + s) log rn/n}1/2].

Inspection of the proof of Theorem 5 reveals that the convergence rate of the sparse envelope365

estimator is limited by the convergence rate ofΣ̂−1
Y,sp andΣ̂−1

res,sp. If we have a different inverse
covariance matrix estimator that converges at a faster rate, then the convergence rate of the sparse
envelope estimator can be improved. Assumptions A1 and A2 are required for the consistency
of Σ̂−1

Y,sp andΣ̂−1
res,sp. We relaxed the normality assumption in Rothman et al. (2008) to the sub-

gaussian assumption based on the work in Ravikumar et al. (2011). 370

THEOREM 6. Suppose the assumptions in Theorem5 hold, {(rn + s) log rn/n}1/2 → 0 as
n tends to infinity, and{(rn + s) log rn/n}1/2 = o(λmin,n). Then pr(âi 6= 0)→ 1 for i =
1, . . . , q − u, andpr(âi = 0)→ 1 for i = q − u + 1, . . . , rn − u.

Theorem 6 establishes selection consistency of the sparse envelope estimator. Whenrn tends
to infinity with n, the sparse envelope estimator still identifies active and inactive responses with375

probability tending to1.

3. SIMULATIONS AND DATA ANALYSIS

3·1. Simulations
We report the results of two simulation studies, one in the large-sample setting and one in

high-dimensional setting. In the first simulation, we fixedp = 2, r = 10, q = 4 andu = 2. The 380

matrix(ΓA,ΓA,0) was obtained by orthogonalizing aq × q matrix of independent uniform(0, 1)
variates. Then we added 0’s and 1’s following the structure in (5) to getΓ and Γ0. We took
Ω = 9Iu, and the eigenvalues ofΩ0 varied from 0·67 to 28·33. The canonical correlation between
ΓT

0YA and YI was 0·9. The elements inX and η were generated from independentN(0, 4)
random variables. We varied the sample size from 25 to 1000, and generated 200 replications385

for each sample size. For each replication, we fit the standard model (1), the sparse envelope
model (2) and (5), the oracle envelope model (14), the activeenvelope model (15), and got
their estimators ofβ. The estimation standard deviation for each element inβ was calculated
from the 200 estimators. For each sample size, the bootstrapstandard deviation was obtained
by computing the standard deviations from 200 bootstrap samples. The results for a randomly390

chosen element inβ are plotted in Fig. 1. For better visibility, only the asymptotic standard
deviation of the standard model is displayed. In all cases, the standard deviations are multiplied
by
√

n.
Figure 1 shows that sparse envelope estimator is more efficient than the standard estimator and

the active envelope estimator for all sample sizes. The ratio of the asymptotic standard deviation395

of the standard estimator to that of the sparse envelope estimator is 2·71, and for the active enve-
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Fig. 1. Comparison of the standard deviations for sparse envelope estimator (solid),
active envelope estimator (dash-dotted), oracle envelopeestimator (dashed) and
standard estimator (dotted). The horizontal lines mark theasymptotic standard devi-
ation of the corresponding estimators. The solid line with asterisks marks the boot-

strap standard deviations.

lope estimator versus the sparse envelope estimator comparison, the ratio is 1·73. The difference
between the sparse envelope estimator and the oracle envelope estimator becomes quite small for
sample sizes bigger than100, which is consistent with the optimal estimation rate described in
Theorem 4. We also notice that the bootstrap standard deviation is a good estimator of the actual400

standard deviation. In order to evaluate the variable selection performance of the sparse envelope
model, we considered the true positive ratec1/q, wherec1 is the number of active responses
correctly chosen; true negative ratec2/(r − q), wherec2 is the number of inactive responses
correctly chosen; and accuracy, which is an integer taking value0 or 1, with 1 indicating that
both the active and inactive responses are correctly chosenand0 otherwise. The average of each405

quantity is given in Table 1. The accuracy tends to 1 asn increases, which confirms the selection
consistency stated in Theorem 3. For comparison, we applieda hard-thresholding on the enve-
lope estimator ofΓ to select the active responses, with the threshold chosen bycross-validation.
We also performed anF test on each row of̂βols with adjustments for multiple testing. The
sparse envelope estimator dominants these two estimators for all sample sizes in this case.410

Table 1.Average true positive rate (%), true negative rate (%) and accuracy (%) of sparse
envelope estimator, hard thresholding estimator andF test

sparse envelope hard thresholding F test
n T.P.R. T.N.R. Accu. T.P.R. T.N.R. Accu. T.P.R. T.N.R. Accu.
25 92·6 81·0 33·5 75·4 97·9 30·5 51·7 99·8 0·0
50 97·0 90·5 69·0 85·0 99·0 52·5 61·6 99·5 2·0
75 98·6 95·9 85·5 90·5 99·8 70·0 70·6 99·5 13·5
100 99·8 98·3 94·5 96·9 99·9 89·0 77·8 99·4 23·5
150 100·0 99·3 96·0 99·2 100·0 97·0 84·6 99·6 39·0
200 100·0 100·0 100·0 100·0 100·0 100·0 91·6 99·7 64·5
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Table 2.Average true positive rate (%), true negative rate (%) and accuracy (%) of sparse
envelope estimator, hard thresholding estimator andF test in high dimensional setting

sparse envelope hard thresholding F test
n T.P.R. T.N.R. Accu. T.P.R. T.N.R. Accu. T.P.R. T.N.R. Accu.
50 78·5 99·1 6·5 53·4 100·0 0·0 35·2 100·0 0·0
100 91·6 99·9 54·5 62·6 100·0 0·0 55·9 100·0 0·0
150 98·0 100·0 91·5 81·0 100·0 2·0 71·2 100·0 0·0
200 99·8 100·0 98·0 86·6 100·0 12·0 85·2 100·0 10·0
250 99·8 100·0 98·5 89·6 100·0 19·0 95·1 100·0 48·0
300 100·0 100·0 100·0 91·8 100·0 28·0 98·4 100·0 79·0

Now we consider the high-dimensional scenario. We setr = 1000, q = 10, p = 5, u = 2 and
variedn from 50 to 300. The firstq/2 rows inΓA were{(2/q)1/2, 0}T and the remainingq/2
rows inΓA were{0, (2/q)1/2}T. Then we used the structure in (5) to constructΓ andΓ0. The ele-
ments inη were independentN(0, 9) random variables,Ω =0·04Iu andΩ0 was a block diagonal
matrix with the upper left block being 25Iq−u and lower right block being4Ir−q. The elements 415

in X were independentN(0, 1) random variables. For each sample size, 200 replications were
generated. Table 2 shows that performance of the sparse envelope estimator is better than that of
the hard thresholding estimator andF test in this scenario as well. A figure that describes the
convergence of‖β̂ − β‖F is in the Supplementary Material.

Remark1. The sparse envelope model also achieves efficiency gains when r < p < n, or with 420

weak signals; see the Supplementary Material.

3·2. Data analysis
We illustrate the sparse envelope model using microarray time-course data on cell-cycle con-

trol in the fission yeastSchizosaccharomyces pombe. This dataset is analyzed in Gilks et al.
(2005) using multivariate linear regression to study how gene expression levels change in a cell425

cycle. The response variables are expression levels of genes. Among the407 genes measured,
11 genes have missing values. We only used the genes with complete data, and this gave 396
responses, which we log transformed to reduce skewness. Thepredictors are 10 equally spaced
time points of the cell cycle and the sample size is 177. We fit the sparse envelope model to the
data, withu = 2 suggested by cross-validation. The model identified 25 inactive responses. This 430

indicates that the expression level of most genes varies in acell cycle, but there are a few genes
whose intensities do not change in a cell cycle. Among the 25 inactive responses, gene cdc20
was also identified by Gilks et al. (2005) to have “very littlecell-cycle activity.” We estimated
‖β̂ols − β‖F and‖β̂ − β‖F by the average of 200 bootstrap samples. The ratio of the estimated
‖β̂ols − β‖F to ‖β̂ − β‖F is 1·52, which shows a clear efficiency gain due to the sparse envelope 435

model.

4. DISCUSSION

In this paper, the sparse envelope model is developed by assuming row-wise sparsity inΓ
under the envelope model. In ultra-high dimensional problems wherern ≫ n, we need to make
additional assumptions such as sparsity ofΣ or Σ−1 in order to establish the consistency of the440

sparse envelope model. The convergence rate of the sparse envelope estimator̂β can be improved
to ‖β̂ − β‖F = Op{(log rn/n)1/2} if we assume the number of nonzero off-diagonal elements
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in Σ−1 is fixed asn tends to infinity. It may also be of interest to study prediction performance
rather than estimation of parameters in ultra-high dimensional problems.

When the envelope structure does not hold, some preliminarynumerical results show that the445

envelope estimator may still have a smaller mean square error than the standard estimator, as a
result of the bias-variance tradeoff. The properties of theenvelope estimator under this situation
are open.
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