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SUMMARY 15

The envelope model is a method for efficient estimation intivariate linear regression. In
this article, we propose the sparse envelope model, whiahmotsvated by applications where
some response variables are invariant to changes of thecfomsdand have zero regression co-
efficients. The envelope estimator is consistent but nasspand in many situations it is impor-
tant to identify the response variables for which the regjogscoefficients are zero. The sparse
envelope model performs variable selection on the resgoase preserves the efficiency gains
offered by the envelope model. Response variable seleatises naturally in many applications,
but has not been studied as thoroughly as predictor varsgetion. In this article, we discuss
response variable selection in both the standard multiteatinear regression and the envelope
contexts. In response variable selection, even if a regplas zero coefficients, it still should bezs
retained to improve the estimation efficiency of the nonzarefficients. This is different from
the practice in predictor variable selection. We estahtishsistency, the oracle property and
obtain the asymptotic distribution of the sparse envelgbienator.

Some key word€anonical correlation, Dimension reduction, EnvelopeeipGrassmann manifold, Oracle property

1. INTRODUCTION %0
1.1. Background
Throughout the article, we consider multivariate linegression
Y =a+ (X —pux) +e, 1)

whereY € R" is a multivariate response vectdf, € RP denotes the vector of random predictors
with meanux € RP and covariance matriX x € RP*P, The error vector € R” has meai and
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positive definite covariance matr&x € R"*", and is independent of the predictor vecior The
intercepta € R™ and regression coefficientse R"*P are unknown parameters.

The standard approach estimates each row eéparately by regressing the corresponding
element ofY on X, and relationships among the elementsYofire not used. The envelope
model (Cook et al., 2010) makes use of the stochastic raktiips among the elements bf
and identifies a part of the response that is immaterial tagbsinX . Excluding this immaterial
part in the estimation of leads to gains in efficiency. Building on the development ook
et al. (2010), several papers have applied the idea of guwngldo more general contexts, and
have proposed new models to achieve even greater gains céieedly; see, e.g. Su & Cook
(2011), Cook & Su (2013), and Cook & Zhang (2015). Moreovecopanection between the
envelope model and partial least squares that has allowed#wv understanding of the working
mechanism of partial least squares was established by Ga@bk(2013).

Compared to predictor variable selection, the literaturegesponse variable selection is lim-
ited. Response variable selection is motivated by apicatin which some response variables
do not depend on any of the predictors and have zero regnesseaificients. For example, the
expression levels for some genes of the fission y8ahkizosaccharomyces pomdfgow little
variation in a cell cycle while the expression levels forastlyenes have large variation, see
Section 3. Finding inactive response variables can lead to moreprétable results and also
improve estimation efficiency; see Sectio®.2The standard procedure for identifying inactive
responses is to evaluate, foe 1,...,r, whetherY; depends onX via the F' test, adjusting
for multiple testing (see, e.g. Benjamini & Yekutieli 200BHowever, since the relationship be-
tween the response variables is not used, this proceduot éfitient, as is demonstrated in the
simulations in Section-3.

In this article, we develop a sparse envelope model thabped response variable selection
efficiently under the envelope model. We also discuss issuesponse variable selection, espe-
cially how to use the inactive responses to improve estonatificiency for nonzero regression
coefficients. Our theoretical discussion addresses bagk-sample and high-dimensional sce-
narios. Throughout the article, we assume that the numbpredfictorsp is fixed and smaller
than the sample size. If p is large, we can apply a standard approach like the lassatcep
before applying our method.

We useP4 to indicate the projection matrix onté or span(A) if A is a subspace or a matrix,
and@Qa = I — P4. The symbol~ stands for equality in distribution. ¥; and V5 are random
variables,V; 1L V5 indicates that they are independent. Thenorm of a vectow is denoted by
||v||2. For a matrix)M, we usel| M || for its spectral norm an{iM || » for its Frobenius norm. The
operatorvec stacks a matrix into a vector column-wise. The Kroneckedpecb for matricesA
and B is indicated byA ® B. A notation table is in the Supplement.

1.2. Envelopes

Let (I',Ty) € R"™*" be an orthogonal matrix. Ther can be decomposed into two parts,
PrY and QrY. We assume that these satisfy the conditions: Q@)Y | X ~ QrY and (ii)
cov(PrY,QrY | X) = 0. Condition (i) implies that the distribution @)Y does not depend
on X. SoQrY does not carry any information abo@it Condition (ii) implies that)rY does
not carry any information about through its conditional correlation withrY . Together these
conditions imply that)rY does not carry any information abogtdirectly or indirectly, and
thereforeQrY is immaterial to the regression. Thus we cBHY and QrY the material part
and immaterial part, respectively. Cook et al. (2010) shibwwat (i) and (ii) are equivalent
to the following conditions: (a3 C span(I"), where B = span(/3), and (b)Y = X1 + 39 =
PrYPr + QrXQr. When (b) holdsspan(T") is a reducing subspace Bf(Conway, 2013, Sec-



Sparse Envelope Model 3

tion 2:3). TheX-envelope of3, denoted bys,(B), is defined as the smallest reducing subspace
of ¥ that containg3 (Cook et al., 2010). Consequents (B) decompose into variation re-
lated to the material and immaterial parts}of ¥; = var(FPrY | X) andXy = var(QrY). We

call (1) an envelope model when conditions (a) and (b) ar@sag. Becausg is related only to e
the material variation, the decompositionXfsuggests that excluding the immaterial informa-
tion makes estimation gf more efficient. In particular, massive efficiency gains cambtained
when||Xz|| > ||21]|. Based on (a) and (b), the coordinate form of the envelopeeirisd

Y=a+In(X —px)+e, S=351+% =TT +ToQl?, ()

whereg =T'np, I' € R"** is an orthogonal basis fdy(B), 'y is a completion ofl’, andw is

the dimension ofx,(5). The matrixn € R**P holds the coordinates ¢f relative toI', and2 €

R*** andQ)y € RC—w*(—) gre positive definite. It = r, then&x(B) = R”, which implies

that there is no immaterial information and the envelope ehoetluces to the standard model.
To estimate the envelo; (), Cook et al. (2010) solved the manifold optimization proble

Ex(B) = argmin {log |I7 ST + log ]FTZVE;:[F]} (3)
span(I")€G(r,u)

where| - | denotes determinarg,(r, u) denotes am x v Grassmann manifold, which is the set of
all u-dimensional subspaces in aigdimensional space. The mati is the sample covariance s
matrix of Y’ andirOS denotes the sample covariance matrix of the residuals themeggression of
Y on X. Asthe search ofy,(B) is onG(r, u), (3) is a Grassmann manifold optimization problem.
The objective function is non-convex. Tools for solving rmomvex optimization problems on
manifolds, especially whenis large, are quite limited. Cook et al. (2016) addresseslifisiue
by converting (3) to a non-Grassmann manifold optimizatighich is faster and more reliablew
in such cases. Without loss of generality, we assumelthathe submatrix that consists of the
first u rows of I, is non-singular. Then

T I,

whereA = 1“21“1‘1. Notice thatA depends o’ only throughspan(T"): for an orthogonal matrix
O e R if I'" =T0, thenl'; =10, I'; =I',0, and A* = FZOO‘ll“l‘1 = A. Becaused

is unconstrained, (3) can be converted to the non-Grasswoaimization 105
A= argmin {—2log|GLG 4|+ log |G TG al + log |GLE71GAl}. (4)
AER(rfu)Xu

Cook et al. (2015) developed an effective algorithm and algarting value for solving (4).
Once we haved, &x(B) = span(G4), and the envelope estimator Gfis ey = Pgﬂols,
Whereﬁols is the ordinary least squares estimatop@&nd&sx (B) is abbreviated as$ if it appears

in subscripts. Cook et al. (2010) showed tﬁg;v is asymptotically at least as efficientﬁgs. A
more detailed review about the envelope models can be fou(@dok & Su, 2013, Section 2). 1o

2. SPARSEENVELOPE MODEL
2-1. Response Variable Selection

In some cases, certain response variables are immatefialite., the corresponding rows of
I" consist of zeros. We call such response variables inadtieecall a response variable active
if its corresponding row ifl" is nonzero. Since different orthogonal bases of a subspaoe his
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the same row-wise sparsity pattern, the active and inactisponses are invariant under col-
umn transformation of. Because3 = I'n, the regression coefficients of the inactive responses
are zero. However, an active response may also have zeessagn coefficients. Proposition 1
characterizes the active responses, and shows theioredhip with responses that have non-zero
regression coefficients.

In preparation, we use the covariance graph model (Cox & W#rn1993) to represent the
structure ofX. The covariance graph model was recently used in Chen e2@l12] to con-
struct a graph-guided fused lasso penalty for predictdelibe selection. LeG = (V, E) be an
undirected graph with verticel8 = {1,...,r} and an edge sdt consisting of all pairgi, j)
for which the(7, j)th element inX is nonzero. The response variabl§sandY; are said to be
connected if there is a sequence of edges in the graph campeettices: and;.

ProPOSITIONL. If the regression coefficients of an active response are ath,zthen the
response must be connected with a response that has nonegezssion coefficients.

Proposition 1 indicates that if an active response has egme@ssion coefficients, it still offers
information in estimating the non-zero regression coefits. This is a new feature of response
variable selection. In predictor variable selection, ifradictor has zero regression coefficients,
it offers no information in estimating any non-zero regr@s<oefficients. More discussion on
Proposition 1 is in the Supplement.

In this article, we are not trying to identify the responsasihg zero regression coefficients
and the responses having non-zero regression coefficiattiey we are interested in identifying
the active and inactive responses, i.e., whether or nofpnsg contributes in the material part.

2:2. Formulation
We useY 4 andY7 to denote the active and inactive responses. The subsgripitslZ are used
if a quantity is associated with the active or inactive resmes. Without loss of generality, let
Y = (Y1, Y})T, and letg denote the dimension 6f4 (¢ < r). ThusY4 € R? andY7 € R™ 7.
ThenI" andI'y should have the following structure:

_(Ta _(Tao O -
F_<0>7 FO_< 0 Ir—q>R_FOR’ (5)

whereI' 4 € R?*" is a semi-orthogonal matrix; 40 € R9*(@~) js jts completion, andR €
R(—w)x(r=) js an orthogonal matrix. Sinde’'Y = I'’; Y4, the inactive responses do not appear
in the material part. Becauge= I'n, we haves = (674, 0)”, whereq = I' 4n € R9*P and the
zero matrix has dimensiofr — ¢) x p. The completion of” has the general forry = IyR,
wherel'y € R™ () js a completion with a block diagonal structure, d@cepresents a rotation
of the orthogonal basis. Becaug € R"*("~) has a simple block diagonal structure, it will be
convenient to use it in some of our later development. Froenstihucture ofly, it is easy to
see that the immaterial parf Y = ((I'y yY4)7, Y/)" has two parts, one from the immaterial
information of the active responsEgOYA, and the other from the inactive respon3gs

We call (2) the sparse envelope moddl'idndI’y have the structures given by (5). We require
u < ¢ because the dimension DﬂYA should be at most the dimension Bf;. Whenwu = ¢,
there is no immaterial information in the active responsesiI’ 4 = I,. Therefore, up to an
orthogonal transformatiod;” Y = Y4 andI'l'Y = Yz, andX: has a block diagonal structure. If
q = r, there are no inactive responses and all rowls &me non-zero. The sparse envelope model
is then equivalent to the envelope model.
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2-3. Response Variable Selection via Penalized Likelihood

Sincel’ = G4I'y, arow inT" is zero if and only if the corresponding row i is zero. To
induce row-wise sparsity ial, we add a group lasso penalty (Yuan & Lin, 2006) to (4), so that
the optimization problem becomes 160

A= argmin {-2log|GhGa|+10g|GhT.esGal +10g |[GASFGal + > Aillaill2}, (6)
AGR(Tfu)Xu i—1

wherea! denotes théth row of A and the);’s are tuning parameters.
We choose this penalty function for the following reasorisstFit treats each row of as
a group, so the sparsity is row-wise instead of element-wikés fits the response variable
selection context}a;||2 = 0 means thdi + u)th row of I' is zero, so théi + u)th response is
inactive. Second, it is invariant to a change of basis. Sihdepends o’ only through its span, e
>"IZ1 Aillai]|2 is unchanged if a different orthogonal basiscef ) is used. Third, the estimator
(6) has the desirable features,ghi-consistency, asymptotic normality, selection consisteand
has an optimal estimation rate; see Sectidn Rinally, its numerical performance is substantially
better than the performance of some alternatives, in paatithe method that involves applying
F tests to each row cﬁols, or hard-thresholding the envelope estimator; see Se8tion 170
Whenr tends to infinity withn, we denote by 7,,. If 7, > n, bothSy and¥,.. are singular,
which is problematic because the objective function in @&yahds orﬁ;l and the optimiza-

tion algorithm used to solve (6) requiré{eg; see Section 4. We can resolve these issues by
obtaining estimators foE;1 and X! directly using methods like sparse permutation invari-
ant covariance estimation (Rothman et al., 2008), lassaljzed D-trace estimation (Zhang &
Zou, 2014), or convex pseudo-likelihood based partialetation graph estimation (Khare et al.,
2015). Among these methods, sparse permutation invar@rdriance estimation is the only
one that does not require a sparsity structure for the targetmeter in order to establish the
consistency of its estimator. Cook et al. (2012) used thithoteto estimate a target parameter
which is not necessarily sparse, and their numerical expris showed that the estimator is.
very stable. In the sparse envelope mof!b;t,1 and X~! may not contain zero elements. We
then use sparse permutation invariant covariance eslrimatcE;/1 andX~!, and denote them
by EYSp and Zm; sp Then iy,sp and ﬁres,sp are obtained by taking the inversesﬁ)plsp and

S et op- REPIACNGS s aNdST! by ¥es s andSyL in (6), the optimization problem is

res,sp*

Tn—U
A= ar(gmilgl {—2log |G4G 4| + log |G} Xres spGal + log ]GXZ;,}SPGA] + Z Aillaill2}-
AER Tn—u)Xu i=1

(7)
Opt|m|zat|on of (6) and (7) is dlscussed in Sectiod. 2After we haved, an orthogonal basis s
of Span(GA) is used to forml, andT; is taken as a completion df. The sparse envelope
estimators of? andX are

ﬁ = Pfﬁols» i‘ = Pf/i‘rcspf + in‘YQf

The estimators for the constituent parametersjarel’™ 3,5, Q@ = IS, and()y = TSy T,
The sparse envelope estimators have the same form as thepgEnestimators, except thetand
I'g have the special structures specified in (5). 190
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2:4. Algorithm
We first discuss the algorithm for solving (6). Since setettf r — u tuning parameters can
be computationally intensive, we use the idea of the adafdsso (Zou, 2006) and sgt= A\w;,
where thev; are adaptive weights. Then the optimization becomes

T—Uu
A= argmin {—2log|GLG |+ log|Gh Y esGal + log |GHE G al + AZwiHang}.
AGR(Tfu)Xu i—1

(8)

The optimization problem in (8) is non-convex and the oldjectunction is not differen-
tiable due to the group lasso penalty. Blockwise coordidatscent algorithms have been very
successful in solving a wide class of group lasso penalizgld-dimensional learning prob-
lems (Friedman et al., 2008; Simon et al., 2013; Yang & Zou,530Cook et al. (2015) used
a blockwise coordinate descent algorithm to optimize theslepe objective function (4), and
the method worked well. Here we develop a fast blockwise dinate descent algorithm for
efficiently solving (8). Our algorithm cyclically updateaah row of A, such that after each op-
eration the objective function (8) strictly decreases. flet € R("—“~1)x% pe the submatrix of
A with row a] removed. Without loss of generality, we consider the casenw}i is the last row
of A. Form the partitions

(L, _ (G o (U U a-1 (Vi Va2
GA_<A>_<CLZ-T>’ Eres_<U21 U22>’ Yy = Vo1 Vag -
LetL(A) = —2log |GG a| + log \GgiresGA] + log \Ggi;lGA\. We can writeL(A) in terms
of a; up to a constant while holding all the other rows/A#t their current valuel _;: we have

L(a; | ﬁ_l) = —2log(1 + a; Bia;) + log{1 + (a; + v2)" Ba(a; + v2)}
-+ log{l + (ai -+ Ug)TBg(ai + ’Ug)} + const
where vy = U2_21GTU12, V3 = VQEIGTVQ, By = (Iu + AEZ-A_Z‘)_l, By = UQQ(GTUHG —

U2_21GTU12U21G)_1 andB3 = VQQ(GTVHG — ‘/251GT‘/12‘/21G)_1. Within the blockwise co-
ordinate descent loops, we need to solve the optimizatiobl@m

9)

@; = argminL(a; | A_;) + Awil|ag]|2. (10)
Unfortunately, there is no closed-form solution to (10), we apply the majorization-
minimization principle (Wu & Lange, 2010; Lange et al., 206unter & Lange, 2004; Zhou
& Lange, 2010) within the blockwise coordinate descent Ibgjteratively minimizing a func-
tion that majorizes the objective function in (9). The majation function@(a;) is equal to
L(a; | ﬁ_i) at the current value; and lies strictly above.(a; | Z_i) whena; # a;. Specifi-
cally, the majorization functio®(a;) has the form

Q(ai) = L(@; | As) + (a; — fdi)T% . +0.50;(a; —a;)" (a; — a;),
where
dL(a;|A_;)  —4Bja, 2By (a; + v2) 2Bs(a; + v3)

da; la=a; 1+a'Bia; 1+ (@ +ve)TBa(a; +v2) 1+ (@ +v3)TBs(@; +v3)’

0i = (1 + ") {4Ymax (B1) + 2Vmax(B2) + 27max(Bs3) }, andymax(-) denotes the largest eigen-
value of the corresponding matrix. We must have> 0 such that))(a;) > L(a; | A_;) holds
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for anya; # @;. In this article we set* = 107°. Then instead of minimizing (10) we solve
min{@Q(a;) + Awil|aij2}- (11)

The solution to (11) has a simple closed-form expressiogohm 1 summarizes our blockwisexz
coordinate descent algorithm. It tak@$u® + ru) flops to compute’;, and each update af to

Qi new takesO(u?) flops. The starting value can be taken as the envelope estimiati, which

is the minimizer of (4).

Algorithm 1 The blockwise coordinate descent algorithm for solving (8
Initialize A
Repeat until convergence df
Fori=1toi=r—u

0; — (1 + 5*){4'7max(Bl) + 2’7max(B2) + 2’7max(B3)}
Repeat until convergence of

~ 1) ¢~ dL(a]A,
Ainew < 5, {5iai — dhfeld_)

dCLi

1-— A
(li:gi 5i’(;i_dL(ai‘A7i)

da;

a;=a; 112 +
Qi <= Gj new

Outputﬁ

Theorem 1 shows that Algorithm 1 has a descent property andgtates converge to a sta-
tionary point of the objective function in (8). A figure thahpirically confirms the convergence:
of Algorithm 1 is in the Supplement.

THEOREM 1. After updatinga;, if a; new 7# a;, the objective function irlQ) strictly decreases
after updating the block:

L(@inew | Ai) + Mgl @inewll2 < L(@i) + Awil|@il2.

If the solution stays unchanged after each blockwise coatdi update, i.€.q; new = a; for
all 7, then this solution satisfies the Karush—Kuhn—Tucker ¢mmdi, and this indicates that thezso
algorithm has converged to a stationary point.

We solve the adaptive group lasso problem (8) by applyingpAtlgm 1 in a two-stage proce-
dure. In the first stage, we set all to be 1 in Algorithm 1 and obtain the group lasso estimator

Agtage1- In the second stage, we set weights= ||@; stage1 ||5 and obtain the weighted group
lasso estimatord. If @i stage1 || = 0, we excludeq; in the second stage and sgt= 0. The s
parameters can be selected by cross-validation. Based on the discugsidou (2006), it is
sufficient to choose from a small candidate set likg-5, 1, 2, 4. To choose the tuning pa-
rameter), we use the Bayesian information criterion. For a fixedhe criterion is defined as
—2I\ + (¢» — u)ulogn, wherel, is the log likelihood givem\ andg, is the number of active
responses given. We choose the that minimizes the criterion. This criterion is used in Ches
et al. (2010) and its consistency is proved in Zou & Chen (2002 use the warm-start trick of
Friedman et al. (2010) to compute the solution paths alorggaence of values of)\, with

log A equally spaced betweéng Apax andlog Amin. The solutionAx) computed af\, is used

as the initial value for computing the solution faf.; in Algorithm 1. An expression for the
smallest\ that yields the null model is given in the Supplement. Siteedparse envelope estizs
mator is asymptotically equivalent to the maximum likebloestimator of the oracle envelope
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model, see Section2, we can use likelihood-based procedures such as the Akdideenation
criterion, the Bayesian information criterion or likelib ratio testing to seleat. We compare
the performance of these procedures in the Supplement.

Solving (7) follows the same procedure as solving (6). Faosing\ andu we prefer cross-
validation over the Bayesian information criterion andewtlikelihood-based procedures because
these require the sample size to be at least moderatelyitaayder to give good performance.

2:5. Theoretical Properties of the Sparse Envelope Estimator

Theorems 2—4 gives results regarding consistency andequamperties of the sparse envelope
estimator in the large-sample case, i.e., whénfixed andn tends to infinity. Theorems 5 and 6
address selection consistency and the convergence ratehstier,, andn tend to infinity.

If S is a subspace anl is an estimator ofS, we say thatS is a \/n-consistent estimator
of Sif P4 is ay/n-consistent estimator dfs. Let Apax , = max(Aq, ..., Ag—y) @NAdApinn =
min(Ag—y+1,- - ., Ar—y) at sample size.

THEOREM 2. Assume that the sparse envelope modeghd () holds, the errors are in-
dependent and have finite fourth moment, ah@kmax,n — 0 asn tends to infinity. Then there

exists a local minimizeri of (6), such thatPx is a \/n-consistent estimator ofr, andB is a
v/n-consistent estimator ¢f.

Theorem 2 implies that although the objective function fur sparse envelope estimator is
based on a normal likelihood, normality is not required talelish ,/n-consistency ofs,(13) and
B. Theorem 3 regards selection consistency and states thap#se envelope model identifies
the inactive responses with probability tending to 1.

THEOREM 3. Assume that the conditions in Theor&iold, and that'/2 )\, ,, — oo. Then
pr(a; =0) = 1fori=q—u+1,...,7r —u.

An oracle estimator must consistently select the activpareses, and estimate them with an
optimal rate. While the oracle property is well studied iegictor variable selection (Fan & Li,
2001; Zou, 2006), it has not been studied in response varsabection. Therefore we first discuss
how to define the oracle model for response variable seteatidler the standard model (1) and
then define the oracle envelope model.

Because the definitions of active and inactive responsg®relhe envelope construction, we
introduce some new definitions for the standard model. Uttdestandard model (1), we call a
response variable dynamic if its regression coefficierasnat zero. We call a response variable
static if its regression coefficients are zero. kletlenote the number of dynamic responses,
and letYp € R? andYs € R"~? denote the dynamic and static responses. The subsdipts
or S are attached to a quantity if it is associated with the dyamnistatic responses. Without
loss of generality, let” = (Y,5,YJ)". Then3 € R™*? has the structurg = (8},,0)", where
Bp € R¥P contains the regression coefficients for the dynamic resgmriThe oracle model is
defined by

G%?) :a+<ﬁo’3>(X—ux)+€, var(e) = ¥ = <22ng9 22?)’ (12)

wherea € R", Bp € R4*?_d is now known, and the partition &f corresponds to the allocation
of Yp andYs. The oracle model includes the static responisgsThis is in contrast to the oracle
model for predictor variable selection, where predictorgch are inactive are not included in
the model. Sinc&’s may be correlated withp, including this information can improve the
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efficiency in estimatingsp. ExcludingYs leads to the model

Yp =ap + Bp(X — px) +eép, (13)
whereap andep are the firstd elements oty ande in (12). We call (13) the dynamic model
because it includes only the dynamic responses. It is tegppd view (13) rather than (12) asso
the target model for oracle estimation, but we do not do saumez (13) ignores information
available fromYs which may be used to devise a more efficient estimator in thretucontext.

To compare models (13) and (12), we assume normality of ttog drstributions in Prop05|—
tions 2 and 3 in order to get an explicit form for the asymptetiriance. LeﬁD ols andﬂg ols be
the ordinary least squares estimators of the coefficieata the regression dfp on X and the s
regression ols on X respectively, and leizp and Rg be the residuals from the regression of
Yp on X and the regression a&fs on X respectively. Definé:ms =Yp— EszglESD.

PROPOSITION2. Assume that the oracle model?j holds and that the errors are nor-
maIIy distributed. The maximum likelihood estimatorGef under the oracle model |;§D 1=

5D7015 50\555 olss WhereﬂD‘S is the ordinary least squares estimator of the coefficiammis f o0

the regression oRp on Rg; and asn — oo, \/n{vec(ﬁDJ) — vec(fBp)} is asymptotically nor-
mally distributed with meafl and covariance matri¥x; = E)‘(l ® Xpjs-

PrRoOPOSITION3. Under the con(ﬂtions iQ Propositio the maximum IikeAIihood estimator of
Bp under the dynamic modeld) is 5p .2 = Bp ols; and asn — oo, /n{vec(Bp2) — vec(Bp)}
is asymptotically normally distributed with me&rand covariance matrixs, = 2)‘(1 ®Xp. 305

COROLLARY 1. Under the conditions in PropositioR,
Vo - Vi =53 @ 52,

wherep = 251/22D52§125D251/2. The eigenvalues gf are the squared canonical correla-
tions betweerYp and Y.

Corollary 1 quantifies the efficiency gains obtained by idolg Ys. The result states that
the stronger the correlation betweEp andYyg, the greater is the variance reduction obtained
by includingYs. WhenYp andYg are uncorrelated@D,l andﬁDQ have the same asymptotic
variance. In that case, we can ignafg, since it does not carry information @iy throughYp.

Under the envelope model, the inactive response contaiosmation ong 4 through its co-
variance with the active response. We then define the orackdape model as

<§;>:a+Fn(X—uX)+z—:, S =TOr" + ToQeIT, F=<P64>- (14)

The oracle envelope model (14) appears similar to the sgamgglope model (2) and (5), but:s
in (14) we knowg and which rows inl* consist of only zeros. We attach a subsciipif an
estimator is the oracle envelope estimator. f@]ﬂ x € R?*7 be the sample covariance matrix
of the residuals from the regressmn ¥f on X, and(E )A € R7%7 be theq x g upper left
block ofE 1 Let QO = FTEFO Based on the structure Bﬁ we partltlonQo into

G = 93%\ Qo.az ) Goa € RO G e RE-0)x(r—a),
Qo ar oz
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Let Qa7 = Q0.4 — Q0,478 20, 7.4. Proposition 4 gives the maximum likelihood estimator
B 4,0 and its asymptotic distribution.

ProPOsSITION4. Assume that the oracle envelope modé)) (holds and the errors are nor-
mally distributed. Then the maximum likelihood estimatbr3g under the oracle model is
Bao =Py Baols where

Span(on) = argmin log |GT§YA‘XG| + log |GT(§;1)AG|.
span(G)€G(q,u)

Additionally, asn — oo, \/n{vec(BA,o) —vec(4)} is asymptotically normally distributed
with mear) and covariance matri¥p = %3 QSPAQPj + (" ®@T40)T ' (n@T7Y ), where
T=n2xn"® QOA\I+ QO® QOA\I+ Q'@ QoA — 20, ® Iy

From Proposition 4, we see th&} appears in the objective function f@pan(fA,o), and

therefore affect§ 4,0 We now define the active envelope model, which contains thayactive
responses:

Ya=aa+Tan(X —px)+ea,  Ba=Ta007 +TaoQo.al7% . (15)
PROPOSITIONS. Assume that the conditions in Proposmd;lhnold Then the maximum likeli-
hood estimator of 4 under the active envelope model@iﬁ o= P 26,4,015, where

span(fA,g): arg min log]GTiyA‘XG]—i—log\GTi;iG\.
span(G)€G(q,u)

Additionally, asn — oo, \/n{vec(B 4,2) —vec(Ba)}is asymptotically normally distributed with
mean0 and covariance matri¥; = X' @ T4 + (0" @ Ta0)Ty ' (n @ Ty o) WhereT, =

1Sxnt @ QL+ Qe QL + Q7 @ Qo — 2L, @ Iy

ComparinglVp and Vs, we see that becauﬁ% Az 2 > QO‘A, Ty L'> 71 the oracle envelope
model (14) is more efficient than the active envelope modg) |(r1est|mat|n93A. Therefore in
the envelope context, including; also improves efficiency.

We now return to the discussion of the theoretical propeuighe sparse envelope estimator.

THEOREM4. Assume that the conditions in Theoref hold. Then asn — oo,
\/n{vec(BA) —vec(fB4)} is asymptotically normally distributed with me&nand asymptotic
variance equal to that qfﬁ 4,0- If we further assume that the errors are normally distréalitthen
the asymptotic varianc¥ is glven in closed formi” = X l® CAQT, + (" ® Ca0)T @

% o), whereT = nXxn" ®QOA‘I+Q®QOA‘I+Q 1®QO7A—2I ® Iy

Theorem 4 indicates that the sparse envelope estimatoyspastically normal, and has the
asymptotic distribution we would have if we knew in advandaick responses are active and
which are inactive. The optimal estimation rate assertethieorem 4 combined with selection
consistency shows that the sparse envelope estimatorénasitie property: the sparse envelope
model selects the inactive responses with probabilityitentb 1 and estimates the coefficients
for the active responses as efficiently as does the orackdama/model.

Now we discuss the convergence rate and selection congistéthe sparse envelope estima-
tor whenr,, tends to infinity withn. We first make a few assumptions about the true model: (A1)
There exist positive constanmtsandk such thaty.. (X) < k andymin () > &, whereymax (2)
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andynin (%) be the largest and smallest eigenvalu&:o{A2) The samples of are independent
and identically sampled from a sub-gaussian distributi@n, E{ exp(tT¢)} < exp(cit{%t1) s
for some constant; > 0 and everyt; € R™. Samples ofX are independent and identically
distributed, andX — ;. x follows a sub-gaussian distribution, i.€i] exp{t3 (X — ux)}] <
exp(catd X xto) for some constant; > 0 and everyt; € RP.

Let s; andss denote the number of nonzero elements in the lower triamgleigcluding the
diagonal elements) o8 ! andE;1 respectively, and = max{si, s2}. 360

THEOREMS. Assume the sparse envelope mo@land ©) holds. Under Assumptions Al
and A2, ifAmax.n = o[{(r, + s)logr,/n}'/?], then asn — oo, there exists a solutiod of the
optimization problem7) such that||A — Al = O,[{(r, + s)log r,/n}'/?], and the sparse
envelope estimataf satisfies that|3 — 3|z = O,[{(rn + s)log r,/n}/2].

Inspection of the proof of Theorem 5 reveals that the corrarg rate of the sparse envelopss
estimator is limited by the convergence rateﬁ;fls and f]r_e;sp. If we have a different inverse
covariance matrix estimator that converges at a Fasterthﬁa the convergence rate of the sparse
envelope estimator can be improved. Assumptions Al and A2exquired for the consistency
of i;}sp and i;e;,sp. We relaxed the normality assumption in Rothman et al. (20®8e sub-

gaussian assumption based on the work in Ravikumar et dl1§20 370

THEOREM6. Suppose the assumptions in Theof@mold, {(r, + s)logr,/n}/?> — 0 as
n tends to infinity, and{(r, + s)log7r,/n}"/? = 0(Aminn). Thenpr(a; #0) — 1 for i =
l,...,q—wu,andpr(a; =0) - 1fori=q¢—u+1,...,r, — u.

Theorem 6 establishes selection consistency of the spavstope estimator. When, tends
to infinity with n, the sparse envelope estimator still identifies active aadtive responses withas
probability tending tal.

3. SMULATIONS AND DATA ANALYSIS
3-1. Simulations

We report the results of two simulation studies, one in thigelsample setting and one in
high-dimensional setting. In the first simulation, we fixee: 2, r = 10, ¢ = 4 andu = 2. The o
matrix (I' 4, " 4 o) was obtained by orthogonalizingja< ¢ matrix of independent uniforr(0, 1)
variates. Then we added 0's and 1's following the structarg5) to getI’ andI'y. We took
Q = 91,, and the eigenvalues 6%, varied from 067 to 2833. The canonical correlation between
I'fY4 and Y7z was 09. The elements inX andn were generated from independeNt0, 4)
random variables. We varied the sample size from 25 to 100 ganerated 200 replicationSss
for each sample size. For each replication, we fit the standerdel (1), the sparse envelope
model (2) and (5), the oracle envelope model (14), the a@iwelope model (15), and got
their estimators ofs. The estimation standard deviation for each elemeri imas calculated
from the 200 estimators. For each sample size, the bootstemglard deviation was obtained
by computing the standard deviations from 200 bootstrappksnThe results for a randomlyseo
chosen element i are plotted in Fig. 1. For better visibility, only the asymiyt standard
deviation of the standard model is displayed. In all casesstandard deviations are multiplied
by \/n.

Figure 1 shows that sparse envelope estimator is more effitian the standard estimator and
the active envelope estimator for all sample sizes. The ddtihe asymptotic standard deviationss
of the standard estimator to that of the sparse envelopmasii is 271, and for the active enve-
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Fig. 1. Comparison of the standard deviations for sparselepg estimator (solid),

active envelope estimator (dash-dotted), oracle enveéspenator (dashed) and

standard estimator (dotted). The horizontal lines markalyenptotic standard devi-

ation of the corresponding estimators. The solid line wittedasks marks the boot-
strap standard deviations.

lope estimator versus the sparse envelope estimator c@opathe ratio is 3. The difference
between the sparse envelope estimator and the oracle pevedtimator becomes quite small for
sample sizes bigger tha®0, which is consistent with the optimal estimation rate diésct in
Theorem 4. We also notice that the bootstrap standard dwviata good estimator of the actual
standard deviation. In order to evaluate the variable seteperformance of the sparse envelope
model, we considered the true positive rai¢q, wherec; is the number of active responses
correctly chosen; true negative ratg/(r — ¢), wherecs is the number of inactive responses
correctly chosen; and accuracy, which is an integer takalge® or 1, with 1 indicating that
both the active and inactive responses are correctly chersgtotherwise. The average of each
quantity is given in Table 1. The accuracy tends to 4 asreases, which confirms the selection
consistency stated in Theorem 3. For comparison, we apalieard-thresholding on the enve-
lope estimator of" to select the active responses, with the threshold choserolsg-validation.
We also performed ai’ test on each row oﬁols with adjustments for multiple testing. The
sparse envelope estimator dominants these two estimatoadi 6ample sizes in this case.

Table 1.Average true positive rate (%), true negative rate (%) anduaacy (%) of sparse
envelope estimator, hard thresholding estimator &htést

sparse envelope hard thresholding I test
n T.P.R. T.N.R. Accu. T.P.R. T.N.R. Accu. T.PR. TN.R. Accu.
25 926 810 335 754 97.9 305 517 998 00
50 970 905 690 850 990 525 616 995 20
75 986 959 855 905 998 700 706 995 135
100 998 983 945 969 999 890 778 994 235
150 1000 993 960 992 1000 970 846 996 390
200 1000 1000 1000 1000 1000 1000 916 997 645
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Table 2.Average true positive rate (%), true negative rate (%) anduasacy (%) of sparse
envelope estimator, hard thresholding estimator &htést in high dimensional setting

sparse envelope hard thresholding F test
n T.P.R. T.N.R. Accu. TPR. TN.R. Accu. TPR. TN.R. Accu.
50 785 991 65 534 1000 00 352 1000 00
100 916 999 545 626 1000 00 559 1000 00
150 980 1000 915 810 1000 20 712 1000 00
200 998 1000 980 866 1000 120 852 1000 100
250 998 1000 985 896 1000 190 951 1000 480
300 1000 1000 1000 9128 1000 280 984 1000 790

Now we consider the high-dimensional scenario. Werset1000, ¢ = 10, p = 5, u = 2 and
variedn from 50 to 300. The firsy/2 rows inT' 4 were {(2/¢)'/?,0}" and the remaining /2
rows inT" 4 were{0, (2/¢)*/2}". Then we used the structure in (5) to constilieindl’y. The ele-
ments inn were independeny (0, 9) random variables =0-047,, and(2, was a block diagonal
matrix with the upper left block being Z&_,, and lower right block beingI,_,. The elements as
in X were independen¥ (0, 1) random variables. For each sample size, 200 replicatioms we
generated. Table 2 shows that performance of the sparslpe\estimator is better than that of
the hard thresholding estimator ahdtest in this scenario as well. A figure that describes the
convergence ONB — B||F is in the Supplementary Material.

Remarkl. The sparse envelope model also achieves efficiency gainsmkiep < n, or with o
weak signals; see the Supplementary Material.

3-:2. Data analysis

We illustrate the sparse envelope model using microarrmag-ttourse data on cell-cycle con-
trol in the fission yeasSchizosaccharomyces pomfdis dataset is analyzed in Gilks et al.
(2005) using multivariate linear regression to study howegexpression levels change in a cells
cycle. The response variables are expression levels osgémeong thei07 genes measured,
11 genes have missing values. We only used the genes withletengata, and this gave 396
responses, which we log transformed to reduce skewnesgrétitors are 10 equally spaced
time points of the cell cycle and the sample size is 177. Wéaditsparse envelope model to the
data, withu = 2 suggested by cross-validation. The model identified 25ivecesponses. This 4.
indicates that the expression level of most genes variex@ll aycle, but there are a few genes
whose intensities do not change in a cell cycle. Among thenaBtive responses, gene cdc20
was also identified by Gilks et al. (2005) to have “very littlell-cycle activity.” We estimated
HBOlS — G|l and ||B — B||r by the average of 200 bootstrap samples. The ratio of theatstd
Hﬁols — Bl|F to ||§ — B|lr is 1:-52, which shows a clear efficiency gain due to the sparse @owel.ss
model.

4. DISCUSSION
In this paper, the sparse envelope model is developed bynasguow-wise sparsity i’
under the envelope model. In ultra-high dimensional proislevherer,, > n, we need to make
additional assumptions such as sparsityadr ¥~ in order to establish the consistency of the
sparse envelope model. The convergence rate of the spaelepm\estimatoﬁ can be improved
to |3 — Bl = O,{(log r,,/n)'/?} if we assume the number of nonzero off-diagonal elements
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in ¥~ is fixed asn tends to infinity. It may also be of interest to study predictperformance
rather than estimation of parameters in ultra-high dineerediproblems.

When the envelope structure does not hold, some prelimimamyerical results show that the
envelope estimator may still have a smaller mean square than the standard estimator, as a
result of the bias-variance tradeoff. The properties ofetivelope estimator under this situation
are open.
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