
A Note on Fast Envelope Estimation1

R. Dennis Cook∗, Liliana Forzani† and Zhihua Su‡2

May 7, 20163

Abstract4

We propose a new algorithm for envelope estimation, along with a new
√
n-5

consistent method for computing starting values. The new algorithm, which does not6

require optimization over a Grassmannian, is shown by simulation to be much faster7

and typically more accurate than the best existing algorithm proposed by Cook and8

Zhang [7].9
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1. Introduction11

The goal of envelope methods is to increase efficiency in multivariate parameter estimation12

and prediction by exploiting variation in the data that is effectively immaterial to the goals13
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of the analysis. Envelopes achieve efficiency gains by basing estimation on the variation14

that is material to those goals, while simultaneously excluding that which is immaterial.15

It now seems evident that immaterial variation is often present in multivariate analyses16

and that the estimative improvement afforded by envelopes can be quite substantial when17

the immaterial variation is large, sometimes equivalent to taking thousands of additional18

observations.19

Algorithms for envelope estimation require optimization of a non-convex objective20

function over a Grassmannian, which can be quite slow in all but small or modest sized21

problems, possibly taking hours or even days to complete an analysis of a sizable problem.22

Local optima are another complication that may increase the difficulty of the computations23

and the analysis generally. Until recently, envelope methods were available only in Matlab,24

as these computing issues hindered implementation in R.25

In this article we propose new easily computed
√
n-consistent starting values and a26

novel non-Grassmann algorithm for optimization of the most common envelope objec-27

tive function. These computing tools are much faster than current algorithms in sizable28

problems and can be implemented straightforwardly in R. The new starting values have29

proven quite effective and can be used as fast standalone estimators in exploratory anal-30

yses. An R package that implements the algorithm was developed and is available at31

http://www.stat.ufl.edu/˜zhihuasu/Renvlp.32

In the remainder of this introduction we review envelopes and describe the computing33

issues in more detail. We let P(·) denote a projection with Q(·) = I− P(·), let Rr×c be the34

set of all real r×cmatrices, and let Sk×k be the set of all real and symmetric k×k matrices.35
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If M ∈ Rr×c, then span(M) ⊆ Rr is the subspace spanned by columns of M. vec is the36

vectorization operator that stacks the columns of a matrix. A subspace R ⊆ Rp is said to37

be a reducing subspace of M ∈ Rp×p ifR decomposes M as M = PRMPR+QRMQR.38

IfR is a reducing subspace of M, we say thatR reduces M.39

1.1. Review of envelopes40

Envelopes were originally proposed and developed by Cook et al. [2, 3] in the context of41

multivariate linear regression,42

Yi = α+ βXi + εi, i = 1, . . . , n, (1)

where εi ∈ Rr is a normal error vector with mean 0, variance Σ > 0 and is independent43

of X, α ∈ Rr and β ∈ Rr×p is the regression coefficient matrix in which we are primarily44

interested. Immaterial variation can occur in Y or X or both. Cook et al. [3] operational-45

ized the idea of immaterial variation in the response vector by asking if there are linear46

combinations of Y whose distribution is invariant to changes in X. Specifically, let PEY47

denote the projection onto a subspace E ⊆ Rr with the properties (1) the distribution of48

QEY | X does not depend on the value of the non-stochastic predictor X and (2) PEY is49

independent of QEY given X. These conditions imply that the distribution of QEY is not50

affected by X marginally or through an association with PEY. Consequently, changes in51

the predictor affect the distribution of Y only via PEY and so we refer to PEY informally52

as the material part of Y and to QEY as the immaterial part of Y.53
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Conditions (1) and (2) hold if and only if (a) B := span(β) ⊆ E (so E envelopes B)54

and (b) E reduces Σ. The Σ-envelope of B, denoted EΣ(B), is defined formally as the55

intersection of all reducing subspaces of Σ that contain B. Let u = dim{EΣ(β)} and let56

(Γ,Γ0) ∈ Rr×r be an orthogonal matrix with Γ ∈ Rr×u and span(Γ) = EΣ(B). This leads57

directly to the envelope version of model (1),58

Yi = α+ ΓηXi + εi, with Σ = ΓΩΓ> + Γ0Ω0Γ
>
0 , i = 1, . . . , n, (2)

where β = Γη, η ∈ Ru×p gives the coordinates of β relative to basis Γ, and Ω ∈ Su×u and59

Ω0 ∈ S(r−u)×(r−u) are positive definite matrices. While η, Ω and Ω0 depend on the basis60

Γ selected to represent EΣ(β), the parameters of interest β and Σ depend only on EΣ(β)61

and not on the basis. All parameters in (2) can be estimated by maximizing its likelihood62

with the envelope dimension u determined by using standard methods like likelihood ratio63

testing, information criteria, cross-validation or a hold-out sample, as described by Cook64

et al. [3]. The envelope estimator β̂ of β is just the projection of the ordinary least squares65

estimator B of β onto the estimated envelope, β̂ = PÊB, and
√
n{ vec(β̂) − vec(β)} is66

asymptotically normal with mean 0 and covariance matrix given by Cook et al. [3], where67

u is assumed to be known. An introductory example of response envelopes is available in68

Cook and Zhang [5].69

Similar reasoning leads to partial envelopes for use when only selected columns of β70

are of interest (Su and Cook [10]), to predictor envelopes allowing for immaterial varia-71

tion in X (Cook et al. [1]), to predictor-response envelopes allowing simultaneously for72
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immaterial variation in X and Y (Cook and Zhang [6]) and to heteroscedastic envelopes73

for comparing the means of multivariate populations with unequal covariance matrices (Su74

and Cook [11]).75

Cook and Zhang [5] extended envelopes beyond multivariate linear models by propos-76

ing the following estimative construct for vector-valued parameters. Let θ̃ denote an esti-77

mator of a parameter vector θ ∈ Θ ⊆ Rm based on a sample of size n and assume, as is78

often the case, that
√
n(θ̃ − θ) converges in distribution to a normal random vector with79

mean 0 and covariance matrix V(θ) > 0 as n → ∞. To accommodate the presence of80

nuisance parameters, decompose θ as θ = (ψ>,φ>)>, where φ ∈ Rp, p ≤ m, is the pa-81

rameter vector of interest and ψ ∈ Rm−p is the nuisance parameter vector. The asymptotic82

covariance matrix of φ̃ is represented as Vφφ(θ), which is the p × p lower right block83

of V(θ). Then Cook and Zhang [5] defined the envelope for improving φ̃ as the small-84

est reducing subspace of Vφφ(θ) that contains span(φ), EVφφ(θ){span(φ)} ⊆ Rp. This85

definition links the envelope to a particular pre-specified method of estimation through the86

covariance matrix Vφφ(θ), while normal-theory maximum likelihood is the only method87

of estimation allowed by the previous approaches. The goal of an envelope is to improve88

that pre-specified estimator, perhaps a maximum likelihood, least squares or robust esti-89

mator. Second, the matrix to be reduced – here Vφφ(θ) – is dictated by the method of90

estimation. Third, the matrix to be reduced can now depend on the parameter being esti-91

mated, in addition to perhaps other parameters. Cook and Zhang [5] sketched application92

details for generalized linear models, weighted least squares, Cox regression and described93

an extension to matrix-valued parameters.94
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1.2. Computational issues95

The approaches reviewed in the last section all require estimation of an envelope, now rep-96

resented generically as EM(U), the smallest reducing subspace of M ∈ Sr×r that contains97

U ⊆ Rr, where M > 0. Let u = dim{EM(U)}, let Γ ∈ Rr×u be a semi-orthogonal basis98

matrix for EM(U), let (Γ,Γ0) be an orthogonal matrix, let M̂ be a
√
n-consistent estimator99

of M, and let Û be a positive semi-definite
√
n-consistent estimator of a basis matrix U100

for U . With u specified, the most common objective function used for envelope estimation101

is102

Lu(G) = ln |G>M̂G|+ ln |G>(M̂ + Û)−1G|, (3)

and the envelope is estimated as ÊM(U) = span{argminLu(G)}, where the minimum is103

taken over all semi-orthogonal matrices G ∈ Rr×u. Objective function (3) corresponds104

to maximum likelihood estimation under normality for many envelopes, including those105

associated with (1). Otherwise it provides a
√
n-consistent estimator of the projection onto106

EM(U) provided M̂ and Û are
√
n-consistent (Cook and Zhang [7], who also provided107

additional background on Lu(G)).108

In the case of response envelopes reviewed in Section 1.1, M̂ is the covariance matrix109

of the residuals from the ordinary least squares fit of (1), denoted SY|X, and M̂ + Û is110

marginal sample covariance matrix of Y, denoted SY. The envelope estimator β̂ = PÊB111

is the maximum likelihood estimator if the errors are normal. If the errors are not normal112

but have finite fourth moments then β̂ is
√
n-consistent and asymptotically normal. In113

the general context of Cook and Zhang [5], also reviewed in Section 1.1, M̂ is set to a114
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√
n-consistent estimator of Vφφ(θ) and Û = φ̃φ̃

>
.115

For any orthogonal matrix O ∈ Ru×u, Lu(G) = Lu(GO), so Lu(G) depends only on116

span(G) and not on a particular basis. Thus the optimization problem is over a Grassman-117

nian (See Edelman et al. [8] for background on optimization over Grassmann manifolds.).118

Since it takes u(r − u) real numbers to specify EM(U) uniquely, Grassmann optimization119

is usually computationally straightforward when u(r−u) is not too large, but it can be very120

slow when u(r − u) is large. Also, since Lu(G) is non-convex, the solution returned may121

correspond to a local rather than global minimum, particularly when the signal is small122

relative to the noise.123

It is important that we have a fast and reliable method of determining argminLu(G)124

because we may need to repeat that operation hundreds or even thousands of times in an125

analysis. An information criterion like AIC or BIC is often used to select a suitable value126

for u, and this requires that we find argminLu(G) for u = 0, . . . , r. Predictive cross127

validation might also be used to select u, again requiring many optimizations of Lu(G);128

repeating five fold cross validation with 50 random partitions require in total 250× r opti-129

mizations. Asymptotic standard errors are available for many normal models, but we may130

wish to use a few hundred bootstrap samples to determine standard errors when normality131

is in doubt or when we wish to check the accuracy of the asymptotic approximations. And132

may more bootstrap samples may be required if we want accurate inference statements. In133

some analyses we may wish to fit a few model variations, again multiplying the compu-134

tation time. In cases like those discussed at the end of Section 1.1, M = Vφφ(θ), which135

may depend on unknown parameters, necessitating another level of iteration for the best136
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results (See Cook and Zhang [5] for further discussion of this point.) In short, a seemingly137

small savings in computation time for one optimization of Lu(G) can translate into mas-138

sive savings over the course of an analysis. Additionally, the choice of starting value for G139

can be crucial since the objective function is non-convex. Converging to a local minimum140

can negate the advantages of maximum likelihood estimation, for example. Trying several141

different starting values is not really an effective method since it again multiplies the total142

computation time and in our experience is not likely to result in the global optimum.143

Cook, Su and Yang ([4]; https://github.com/emeryyi/envlp) developed a fairly com-144

prehensive Matlab toolbox envlp for envelope estimation based on Lippert’s sg min pro-145

gram for optimization over Stiefel and Grassmann manifolds (http://web.mit.edu/∼ rip-146

per/www/software/). This is a very effective toolbox for small to moderate sized analyses,147

but otherwise is susceptible to all of the issues mentioned previously. Cook and Zhang [7]148

replaced Lu(G) with a sequential 1D algorithm that can be computationally much faster149

than sg min and is less dependent on good starting values. Nevertheless, it is still suscep-150

tible to the problems described previously, although less so than methods based on sg min.151

Additionally, since it does not provide argminLu(G), it loses the advantages of that ac-152

crue with maximum likelihood estimation when normality is a reasonable assumption. For153

instance, information criteria like AIC and BIC are no longer available straightforwardly,154

and likelihood ratio testing is problematic and thus dimension selection must typically be155

guided by cross validation.156

In this paper we propose an iterative non-Grassmann method to compute argminLu(G)157

that is faster and more reliable that existing methods in large analyses and otherwise per-158
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forms about the same. It depends crucially on new effective
√
n-consistent starting values159

that can also be used as standalone estimators. We restrict our comparisons to the 1D algo-160

rithm, since Cook and Zhang [7] have demonstrated its superiority over direct optimization161

methods based on sg min.162

The new starting values are developed in Section 2 and the new algorithm, which relies163

the new starting values, is described in Section 3. Supporting simulation results are given in164

Section 4 and contrasts on real data are given in Section 5. Proofs are given in an appendix.165

2. Starting values166

In this section we describe how to choose the u columns of the starting value for G167

from the eigenvectors of M̂ or M̂ + Û. To gain intuition about the approach, consider168

the following population representations. Since U ⊆ EM(U), we have U = ΓVΓ>169

for some positive semi-definite V ∈ Su×u. Similarly, M = ΓΩΓ> + Γ0Ω0Γ
>
0 and170

(M + U)−1 = Γ(Ω + V)−1Γ> + Γ0Ω
−1
0 Γ>0 . For the starting values selected from the171

eigenvectors of M̂ to work well, the eigenvalues of Ω need to be well distinguished from172

those of Ω0. If some of the eigenvalues of Ω are close to a subset of the eigenvaues of173

Ω0 then in samples the corresponding eigenspaces will likely be confused when attempt-174

ing to minimize Lu(G). In other words, we may well pick vectors near span(Γ0) instead175

of eigenvectors near span(Γ) = EM(U). In such cases we may obtain a better starting176

value by choosing from the eigenvectors of M̂+ Û rather than the eigenvectors of M̂. The177

same argument applies to choosing the starting values from the eigenvectors of M̂ + Û:178
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the eigenvalues of Ω + V need to be well distinguished from those of Ω0. If some of179

the eigenvalues of Ω + V are close to a subset of the eigenvalues of Ω0 then in samples180

the corresponding eigenspaces will again likely be confused. In such cases we may obtain181

better starting values by starting with the eigenvectors of M̂ rather than the eigenvectors of182

M̂ + Û. The general conclusion from this discussion is that for effective starting values183

we will need to consider both M̂ and M̂ + Û. Scaling will also be an issue, as discussed184

later in this section, leading to four potential starting values. The actual starting value used185

is the one that minimizes Lu(G).186

We make use of the following result.187

Proposition 2.1 Let (G,G0) ∈ Rr×r be an orthogonal matrix with G ∈ Rr×u and let M ∈188

Sr×r be a positive definite matrix. Then ln |G>MG| + ln |G>0 MG0| and ln |G>MG| +189

ln |G>M−1G| are both minimized globally when the columns of G span any u dimensional190

reducing subspace of M.191

In the next section we describe how to select starting values from the eigenvectors of192

M̂.193

2.1. Choosing the starting value from the eigenvectors of M̂194

Define J1(G) = ln |G>M̂G|+ln |G>0 M̂G0|, J2(G) = ln |Ir−u+G>0 ÛMG0| and J(G) =195

J1(G) + J2(G), where ÛM = M̂−1/2ÛM̂−1/2 is a standardized version of Û. Assume for196

convenience that the eigenvalues of M̂ are unique, which will typically hold with probabil-197

ity 1, and let Vu be the collection of all subsets of u eigenvectors of M̂. Then198
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Proposition 2.2 argminG∈Vu Lu(G) = argminG∈Vu J(G).199

Consequently, instead of Lu(G) we can work with the more amenable objective function200

J(G) = J1(G) + J2(G) when restricting starting values to the eigenvectors of M̂. It201

follows from Proposition 2.1 that J1(G) is minimized when the columns of G are any u202

eigenvectors of M̂. Restricting G ∈ Vu, we next need to find argminG∈Vu J2(G). This203

does not have a closed-form solution and evaluating at all r-choose-u elements of Vu will204

be effectively impossible when r is large. For these reasons we replace the ln-determinant205

in J2(G) with the trace and minimize tr(Ir−u + G>0 ÛMG0), which is equivalent to maxi-206

mizing207

KM(G) := tr(G>ÛMG) =
u∑

i=1

g>i ÛMgi,

where gi is the i-th selected eigenvector of M̂ (the i-th column of G). Computation is now208

easy, since we just select the u eigenvectors of M̂ that maximize g>i ÛMgi.209

Applying this in response envelopes, let SX denote the marginal sample covariance210

matrix of the predictors. Then M̂ = SY|X, Û = BSXB>, ÛM = S
−1/2
Y|X BSXB>S

−1/2
Y|X ,211

and S
−1/2
Y|X BS

1/2
X is a standardized version of the ordinary least squares estimator B of β.212

2.2. Choosing the starting value from the eigenvectors of M̂ + Û213

Define J∗1 (G) = ln |G>(M̂+Û)G|+ln |G>(M̂+Û)−1G|, J∗2 (G) = ln |Iu−G>ÛM+UG|214

and J∗(G) = J∗1 (G) + J∗2 (G), where ÛM+U = (M̂ + Û)−1/2Û(M̂ + Û)−1/2 is another215

standardized version of Û. Let V∗u be the collection of all subsets of u eigenvectors of216

M̂ + Û. Then217
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Proposition 2.3 argminG∈V∗
u
Lu(G) = argminG∈V∗

u
J∗(G).218

Consequently, instead of Lu(G) we can again work with a more amenable objective219

function, this time J∗(G) = J∗1 (G)+J∗2 (G). It follows from Proposition 2.1 that J∗1 (G) is220

minimized when the columns of G are any u eigenvectors of M̂+ Û. Restricting G ∈ V∗u,221

we next need to find argminG∈Vu J
∗
2 (G). Again, this does not have a closed-form solution222

and evaluating at all r-choose-u elements of V∗u will be effectively impossible when r is223

large. For these reasons we again replace the ln-determinant with the trace and minimize224

tr(Iu −G>ÛM+UG), which is equivalent to maximizing225

KM+U(G) := tr(G>ÛM+UG) =
u∑

i=1

g>i ÛM+Ugi,

where gi is the i-th selected eigenvector of M̂+ Û (the i-th column of G). Computation is226

again easy, since we just select the u eigenvectors of M̂ + Û that maximize g>i ÛM+Ugi.227

This is exactly the same as the previous case, except the standardization of Û is with228

(M̂ + Û)−1/2 instead of M̂−1/2.229

Applying this in response envelopes, M̂ = SY|X, Û = BSXB>, M̂ + Û = SY,230

ÛM+U = S
−1/2
Y BSXB>S

−1/2
Y and S

−1/2
Y BS

1/2
X is another standardized matrix of ordinary231

least squares regression coefficients as before.232

2.3. Scaling and consistency233

The standardized forms ÛM and ÛM+U are important when the scales involved in M̂ and234

M̂+Û are very different. This can perhaps be appreciated readily in the context of response235
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envelopes, where M̂ = SY|X and M̂ + Û = SY. In this case the standardization will be236

important and effective if the scales of the elements of Y are very different. However, the237

standardization will be effectively unnecessary when the scales are similar. In the case of238

response envelopes this means that the scales of the elements of Y are the same or similar.239

Depending on the scales involved, standardization can also be counterproductive when240

the sample size is not large enough to give sufficiently accurate estimates of M and U.241

In such cases, we abandon the standardization and use either K∗M(G) =
∑u

i=1 g>i Ûgi242

or K∗M+U(G) =
∑u

i=1 g>i Ûgi as the objective function. The only difference between243

these is that K∗M(G) confines G to the eigenvectors of M̂, while K∗M+U(G) confines G244

to the eigenvectors of M̂ + Û. We now have four possible starting values from which to245

choose, corresponding to the arguments that minimize KM(G), K∗M(G), KM+U(G), and246

K∗M+U(G). The value Gstart chosen to start the algorithm described in Section 3 is the one247

that minimizes Lu(G). The following proposition summarizes an asymptotic property of248

this starting value.249

Proposition 2.4 Let Pstart denote the projection onto span(Gstart). Then with known u,250

Pstart is a
√
n-consistent estimator of the projection onto EM(U).251

3. New iterative algorithm252

In this section we describe a re-parameterized version of Lu(G) that does not require op-253

timization over a Grassmannian. The new parameterization requires first selecting u rows254

of G ∈ Rr×u and then constraining the matrix G1 ∈ Ru×u formed with these rows to be255
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non-singular. Without loss of generality, assume that G1 is constructed from the first u256

rows of G which we can then partition as257

G =

 G1

G2

 =

 Iu

A

G1 = CAG1,

where A = G2G
−1
1 ∈ R(r−u)×u is an unconstrained matrix and CA = (Iu,A

>)>. Since258

G>G = Iu and G1 is non-singular, G1G
>
1 = (C>ACA)

−1. Using these relationships,259

Lu(G) can be re-parameterized as a function of only A:260

Lu(A) = −2 ln |C>ACA|+ ln
∣∣∣C>AM̂CA

∣∣∣+ ln
∣∣∣C>A(M̂ + Û)−1CA

∣∣∣ .
With this objective function minimization over A is unconstrained. The number of real261

parameters u(r − u) comprising A is the same as the number of reals needed to specify262

uniquely a u-dimensional subspace of Rr; that is, a single element in the Grassmannian.263

If u(r − u) is not too large, Lu(A) might be minimized directly by using standard264

optimization software and the starting values described in Section 2. In other cases mini-265

mization can be carried out by minimizing iteratively over the rows of A. Suppose that we266

wish to minimize over the last row a> of A. Partition267

A =

A1

a>

 , CA =

CA1

a>

 , M̂ =

 M̂11 M̂12

M̂21 M̂22

 , (M̂ + Û)−1 =

 V̂11 V̂12

V̂21 V̂22

 .

Then after a little algebra, the objective function for minimizing over a> with A1 held fixed268
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can be written up to terms that do not depend on a as269

Lu(a | A1) = −2 ln
{
1 + a>(C>A1

CA1)
−1a
}

+ ln
{
1 + M̂22(a + M̂−1

22 C>A1
M̂12)

>W−1
1 (a + M̂−1

22 C>A1
M̂12)

}
+ ln

{
1 + V̂22(a + V̂ −122 C>A1

V̂12)
>W−1

2 (a + V̂ −122 C>A1
V̂12)

}
,

where270

W1 = C>A1

(
M̂11 − M̂−1

22 M̂12M̂21

)
CA1

W2 = C>A1

(
V̂11 − V̂ −122 V̂12V̂21

)
CA1 .

The objective function Lu(a | A1), which depends only on logarithms of quadratics in a,271

can now be minimized using any suitable off-the-shelf algorithm. Iteration then cycles over272

rows of A until a convergence criterion is met.273

This algorithm requires the starting value Gstart described in Section 2. Prior to ap-274

plication of the algorithm we must identify u rows of Gstart and then constrain the matrix275

Gstart,u formed from those u rows to be non-singular. This implies that the matrix formed276

from the corresponding rows of a basis matrix for EM(U) should also be non-singular.277

This can be achieved asymptotically at rate
√
n by first applying Gaussian elimination with278

partial pivoting to Gstart. The u rows of Gstart identified during this process then form279

Gstart,u.280

Proposition 3.1 Assume that the eigenvalues of M and M+U are distinct. Then the u×u281
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submatrix of Gstart that consists of the u rows selected by Gaussian elimination converges282

to a non-singular matrix with rate
√
n.283

This proposition shows that asymptotically Gaussian elimination produces a non-singular284

submatrix. The condition that the eigenvalues of M and M + U be distinct is mainly for285

clarity of exposition and is not necessary. The proof given in the appendix demonstrates a286

more complete result. Let Γstart denote the population version of Gstart, and let Γstart,u ∈287

Ru×u consist of the u rows of Γstart formed by applying Gaussian elimination to Γstart.288

Then Γstart is a basis matrix for EM(U) and Gstart,u converges to Γstart,u at rate
√
n.289

The new algorithm estimates a basis Γ row by row, while the 1D algorithm optimizes290

column by column. When u is small, the 1D algorithm tends to be a bit more efficient as it291

optimizes one column at a time and it needs only one pass through those columns. When292

u is larger, the new algorithm dominates, and sometimes substantially. In each estimation,293

the 1D algorithm uses conjugate gradient with Polak-Ribiere updates while our algorithm294

uses Newton updates.295

4. Simulations296

4.1. Starting values297

The first series of simulations was designed to illustrate why it is important to consider the298

eigenvalues of both M̂ and M̂ + Û. All simulations are for response envelopes reviewed299

in Section 1.1, model (2). The results displayed in the tables of this section are the average300

over 50 replications in each simulation scenario. The angle ∠{span(A1), span(A2)} be-301
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tween the subspaces spanned by columns of the semi-orthogonal basis matrices A1 ∈ Rr×u
302

and A2 ∈ Rr×u was computed in degrees as the arc cosine of the smallest absolute singu-303

lar value of A>1 A2, and β̂start = PstartB, where Pstart is as defined in Proposition 2.4.304

The starting value is still denoted as Gstart but its definition depends on the simulation.305

Γ̂ = argminLu(G) was obtained from the new algorithm described in Section 3 using the306

simulation-specific starting value Gstart, and ÊM(U) = span(Γ̂).307

Scenario I. This simulation was designed to illustrate a regression in which the eigen-308

values of Σ are close and the signal is strong. We generated the data with p = r = 100,309

n = 500 and u = 20, taking Ω and Ω0 to be diagonal matrices with diagonal elements gen-310

erated as independent uniform (49, 51) variates. Elements in η were independent uniform311

(0, 10) variates, X followed a multivariate normal distribution with mean 0 and covariance312

matrix 400Ip, and the elements of (Γ,Γ0) ∈ Rr×r were obtained by standardizing a matrix313

of independent uniform (0, 1) variates. In this scenario, the eigenvalues of Σ are close to314

each other, but we have a strong signal arising from the distribution of X. Starting values315

based on the eigenvectors of M̂ = SY|X were expected to perform poorly, while starting316

values based on M̂ + Û = SY were expected to perform well, as conjectured at the start317

of Section 2 and confirmed by the results in Table 1.318

The overarching conclusion from Table 1 is that the starting values from SY did very319

well, whether Û was standardized or not, while the starting values from SY|X were effec-320

tively equivalent to choosing a 20-dimensional subspace at random. Additionally, iteration321

from the starting value produced essentially no change in the angle, the value of the objec-322
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Standardized Û Unstandardized Û

Summary statistic SY = M̂ + Û SY|X = M̂ SY = M̂ + Û SY|X = M̂

∠{span(Gstart), EM(U)} 0.58 89.05 0.58 88.98

∠{ÊM(U), EM(U)} 0.58 88.58 0.58 88.74

Lu(Gstart) −182.10 −13.18 −182.10 −9.94
Lu(Γ̂) −182.10 −21.95 −182.10 −20.01

‖β̂start − β‖2 0.27 149.58 0.27 136.51

‖β̂ − β‖2 0.27 113.02 0.27 101.67

Table 1: Results for Scenario I. The starting value Gstart was constructed from the eigen-
vectors of the matrices indicated by the headings for columns 2-5.

tive function or the envelope estimator of β.323

Scenario II. We generated data with p = r = 100, n = 500 and u = 5, taking Ω = Iu324

and Ω0 = 100Ir−u. Elements in η were independent uniform (0, 10) variates, X followed325

multivariate normal distribution with mean 0 and covariance matrix 25Ip, and (Γ,Γ0) was326

obtained by standardizing an r× r matrix of independent uniform (0, 1) variates. Since the327

eigenvalues in Ω and Ω0 are very different and the signal is modest, the results in Table 2328

show as expected from the argument given in Section 2 that the starting values based on329

M̂ = SY|X did much better than those based on SY. As in Scenario I, the starting value did330

very well. Iteration improved the starting value a small amount and scaling had no notable331

affect.332

Scenario III. The intent of this simulation is to demonstrate the importance of scaling333

Û. We generated data with p = r = 30, n = 200 and u = 5, taking Ω to be a diagonal334

matrix with diagonal elements 1.51, . . . , 1.5u and Ω0 to be a diagonal matrix with diagonal335

elements 1.5u+1, . . ., 1.5r. Elements in η were generated as independent uniform (0, 10)336

18



Standardized Û Unstandardized Û

Summary statistic SY = M̂ + Û SY|X = M̂ SY = M̂ + Û SY|X = M̂

∠{span(Gstart), EM(U)} 45.88 3.87 45.88 3.87

∠{ÊM(U), EM(U)} 36.55 3.78 36.55 3.78

Lu(Gstart) −16.19 −30.88 −16.19 −30.88
Lu(Γ̂) −20.74 −30.95 −20.74 −30.95

‖β̂start − β‖2 1.93 0.66 1.93 0.66

‖β̂ − β‖2 1.64 0.57 1.64 0.57

Table 2: Results for scenario II. The starting value Gstart was constructed from the eigen-
vectors of the matrices indicated by the headings for columns 2-5.

variates, X followed the multivariate normal distribution with mean 0 and covariance ma-337

trix 100Ip, and (Γ,Γ0) = Ir. We see from the results of Table 3 that standardization338

performed well and that now iteration improved the starting value considerably. Here and339

in all other results of this section, the smallest value of Lu(Gstart) produced best results.340

Standardized Û Unstandardized Û

Summary statistic SY = M̂ + Û SY|X = M̂ SY = M̂ + Û SY|X = M̂

∠{span(Gstart), EM(U)} 48.63 16.72 89.35 33.31

∠{ÊM(U), EM(U)} 17.92 1.54 89.34 22.77

Lu(Gstart) −13.43 −35.75 −12.69 −34.09
Lu(Γ̂) −32.48 −46.93 −23.26 −44.84

‖β̂start − β‖2 11.82 8.56 20.32 11.13

‖β̂ − β‖2 4.37 0.72 20.17 5.39

Table 3: Results for scenario III. The starting value Gstart was constructed from the eigen-
vectors of the matrices indicated by the headings for columns 2-5.

Scenario IV. For this simulation we kept the same settings as Scenario III, except that341

diagonal elements of Ω and Ω0 were 1.051, . . ., 1.05u and 1.05u+1, . . ., 1.05r, and (Γ,Γ0)342

was generated by standardizing a matrix of uniform (0, 1) random variables. In this setup343
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heteroscedasticity across the elements is reduced substantially from that in Scenario III.344

As indicated in Table 4, the standardization no longer provides much improvement. Also,345

since the eigenvalues of Ω and Ω0 are similar, SY|X again does not work well.

Standardized Û Unstandardized Û

Summary statistic SY = M̂ + Û SY|X = M̂ SY = M̂ + Û SY|X = M̂

∠{span(Gstart), EM(U)} 0.30 79.57 0.30 80.66

∠{ÊM(U), EM(U)} 0.30 73.40 0.30 75.58

Lu(Gstart) −53.54 −7.92 −53.54 −7.27
Lu(Γ̂) −53.54 −13.40 −53.54 −12.56

‖β̂start − β‖2 0.08 33.36 0.08 31.59

‖β̂ − β‖2 0.08 25.04 0.08 22.61

Table 4: Results for scenario IV. The starting value Gstart was constructed from the eigen-
vectors of the matrices indicated by the headings for columns 2-5.

346

4.2. Comparisons with the 1D algorithm347

In this section we give three different simulation scenarios based on response envelopes348

for comparing the new non-Grassmann algorithm with the 1D algorithm. In all scenarios349

p = 100, α = 0, orthogonal bases (Γ,Γ0) were obtained by normalizing an r × r ma-350

trix of independent uniform (0, 1) variates, the elements in η ∈ Ru×p were generated as351

independent uniform (0, 10) variates, and β = Γη. The predictors X were generated as352

independent normal random vectors with mean 0 and variance 400Ir. We varied u from353

1 to 90 and recorded and computing times and the angles between the true and estimated354

subspaces.355

The 1D algorithm was implemented in R for all simulations reported in this and the356

next section. Using efficient programming tools in R, it is now much faster than its Matlab357
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version, which produced the results in Cook and Zhang [7]. To insure a fair comparison,358

we used the default convergence criterion in R for optimizations within both the 1D algo-359

rithm and the new algorithm. The angle between subspaces was computed as described360

previously. In all case the results tabled are the averages over 50 replications. We use Γ̂1D361

to denote the basis generated by the the 1D algorithm.362

Scenario V. In this scenario we set r = 100 and n = 250. To reflect multivariate re-363

gressions with large immaterial variation, so envelopes give large gains, we generated the364

error covariance matrix as Σ = ΓΩΓ> + Γ0Ω0Γ
>
0 , where Ω = AA>, Ω0 = CC>, the365

elements in A were generated as independent standard normal variates and elements in C366

were generated as independent normal (0, 52) variates. The results are shown in Table 5.367

The 1D algorithm tends to perform a bit better on accuracy (Table 5) for small values of368

u, while performing poorly for large values of u. The same phenomenon occurs in terms of369

time: the 1D algorithm tends to be a bit faster for small values of u, but otherwise can take370

much longer than the new non-Grassmann algorithm. The relatively small times for the371

new algorithm at u = 5, 10, 20, 60 occurred because in those cases the starting value was372

quite good and little iteration was required. The same qualitative differences hold when373

considering the norm between the estimated coefficient matrix and the true value from the374

simulation. Note also that the angle for the starting value by itself was often smaller than375

that for the 1D algorithm.376

Scenario VI. We again set r = 100 and n = 250. To reflect multivariate regressions377

with small immaterial variation, so envelopes give worthwhile but relatively modest gains,378
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(A) Angle ÊM(U) span(Gstart) span(Γ̂1D)

u = 1 0.92 1.68 0.64

u = 5 3.56 3.60 1.81

u = 10 4.67 4.73 4.60

u = 20 5.83 5.84 42.77

u = 30 4.84 6.07 12.37

u = 40 5.59 7.39 6.24

u = 50 6.81 7.62 39.57

u = 60 8.48 8.49 70.37

u = 80 7.61 10.01 25.51

u = 90 7.15 12.04 21.02

(B) Time ÊM(U) span(Gstart) span(Γ̂1D)

u = 1 2.30 0.03 0.23

u = 5 0.19 0.03 1.45

u = 10 0.37 0.03 2.71

u = 20 0.34 0.03 5.16

u = 30 7.49 0.04 6.23

u = 40 7.58 0.04 7.30

u = 50 5.53 0.05 9.18

u = 60 0.97 0.05 10.59

u = 80 2.21 0.07 11.07

u = 90 1.55 0.08 10.40

Table 5: Scenario V: (A) Angle between EM(U) and the indicated subspace. (B) Computing
time in seconds for the indicated subspace. ÊM(U), span(Gstart) and span(Γ̂1D) denote the
estimated subspaces by the new non Grassmann algorithm, the starting values described in
Section 2 and the 1D algorithm.

we generated the error covariance matrix as Σ = ΓΩΓ> + Γ0Ω0Γ
>
0 , where Ω = AA>,379

Ω0 = CC>, the elements in A were generated as independent normal (0, 52) variates380

variates and elements in C were generated as independent standard normal variates. The381

results shown in Table 6 broadly parallel those in Table 5 for Scenario V, but now the382

performance of the new algorithm is stronger, both in terms of accuracy and time.383
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(A) Angle ÊM(U) span(Gstart) span(Γ̂1D)

u = 1 0.32 0.32 0.33

u = 5 0.75 0.75 0.70

u = 10 0.89 0.89 2.94

u = 20 1.13 1.14 21.00

u = 30 1.24 1.24 10.73

u = 40 1.36 1.36 12.68

u = 50 1.40 1.40 16.97

u = 60 1.45 1.45 31.20

u = 80 1.64 1.64 6.67

u = 90 1.14 1.14 4.10

(B) Time ÊM(U) span(Gstart) span(Γ̂1D)

u = 1 0.08 0.04 0.30

u = 5 0.10 0.03 1.13

u = 10 0.18 0.03 2.52

u = 20 0.29 0.04 3.82

u = 30 0.42 0.04 6.42

u = 40 0.71 0.04 7.71

u = 50 0.38 0.05 9.74

u = 60 0.31 0.06 10.62

u = 80 0.61 0.07 11.69

u = 90 0.21 0.09 11.00

Table 6: Scenario VI: (A) Angle between EM(U) and the indicated subspace. (B) Com-
puting time in seconds for the indicated subspace. ÊM(U), span(Gstart) and span(Γ̂1D)
denote the estimated subspaces by the new non Grassmann algorithm, the starting values
described in Section 2 and the 1D algorithm.

Scenario VII. This scenario was designed to emphasize the time differences between the384

1D algorithm and the non Grassmann algorithm. We set n = 500 and varied r from 150 to385

350. The error covariance matrix was constructed as Σ = ΓΩΓ>+Γ0Ω0Γ
>
0 , where Ω = I,386

Ω0 = 25I. The estimative performance of the two algorithms was essentially the same in387

this scenario, with the angles between the estimated subspaces and the envelope varying388
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between about 0.3 degrees for (u, r) = (1, 150) and 10 degrees for (u, r) = (90, 350).389

However, as shown in Table 7 the 1D algorithm can take considerably longer than the390

non Grassmann algorithm. To emphasize the differences, the 1D algorithm with r = 350391

would take about 2.5 hours to estimate the envelope for each u between 1 and 90, while392

the non Grassmann algorithm would take only about 0.15 hours. In practice we would393

normally need to estimate the envelope for each u between 1 and 350, leading to much394

longer computing times.395

r = 150 r = 250 r = 350

ÊM(U) span(Γ̂1D) ÊM(U) span(Γ̂1D) ÊM(U) span(Γ̂1D)

u = 1 0.16 0.18 0.45 0.64 0.96 1.65

u = 5 0.21 0.85 0.54 3.30 1.08 8.23

u = 10 0.28 2.26 0.64 8.31 1.22 20.89

u = 20 0.42 6.16 0.94 23.4 1.64 51.61

u = 30 0.62 9.56 1.33 37.00 2.18 81.46

u = 40 0.86 12.94 1.83 48.45 2.86 110.06

u = 50 1.09 16.03 2.38 59.20 3.73 135.05

u = 60 1.40 18.62 3.13 68.23 4.85 157.65

u = 80 2.08 22.50 9.77 87.08 15.07 196.84

u = 90 2.50 23.91 11.74 91.20 27.97 212.87

Table 7: Scenario VII. Computing time in seconds for the indicated subspace. ÊM(U)
and span(Γ̂1D) denote the subspaces by the new non Grassmann algorithm and the 1D
algorithm.

5. Contrasts on real data396

In this section we compare the computing time for the new non Grassmann algorithm and397

the 1D algorithm to select an envelope dimension by minimizing prediction errors from five398
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fold cross validation, the method typically used in conjunction with the 1D algorithm. The399

time reported is, for each u, the total optimization time over 250 optimizations comprised400

of 50 replications of five fold cross validation.401

5.1. Alzheimer data402

The Alzheimer data contains volumes of r = 93 regions of the brain from each of 749403

Alzheimer patients (Zhu et al. [12]). We used gender, age, the logarithm of intracere-404

broventricular volume, and interactions involving gender as predictors, so p = 5. After405

taking the logarithms of all brain volumes, we fitted the response envelope model using406

both the new algorithm and the 1D algorithm. There was little to distinguish the methods407

based on predictive performance, but the time differences are clear, as displayed in Figure408

1. As we observed in the simulations, the times for the two algorithms are close for rela-409

tively small values of u and diverge for larger values of u. The total optimization time over410

all 250×r = 23, 250 optimizations was about 22 hours for the new algorithm and 60 hours411

for the 1D algorithm. The overall computation time is relatively large because the signal in412

the data is somewhat weak.413

5.2. Glass data414

Our algorithm is applicable in many envelope contexts other than response envelopes. We415

used predictor envelopes (Cook et al. [1]) for this illustration.416

The dataset contains measurements of the chemical composition and electron-probe-X-417

ray microanalysis for 180 archeological glass vessels from 15th to 17th century excavated418
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Figure 1: Alzheimer data: for each u the vertical axis is the total optimization time over
250 optimizations comprised of 50 replications of five fold cross validation. The solid line
marks the new non Grassmann algorithm and the dashed line marks 1D algorithm.

in Antwerp, Belgium. For each vessel, a spectrum on a set of equispaced frequencies419

between 1 and 1920 is measured. Since the values below 100 and above 400 are almost420

null, following Kudraszow and Maronna [9], we chose 13 equispaced frequencies between421

100 and 400 as predictors. The response variable is the amount of sulfur trioxide. For each422

u = 1, . . . , 13, we ran the 1D algorithm and the new algorithm, recoding the prediction423

error from 50 replications of five fold cross validation and the average computing time for424

these 250 optimizations. The new algorithm gave a four percent improvement in prediction425
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error over the 1D algorithm at u = 3, which was best for both methods. As in the Alzheimer426

data, there were clear differences in computing time, as shown in Figure 2. The total time427

for computing all u was 86 seconds for the new algorithm and 541 seconds for the 1D428

algorithm.429
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Figure 2: The solid line marks the new non Grassmann algorithm and the dashed line marks
1D algorithm.
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Appendix467

A. Proof of Proposition 2.1468

Let (G,G0) ∈ Rr×r be a column partitioned orthogonal matrix and let M ∈ Sr×r be469

positive definite. The conclusion that ln |G>MG| + ln |G0MG0| is minimized when470

span(G) is any u-dimensional reducing subspace of M will follow by showing that |M| ≤471

|G>MG| × |G>0 MG0| with equality if and only if span(G) reduces M.472

|M| = |(G,G0)
>M(G,G0)| =

∣∣∣∣∣∣∣∣
G>MG G>MG0

G>0 MG G>0 MG0

∣∣∣∣∣∣∣∣
= |G>MG| × |G>0 MG0 −G>0 MG(G>MG)−1G>MG0|

≤ |G>MG| × |G>0 MG0|,

with equality if and only if G>0 MG = 0, which is equivalent to requiring that span(G)473

reduce M.474

The conclusion that ln |G>MG| + ln |GM−1G| is also minimized when span(G) is475

any u-dimensional reducing subspace of M follows because476

ln |G>MG|+ ln |GM−1G| = ln |G>MG|+ ln |G0MG0| − ln |M|.
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B. Proof of Proposition 2.2477

Recall that J1(G) = ln |G>M̂G| + ln |G>0 M̂G0|, J2(G) = ln |Ir−u + G>0 ÛMG0| and478

J(G) = J1(G) + J2(G), where ÛM = M̂−1/2ÛM̂−1/2 is a standardized version of Û.479

Then from Proposition 2.1, an argument minimizes Lu(G) if and only if it minimizes480

f(G) = ln |G>M̂G|+ ln |G>0 (M̂ + Û)G0|

= ln |G>M̂G|+ ln |G>0 (M̂ + ûû>)G0|

= ln |G>M̂G|+ ln |G>0 M̂G0|+ ln |Ik + û>G0(G
>
0 M̂G0)

−1G>0 û|

= ln |G>M̂G|+ ln |G>0 M̂G0|

+ ln |Ir−u + (G>0 M̂G0)
−1/2G>0 ûû>G0(G

>
0 M̂G0)

−1/2|

= J1(G) + f2(G),

where f2 is defined implicitly and Û = ûû> is a decomposition of Û with û ∈ Rr×k. To481

see that f2 = J2 over Vu we have482

f2(G) = ln |Ir−u + (G>0 M̂G0)
−1/2G>0 ÛG0(G

>
0 M̂G0)

−1/2|

= ln |Ir−u + (G>0 M̂G0)
−1/2G>0 M̂1/2(M̂−1/2ÛM̂−1/2)M̂1/2G0(G

>
0 M̂G0)

−1/2|

= ln |Ir−u + G>0 (M̂
−1/2ÛM̂−1/2)G0|

= ln |Ir−u + G>0 ÛMG0|

= J2(G),
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where the third equality follows because G0 ∈ Vu reduces M̂.483

C. Proof of Proposition 2.3484

Let Ŵ = M̂ + Û for notational convenience and start with the objective function485

Lu(G) = ln |G>M̂G|+ ln |G>(M̂ + Û)−1G|

= ln |G>M̂G|+ ln |G>Ŵ−1G|

= ln |G>(M̂ + Û)G−G>ÛG|+ ln |G>Ŵ−1G|

= ln |G>ŴG−G>ûû>G|+ ln |G>Ŵ−1G|

= ln |G>ŴG|+ ln |Ik − û>G(G>ŴG)−1G>û|+ ln |G>Ŵ−1G|,

where û is as defined in the proof of Proposition 2.2. The sum of the first and last terms486

on the right side of this representation is always non-negative and equals 0, its minimum487

value, when the columns of G span any reducing subspace of Ŵ = M̂ + Û. Restricting488

G in this way,489

û>G(G>ŴG)−1G>û = û>Ŵ−1/2Ŵ1/2G(G>ŴG)−1G>Ŵ1/2Ŵ−1/2û

= û>Ŵ−1/2GG>Ŵ−1/2û,
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and the middle term of L(G) reduces to490

ln |I− û>G{G>(M̂ + Û)G}−1G>û| = ln |Ik − û>Ŵ−1/2GG>Ŵ−1/2û|

= ln |Iu −G>Ŵ−1/2ûû>Ŵ−1/2G|

= ln |Iu −G>ÛM+UG|,

where ÛM+U = Ŵ−1/2ûû>Ŵ−1/2 = Ŵ−1/2ÛŴ−1/2 is Û standardized by Ŵ−1/2 =491

(M̂ + Û)−1/2.492

D. Proof of Proposition 2.4493

We demonstrate the result in detail for KM. The corresponding result for the other three K494

functions follows similarly.495

Recall that KM(G) =
∑u

i=1(g
>
i M̂−1/2ÛM̂−1/2gi) where gi is an eigenvector of M̂.496

The population version of this objective function is497

K̃M(G̃) =
u∑

i=1

g̃>i M−1/2UM−1/2g̃i

where g̃ is an eigenvector of M and G̃ = (g̃1, . . . , g̃u). We next show that498

span
{
argmax K̃M(G̃)

}
= EM(U).

Consider a generic envelope EA(S), where A > 0 with eigenspaces Ai, i = 1, . . . , q.499
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Cook et al. [3] show that this envelope can be characterizes as EA(S) =
∑q

i=1 PAi
S. As a500

consequence there are u = dim{EA(S)} orthogonal eigenvectors a1, . . . , au of A so that501

EA(S) =
u∑

i=1

Pai
S = span

(
u∑

i=1

Pai
ss>Pai

)

where s is a basis matrix for S. By definition of EA(S), there exists exactly u eigenvectors502

of A that are not orthogonal to S and these eigenvectors are a1, . . . , au. Consequently, we503

must have504

EA(S) = span

{
argmax tr

(
u∑

i=1

Pvi
ss>Pvi

)}
= span

(
argmax

u∑
i=1

v>i ss>vi

)
,

where the maximum is taken over the eigenvectors vi of A. Equality holds since the max-505

imum must select u eigenvectors of A that are not orthogonal to ss>.506

Comparing this general argument with K̃M(G) we see that argmax K̃M will select u507

eigenvectors of M that are not orthogonal to M−1/2UM−1/2 and consequently508

span
{
argmax K̃M(G̃)

}
= EM{span(M−1/2UM−1/2)} = EM(U),

where the final equality follows from Cook et al. ([3], Prop. 2.4).509

The
√
n consistency now follows straightforwardly since the matrices involved in the510

determination of the four potential starting values – M̂, M̂ + Û, ÛM and ÛM+U – are all511

√
n-consistent estimators of their corresponding population versions.512
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E. Proof of Proposition 3.1513

Let Γstart ∈ Rr×u denote the population counterpart of Gstart. Based on previous discus-514

sion, the columns of Γstart are eigenvectors of M or M+U. Since rank(Γstart) = u we can515

find u linearly independent rows of Γstart and, letting Γu denote the u× u matrix forms by516

these u rows, we get |Γu| 6= 0. Now, let Gu denote the submatrix of Gstart forms by these517

same u rows. It follows straightforwardly in the manner of Proposition 2.4 that Gu is a
√
n518

consistent estimator of Γu. Since the determinant is a continuous function this implies that519

for n sufficiently large |Gu| 6= 0 with a specified high probability. As a consequence, for n520

sufficiently large, rank(Gstart) = u with arbitrarily high probability.521

Perform Gaussian elimination with partial pivoting on Gstart and denote the resulting522

u × u submatrix by Gstart,u. From the preceding discussion, Gstart,u is nonsingular with523

high probability for sufficiently large n. Also, perform Gaussian elimination with partial524

pivoting to Γstart and denote the resulting nonsingular u × u submatrix by Γstart,u. The525

proposition is then established if Gstart,u is a
√
n consistent estimator of Γstart,u.526

First we assume that the pivot elements for Γstart are unique and occur in rows ri,527

i = 1, . . . , u. In the first step of Gaussian elimination, for an arbitrary ε > 0, we can528

find an N1 such that when n > N1, the corresponding element in row r1 of Gstart is529

the one having the largest absolute value with probability at least 1 − ε. In other words,530

row r1 will be selected in Gstart with probability at least 1 − ε. We call the resulting531

matrices Γstart,1 ∈ Rr×u and Gstart,1 ∈ Rr×u. As Gaussian elimination involves only532

simple arithmetic operations, Gstart,1 converges to Γstart,1 at rate
√
n. Now, for the second533
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step in Gaussian elimination, we do partial pivoting in the second columns of Gstart,1 and534

Γstart,1. Then, for an arbitrary ε > 0, we can find an N2 > N1 such that when n > N2, the535

elements chosen for Gstart,1 and Γstart,1 will be the same with probability at least (1− ε).536

Continuing this process, for n > Nu, rows r1, . . . , ru in Gstart are selected with prob-537

ability at least (1 − ε)u. Let ‖ · ‖ denote some matrix norm. As Gstart converges to Γstart538

with rate
√
n, we have ‖Gstart,u − Γstart,u‖ = Op(n

−1/2) and consequently for any ε > 0539

there exists K > 0 and N0 so that for all n > N0,540

pr

(√
n‖Gstart,u − Γstart,u‖ > K

∣∣∣∣ rows r1, . . . ru are selected
)
< ε.

Then with n > max(N0, Nu),541

pr
(√

n‖Gstart,u − Γstart,u‖ > K
)

< pr

(√
n‖Gstart,u − Γstart,u‖ > K

∣∣∣∣ rows r1, . . . ru are selected
)
∗ pr(rows r1, . . . ru are selected)

+pr(not all rows r1, . . . ru are selected)

< ε+ [1− (1− ε)u].

Since ε > 0 is arbitrary and ε+ {1− (1− ε)u} tends to 0 as ε tends to 0, Gstart,u converges542

to Γstart,u at rate
√
n.543

To deal with non-unique pivot elements, assume that there are ties in one column. When544

we perform Gaussian elimination with partial pivoting on Γstart in the step with k ties, we545

can choose whichever of the tied elements, resulting in all the cases in non-singular matri-546
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ces. We call the resulting matrices A1, . . . ,Ak. When Gaussian elimination was perform547

with partial pivoting on Gstart, using the preceding reasoning, there will be probability at548

least (1−ε)u/k that we pick the rows in Ai, i = 1, . . . , k. Then Â converges to A1,A2, . . .549

or Ak with rate
√
n, so Â converges to a non-singular matrix with rate

√
n. If we have ties550

in more than one step we divide further probabilities, since the number of the steps and u551

are fixed the proof flows similarly.552
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