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Abstract

Partial least squares (PLS) regression is a popular alternative to ordinary least squares
regression because of its superior prediction performance demonstrated in many
cases. In various contemporary applications, the predictors include both continuous
and categorical variables. A common practice in PLS regression is to treat the cat-
egorical variable as continuous. However, studies find that this practice may lead
to biased estimates and invalid inferences1. Based on a connection between the
envelope model and PLS, we develop an envelope-based partial PLS estimator that
considers the PLS regression on the conditional distributions of the response(s) and
continuous predictors on the categorical predictors. Root-n consistency and asymp-
totic normality are established for this estimator. Numerical study shows that this
approach can achieve more efficiency gains in estimation and produce better pre-
dictions. The method is applied for the identification of cytokine-based biomarkers
for COVID-19 patients, which reveals the association between the cytokine-based
biomarkers and patients’ clinical information including disease status at admission
and demographical characteristics. The efficient estimation leads to a clear scientific
interpretation of the results.
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1 INTRODUCTION

COVID-19 is a worldwide pandemic. As of April 2021, it has infected more than 147 million people and caused more than 3.1
million deaths worldwide2. Despite tremendous efforts to improve the diagnosis and treatment of COVID-19, we still have a
limited understanding of the associations between the key immunologic factors and the clinical information of the COVID-19
patients. These associations can aid in the treatment and management of the disease. Many studies on COVID-19 patients have
collected data on various biomarkers, such as the COVID-IP project3. It would be of great scientific and medical interest to
develop a new statistical tool that facilitates the identification of such associations from the COVID-19 datasets.
The multivariate linear regression model is a common tool for the investigation of the association between key immunologic

factors (such as cytokines) and COVID-19 patients’ clinical information4. Compared to the traditional ordinary least squares
(OLS) fitting, partial least squares (PLS) is a popular alternative known for its superior prediction performance5,6. It is originated
in econometrics7 and is now widely used in many applied disciplines including chemometrics, social science, food science, and
genetics. Among the various applications, it is common to have both categorical and continuous variables in the predictors. For
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example, in the COVID-19 dataset, to study the impact of clinical variables on cytokines levels, categorical predictors include
the patient’s sex, ethnicity, and indicators for underlying diseases such as asthma and diabetes, and continuous predictors include
patient’s clinical status such as temperature, respiratory rate, and oxygen saturation. When the data have both continuous and
categorical predictors, a common practice is to treat the categorical predictors as continuous. However, practitioners discovered
that this can “lead to biased estimates and therefore to invalid inferences and erroneous conclusions”1, see also Lohmoller
(2013)8 and Hair et al. (2012)9.
In this paper, we resolve the issue via the link between PLS and the envelope model. The envelope model was first proposed

in Cook et al. (2010)10 which achieves estimation efficiency in multivariate linear regression using dimension reduction tech-
niques. Cook et al. (2013)11 discovers a link between PLS and the envelope model that in a population they are estimating the
same parameter but use different sample estimation methods. Since its first introduction, PLS stands as an iterative moment-
based algorithm instead of a model-based method. It is easy to use and fast to compute, but it is difficult to obtain a complete
understanding of its properties and make improvements to overcome its disadvantages. On the other hand, the estimation of the
envelope model uses a model-based objective function, which facilitates the theoretical investigation of its estimator. The link
between PLS and envelope model enables us to study PLS via the envelope model and design new variants to make it more
adaptive to different data structures.
The article aims to develop an envelope-based partial PLS (EPPLS) estimator. Instead of treating the categorical predictors as

continuous, we condition both the response(s) and the continuous predictors on the categorical predictors and then perform the
envelope estimation based on the conditional distributions. This provides us with a

√

n-consistent estimator for the regression
coefficients, and this estimator achieves more efficient gains and better prediction performance than OLS, PLS, and principal
component regression (PCR) in our numerical study and the COVID-19 dataset. We also establish consistency and the asymp-
totic distribution of this estimator. In addition, using the link of PLS and the envelope model, we derive a partial PLS (PPLS)
algorithm, which is analogous to the PLS algorithm.
The rest of the article is organized as follows. A review of the envelope methodology, as well as the link between PLS and the

envelope model, is provided in Section 2. We propose the EPPLS, and discuss the estimation, theoretical properties, and order
determination in Section 3. Based on the link between PLS and the envelope model, Section 4 derives a moment-based iterative
algorithm that yields a PPLS estimator. The numerical performance of the proposed estimators is investigated in Section 5 via
simulations. The analysis of a COVID-19 dataset is elaborated in Section 6.We conclude the paper with a discussion in Section 7.

2 REVIEW OF THE ENVELOPE MODEL AND ITS CONNECTION TO PLS

The envelope model is first introduced by Cook et al. (2010)10 as an efficient method to estimate the regression coefficients
under the context of multivariate linear regression. It uses sufficient dimension reduction techniques to identify the part of the
data that is immaterial to the estimation goal. The subsequent estimation is only based on the material part and is thus more
efficient. The envelope model has since been adapted to many areas including PLS11,12,13, generalized linear models14, spatial
regression model15, variable selection16, Bayesian analysis17,18 and tensor regression19,20. Codes for fitting the envelope models
are included in R package Renvlp available in CRAN. A complete review of the envelope model is in Cook (2018)21.
Among all the envelope models, the predictor envelope model11 is most related to the background of our discussion. Thus

we review the envelope model under the context of the predictor envelope model. Consider a linear regression model

Y = �Y + �T (X − �X) + �, (1)

whereY ∈ ℝr is the univariate response (r = 1) or multivariate response vector (r > 1) with mean �Y,X is a p×1 predictor with
mean �X and covariance matrix �X, � ∈ ℝr denotes the error vector with mean 0 and covariance matrix �Y|X, and � ∈ ℝp×r

denotes unknown regression coefficients. The predictor envelope model assumes that part of X is immaterial to the regression
and does not affect the distribution of Y directly or indirectly. Specifically the predictor envelope model assumes that there is a
subspace  ⊆ ℝp such that

(a) cov(Y,QX ∣ PX) = 0 and (b) cov(PX,QX) = 0, (2)
where P⋅ denotes the projection matrix, I denotes the identity matrix, andQ⋅ = I−P⋅. Assumption (2a) states thatQX provides
no information about Y given PX, and (2b) implies that QX is uncorrelated with PX. Cook et al. (2013)11 proved that
assumptions in (2) are equivalent to imposing the following structure to the model parameters

(c) span(�) ⊆  and (d) �X = P�XP +Q�XQ . (3)
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The structure of � in (3c) asserts that the span of � is contained in  . When �X can be decomposed as in (3d), then  is called a
reducing subspace of �X 22. The �X-envelope of �, denoted by �X(�), is the smallest reducing subspace that contains span(�).
In other words, �X(�) is the smallest subspace that satisfies (3), or equivalently the assumptions in (2). If appears in subscripts,
�X(�) is abbreviated to  . We call PX the material part of X and QX the immaterial part. Let u (0 ≤ u ≤ p) denote the
dimension of �X(�), G ∈ ℝp×u an orthonormal basis of �X(�), and G0 ∈ ℝp×(p−u) an orthonormal basis of �X(�)

⟂, i.e. the
orthogonal complement of �X(�). Then the coordinate form of the predictor envelope model is

Y = �Y + �TGT (X − �X) + �, �X = G�GT +G0�0GT
0 , (4)

where � = G�, � ∈ ℝu×r carries the coordinates of � with respect to G, � ∈ ℝu×u and �0 ∈ ℝ(p−u)×(p−u) carries the coordinates
of �X with respect to G and G0. From (4), �X is partitioned into the variation of the material part PX and the variation of the
immaterial part QX.
Estimation of the predictor envelopemodel uses normal likelihood as an objective function, and performs amanifold optimiza-

tion to obtain the estimator of �X(�). Let �̂X be the sample variance matrix of X, and �̂X∣Y the sample conditional covariance
matrix of X given Y, then

̂�X(�) = argmin
span(G)∈p×u

{log |GT �̂
−1
X G| + log |GT �̂X∣YG|}, (5)

where p×u denotes p × u Grassmann manifold, which is the set of all u dimensional subspace of a p dimensional space. Once
we have ̂�X(�), Ĝ, the estimator of G, can be taken as any orthonormal basis of ̂�X(�). Then the predictor envelope estimator
of � is �̂ = Ĝ(ĜT �̂XĜ)−1ĜT �̂XY, where �̂XY is the sample covariance matrix of X and Y. Cook et al. (2013)11 shows that the
predictor envelope estimator is asymptotically more efficient or as efficient as the OLS estimator.
The predictor envelope model has a close connection with PLS. PLS aims to find a reduction of X, i.e.WTX, whereW ∈

ℝp×u, and then estimates � based on the regression of Y on WTX. PLS uses sequential moment-based method to estimate
W columnwise, and different variants of PLS use slightly different algorithms. We take SIMPLS23 as an example, which is a
popular variant implemented in various software packages. Suppose that wi ∈ ℝp is the vector obtained in the ith step (i ≤ u).
Let �XY denote the covariance matrix between X and Y. SetW0 = 0. At the k + 1th step, letWk = (w1,… ,wk) ∈ ℝp×k, then
wk+1 is obtained by

wk+1 = argmax
w
wT�XY�TXYw subject to wT�XWk = 0 and wTw = 1. (6)

Let k = span(Wk). If we change the length constrains in (6) to wTQk
w = 1, then we obtain another popular PLS variant

NIPALS24. Once an estimator ofW is obtained, denoted by Ŵ, the PLS estimator of � is �̂ = Ŵ(ŴT �̂XŴ)−1ŴT �̂XY.
Cook et al. (2013)11 shows a close connection between SIMPLS and the predictor envelope model: 1 ⊂2 ⊂ ⋯ ⊂u =

�X(�). This indicates that at the population level SIMPLS seeks the same reduction as the predictor envelope model. At the
sample level, SIMPLS and the predictor envelope model use different algorithms to estimate �X(�). SIMPLS uses the moment-
based algorithm (6) while the predictor envelope model uses a likelihood-based method (5). Based on this connection, we are
able to study the properties of the SIMPLS estimator or develop its extensions through the predictor envelope model, and we
call the predictor envelope model (4) envelope-based partial least squares (EPLS) hereafter.

3 ENVELOPE-BASED PARTIAL PARTIAL LEAST SQUARES

3.1 Formulation
Suppose thatX is partitioned intoX1 andX2, whereX1 ∈ ℝp1 denotes a vector of continuous predictors andX2 ∈ ℝp2 denotes a
vector of categorical predictors (p1 + p2 = p). Let �1 and �2 be the mean of X1 and X2, respectively. Then the linear regression
model in (1) can be written as

Y = �Y + �T1 (X1 − �1) + �T2 (X2 − �2) + �, (7)

where �1 ∈ ℝp1×r denotes the regression coefficients for the continuous predictors and �2 ∈ ℝp2×r denotes the regression
coefficients for the categorical predictors. We further assume a working model between X1 and X2, X1 = �1 + 
T (X2 −�2) + e,
where 
 is a p2×p1 matrix, and e ∈ ℝp1 has mean 0 and is independent of � andX2. Let �1|2 = E(X1|X2) and�1|2 = cov(X1|X2).
Then we have �1|2 = �1 + 
T (X2 − �2) and cov(e) = �1|2.
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We impose similar assumptions as EPLS, but on the conditional distribution givenX2. More specifically, it assumes that there
is a subspace  of ℝp1 such that

(i) cov(Y,QX1 ∣ PX1,X2) = 0 and (ii) cov(QX1,PX1 ∣ X2) = 0. (8)

Condition (i) indicates that given PX1 and X2, QX1 provides no information about Y, and condition (ii) implies that after
removing the effects of X2,QX1 is uncorrelated with PX1. Condition (i) implies that span(�1) ⊆  and condition (ii) implies
 is a reducing subspace of �1|2. The smallest subspace  that satisfies both (i) and (ii) in (8) is the �1|2-envelope of �1, denoted
by �1|2

(�1), or 1|2 for short. Thus we have (iii) span(�1) ⊆ 1|2(�1) and (iv) �1|2 = P1|2�1|2P1|2 + Q1|2�1|2Q1|2 . Note that
just as the EPLS model, conditions (iii) and (iv) are equivalent to conditions (i) and (ii). Let d denote the dimension of 1|2 with
0 ≤ d ≤ p1, � ∈ ℝp1×d an orthonormal basis of �1|2

(�1) and �0 ∈ ℝp1×(p1−d) an orthonormal basis of �1|2
(�1)⟂. When (iii)

and (iv) are satisfied, the coordinate form of the linear regression model (7) is

Y = �Y + �T�T (X1 − �1) + �T2 (X2 − �2) + �,
X1 = �1 + 
T (X2 − �2) + e and �1|2 = �
�T + �0
0�T0 ,

(9)

where �1 = �� and � ∈ ℝd×r carries the coordinates of �1 with respect to �. The matrices 
 ∈ ℝd×d and 
0 ∈ ℝ(p1−d)×(p1−d)

are positive definite and contain the coordinates of �1|2 with respect to � and �0. Since the envelope structure is imposed on
part of the predictors, we call (9) the envelope-based partial PLS (EPPLS) model. When d = p1, the EPPLS model reduces to
the standard linear regression model (7).
The EPPLS model (9) has a close connection with the EPLS model (4). Let r1|2 denote the population residuals from the

linear regression of X1 on X2, i.e. r1|2 = X1 − �1 − 
T (X2 − �2). Then the linear model (7) can be reparameterized as Y =
�Y + �T1 r1|2 + �

∗T
2 (X2 − �2) + �, where �∗

2 = 
�1 + �2 is a linear combination of �1 and �2. Let rY|2 denote the population
residuals from the regression of Y on X2, then rY|2 = Y − �Y − �∗T

2 (X2 − �2). Based on the reparametrization, we have

rY|2 = �T1 r1|2 + �, (10)

which presents a multivariate linear regression model of rY|2 on r1|2. Now we impose the EPLS structure (4) on (10). Let �r
be the covariance matrix of r1|2. Then the �r-envelope of �1, denoted by �r (�1), is the smallest reducing subspace of �r that
contains span(�1). Since �r = �1∣2, �r (�1) is the same as �1|2

(�1) in the EPPLS model (9). This relationship is analogous to
the connection between the partial envelope model and the response envelope model for the residuals described in Su and Cook
(2011)25.

3.2 Estimation
We use the normal likelihood as an objective function for estimation. Let (X11,X21,Y1), … , (X1n,X2n,Yn) be n independent
observations from the EPPLS model. Let XT

1 = (XT11,X
T
12,… ,XT1n) ∈ ℝp1×n, XT

2 = (XT21,X
T
22,… ,XT2n) ∈ ℝp2×n and Y T =

(YT1 ,Y
T
2 ,… ,YTn ) ∈ ℝr×n be the data matrices, and X̄1, X̄2 and Ȳ the sample means of X1, X2 and Y. Then X1c = X1 − 1nX̄T1 ,

X2c = X2 − 1nX̄T2 , and Yc = Y − 1nȲT are the centered data matrices for X1, X2, and Y , respectively. The parameters under
the EPPLS model are �1, �Y, �, �2, 
, 
0, span(�), 
 and �Y∣X. Note that � is not identifiable, only span(�) is identifiable. We
first fix an orthonormal basis � and estimate other parameters by maximizing the objective function. Based on the derivations
in Supplemental Material, the estimators of these parameters can be written as explicit functions of �. We substitute them
back to the objective function, which now only has one parameter span(�), i.e. �1|2

(�1). Let S1|2 = (1∕n)XT
1cQX2c

X1c , SY|2 =
(1∕n)Y T

c QX2c
Yc , and S(Y,1)|2 = (1∕n)Y T

c QX2c
X1c denote the sample conditional variance of X1 given X2, the sample conditional

variance of Y given X2 and the sample conditional covariance between Y and X1 given X2, respectively. The estimator of the
EPPLS can be obtained by solving the following optimization problem

̂�1|2
(�1) = argmin

span(�)∈p1×d
{log |SY|2| + log |�TS−11|2�| + log |�TS1|(Y,2)�|}, (11)

where p1×d denotes a p1 × d Grassmann manifold. Details are provided in Section A of the Supplemental materials. Note that
the objective function in (11) has the same form as the objective function for the EPLS model in (5) with rY|2 being the response
and r1|2 being the predictor, which echoes the relationship between EPPLS model and the EPLS model discussed at the end of
Section 3.1.
The optimization in (11) can be solved using the computing algorithm in Cook et al. (2016)26, or applying existing softwares

such as the R package Renvlp. Once we have ̂�1|2
(�1), �̂ can be taken to be any orthonormal basis of ̂�1|2

(�1), and �̂0 can be
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taken to be any orthonormal basis of ̂�1|2
(�1)⟂. Let R1|2 = QX2c

X1c denote the sample residuals from the regression of X1 on
X2, and let RY|2 = QX2c

Yc denote the sample residuals from the regression of Y on X2. Thus we have S1|2 = RT1|2R1|2∕n and
S(Y,1)|2 = RTY|2R1|2∕n. The estimators of the EPPLS parameters are

�̂Y = Ȳ, �̂1 = X̄1 �̂2 = X̄2


̂ = (XT
2cX2c)−1XT

2cX1c , �̂ = (�̂
T
RT1|2R1|2�̂)−1�̂

T
RT1|2RY|2,


̂ = (1∕n)�̂
T
RT1|2R1|2�̂ = �̂

T
S1|2�̂, 
̂0 = (1∕n)�̂

T
0R

T
1|2R1|2�̂0 = �̂

T
0 S1|2�̂0,

�̂2 = (XT
2cX2c)−1XT

2c(Yc −X1c �̂1), �̂Y|X = (1∕n)RTY|2QR1|2�RY|2.

(12)

Then

�̂1 = �̂�̂ = P�̂(S1|2)S
−1
1|2S(1,Y)|2 = P�̂(S1|2)�̂1,ols,

�̂1|2 = �̂
̂�̂
T
+ �̂0
̂0�̂

T
0 = P�̂S1|2P�̂ +Q�̂S1|2Q�̂,

(13)

where P�̂(S1|2) denotes the projection matrix onto span(�̂) with S1|2 inner product, and �̂1,ols = S−11|2S(1,Y)|2 is the OLS estimator
of �1. Thus the EPPLS estimator �̂1 is obtained by projecting the OLS estimator onto ̂�1|2

(�1) with the S1|2 inner product. The
estimator �̂2 has the same expression as its OLS estimator, except that �̂1,ols is replaced by the EPPLS estimator �̂1.
When p1 > n, the matrices S1|2 and S(1,Y)|2 in (11) are singular. Since the objective function in (11) depends on the inverse of

S1|2, and the inverse of S(1,Y)|2 is required in the algorithm to solve (11), we use a high-dimensional precision matrix estimator to
replace S−11|2 and S

−1
(1,Y)|2. While many precision matrix estimators are applicable, e.g., Sun and Zhang (2013)27, Zhang and Zou

(2014)28, Khare et al. (2015)29, we adopt the sparse permutation invariant covariance estimator30 SPICE since it guarantees to
have a positive definite matrix and its consistency does not rely on any sparsity assumption. We use the R package PDSCE to
compute the SPICE estimators of S−11|2 and S

−1
(1,Y)|2, and denote the resulting estimators as S−11|2,sp and S

−1
(1,Y)|2,sp. Then S1|2,sp and

S(1,Y)|2,sp replace S1|2 and S(1,Y)|2 in (11), as well as in the estimators in (12) and (13).

3.3 Theoretical Properties
In this section, we establish consistency and asymptotic distribution of the EPPLS estimator. Let vec denote the vector oper-
ator that stacks the columns of a matrix to a vector, and let vech denote the vector half operator that stacks the lower
triangle of a symmetric matrix to a vector. We use ⊗ to denote the Kronecker product, † to denote the Moore-Penrose
generalized inverse, and

d
→ to denote convergence in distribution. The parameters in (9) include h = {�TY,�

T
1 , vec

T (�1),
vecT (�2), vecT (
), vechT (�1|2), vechT (�Y|X)}T , and the constituent parameters of the EPPLS model are � = {�TY,�

T
1 , vec

T (�),
vecT (�), vecT (�2), vecT (
), vechT (
), vechT (
0), vechT (�Y|X)}T . Under the EPPLS model, h is a function of �. Proposition 1
indicates that the EPPLS estimator is

√

n consistent and asymptotically normal even the errors are not normally distributed.

Proposition 1. Suppose that the EPPLS model (9) holds, (�T , eT )T has finite fourth moments and is independently and
identically distributed in the sample. Let ĥ denote the EPPLS estimator of h, then we have

√

n(̂h − h)
d
→ N(0,U), U = �(�TV�)†�,

where � = )h∕)�T is the gradient matrix, and V is the Fisher information matrix from the standard estimation (performed
by OLS). In other words, V−1 is the asymptotic covariance matrix of the OLS estimator of h. Furthermore, since V−1 − U is a
positive semi-definite matrix, the EPPLS estimator is more efficient than or as efficient as the standard estimator asymptotically.

The finite fourth moment condition is required for the
√

n consistency of the estimators of �1|2 and �Y|X. If we further assume
normality, then we can obtain the explicit expression of the asymptotic covariance matrix for the EPPLS estimators vec(�̂1) and
vec(�̂2), as shown in Proposition 2.

Proposition 2. Assume that the conditions in Proposition 1 hold, and we further assume that (�T , eT )T is normally distributed.
Then,

√

n
{

vec(�̂1) − vec(�1)
} d
→ N(0,V1),

√

n
{

vec(�̂2) − vec(�2)
} d
→ N(0,V2),
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where

V1 = �Y|X ⊗ �
−1�T + (�T ⊗ �0){��−1
Y|X�

T ⊗
0 +
⊗
−1
0

+
−1 ⊗
0 − 2Id ⊗ Ip1−d}
−1(�⊗ �T0 ),

V2 = �Y|X ⊗ �−1
2 + �Y|X ⊗ 
T�
−1�T 
 + (�T ⊗ 
T�0){��−1

Y|X�
T ⊗
0

+
⊗
−1
0 +
−1 ⊗
0 − 2Id ⊗ Ip1−d}

−1(�⊗ �T0 
).

Note that the expression ofV1 is the same as the asymptotic covariance matrix of � under the EPLSmodel (10) with rY|2 being
the response and r1|2 being the predictor (see Proposition 9 in Cook et al. (2013)11), except that according to Proposition 9, we
should have cov(rY|2|r1|2) instead of �Y|X in V1. However, Lemma 1 below asserts that they are actually equal. The asymptotic
variance V1 again echoes the connection between the EPPLS model (9) and the EPLS model (10).

Lemma 1. Under the EPPLS model (9), cov(Y|X) = cov(rY|2|r1|2).

3.4 Order determination
To implement the EPPLS model, we first need to select d, the dimension of �1|2

(�1). While many methods such as cross
validation, likelihood ratio testing can be used for the selection of d, we find that BIC has the best performance especially when
the sample size is moderate to large. The BIC is constructed as BIC(d) = −2l∗(d) + log(n)N(d), where l∗(d) is the maximized
log likelihood andN(d) = r+ p1 + p2 + p1p2 + p1(p1 + 1)∕2 + dr+ p2r+ r(r+ 1)∕2 is the number of parameters of the EPPLS
model with the dimension of �1|2

(�1) being d. We compute BIC for all possible d and choose the one that minimizes BIC. The
consistency of BIC is given in the following proposition.

Proposition 3. Assume that the EPPLS model (9) holds and that (�T , eT )T is normally distributed. Let d̂ be the dimension
selected by BIC. Then P (d̂ = d) → 1 as n tends to infinity.

Proposition 3 indicates that when the sample size increases, BIC chooses the correct model with probability tending to 1.
Normality is assumed here since BIC is a likelihood-based method, thus l∗ is inaccurate when the data distribution widely differs
from normal. However, numerical analysis (not shown here) indicates that BIC still performs well under a moderate departure
from normality.

4 PARTIAL SIMPLS ALGORITHM

Based on the connection between SIMPLS and the EPLS model, we develop a moment-based iterative algorithm, called the
partial SIMPLS (PPLS) algorithm, for estimating the EPPLS subspace �1|2

(�1). Its result can be a standalone estimator or a
starting value for the optimization in (11).
Since the envelope �1|2

(�1) in EPPLS (9) is the same as the predictor envelope �r (�1) in (10), PPLS estimates a basis of
�r (�1) using the same algorithm (6) except by replacing X by r1|2 and Y by rY|2. Note that �X and �XY in (6) are �1|2 and
�(1,Y)|2 in the context of (10), where �(1,Y)|2 is the covariance matrix between r1|2 and rY|2. The sample estimator of �1|2 and
�(1,Y)|2 are S1|2 and S(1,Y)|2. Given the sample, PPLS estimates each column of the basis of �r (�1) sequentially. SetW0 = 0. At
the k + 1th step, letWk = (w1,… ,wk) ∈ ℝp1×k, then wk+1 is obtained by

wk+1 = argmax
w
wTS(1,Y)|2ST(1,Y)|2w subject to wTS1|2Wk = 0 and wTw = 1. (14)

The algorithm (14) is terminated when k = d. Based on Cook et al. (2013)11, span(Wd) estimates �r (�1), and thus is an
estimator for �1|2

(�1). Once we obtainWd , the PPLS estimator of �1 is obtained by �̂1,PPLS = PWd (S1|2)�̂1,OLS, which has the
same form as the EPPLS estimator of �1 in (13). The estimators for other parameters including �2,�Y∣X,�1∣2 have the same form
as the EPPLS estimators in (12) and (13) except that the estimators of the bases �̂ and �̂0 are replaced by the PPLS estimator
Wd andWd,0, whereWd,0 is any orthonormal basis of span(Wd)⟂. The dimension d can be chosen by cross validation, which
is a common practice for SIMPLS.

Remark 1. It is feasible to derive the asymptotic distribution for PPLS estimator as in Propositions 1 and 2, but the form of the
asymptotic variance is too complicated to be useful in practice. Hence we suggest using the bootstrap approach to estimate the
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TABLE 1 Computing time for methods used in simulation studies.

(n, r) EPPLS EPLS PPLS PLS PCR PRINCALS CA OLS
(100, 1) 6.58 secs 2.18 secs 1.24 mins 2.26 mins 0.07 secs 1.21 secs 2.70 secs 0.05 secs
(100, 10) 8.69 secs 1.98 secs 2.23 mins 4.17 mins 0.06 secs 0.97 secs 2.31 secs 0.18 secs
(100, 30) 8.14 secs 3.11 secs 3.05 mins 5.78 mins 0.06 secs 0.97 secs 1.86 secs 0.07 secs
(300, 1) 4.48 secs 1.16 secs 1.94 mins 3.83 mins 0.05 secs 2.04 secs 3.60 secs 0.06 secs
(300, 10) 6.37 secs 1.55 secs 4.22 mins 7.34 mins 0.06 secs 2.06 secs 3.76 secs 0.07 secs
(300, 30) 7.84 secs 4.08 secs 6.90 mins 12.61 mins 0.07 secs 2.07 secs 3.62 secs 0.10 secs
(1000, 1) 5.79 secs 0.77 secs 4.94 mins 9.76 mins 0.06 secs 4.50 secs 7.95 secs 0.16 secs
(1000, 10) 6.12 secs 1.31 secs 10.78 mins 19.95 mins 0.08 secs 4.55 secs 8.29 secs 0.24 secs
(1000, 30) 9.47 secs 2.46 secs 23.59 mins 41.55 mins 0.09 secs 4.63 secs 8.20 secs 0.56 secs

variability of the PPLS estimator. Note that for the envelop-based method EPPLS, we have the explicit form of the asymptotic
variance, which is an advantage of EPPLS from an inferential statistical perspective.

5 SIMULATION STUDY

In this section, we compared EPPLS and PPLS with existing methods including OLS, PCR, categorical principal component
analysis (PRINCALS31), correspondence analysis (CA32), PLS, and EPLS. PCR regards categorical variables as continuous
variables while PRINCALS and CA use the mixture of continuous and categorical variables to fit the multivariate linear regres-
sion model. Specifically, PRINCALS considers continuous transformation of categorical variables through monotone spline
function with degree 2 and CA uses multiple correspondence analysis for categorical variables. The envelope dimension d was
chosen by BIC for the envelope methods such as EPPLS and EPLS, and by cross-validation for PPLS and PLS. For PCR, PRIN-
CALS, and CA, the number of principal components (PC) is chosen such that the selected PCs explain at least 90% of the total
variation of all predictors.
We first investigated a low-dimensional case where OLS is used as a benchmark. The data were generated from model (9),

with p1 = 6, p2 = 3, d = 1, �Y = 0 and �Y∣X = 10Ir. The dimension of Y was varied from r = 1, 10 and 30. The matrix (�,�0)
was obtained by normalizing a p1 × p1 matrix of independent normal (0, 22) variates, � was a d × r matrix with each element
being independent normal (1, 102) variates, and �2 = (1.51r, 1.21r, 21r)T , where 1r ∈ ℝr denotes a vector of 1. Let A ∈ ℝd×d

be an independent normal (8, 22) variates and B ∈ ℝ(p1−d)×(p1−d) be a matrix of independent normal (0.6, 12) variates,
 = AAT
and 
0 = BBT . We have ‖
‖ = 31.20 and ‖
0‖ = 15.15, where ‖ ⋅ ‖ denotes the spectral norm. To generate the continuous
predictors X1, we let �1 = 1p1 and 
 = (−1.41p1 , 0.81p1 , 2.51p1)

T . We let e follow a multivariate normal distribution with a zero
mean vector and variance matrix �1|2 = �
�T + �0
0�T0 . The errors � was generated from a multivariate normal distribution
with mean 0 and covariance �Y∣X. The categorical predictors were X2 = 10(W21,W22,W23), where W21, W22 and W23 were
independent Bernoulli variates that take value 1 with probability 0.4, 0.5 and 0.8, respectively.
We considered the sample size from 50 to 1000. For each sample size, 100 replications were simulated. First we investigated

the computing time of each method. The computing time was calculated by the average of 10 replications, and it included the
selection of the number of components. The results were displayed in Table 1. PCR and OLS are the fastest methods to compute,
followed by EPLS, PRINCALS, CA and EPPLS. PLS and PPLS are methods that take the longest to compute. The computing
time was measured with 2.3GHx Quad-core intel core i7 processor and 32GB memory.
For each replication, we estimated �1 using methods EPPLS, EPLS, PPLS, PLS, PCR, PRINCALS, CA, and OLS, and

calculated ‖�̂1 − �1‖F , where ‖ ⋅ ‖F denotes the Frobenius norm. For EPLS, PLS, PCR, PRINCALS, CA, and OLS, we fitted
the response Y on all predictors X = (XT1 ,X

T
2 )
T , and obtained �̂1 by extracting the submatrix of �̂ that corresponds to X1. The

average and standard deviation of ‖�̂1 − �1‖F based on the 100 replications are summarized in Table 2. Note that ‖�̂1 − �1‖F
is the square root of the mean square error (MSE) of �̂1. Among all the methods, EPPLS has the smallest MSE, followed
by PPLS. Note that PPLS and EPPLS estimate the same parameter in population, but they use different sampling algorithms.
EPPLS is likelihood-based and is usually more efficient than PPLS. EPLS performs much better than OLS. However, it loses
substantial efficiency compared to EPPLS. For each (n, r) pair, the ‖�̂1 − �1‖F from EPLS is at least three times as large as
EPPLS. This is because EPPLS treats categorical and continuous predictors differently in estimation, and is, therefore, more
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TABLE 2 Results of average (standard deviation / (number of replications)1∕2) of ‖�̂1 − �1‖F based on 100 replications.

r Methods n = 50 n = 100 n = 300 n = 1000
1 EPPLS 0.49(0.029) 0.58(0.054) 0.33(0.012) 0.07(0.005)

EPLS 3.87(0.844) 3.27(0.539) 2.06(0.275) 0.23(0.005)
PPLS 0.50(0.023) 1.13(0.065) 1.02(0.052) 0.07(0.003)
PLS 2.64(0.001) 10.60(0.003) 15.64(0.002) 1.07(0.0001)
PCR 2.60(0.015) 10.61(3.3 ∗ 10−4) 15.65(3.2 ∗ 10−4) 1.07(1.7 ∗ 10−4)

PRINCALS 1.37(0.088) 10.62(8.8 ∗ 10−4) 15.65(2.6 ∗ 10−4) 1.08(2.2 ∗ 10−4)
CA 2.67(0.008) 10.61(3.3 ∗ 10−4) 15.65(2.9 ∗ 10−4) 1.08(1.9 ∗ 10−4)
OLS 12.91(0.812) 8.06(0.500) 4.37(0.284) 2.29(0.140)

10 EPPLS 1.27(0.031) 1.06(0.029) 0.63(0.018) 0.26(0.006)
EPLS 10.20(1.692) 8.37(1.259) 7.98(0.767) 1.23(0.121)
PPLS 3.43(0.200) 4.31(0.241) 3.36(0.175) 0.73(0.036)
PLS 21.36(0.011) 40.62(0.002) 51.76(0.008) 20.93(0.002)
PCR 20.91(0.060) 40.66(0.002) 51.81(0.001) 20.96(0.0002)

PRINCALS 10.57(0.310) 40.68(0.002) 51.82(0.001) 20.96(2.2 ∗ 10−4)
CA 21.39(0.012) 40.66(0.001) 51.81(8.1 ∗ 10−4) 20.96(2.1 ∗ 10−4)
OLS 44.40(1.013) 29.19(0.692) 16.27(0.348) 8.58(0.206)

30 EPPLS 2.58(0.072) 1.49(0.034) 0.89(0.021) 0.45(0.011)
EPLS 40.88(3.521) 25.95(2.567) 6.16(0.999) 3.88(0.517)
PPLS 8.62(0.956) 6.36(0.366) 5.07(0.316) 1.76(0.108)
PLS 47.49(0.024) 60.59(0.017) 74.61(0.011) 54.68(0.005)
PCR 46.47(0.136) 60.66(0.002) 74.69(0.001) 54.74(0.001)

PRINCALS 23.06(0.697) 60.69(0.004) 74.70(0.002) 54.74(6.5 ∗ 10−4)
CA 47.57(0.026) 60.66(0.002) 74.69(0.001) 54.74(5.8 ∗ 10−4)
OLS 77.08(1.150) 50.84(0.744) 28.85(0.360) 15.95(0.168)

efficient. Most of the time, PCR, PRINCALS, CA, and PLS perform worse than OLS. This is because these methods seek for
the linear combinations of X that provide either the largest variance or the largest covariance with Y. These directions are not
necessarily the ones that provide information to the estimation �. So the estimators from these methods may have large bias and
underperform OLS (see Figure 1). Note that although EPLS and PLS are estimating the same parameter, EPLS is more stable
than PLS, since it is a model-based method and is proved to be

√

n consistent11.
Figure 1 takes on a close look at the bias and variance of a randomly chosen element of �1. From the left panel, we noticed

that the PLS estimator indeed carries a large bias, as indicated in Schuberth et al. (2018)1, when it treats the discrete predictors
as continuous. The estimator of PCR, PRINCALS, and CA also bear a large bias since it does not take the information of Y into
account in the construction of the principal components. OLS and EPLS are consistent methods and do not have a large bias.
But their estimators are more variant than the EPPLS and PPLS estimators as shown in the right panel of Figure 1. PPLS has
about the same bias as EPPLS and a slightly larger variance compared to EPPLS, but the difference is dwarfed by the magnitude
of the variance of EPLS or OLS.
Moreover, we investigated the performance of hypothesis testing for the coefficients �1 based on the asymptotic distribution

established in Proposition 2. To perform the hypothesis testing, we followed the simulation setting that generated Table 2 except
that we set the first three rows of � to zero. It implies that the first three rows of �1 are zero vectors and the remaining elements
of �1 are nonzero. Then we test the hypothesis if each element in �1 is zero. Specifically, let �1,ij denote the (i, j)th element in �1,
and we test the hypothesisH0 ∶ �1,ij = 0. The standard error of estimators of �̂1,ij and the p-value of each test were calculated
using the asymptotic distribution in Proposition 2. The simulation was replicated 100 times. We reported the 5th, 50th, and
95th percentiles of the average p-values in Table 3. The p-values for the zero elements in �1 and non-zero elements in �1 were
reported separately. The results show that with the asymptotic distribution in Proposition 2, the hypothesis testing procedure is
able to detect the nonzero elements in �1 with high power. For the zero elements in �1, the testing procedure can also control
the Type I error under the desired level.
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FIGURE 1 Bias (left panel) and variance (right panel) for a random picked element of �1 when r = 30. The black solid line
marks for EPPLS, the blue dashed line marks for EPLS, the magenta dotted line marks for PPLS, the red dotted line marks for
PLS, the green dashed line marks for PCR, the coral dashed line marks for PRINCALS, the brown dashed line marks for CA,
and the orange dotted line marks for OLS.

TABLE 3 Results of the 5th, 50th, and 95th percentiles of the average p-values based on 100 replications.

The 5th, 50th, and 95th percentiles of the p-values
r n zero element of �1 nonzero element of �1
1 50 0.336, 0.907, 0.992 4.5 ∗ 10−8, 1.4 ∗ 10−3, 0.469

100 0.394, 0.929, 0.994 0, 0, 0.002
300 0.366, 0.923, 0.993 0, 0, 1.3 ∗ 10−14

1000 0.731, 0.930, 0.993 0, 0, 0.003
10 50 0.191, 0.889, 0.990 0, 1.2 ∗ 10−9, 0.098

100 0.275, 0.889, 0.989 0, 0, 6.3 ∗ 10−8

300 0.279, 0.880, 0.993 0, 0, 0
1000 0.344, 0.916, 0.990 0, 0, 6.5 ∗ 10−12

30 50 0.065, 0.840, 0.988 0, 0, 2.1 ∗ 10−4

100 0.085, 0.854, 0.989 0, 0, 2.1 ∗ 10−13

300 0.183, 0.861, 0.995 0, 0, 4.7 ∗ 10−8

1000 0.305, 0.877, 0.993 0, 0, 0

For sensitivity analysis, we considered a situation where the immaterial part ofX1 has a larger variation than the material part
(‖
‖ < ‖
0‖). The results of both scenarios (i.e., ‖
‖ > ‖
0‖ and ‖
‖ < ‖
0‖) presented in Table 2 and Web Table 1 show
that EPPLS yields the most efficiency gains, and its performance is quite stable. In addition, we considered the case where X1
andX2 do not have a linear relationship. The results are in Web Table 2. The performance of EPPLS is very stable and is still the
best among all models under comparison. However, the performance of PPLS deteriorates a lot, that PPLS even underperforms
OLS most of the time. The details of the sensitivity analyses are provided in Section C of Supplemental Materials.
We also investigated a high-dimensional setting where p1 > n. The data were generated in the same way as that produced

Table 2, with n fixed at 100, p2 fixed at 10 and p1 = 150, 300 and 600. The ten binary predictors were drawn from Bernoulli
distributions that take value 1 with probabilities 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.5, 0.55, 0.75, and 0.8. The coefficient matrix �2
had structure �2 = b1Tr , where each element in b ∈ ℝp2 was independent normal (0, 0.52) random variates. The coefficient
matrix 
 was 
 = (1.21p1 , 0.81p1 , 0.51p1 , 21p1 ,−0.51p1 , −1.21p1 ,−0.81p1 , 1.81p1 , 2.51p1 , 1.51p1)

T . In high-dimensional settings,
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prediction is a more common criterion than MSE for comparison of methods, we then computed the prediction errors, which is
the square root of mean squared residuals, for methods EPPLS, PPLS, EPLS, PLS, PCR, PRINCALS, and CA using the five-fold
cross validation, with 100 replications for each sample size. Note that the OLS is not applicable when n < p.
The results are provided in Table 4. PLS is known for its stable performance in high dimensional settings, and it performs

better than PCR, PRINCALS, and CA as shown in Table 4. By conditioning on the categorical variables, PPLS further reduces
the prediction errors compared to PLS. The mechanism of the envelope methods EPLS and EPPLS is to remove the variation
from the immaterial part, and they have the lowest prediction errors. Between the two envelope methods, EPPLS treats X1 and
X2 separately by conditioning Y and X1 on X2 and has the best performance in all cases in Table 4.

TABLE 4 Results of average (standard deviation / (number of replications)1∕2) of the prediction errors based on 100 replications
for high dimensional setting.

r Methods p1 = 150 p1 = 300 p1 = 600
1 EPPLS 5.93 (0.097) 21.89 (0.300) 28.68 (0.606)

EPLS 9.05 (0.127) 33.61 (0.432) 48.51 (1.073)
PPLS 9.09 (0.104) 41.09 (0.442) 60.98 (1.278)
PLS 13.17 (0.107) 60.43 (0.409) 96.24 (1.383)
PCR 15.28 (0.154) 68.23 (0.640) 104.76 (1.758)

PRINCALS 13.83 (0.116) 63.92 (0.476) 102.48 (0.819)
CA 13.90 (0.123) 64.17 (0.484) 102.49 (0.810)

10 EPPLS 67.49 (1.060) 76.41 (1.814) 79.24 (1.694)
EPLS 69.40 (0.601) 96.78 (0.697) 125.36 (1.947)
PPLS 99.20 (1.070) 143.23 (1.462) 175.75 (3.214)
PLS 146.04 (1.186) 211.45 (1.436) 279.92 (4.209)
PCR 166.11 (1.617) 239.42 (2.239) 302.39 (5.555)

PRINCALS 152.96 (1.358) 223.65 (1.680) 294.26 (2.350)
CA 153.83 (1.252) 224.54 (1.668) 294.30 (2.317)

30 EPPLS 93.04 (1.022) 106.61 (1.064) 112.93 (2.394)
EPLS 129.00 (1.032) 157.74 (1.047) 184.22 (2.509)
PPLS 195.76 (2.099) 238.98 (2.400) 256.36 (5.496)
PLS 288.34 (2.373) 353.39 (2.423) 414.83 (5.923)
PCR 327.77 (3.207) 399.96 (3.730) 444.60 (6.878)

PRINCALS 301.71 (2.694) 373.43 (2.809) 436.59 (3.480)
CA 303.35 (2.495) 375.06 (2.799) 436.66 (3.420)

6 DATA APPLICATION

COVID-19 is a global pandemic that has affected 223 countries, areas, or territories. Study shows that cytokines are associated
with COVID-19 severity and survival33,3,34, and the identification of the association between the cytokine-based biomarkers
and COVID-19 severity and demographics leads to a better understanding and management of the disease. For this purpose,
we analyzed the data from a study investigated in Laing et al. (2020)3, which included 63 COVID-19 patients. In addition, the
data also contained 10 non-COVID-19 patients who were hospitalized for lower respiratory tract infections as controls. For each
patient, measurements were obtained for 26 cytokines, as well as a set of clinical information including demographics, patient
status at admission, and underlying disease status. Among the 73 patients, 9 had missing data on BMI, ethnicity, or cytokines,
and were excluded from the analysis. Thus our analysis was based on a dataset containing 64 patients, including 26 severe cases,
22 moderate cases, 6 low cases, and 10 non-COVID patients. Data and detailed protocols for this study are publicly available
on the COVID-IP project website (www.immunophenotype.org).

www.immunophenotype.org
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We took the logarithm of the cytokine measurements as a multivariate response vector. The continuous variables were 12
measurements of the patient status at admission including temperature, blood glucose, National EarlyWarning Score 2 (NEWS2)
score, serum lactate, the fraction of inspired oxygen, respiratory rate, oxygen saturation, heart rate, systolic blood pressure,
diastolic blood pressure, coma score,WHO score for severity of illness. The categorical variables were demographic information
and indicators for underlying disease status. Demographics information contained age, BMI, ethnicity, and sex. Age was a
binary variable taking value 1 for patients 45 years and older, and 0 otherwise. BMI was measured in ordinal scale based on
categories of below 20, 20–24, 25–29, 30–34, and 35 and above. The ethnicity variable included three categories asian, black,
and caucasian. We created two binary indicators, one for asian and one for black. The sex indicator took value 1 for males and 2
for females. For underlying diseases, hypertension, ischaemic heart disease, non-asthma chronic lung disease, asthma, diabetes,
and active malignancy were considered. This gave a total of 11 categorical variables. All variables were standardized.
We fitted the data with EPPLS, PPLS, EPLS, PLS, PCR and OLS, and computed the prediction errors as the root mean square

error. The prediction error was obtained by five-fold cross-validations with 50 random splits of the data. OLS had the largest
prediction error of 38.74, followed by PCR, which had a prediction error of 6.041. PLS and EPLS had similar prediction errors:
5.120 for PLS and 5.247 for EPLS. PPLS and EPPLS had the lowest prediction errors: 2.194 for PPLS and 2.192 for EPPLS.
The efficiency gains obtained from EPPLS and PPLS also led to better prediction performance.
The estimation efficiency also led to a clear scientific interpretation of the results. Based on the regression coefficient esti-

mators, we investigated the associations between cytokines and covariates. Figure 2 shows the heatmaps of �̂1 from all six
methods, and Web Figure 1 shows the clustering structure of the responses (Y) and continuous variables (X1). Recall that �̂1
presents the associations of the cytokines with patient status at admission. It was noteworthy to observe that under EPPLS, inter-
leukin 10 (IL10) stands out to be the most important cytokine, highlighted by a clear strong association across multiple patient
statuses at admission, including severity (admission_WHO_ordinal_scale), blood pressure (admission_BP_diastolic, admis-
sion_BP_systolic), serum lactate (admission_lactate_venous), and oxygen saturation (admission_os_sats). Under the normality
assumption, Proposition 2 was applied to perform the hypothesis test of �1 = 0. The regression coefficients for the association
of IL10 (IL10_Th_cyto_cyto) across admission_WHO_ordnial_scale, admission_BP_diastolic, admission_BP_systolic, admis-
sion_lactate_venous, and admission_os_sats are statistically significant with p-value 2.02 × 10−8, 2.07 × 10−8, 2.54 × 10−8,
3.25 × 10−8, and 7.82 × 10−8, respectively. This is consistent with the report that IL10 is associated with COVID-19 severity
and mortality, cytokine storm, and intensive care unit (ICU) stay in COVID-19 patients33. The importance of IL10 was not as
evident in competing approaches based on the absolute values of �̂1. The OLS and PCR estimators were very variable, and hard
to extract much information from the coefficients. EPLS and PLS both showed a few influential cytokines including IL10, but it
was not obvious that IL10 was the most important one as in EPPLS. Although PPLS and EPPLS have the same estimation goal
in population, their sample performance can vary. In this example, PPLS also noticed the strong association between IL10 and
patient admission status, but the leading role of IL10 was not as obvious as in EPPLS.
In addition to IL10, interleukin 6 (IL6) and CXCL10 (IP10) are determined to be co-leading cytokines. Interestingly, Laing et

al. (2020)3 reported that the status of COVID-19 patients is characterized by a severity-related triad of IL10, IL6, and IP10. The
triad/block of IL10, IL6, IP10 was most obvious under PLS but also shown in EPPLS from the clustering structure of Y in Web
Figure 1. However, the triad/block was missed by EPLS, PPLS, PCR, and OLS. We also noted that under EPPLS, interferon-

or type II interferon (IFNg) had coefficient estimates similar to IP10, which is consistent with the observation that IFNg levels
are correlated with IP103. This similarity was not present in EPLS, PPLS, PLS, PCR, or OLS.
Figure 3 shows the heatmaps for the estimators of �2, which present the associations of cytokines with demographics and

underlying diseases. Firstly, we noticed the strong association of IP10 with sex. It has been reported that men have a higher risk
of infection, mortality, and comorbidities from COVID-19 compared to women35. Thus it is important to investigate the sex
difference in COVID-19. Recently, Takahashi et al. (2020)34 reported the association of IP10 with the sex difference in immune
responses that underlie COVID-19 disease outcomes. This association was also captured by all models, although it appeared
weaker under OLS. Secondly, we observed a clear association of interferon-
 (INFg) with both the asian and black populations
and a strong association of type III interferon (IFNl2.3) with the black population under EPPLS. This association was not
observed under EPLS and PLS, and the association between IFNl2.3 and the black population was weak under OLS. Significant
racial/ethnic disparities have been reported for COVID-19, with the disproportionate burden onAfrican and Latino population36.
Hence, cytokine markers IP10, INFg, and IFNl2.3 can potentially be important for understanding the biological mechanisms
associated with sex bias and racial/ethnic disparities in COVID-19. Thirdly, we observed the association of interleukin 2 (IL2)
with multiple pre-existing disease statuses, including ischemic heart disease (IHD), asthma, and hypertension (HTN), which
was not clear under EPLS and PLS. Association of IL2 with asthma was previously reported37. Therefore IL2 can potentially
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be considered as a marker for pre-existing disease status. Finally, we observed the strong association of interferon-�1 (IFNl1)
with age under EPPLS, EPLS, PPLS, and OLS, but not under PLS or PCR. Recently, Dinnon et al. (2020)38 developed a mouse
model for COVID-19, which can be used to study age-related disease pathogenesis of COVID-19. IFNl1 is a potential clinical
target for the treatment of human COVID-19 using this mouse model38. Heatmaps with uniform color scale are inWeb Figures 3
and 4 in the Supplementary Materials.

7 DISCUSSION

We have proposed an EPPLS model which achieves estimation efficiency when both continuous and categorical predictors are
present. EPPLS is proposed when the categorical predictors X2 are assumed to be fixed in the model formulation, but it is also
applicable to cases when X2 is random and follows a certain distribution. If all predictors are continuous, the idea of EPPLS
can be applied when part of the predictors is of main interest. The proposed model can potentially be applied to generalized
linear regression where the response variable is categorical. EPPLS can also incorporate heteroscedastic structure39, spatial
correlation15 or time dependence40. A Bayesian approach can also be derived for these models which allow users to incorporate
prior information for estimation.
Theoretical properties in Section 3.3, such as consistency and asymptotic normality, have been established when the number

of predictors is smaller than the sample size. In high-dimensional settings where p > n, theoretical properties are not valid
without further assumptions such as sparsity, low-rank structure, or other parametric structures. Numerically EPPLS shows a
better prediction performance compared to other methods in our simulation settings. Development of variants of EPPLS that
better adapts to the high-dimensional settings is an interesting topic for future study.
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FIGURE 2 Heatmaps of the regression coefficients of �̂1 under EPPLS (left of 1st row), EPLS (right of 1st row), PPLS (left of
2nd row), PLS (right of 2nd row), PCR (left of 3rd row), and OLS (right of 3rd row).
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FIGURE 3 Heatmaps of the regression coefficients of �̂2 under EPPLS (left of 1st row), EPLS (right of 1st row), PPLS (left of
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