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Magnetic resonance imaging (MRI) is a technique that scans
the anatomical structure of the brain, whereas functional
magnetic resonance imaging (fMRI) use the same basic prin‐
ciples of atomic physics as MRI scans but image metabolic
function. A major goal of MRI and fMRI study is to pre‐
cisely delineate various types of tissues, anatomical struc‐
ture, pathologies, and detect the brain regions that react
to outer stimuli (e.g., viewing an image). As a key feature
of these MRI‐based neuroimaging data, voxels (cubic pixels
of the brain volume) are highly correlated. However, the as‐
sociations between voxels are often overlooked in the sta‐
tistical analysis. We adapt a recently proposed dimension
reduction method called the envelope method to analyze
neuoimaging data taking into account correlation among
voxels. We refer to the modified procedure the envelope
chain procedure. Because the envelope chain procedure
has not been employed before, we demonstrate in simu‐
lations the empirical performance of estimator, and exam‐
ine its sensitivity when our assumptions are violated. We
use the estimator to analyze theMRI data fromADHD‐200
study. Data analyses demonstrate that leveraging the cor‐
relations among voxels can significantly increase the effi‐
ciency of the regression analysis, thus achieving higher de‐
tection power with small sample sizes.
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1 | INTRODUCTION

1.1 | Background

Magnetic resonance imaging (MRI) is a non‐invasive imaging technology that produces three dimensional anatomical
images. Functional magnetic resonance imaging (fMRI) is a technique that exploits the coupling between oxygenated
blood flow and neuronal firing to infer cortical activity by measuring changes in the Blood Oxygen Level Dependent
(BOLD) signal [1].

MRI image scans anatomical structure, whereas fMRI image metabolic function. A critical goal of MRI‐based
neuroimaging studies is to precisely detect the brain regions that react to diseases or outer stimuli. Such information
helps us understand how the brain is organized, coordinated or connected and is useful to explore cortical functional
organization and to examine neurological or mental disorders.

With rapid technological advances, MRI‐based images can now generate about a million voxels (cubic pixels of
brain volume). While such “big data” has revolutionized the prospects of brain imaging, a fundamental challenge
of MRI and fMRI has been limited sample sizes due to prohibitive scanning costs and available magnet time. For
example, even with a $30 million dollar budget, the human connectome project (HCP) data set was still limited to
1200 subjects. Although this is a unprecedented size for MRI‐based studies, it is still limited given the high resolution
of the data. Additionally, larger sample sizes are sometimes unrealistic for rare diseases, such as Gardner‐Diamond
syndrome. However, even if a large study is possible, maximizing the use and analytical quality of such “expensive”
data is imperative.

In the neuroimaging literature, it is known that voxels in MRI‐based scans typically display correlated structures.
For example, Alexander et al. [2] reported healthy aging is associatedwith brain volume reductions in the frontal cortex,
temporal, parietal, subcortical and cerebellar regions. Additionally, Biswal et al. [3] critically observed that, in BOLD
recordings, anatomically connected brain systems show slow, spontaneous fluctuations, while other, unconnected
regions demonstrate unrelated oscillations. Biswal et al. [3] and Van Dijk et al. [4] found a high correlation between
left and right motor cortices and minimal correlation between motor cortex and visual cortex. Similarly, the correlated
fluctuations have also been observed in other cortices such as the visual and auditory cortices [5]. This leads to the
identification of a number of cortical networks, such as: the default network and the medial temporal lobe memory
system [6], the language system [7], the dorsal attention system [8], and the frontoparietal control system [9]. Such
spontaneous or unrelated fluctuations were not only observed in resting state, but also during task fMRI in various
states of consciousness [10].

However, such features of BOLD images have not been fully utilized in the statistical analysis of voxel‐level
neuroimaging data. Aswewill show, leveraging on correlation across voxels can significantly reduce the dimensionality
for voxels and increase analytical efficiency relatively to traditional voxel‐wise approaches. This allows achieving
higher statistical detection power with small sample sizes.
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1.2 | Statistical methods for neuroimaging data and our contributions

A classic method in regression analysis for MRI‐based data is to fit a univariate voxel‐wise linear regression or mixed
effect models [11, 12]. However, ignoring associations between voxels in the estimation process can lead to severe
efficiency loss. Gaussian random field (GRF; [13]) method also depends on a voxel‐wise linear model. Although GRF
leverages the spacial correlation between voxels to increase power for signal detection, it has the same efficiency as
the voxel‐wise analysis. Independent component analysis (ICA; [14]) and principal component analysis (PCA; [15]) are
alternative methods in the neuroimaging literature. However, these dimension reduction strategies are not suitable
for regression problems because they do not incorporate any predictors when identifying the underlying components.
Multivoxel pattern analyses (MVPA; [16]) adopt a classification technique such as support vector machine, where
voxels serve as predictors to recognize a pattern of brain activity associated with one cognitive state. Similar toMVPA,
the partial least squares (PLS) method also uses voxels as predictors to discriminate binary cognitive state [17, 18, 19].
In this paper, we are interested in investigating the difference ofMRI betweenAttentionDeficit HyperactivityDisorder
(ADHD) and normal individuals. The existing methods either suffer from efficiency loss or do not match our research
goals. This motivates us to develop a new method to obtain efficient estimators in a multivariate regression problem.

Recently, Cook et al. [20] proposed a new sufficient dimension reduction method called the envelope method.
The main assumption of the envelope method is the existence of linear combinations of the response variables that
is irrelevant to the multivariate regression [20]. Given that such combinations of the responses do not depend on
the predictors, nor are they associated with the relevant responses, they can be effectively discarded, thus reducing
noise and improving efficiency of the regression analysis. Recent development of the envelope methods in different
settings can be found in [21, 22, 23, 24, 25, 26]. However, the available envelope methods are applicable only for
the cases where the dimension of response is smaller than the sample size [20, 23]. The number of parameters in the
covariance matrix of the error terms can be on the scale of 1011. Even with an unrealistically large sample size, the
envelope method is not computationally tractable with any available statistical software.

Therefore, we adapt the envelope procedure and refer to the modified version the envelope chain procedure.
Specifically, we assume that voxels can be partitioned into conditionally uncorrelated clusters and that within each
cluster there exist combinations of voxels that are irrelevant to the regression. These assumptions are well grounded
in neuroimage data. Under correct model specification and normality assumption on the error term, the envelope
chain estimator corresponds to the maximum likelihood estimator. When the clustering is misspecified (for example,
if all the voxels are correlated and we randomly partition them into clusters), the envelope chain estimator is still
consistent for the parameters of interest. The envelope chain model is closely related to both voxel‐wise regression
and the envelope model. If there is only one cluster, then the envelope chain model reduces to the envelope model. If
the number of clusters is the same as the sample size, then the envelope chain model reduces to voxel‐wise regression.
Thus, the envelope chain model can be seen as an intermediate model that represents an improvement upon a highly
inefficient model, voxel‐wise regression, as well as over a more efficient but not directly applicable model, envelope
model.

1.3 | Outline

The remainder of this paper is organized as follows. A preliminary introduction about envelope procedure is given in
Section 2. We adapt the envelope procedure and explore the properties of the modified version, i.e., the envelope
chain procedure in Section 3. The envelope chain estimator is evaluated in the simulation study in Section 4. We
use the estimator to analyze the MRI image from the ADHD‐200 study in Section 5. We conclude the paper with a
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discussion in Section 6. All proofs of propositions are given in the Appendix.

2 | PRELIMINARY

Consider the multivariate linear regression model

Yi = 𝜶 + 𝜷Xi + 𝜺i, (1)

where Yi = (Yi1, … ,Yir)⊤ ∈ ℝr×1 is the multivariate response containing the vectorized voxel intensities, Xi ∈ ℝp×1

is the predictor vector, the error vector𝜺i ∈ ℝr×1 is normally distributedwithmean 0 and covariancematrix Σ ∈ ℝr×r,
𝜶 ∈ ℝr×1 is an unknown vector of intercepts and 𝜷 ∈ ℝr×p is an unknown matrix of regression coefficients for
i = 1, … , n.

Let X̃ = (X1, … ,Xn) and Ỹ = (Y1, … ,Yn) denote the predictor and response matrices including all n individuals.
Without loss of generality, we assume that the design matrix X̃ has full row rank. A classic approach in regression
analysis for the MRI‐based data is to fit a univariate voxel‐wise linear regression or a mixed effects model. The voxel‐
wise regression regresses one response at a time. Specifically, the voxel‐wise estimator is �̂�vol = ỸX̃⊤(X̃X̃⊤)−1. This
estimator does not utilize the covariance matrix Σ, treating all voxels independently. However, by considering the
correlations among brain voxel intensities, we can substantially reduce the dimension for the brain voxels and gain
additional efficiency over voxel‐wise estimator.

To illustrate this point, we consider simulated data. While our estimator effectively deals with thousands of
voxels, to promote clarity, our examples will only portray the simplest 2 voxels scenarios. Suppose that the parameter
of interest is the effect of a binary stimulusX (viewing an image of a familiar face versus a new face) on a voxel (voxel1).
We generated 2 scenarios: scenario 1, in which the responses of 2 voxels are highly distinguishable (i.e. the strong
signal case, Figure 1a); and scenario 2, in which the responses of 2 voxels are largely overlapping (i.e. the weak signal
case, Figure 1b). The curves at the bottom of Figures 1a and 1b are the density curves that voxel‐wise regression
used for inference. As shown in the density curves in Figure 1a, the exposed group X = 1 is well distinguished from
the unexposed group X = 0 using the voxel‐wise regression when the signal is so strong that the large variability does
not matter. However, the voxel‐wise estimator cannot distinguish the groups with weaker signals when variability is
large (Figure 1b). This is because the voxel‐wise regression utilizes only one voxel at a time, it suffers from efficiency
loss, and thus it is only useful for detecting strong brain signals rather than moderate or weak ones. In other words,
voxel‐wise regression is more likely to lead to false negatives. Similarly, due to large variability, voxel‐wise regression
is also prone to false positive results in finite samples.

In contrast, our estimator utilizes multiple correlated voxels at the same time and therefore is more efficient. Fig‐
ure 1c shows the use of a second voxel which is highly correlated with the first voxel. The key idea of our statistical
procedure is to first identify highly correlated voxels, then to identify the direction that best distinguishes the differ‐
ences between the groups, and to project data onto that direction to reduce noise (see Figure 1c). For example, while
the voxel‐wise regression procedure projects the data point A directly on the voxel1‐axis ignoring voxel2 (Figure 1b),
with our procedure, we first project the data point A to the direction ℰ, which best distinguishes the groups, and then
project it down to the voxel1‐axis (Figure 1c). As shown in Figure 1c, the two groups have much smaller variability
and thus are much easier to distinguish even when the effect of interest is not very pronounced due to low signal or
high variability. Similarly, when the effects are null, our procedure is also less likely to have false positive findings.
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(a) Voxel‐wise estimate for strong signal.
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(b) Voxel‐wise estimate for weak signal.
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(c) Envelope chain estimate for weak signal.

F IGURE 1 Graphical illustration of the voxel‐wise and envelope chain estimators.

3 | ENVELOPE CHAIN

3.1 | Model and assumptions

We assume that the brain voxel intensities of the ith individual, Yi, can be grouped into conditionally independent
sub‐vectors Yi(1) ∈ ℝr1×1, … ,Yi(g) ∈ ℝrg×1, where g is the number of groups and r1 + ⋯ + rg = r. That is,

Assumption 1 Yi = (YT
i(1), … ,YT

i(g))T and Yi(j) ⟂⟂ Yi(k)|X for 1 ≤ j ≤ g,1 ≤ k ≤ g, j ≠ k and i = 1, … , n.

Assumption 1 is a reasonable assumption forMRI‐based data, since unconnected or different functional brain systems
may have unrelated intensities [4]. As we will show below, the violation of Assumption 1 still leads to consistent
estimator although not themost efficient. For now, we assumeAssumption 1 holds. Since the groups are uncorrelated
with each other, conditional on the predictors, the covariance matrix Σ of the error terms𝜺i is a block‐diagonal matrix
with blocks Σ(1),…, Σ(g). Thus, model (1) can be written as

⎛⎜⎜⎜⎜⎜
⎝

Yi(1)
⋮

Yi(g)

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

𝜶(1)
⋮

𝜶(g)

⎞⎟⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜⎜
⎝

𝜷(1)
⋮

𝜷(g)

⎞⎟⎟⎟⎟⎟
⎠
Xi +

⎛⎜⎜⎜⎜⎜
⎝

𝜺i(1)
⋮

𝜺i(g)

⎞⎟⎟⎟⎟⎟
⎠

,

where Var(𝜺i) = Σ = bdiag(Σ(1), … ,Σ(g)) and bdiag denotes the block‐wise diagonal matrix. We denote the voxel‐
wise estimators of𝜶(j) and𝜷(j) by �̂�vol

(j) and �̂�vol
(j) , and Σ̂

res
(j) is the sample estimate of Σ(j), i.e., Σ̂

res
(j) = ∑n

i=1(Yi −�̂�vol−
�̂�volXi)(Yi − �̂�vol − �̂�volXi)⊤/n, where �̂�vol = ((�̂�vol

(1))⊤, … , (�̂�vol
(g))⊤)⊤ and �̂�vol is defined similarly. Under the

clustering assumption,𝜷(j) can be estimated with only Yi(j), ignoring the other components of Yi for i = 1, … , n.
Below, we briefly introduce the concept of the envelope model for each group. More discussions of the envelope

model can be found in Cook et al. [20] andCook [26]. AmatrixO ∈ ℝt×t is orthonormal if and only if it satisfiesO⊤O =
It, where It denotes the identitymatrixwith dimension t. Assume there exists an orthogonalmatrix (Γ(j), Γ0(j)) ∈ ℝrj×rj

such that

Assumption 2 Γ⊤
0(j)Y(j)|X ∼ Γ⊤

0(j)Y(j),

Assumption 3 Γ⊤
(j)Y(j) ⟂⟂ Γ⊤

0(j)Y(j)|X,
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where Γ(j) ∈ ℝrj×uj , Γ0(j) ∈ ℝrj×(rj−uj), 0 ≤ uj ≤ rj for j = 1, … , g, and ∼ denotes identical distribution. There always
exist (Γ(j), Γ0(j)) that satisfies Assumptions 2 and 3. A trivial choice is Γ(j) = Irj and Γ0(j) is null, i.e., (Γ(j), Γ0(j)) =
Γ(j) = Irj . The subspace satisfying Assumptions 2 and 3 is not unique, but the j

th envelope is uniquely defined as the
smallest subspace (in terms of uj) satisfying these assumptions. The dimension uj is the dimension of the jth envelope.

Under Assumption 2, the marginal distribution of Γ⊤
0(j)Y(j) does not depend on X. Under Assumption 3, Γ

⊤
0(j)Y(j)

also does not contribute to the estimation of𝜷(j) through its association with Γ
⊤
(j)Y(j). Assumptions 2 and 3 together

imply the redundancy of Γ⊤
0(j)Y(j) in the regression, i.e., Γ

⊤
0(j)Y(j) does not contain any information on𝜷(j), thus it can

be discarded without losing any regression information, and the subsequent analysis can be based only on Γ⊤
(j)Y(j).

Similar to Cook et al. [20], Γ⊤
(j)Y(j) and Γ

⊤
0(j)Y(j) are routinely named as the material part and immaterial part for group

j, respectively. Assumptions 2 and 3 are also well grounded in MRI‐based studies, because previous work has re‐
vealed that different voxels in connected brain systems may exhibit strong correlations or spontaneous fluctuations,
indicating that the inclusion of all voxels in the regression is in fact redundant [3, 4].

As shown in Cook et al. [20], under Assumptions 2 and 3, we have 𝜷(j) = Γ(j)𝜼(j) and Σ(j) = Γ(j)Ω(j)Γ
T
(j) +

Γ0(j)Ω0(j)Γ
T
0(j), where 𝜼(j) ∈ ℝuj×p, Ωj = Γ⊤

(j)Σ(j)Γ(j) and Ω0(j) = Γ⊤
0(j)Σ(j)Γ0(j). Thus, under Assumptions 1–3, model

(1) can be reparameterized as

Yi(j) = 𝜶(j) + Γ(j)𝜼(j)Xi + 𝜺i(j), (2)

for j = 1, … , g, where Var(𝜺i(j)) = Σ(j) = Γ(j)Ω(j)Γ
T
(j) + Γ0(j)Ω0(j)Γ

T
0(j), and 𝜺i(j) ⟂⟂ 𝜺i(k) for j ≠ k, i = 1, … , n. We call

(2) the envelope chain model.

The envelope chain idea aligns with the general idea of handling high dimensional data by group partition and
within group dimension reduction, which can be traced to Wold et al. [27]. They pointed out that “There is a strong
temptation to reduce the variables to a smaller, more manageable number. This reduction of variables, however, often
removes information, makes the interpretation misleading and seriously increases the risk of spurious models. A better al‐
ternative is often to divide the variables into conceptually meaningful blocks and then apply hierarchical multi block PLS (or
PC) models.” In our case, the dimension r of the response vectors is allowed to be larger than sample size n. To deal
with the high‐dimensional problem, we divide the response vectors into blocks and apply the envelope model to each
block.

The envelope chain procedure is an intermediate model between and an improvement upon a highly inefficient
model, voxel‐wise regression, and an efficient but not directly applicable model, envelope model. If the block number
g = 1, then the envelope chain model reduces to the envelope model. If g = n, then the envelope chain model
reduces to the voxel‐wise regression. With a moderate number of clusters, the dimension of each sub‐vector Y(j)
is much lower, which makes the computation for each group feasible. Once the clustering has been decided, the
computation for each group can be paralleled.

3.2 | Estimation

Although in some scenarios, prior information about clustering (such as that provided by anatomical connectivity) may
be available, it is unknown for most applications. We use the hierarchical clustering algorithm [28] that assembles
the multivariate responses that are highly correlated with each other in one group, and then implement the envelope
chain model (2) based on such clustering. Specifically, we use 1 − abs{cor(Yij,Yik)} as the metric to quantify the
dissimilarity between the jth and kth voxels, where cor and abs denote the correlation and absolute value operations,
respectively. The total number of clusters can be estimated using cross‐validation by comparing the differences be‐
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tween the estimated voxel intensities versus those observed on the test data. Alternatively, the number of clusters
can be evaluated by a sensitivity analysis. Once the total number of clusters is estimated, clustering membership can
be obtained from the dedrogram produced by the hierarchical clustering algorithm. We write the estimated number
of clusters as ̂g and the estimated number of voxels in the jth cluster as ̂rj. We demonstrate such procedures in Section
4.

While the hierarchical clustering algorithm only groups highly correlated voxels into the same cluster, it is possible
that voxels across clusters are also conditionally correlated. We will show that even if the cluster independence
assumption does not hold, the envelope chain estimates are still consistent, although it is no longer the most efficient
estimator. Additionally, as we demonstrate in the simulations, even when the clustering assumption is violated, the
envelope chain still performs either better than or at least as well as voxel‐wise estimator in finite samples.

As shown in Cook et al. [20], an estimate of Γ(j) can be obtained byminimizing log |GTΣ̂res(j) G|+log |GTΣ̂−1
Y(j)

G|, where
Σ̂Y(j) is the sample variance of Y(j). This is an optimization over a Grassmann manifold, which has been implemented
in R and Matlab packages [29, 30]. Once we have ̂Γ(j), the envelope chain estimator of 𝜷(j) and Σ(j) are �̂�ec

(j) =
P ̂Γ(j)

�̂�vol
(j) , where Ps = s(s⊤s)−1s is the projection matrix onto the column space of s. The dimension uj can be selected

by information criteria such as AIC, BIC, or likelihood ratio testing or cross validation as discussed in Cook et al.
[20]. Eck and Cook [31] recommended using the BIC to decide the envelope dimension ̂uj, because the AIC tends to
overestimate the true dimensions and the likelihood ratio testing is inconsistent. Thus, throughout the paper, we use
BIC to select the dimensions of the envelopes in envelope chain.

3.3 | Properties

Let Γ = bdiag(Γ(1), … , Γ(g)), Γ0 = bdiag(Γ0(1), … , Γ0(g)), 𝜼 = (𝜼⊤
(1), … , 𝜼⊤

(g))⊤, Ω = bdiag(Ω(1), … ,Ω(g)), Ω0 =
bdiag(Ω0(1), … ,Ω0(g)), and let u = u1 + ⋯ + ug. The following proposition reveals that an envelope chain model is
also an envelope model.

Proposition 1 Under model (2), we have Yi = 𝜶 + Γ𝜼Xi + 𝜺i, where Var(𝜺i) = Σ = ΓΩΓT + Γ0Ω0Γ
T
0 for i = 1, … , n.

That is, span(Γ) is the envelope for 𝜷 with dimension u.

Similar to the envelope model, the envelope chain model also reduces the number of parameters. The number of
free parameters under the voxel‐wise model is Nvol = r + rp + ∑g

j=1 rj(rj + 1)/2, and the number of free parameters
under the envelope chain model is Nec = r + up + ∑g

j=1 rj(rj + 1)/2. It is easy to see that Nvol ≥ Nec. When u is small,
the difference between the numbers of the parameters in the two models is substantial. Following Cook et al. [20],
the envelope chain estimator achieves an efficiency gain over the standard voxel‐wise estimator.

Proposition 2 Assume model (2) holds. If the clustering structure and the envelope dimension for each cluster are cor‐
rectly specified, then √n{vec(�̂�vol) − vec(𝜷)} d→ N(0,Vvol) and √n{vec(�̂�ec) − vec(𝜷)} d→ N(0,Vec), where Vvol =
bdiag(Vvol(1), … ,Vvol(g)),Vec = bdiag(Vec(1), … ,Vec(g)),V

vol
(j) = Σ−1

X ⊗Σ(j), andV
ec
(j) = Σ−1

X ⊗Γ(j)Ω(j)Γ
T
(j)+(𝜼T

(j)⊗Γ0(j))(𝜼(j)ΣX𝜼T
(j)⊗

Ω−1
0(j) + Ω(j) ⊗ Ω−1

0(j) + Ω−1
(j) ⊗ Ω0(j) − 2Iuj ⊗ Irj−uj)

†(𝜼(j) ⊗ ΓT0(j)) for j = 1, … , g, where † is the Moore‐Penrose inverse.
Moreover, Vec ≤ Vvol.

The efficiency gain of the envelope chain estimator over the voxel‐wise estimator can be obtained by noting
Vec ≤ Vvol when the clustering structure is correctly specified. A nice feature of the proposed procedure is that
although we impose the clustering structure, i.e., Assumption 1 on the brain voxels, this assumption does not need to
hold for our estimator to be √n‐consistent. That is, we have
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Proposition 3 Under model (1), for a given clustering structure that possibly violates Assumption 1, if the envelope dimen‐
sion is estimated using BIC, then the envelope chain estimator �̂�ec is a √n−consistent estimator for 𝜷.

The proof of Proposition 3 follows from the fact that, in each cluster BIC will select the correct envelope dimen‐
sion with probability tending to 1 as n → ∞ [26, 31, 32], and the envelope estimator is consistent if the envelope
dimension is correct. It is a challenging task to account for clustering variability theoretically, and hence, the theo‐
retical results in Propositions 2 and 3 are established with a specified clustering structure. Given such a clustering
structure, the envelope chain method partitions the high dimensional voxels into lower dimensional groups so that
the theories of existing envelope methods are still applicable. Interestingly, Proposition 3 implies that even if the
clustering structure is incorrectly specified, the envelope chain estimator is still √n−consistent. Thus, we can use
any off‐the‐shelf methods, e.g., the hierarchical clustering algorithm, to conduct clustering analysis in practice with‐
out negatively impacting the consistency of the resulting envelope chain estimator. Besides, we suggest using the
bootstrap procedure to account for clustering variability. We need to acknowledge that bootstrapping is used here
without theoretical justification, similar to some other works of high‐dimensional studies [33, 34].

4 | SIMULATIONS

In this section, we demonstrate finite sample performance of the envelope chain estimator in simulations, and compare
with the voxel‐wise and principal component regression (PCR) estimators. As the classic envelope estimator has been
thoroughly investigated in Cook et al. [20], we only examine the performances of the envelope chain estimator under 3
scenarios: 1) when the clustering assumption, i.e., Assumption 1, holds (Section 4.1); 2) when it is moderately violated
(Section 4.2); and 3) when it is seriously violated (Section 4.2). In each scenario, we keep the results of the voxel‐wise
estimators as a reference. The comparison results between the envelope chain and voxel‐wise estimator are shown
in figure for all the above 3 scenarios. However, for ease of presentation, the comparison results between PCR and
voxel‐wise estimators are shown in figure for only scenario 3), and the corresponding results for the other 2 scenarios
are stated in text.

4.1 | Efficiency gain

When the variance Σ has a blockwise structure, the envelope chain estimator is asymptotically unbiased. The variabil‐
ity of the envelope chain estimator is composed of three parts: clustering, the estimation of the envelope dimension
and the envelope estimation. In order to have a relative comparison among them, we consider envelope chain esti‐
mator when: (i) both clustering membership and uj are known; (ii) only clustering membership is known; (iii) neither
clustering membership nor uj is known. That is, if the clustering membership and/or the envelope dimensions are
known, we use their true values, otherwise, we use hierarchical clustering (with the total number of clusters set as
the true value), and BIC to estimate them. We carry out the simulations as follows.

Step 1: Set p = 5 and independently generate a vector of covariates Xi from a multivariate standard normal with I5
as covariance matrix for i = 1, … ,200.

Step 2: Set g = 20, and rj is drawn from uniform distribution U(30,50) for j = 1, … , g. As a result, we have r = 799.
Set uj = 1 for j = 1, … , g. Generate ̃Γ(j) ∈ ℝrj×uj , where each element of ̃Γ(j) is generated fromN(0,1). Set Γ(j) =
̃Γ(j)( ̃Γ⊤

(j) ̃Γ(j))−1/2, and therefore Γ⊤
(j)Γ(j) = Iuj . Generate Γ0(j) ∈ ℝrj×(rj−uj) such that (Γ(j), Γ0(j)) is orthonormal.

Generate Ω(j) ∈ ℝuj×uj , where the element is firstly generated from a χ21‐distribution and then multiplied by
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2. Generate Mj ∈ ℝ(rj−uj)×(rj−uj), where each element of Mj is generated from U(0,1) and set Ω0(j) = M⊤
j Mj.

Generate 𝜼(j) ∈ ℝuj×p, where each element of 𝜼(j) is firstly generated from N(0,1), then multiplied by 20, and
finally we set𝜷(j) = Γ(j)𝜼(j).

Step 3: Generate Y according to model (2) using the generated parameters in Step 2. We randomly divide the data
set into training and test parts according to the proportion with 4 ∶ 1. Using the training data, we calculate the
envelope chain in (i)–(iii), PCR, and voxel‐wise estimators, and then we compare their efficiency and MSE. We
also calculate prediction bias in the test set.

Step 4: Repeat Step 3 for 100 times.

We report the empirical distribution of the log ratio of Monte Carlo mean squared errors (MSEs) of the voxel‐wise
and the envelope chain estimators in (i)–(iii) in Figure 2a. A similar trend was observed for the Monte Carlo variances.
Due to space constraints, we only graph the results for the MSEs and describe those for the variances in text. In
Figure 2a, the x‐axis represents the log ratio of the MSEs, while the y‐axis represents its empirical distribution across
elements of 𝜷. Thus, the red vertical line at 0 shows where the voxel‐wise and the envelope chain estimators have
the same MSE. The right and left hand sides of the red line represent, respectively, the cases where the envelope
chain is more accurate in terms of MSE or where the voxel‐wise is more accurate. The solid curve, dotted curve with
crosses, and dotted curve with stars denote the corresponding results for cases (i), (ii) and (iii), respectively.
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(a) Blockwise structure holds for variance.
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(b) Blockwise structure is moderately violated.
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F IGURE 2 Empirical cumulative distribution functions of the log ratio of Monte Carlo MSEs between the
voxel‐wise and the envelope chain estimators when (a) the envelope structure holds: (i) both clustering membership
and uj are known; (ii) only clustering membership is known; (iii) neither clustering membership or uj is known; (b) the
envelope structure is moderately violated: sensitivity parameter ρ is chosen as 0.5 and 1; and (c) the envelope
structure is seriously violated: the specified number of clusters are 20 and 500. PCR results are also included in (c).

When the envelope dimension is estimated by ̂uj, it is mostly≥ 1 for j = 1, … , g. An over estimation of uj results
in an asymptotically unbiased estimator �̂�(j), but it is less efficient compared to a correctly estimated uj. The median
log ratio of the MSEs of the voxel‐wise versus the envelope chain estimator for the three curves are: 1.77 (case (i)),
1.76 (case (ii)) and 0.90 (case (iii)). The envelope chain estimators in these three cases all perform better than the
voxel‐wise estimators in terms of MSE. When both clustering membership and uj are known, as portrayed in case
(i), the envelope chain estimator has the smallest MSEs compared to the two other cases. The estimation in case (ii)
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is similar to that in case (i), which indicates good performance of BIC in choosing the envelope dimension uj. The
estimators in these two cases are both better than that in case (iii). This is expected since the estimators are less
variable when more information is available. In comparison, the median log ratio of MSEs of the voxel‐wise versus
the PCR estimator is−0.01. This result indicates that the performance of PCR estimator is comparable to that of the
voxel‐wise estimator, and it is worse than that of the proposed envelope chain estimator even when no clustering
membership or envelope dimension is unknown.

We observe that all 3995 elements in the envelope chain estimator for𝜷 ∈ ℝ799×5 are more efficient compared
to the voxel‐wise estimator in cases (i)–(ii), and there are only 11 elements of the envelope chain estimator that are less
efficient in case (iii). This demonstrates the dominating efficiency gain of the envelope chain estimator even in a finite
sample. The median log ratio of the Monte Carlo variances of the voxel‐wise versus the envelope chain estimator for
the three curves are: 3.52 (case (i)), 3.51 (case (ii)), and 1.79 (case (iii)). This shows that to achieve the same power for
the median performance among all the elements in voxel‐wise regression, we only need about one fifth (e.g., for case
(iii), 1/ exp(1.79) = 16.7%) of the original sample size when using the envelope chain estimators! Such an efficiency
gain can be even more drastic if the eigenvalues of the immaterial part are larger compared to those of the material
part. Here, we only show the simulation of a conservative setting that is more comparable with the real data. In
comparison, the median log ratio of the Monte Carlo variances of the voxel‐wise versus the PCR estimator is −0.04.
This shows that the PCR estimator has a similar efficiency as the voxel‐wise estimator in this setting.

Finally, we report the empirical distribution of the log ratio of squared Monte Carlo prediction biases of the voxel‐
wise and the envelope chain estimators on test data in (i)–(iii) in Figure 9a, which is relegated to the Appendix. The
results are similar to those in Figure 2a, which again demonstrates the superiority of the envelope chain estimator
over the voxel‐wise estimator in terms of prediction for all cases. The median log ratio of squared prediction biases
of the voxel‐wise versus the envelope chain estimator for the three curves are: 0.90 (case (i)), 0.89 (case (ii)) and
0.70 (case (iii)). In comparison, the median log ratio of squared prediction biases of the voxel‐wise versus the PCR
estimator is −0.01. This result indicates that the PCR estimator exhibits similar prediction performance with that of
the voxel‐wise estimator.

4.2 | Sensitivity analysis

Next, we perform several sensitivity analyses to evaluate the robustness of our proposed procedure against possible
violations of the blockwise structure in the covariance matrix of error terms. We first carry out a simulation where the
blockwise structure is moderately violated. The simulation procedure is similar to that in Section 4.1, except that the
variance of 𝜺i in Step 2 is set to Var(𝜺i) = Σ̃ = Σ+ ρΣ0, where Σ is the blockwise covariance matrix specified above,
Σ0 = UΛU⊤, U is an orthonormal matrix and Λ is a diagonal matrix with each elements generated from U(0,10) and
ρ is a sensitivity parameter. The number of clusters for Σ̃ is misspecified as 20, which is the same as the number of
clusters in Σ. The log ratio of the Monte Carlo MSEs of the voxel‐wise estimator versus the envelope chain estimator
is given in Figure 2b. Note ρ = 0 corresponds to the case where the blockwise structure still holds. Thus, the solid
line in Figure 2b is the same as that in Figure 2a. We keep it here as a reference. As expected, when ρ deviates from
0, the log ratio of the MSEs for both estimators decreases. For example, the median of the log ratio of MSEs are 0.76
and 0.54 when ρ = 0.5 and ρ = 1, respectively. Although they are both smaller than that when ρ = 0 (0.92), they
are still greater than 0, demonstrating the superior performance of the envelope chain estimator over the voxel‐wise
regression when violations of the block structure are moderate. The median of the log ratio of Monte Carlo variances
are 0.76 and 0.54 when ρ = 0.5 and ρ = 1. This indicates that only about a half (1/ exp(0.76) = 0.47) of the original
sample is needed to achieve the same median performance among all the coefficients when using the envelope chain
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estimator compared to voxel‐wise regression. Out of the 3995 elements in 𝜷 ∈ ℝ779×5, only 17 and 23 elements
in the envelope chain estimator are less efficient compared to those in the voxel‐wise estimator for ρ = 0.5 and
1, respectively. In comparison, the median of the log ratio of MSEs between the voxel‐wise estimator and the PCR
estimator are −0.004 and −0.001 when ρ = 0.5 and ρ = 1, respectively. These small negative values imply that the
PCR estimator performs slightly worse than the voxel‐wise estimator in these three cases, although such a difference
may not be significant. Similar trends are observed for Monte Carlo variances of these two estimators. We also report
the log ratio of squared prediction biases of the voxel‐wise estimator versus the envelope chain estimator in Figure 9b.
The results are similar to those in Figure 2b. As ρ increases, the log ratios of squared prediction biases are expected
to decrease. The median of the log ratio of squared prediction biases are 0.62 and 0.48 when ρ = 0.5 and ρ = 1,
respectively. In comparison, themedian of the log ratio of squared prediction biases between the voxel‐wise estimator
and PCR estimator are −0.004 and −0.001 when ρ = 0.5 and ρ = 1, respectively. These results again demonstrate
that the envelope chain estimators outperform both PCR and voxel‐wise estimators in terms of prediction even when
the blockwise structure of the covariance matrix is moderately violated.

Now we consider a case where the block‐wise structure is seriously violated. The simulation setting is similar to
that in Section 4.1, except that Step 2 is replaced with

Step 2∗: Set r = 799 and u = 1. Generate ̃Γ ∈ ℝr×u, where each element of ̃Γ is generated from N(0,1). Set
Γ = ̃Γ( ̃Γ⊤ ̃Γ)−1/2, and therefore Γ⊤Γ = Iu. Generate Γ0 ∈ ℝr×(r−u) such that (Γ, Γ0) is an orthonormal matrix.
Generate Ω ∈ ℝu×u, where the element is firstly generated from a χ21‐distribution, and then multiplied by 2.
GenerateM ∈ ℝ(r−u)×(r−u), where each element ofM is generated from U(0,1) and set Ω0 = M⊤M. Generate
𝜼 ∈ ℝu×p, where each element of 𝜼 is firstly generated from N(0,1), then multiplied by 20, and finally we set
𝜷 = Γ𝜼.

Additionally, in Step 3, we now generate Y from model (1) with the𝜷 given above and Σ = ΓΩΓ⊤ + Γ0Ω0Γ
⊤
0 . While

the envelope assumptions 2–3 still hold under the choices of parameters in Step 2∗, the clustering assumption 1 no
longer holds.

The empirical distribution of the log ratios of Monte Carlo MSEs for the envelope chain and the PCR estimators
versus the voxel‐wise estimator are given in Figure 2c. The dotted curves with hollow circles and triangles show the
results obtained when the number of clusters in the envelope chain estimator is specified as 20 or 500. The dotted
curve with crosses shows the results obtained from PCR. Although the true data generating mechanism does not
have any clustering structure, when we artificially specified the number of clusters to be 20, the median log ratio of
Monte Carlo MSEs among all elements is 0.67. This is smaller than those reported in Figure 2b, where the blockwise
structure of the covariance matrix is moderately violated. As the number of clusters increases to be close to the
number of responses, say 500 in Figure 2c, the advantage of the envelope chain decreases (median log ratio of MSEs
is 0.41 and 219 elements have larger MSEs). This decrease is also expected, as when the number of clusters is the
same as the number of responses, the envelope chain estimator reduces to the voxel‐wise estimator. The median log
ratio of MSEs for the PCR estimator versus the voxel‐wise estimator is 0.04. These results indicate the superiority
of the envelope chain estimator over the PCR and voxel‐wise estimators in terms of MSE. The median log ratios of
Monte Carlo variances for the envelope chain estimator with 20 and 500 clusters, and the PCR estimator versus
the voxel‐wise estimator are 0.001, −0.001, 0.08, respectively. We observe that the envelope chain estimator is
comparable to the voxel‐wise estimator, but seems slightly worse than the PCR estimator in terms of variance. This
may be specific to this simulation setting. Finally, we report the log ratio of squared prediction bias of the voxel‐wise
estimator versus the envelope chain estimator in Figure 9c. The results in this figure are similar to the MSE results in
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Figure 2c, which again demonstrates the advantage of the envelope chain estimator over existing estimators in terms
of prediction.

These sensitivity analyses reveal that the envelope chain estimator can achieve finite sample efficiency gain over
the voxel‐wise estimator when the deviation of the covariance matrix of the errors is moderate. Such a gain decreases
when the covariance matrix further deviates from the blockwise structure and when the number of the clusters spec‐
ified in the envelope chain estimator is large.

5 | STATISTICAL ANALYSIS

Attention Deficit Hyperactivity Disorder (ADHD) is a brain disorder with a number of symptoms, including inatten‐
tion and hyperactivity. In the US, ADHD is associated with substantial lifelong impairment, with annual direct costs
exceeding $36 billion/year. It is thus important to understand its pathophysiology, and to be able to perform early
diagnosis.

The ADHD‐200 study [35] was carried out among 776 children and adolescents across 8 independent imaging
sites. A total of 15 individuals are removed because of low quality data. The study sample is composed of 491
typically developing individuals and 285 children and adolescentswith ADHDbetween 7 and 21 years old. Phenotypic
information including diagnostic status, dimensional ADHD symptom measures, age, sex, intelligence quotient (IQ)
and lifetime medication status were collected. The data are accessible at http://neurobureau.projects.nitrc.
org/ADHD200/Data.html.

We consider a dataset comprising 3D MRI images (with dimensions 30 × 36 × 30). The MRI dataset was prepro‐
cessed by standard steps including AC (anterior commissure) and PC (posterior commissure) correction, N2 bias field
correction, skull‐stripping, intensity inhomogeneity correction, cerebellum removal, segmentation, and registration
(details given in [36]). The local volumetric group differences were quantified by generating RAVENS maps for the
whole brain as well as each of the segmented tissue type (gray matter, white matter, ventricle and cerebrospinal fluid),
respectively, using the deformation field obtained during registration. The 3D RAVENS map has dimensions 30 × 36
× 30 and the data contains a number of covariates, including ADHD status (binary), age, gender and handiness. After
excluding all voxels with values of 0, located outside the brain volume, we count 11,607 voxels, which we use as
responses in our models. The dimension of voxels is much larger than the sample size, thus, the traditional envelope
method does not apply directly. Below, we modify the envelope method into an envelope chain method to address
the high dimentionality and leveraging correlation structure simultaneously.

In order to estimate the number of clusters, we partition that data into training and test. We randomly allocate
600 observations as training data and 162 observations to the test data. We carry out hierarchical clustering to
identify highly correlated voxels in the training data. We use the median square error loss among all the elements of
Y as the loss function. The number of clusters that produce the smallest median squared error loss is 500 (see Figure
3), although the difference among the MSEs is not large. We therefore partition the voxels into 500 clusters. The
sizes of the clusters range from 2 to 280 with a median of 11. In Figure 4, we present a colored map of the clustering
membership for the entire brain volume, when the membership is plotted as a continuous variable. Here, we observe
a high degree of cluster symmetry across the 2 hemispheres, with contra‐lateral cortical regions devoted to the same
neural processes typically clustering together.

As shown in Figure 5, the estimated envelope sizes ̂uj range from 0 to 23 with a median of 1. These are sub‐
stantially smaller than those of the ̂rj, indicating a potential efficiency gain. To further illustrate our estimator, we
generated Figure 6 using 2 voxels from the ADHD study. The figure shows that our estimator is more efficient than
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F IGURE 3 Median square error loss with different number of clusters ̂g specified for the envelope chain
estimator.

the voxel‐wise estimator: while the voxel‐wise regression estimator cannot distinguish the two groups (Figure 6a;
p‐value is 0.5), our estimator does so successfully (Figure 6b; p‐value < 0.001).

(a) Coronal view (b) Sagittal view (c) Transverse view

F IGURE 4 Display of cluster membership as a continuous variable for ADHD data.

Figure 7 compares the variances between the voxel‐wise and envelope chain estimators using either the closed
form variance given in Proposition 2 (Figure 7a) or using bootstrap (Figure 7b). As indicated by Proposition 2, the
variance of the voxel‐wise estimator is guaranteed to be larger than that of the envelope chain estimator, conditional
on the envelope dimension and cluster membership. This is revealed in Figure 7a, as the entire cumulative density
function of the empirical distribution of the log ratio of two variances is on the right hand side of 0, with a median
of 1.89. The nonparametric bootstrap (sampling individuals with replacement) variance takes into account the uncer‐
tainty in estimating uj and clustering membership as well as the variability in the predictor distribution. Despite the
additional variability, about 70.8% of voxels show an efficiency gain when using the envelope chain estimator. The
median and mean efficiency gain (ratio of two bootstrap variance estimators) are 1.2 and 1.9, respectively, indicating
about 16.7% and 47.4% of data can be saved using envelope chain estimator to achieve the same power for the
median and average performance in estimating all the regression coefficients.

To identify the brain regions that are significantly different among ADHD and normal individuals, we calculate
the Z value for the voxel‐wise regression and the envelope chain estimator. We use the bootstrap variance as it
accommodates the variabilities due to clustering and the selection of the envelope dimensions. As adjusting for
multiple comparison is not straightforward due to the correlations among voxels [24, 37], we use Z value ≥ 3 as
the threshold for significance. The results are shown in Figure 8. The areas that envelope chain estimator finds
to be significantly related with ADHD include cerebellum, hippocampus, and caudate‐nucleus. These areas are well
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F IGURE 5 Estimated envelope dimension for each envelope chain across clusters in different bootstrap samples.
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(a) Voxel‐wise estimate
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(b) Envelope Chain estimate

F IGURE 6 The voxel‐wise estimator and the envelope chain estimator of the effect of having ADHD on two
voxels in ADHD‐200 study.

documented in the neuroscience literature to be affected byADHD [38, 39, 40]. As the signal of the effect of ADHDon
the brain activities in this study is quite strong, both the standard estimator and the envelope chain lead to comparable
results. However, the standard estimator produces noisier results, with a number of significant regions scattered
across the brain (e.g., the region with red circle in Figure 8). The regions such as inferior temporal cortex, inferior
frontal gyrus opercular part, postcentral gyrus are detected to be significantly different among ADHD and normal
individuals by voxel‐wise estimator but not envelope chain estimator, some of which were also noted in the MRI
literature [41, 42].

We also implement the PCR estimator. We choose the smallest number of principal components that can explain
90% of variance. The reduced outcome is then used in a linear regression to obtain the regression coefficient. The
variance of the PCR are evaluated using bootstrap. The Z‐values of the PCR corresponds to the coefficient for ADHD
status are shown in Figure 10. The PCR estimator also reveals that cerebellum, hippocampus are significantly related
to ADHD status. However, the PCR estimator finds more significant but smaller regions than the voxel‐wise and
envelope estimators (additional regions include rectus gyrus, vermis and some scattered voxels). We also implement
the PCR estimator with 70% of variance explained. The result is similar to that of 90% with slightly fewer regions
detected. Because the dimension reduction step in PCR estimator does not use the predictors, the results may be
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F IGURE 7 Empirical cumulative distribution of the log ratio of the Monte Carlo variances of the voxel‐wise
estimator versus envelope chain estimator.

F IGURE 8 Brain areas that are significantly different in ADHD versus normal individuals using the voxel‐wise
(VW) and envelope chain (EC) estimators. The subfigure at the lower lefthand side is the distribution of Z scores for
each estimator. The two histograms are identical showing the Z value from the two estimators with different
emphasizes of the contrast (red on top vs green on top).

subject to information loss and thus may not be reliable.
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6 | DISCUSSION

In this paper, we adapt the envelope procedure and apply the envelope chain procedure as a modified tool to carry
out sufficient dimension reduction in high dimensional brain imaging data. The resulting estimator leads to a signif‐
icant efficiency gain over the traditional voxel‐wise estimator by leveraging the correlations between voxels. This
framework is applicable to both MRI and fMRI. Due to space constraint, we only illustrate our method in an MRI
study where redundant information is present in the spatial correlation. Similar approaches can be extended where
temporal and spatial intensities are stacked in the multivariate response without distinction. Alternatively, the tempo‐
ral information can be treated differently from the spatial information by considering a mixed effects model, in which
the temporal correlation is modeled with additional assumptions. We report the results and comparisons between
different approaches elsewhere.

As an early foray into the use of correlation to gain efficiency in neuroimaging studies, this study leaves gaps
to be filled with regard to both theory and computation. However, the empirical results presented here are rather
compelling as an improvement over the traditional estimators. The adapted procedure can also be applied to other
high dimensional data problems, such as genetic data, as long as the problem can be framed as a multivariate linear
regression.

We used the hierarchical clustering algorithm to divide the voxels into smaller groups. As long as there are no
dominating clusters, an increase in the number of clusters leads to a decrease in the size of each cluster. Other
clustering methods could be used as well. It would be interesting to see how themethodwould work using alternative
clustering algorithms.
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APPENDIX

| Proof of Proposition 1

Proof According to model (2), we have

Yi(j) = 𝜶(j) + Γ(j)𝜼(j)Xi + 𝜺i(j)
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for each j = 1, … , g. By stacking these equations, we have

⎛⎜⎜⎜⎜⎜
⎝

Yi(1)
⋮

Yi(g)

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

𝜶(1)
⋮

𝜶(g)

⎞⎟⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜⎜
⎝

Γ(1)𝜼(1)
⋮

Γ(g)𝜼(g)

⎞⎟⎟⎟⎟⎟
⎠
Xi +

⎛⎜⎜⎜⎜⎜
⎝

𝜺i(1)
⋮

𝜺i(g)

⎞⎟⎟⎟⎟⎟
⎠

. (3)

Note that Yi = (YT
i(1), … ,YT

i(g))T, 𝜶 = (𝜶T
i(1), … , 𝜶T

i(g))T, Γ = bdiag(Γ(1), … , Γ(g)), 𝜼 = (𝜼⊤
(1), … , 𝜼⊤

(g))⊤, and
𝜺i = (𝜺T

i(1), … , 𝜺T
i(g))T. We can rewrite (3) as follows:

Yi = 𝜶 + Γ𝜼Xi + 𝜺i.

Under Assumption 1, we have Var(𝜺i ∣ Xi) = bdiag(Σ(1), … ,Σ(g)). By the expressions of Σ(j) below (2) for each j
and that Γ0 = bdiag(Γ0(1), … , Γ0(g)), Ω = bdiag(Ω(1), … ,Ω(g)), Ω0 = bdiag(Ω0(1), … ,Ω0(g)), we have Σ = ΓΩΓT +
Γ0Ω0Γ

T
0.

Note that ΓΩΓT and Γ0Ω0Γ
T
0 are symmetric positive semi‐definite matrics with ΓΩΓ

TΓ0Ω0Γ
T
0 = 0. Then according

to Corollary 3.1 in Cook et al. [20], the envelope for𝜷 is span(ΓΩΓT). Because Γ is orthogonal and Ω is non‐singular,
we have span(ΓΩΓT) = span(Γ) with dimension u = u1 + ⋯ + ug. □

| Proof of Proposition 2

Proof Suppose that model (2) holds and the errors 𝜺i are normally distributed. Then according to Theorem 5.1 in
Cook et al. [20], for each cluster j = 1, … , p, we have

√n{vec(�̂�vol
(j) ) − vec(𝜷(j))} d→ N(0,Vvol(j) ), √n{vec(�̂�ec

(j)) − vec(𝜷(j))} d→ N(0,Vec(j)), and Vec(j) ≤ Vvol(j) .

Under Assumption 1, response variables in different clusters are conditionally independent. Then we have

√n{vec(�̂�vol) − vec(𝜷)} d→ N(0,Vvol), √n{vec(�̂�ec) − vec(𝜷)} d→ N(0,Vec)

for Vvol = bdiag(Vvol(1), … ,Vvol(g)) and Vec = bdiag(Vec(1), … ,Vec(g)). By noting that V
ec
(j) ≤ Vvol(j) for each j, we have

Vec ≤ Vvol.

| Proof of Proposition 3

Proof Suppose that there are ̃g clusters for the given clustering structure. Because BICwill select the correct envelope
dimension with probability tending to 1 as n → ∞ [26, 31, 32], then according to Theorem 5.1 in Cook et al. [20], for
each cluster j = 1, … , ̃g, we have √n{vec(�̂�ec

(j)) − vec(𝜷(j))} converges to a normal distribution. This implies that
�̂�ec

(j) is a √n‐consistent estimator for𝜷(j). By collecting the result for each j, we conclude that �̂�ec is a √n‐consistent
estimator for𝜷.
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| Additional simulation and data analysis results

Figure 9 shows the prediction results of the voxel‐wise, PCR and envelope chain estimators on test data when the en‐
velope structure is correct, moderately and seriously violated. Figure 9 shows the significantly different brain regions
among ADHD versus normal individuals that are identified by PCR.
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F IGURE 9 Empirical cumulative distribution function of the log ratio of squared prediction biases between the
voxel‐wise and the envelope chain estimators when (a) the envelope structure holds: (i) both clustering membership
and uj are known; (ii) only clustering membership is known; (iii) neither clustering membership or uj is known; (b) the
envelope structure is moderately violated: sensitivity parameter ρ is chosen as 0.5 and 1; and (c) the envelope
structure is seriously violated: the specified number of clusters are 20 and 500. PCR results are also included in (c).
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(a) PCR estimate with 90% variance explained (b) PCR estimate with 70% variance explained

F IGURE 10 Brain areas that are significantly different in ADHD versus normal individuals using the principal
component regression (PCR) estimators. The high lighted regions are those whose Z values are larger than 3 in
magnitude and the regions with larger values (up to 5) have a yellower tone.
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