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Abstract

The envelope model is a recently developed methodology for multivariate analysis
that enhances estimation accuracy by exploiting the relation between the mean and
eigenstructure of the covariance matrix. We extend the envelope model to function-
on-function linear regression, where the response and the predictor are assumed to be
random functions in Hilbert spaces. We use a double envelope structure to accom-
modate the eigenstructures of the covariance operators for both the predictor and
the response. The central idea is to establish a one-to-one relation between the func-
tional envelope model and the multivariate envelope model and estimate the latter
using an existing method. We also developed the asymptotic theories, confidence and
prediction bands, an order determination method along with its consistency, and a
characterization of the efficiency gain by the proposed model. Simulation compar-
isons with the standard function-on-function regression and data applications show
significant improvement by our method in terms of cross-validated prediction error.

Keywords: Confidence and prediction bands; covariance operator; Gaussian process in
Hilbert space; Karhunen-Loeve expansion; lattice; order determination.
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1 Introduction

The envelope model is a recently-developed multivariate analysis strategy that enhances

estimation accuracy by reducing model complexity using the reducing subspaces of the

covariance matrices. It was first proposed for multivariate linear regression by Cook et al.

(2010), and has been extended to many settings such as partial least squares (Cook et al.,

2013), generalized linear models (Cook and Zhang (2015a)), tensor regression (Zhang and

Li, 2017; Ding and Cook, 2018), quantile regression (Ding et al., 2021) and spatial models

(Rekabdarkolaee et al., 2019), among others. See Cook (2018) for a comprehensive review.

In this paper, we extend the envelope models from multivariate linear regression to

function-on-function linear regression. This type of regression is becoming increasingly

common in modern applications. See, for example, Ferraty et al. (2012), Ivanescu et al.

(2015), and Luo and Qi (2017). An envelope model adapted to this setting could signifi-

cantly enhance estimation accuracy by exploiting inherent model parsimony.

The development of the envelope paradigm went through several phases: the response

envelope model (Cook et al., 2010), the predictor envelope model (Cook et al., 2013), and

the simultaneous envelope model (Cook and Zhang, 2015b). Since both the response and

the predictor envelope models are special cases of the simultaneous envelope, we only need

to extend the latter to function-on-function regression. To facilitate this extension, we now

give an overview of the simultaneous envelope in the multivariate setting.

Let Y ∈ Rr be the response vector and let X ∈ Rp be the predictor vector, and suppose

that they satisfy the multivariate linear regression model

Y = µ+ βX + ε, (1)

where µ ∈ Rr is a constant vector, β ∈ Rr×p is a matrix that contains the regression

coefficients, ε is the error vector independent of X having mean 0 and covariance matrix

Σε, and the predictor vector X has mean 0 and covariance matrix ΣX. Let us say that a

matrix A is a basis matrix of a subspace S if the columns of A form a basis of S. For

a finite-dimensional subspace S, let PS and QS = I − PS denote the projection matrices
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onto S and its orthogonal complement S⊥, respectively, in the usual inner product. For

the response envelope, we consider subspaces S of Rr that satisfy

(a) QSY X, (b) PSY QSY | X. (2)

Conditions (a) and (b) imply that QSY carries no information about β directly or indirectly

through its relation with PSY . They hold if and only if QSY (PSY,X) and thus PSY carries

all the regression information in (1). They hold trivially when S = Rr and, when S = {0},

they imply that Y X. The response envelope is defined as the intersection of all subspaces

S that satisfy (a) and (b).

For the predictor envelope, we consider subspaces T of Rp that satisfy

(c) Y QTX | PTX, (d) PTX QTX. (3)

Conditions (c) and (d) imply that QTX does not affect Y directly or indirectly through its

relation with PTX. They hold if and only if QTX (Y, PTX) and so PTX carries all the

regression information about Y . They hold trivially when T = Rp and, when T = {0},

they again imply that Y X. The predictor envelope is defined as the intersection of all

subspaces T that satisfy (c) and (d).

The simultaneous envelope model is the multivariate regression model (1) that requires

conditions (a) – (d), and is parameterized in terms of the response and predictor envelopes.

We refer to this model as the Multivariate Envelope Linear Model (MELM). The response

envelope model is the special case of MELM with T = Rp; the predictor envelope is the

special case of MELM with S = Rr; finally, the classical multivariate linear regression is

the special case of MELM with both S = Rr and T = Rp.

The theoretical structure of our extension is sketched as follows. Let X and Y be

random functions in Hilbert spaces HX and HY . Assume that they satisfy the linear model

Y = α +BX + ε, (4)

where α is a fixed member in HY , ε is a random member of HY , and B: HX → HY is a
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linear operator. We illustrate this function-on-function regression model with an example.

To assess the economic effect of Covid-19, the daily new confirmed cases and daily mobility

of retail and recreation are measured for all 21 counties in June 2020 in New Jersey. The

curve of new confirmed cases over the entire month serves as the predictor X. The curve

of mobility, which corresponds to visits to places like restaurants, shopping centers, and

movie theaters, is the response Y . For many counties, the new confirmed cases are recorded,

while the mobility data is missing. Using the function-on-function regression model (4), it

is possible to predict the mobility from the new confirmed cases for those counties. The

goal of envelope model is to achieve a more efficient estimation of the model parameters,

which leads to more accurate prediction.

Now we provide a sketch of the construction of the envelope model under (4). Let

Σε and ΣX be the covariance operators of X and ε, respectively. If A : H → H is a

bounded linear operator, then a reducing subspace of A is any subspace S of H such that

AS ⊆ S and AS⊥ ⊆ S⊥; if A is self-adjoint, then these two conditions are equivalent. Let

S be the intersection of all reducing subspaces of Σε that contains the range of B, and

let T be the intersection of all reducing subspaces of ΣX that contains the range of B∗,

the adjoint of B. The subspaces S and T are the functional extensions of the response

and predictor envelopes defined for (1). The rationale based on the covariance operators

may seem different from that used for model (1), but it will be shown in Theorem 1 that

these operator-based definitions lead to extensions of (2) and (3) to the functional model

(4). When S and T are proper subspaces of HY and HX, they offer a reduction of the

complexity of the function-on-function linear regression, which, as we will show, can be

very substantial in applications. Our goal is to estimate S, T , α and B in the dimension

reduced function-on-function linear regression. We refer to model (4) with the simplifying

structure (S, T ) as the Functional Envelope Linear Model (FELM).

In the theoretical development of our approach, we rely on the assumption that the

regression error is a Gaussian random element in a Hilbert space. When the Gaussian

assumption is violated, the objective function used to construct our estimator is still valid

if we replace the conditional independence relations by some weaker conditions such as
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conditional uncorrelation.

The function-on-function envelope model developed here is but one way to achieve

model parsimony for functional regression. Other approaches to model parsimony have

been considered previously such as the penalized function-on-function linear regression

(Ivanescu et al., 2015; Scheipl and Greven, 2016; Sun et al., 2018). Our approach uses a

different philosophy to achieve this: rather than penalizing the roughness of the coefficient

functions, we impose sparse structures on the spectra of the covariance operators of the

predictor and response processes, and let the data tell us which parts of the spectra are

important. To the best of our knowledge, this paper is the first attempt to generalize the

envelope model to function-on-function regression. The closest earlier work is Zhang et al.

(2018), which extended the envelope model to sufficient dimension reduction, where the

response is a scalar and the predictor is a function. This paper aims at estimating the

functional dimension reduction space whereas we provide the explicit regression estimator,

furnished with confidence and prediction bands, as well as an order determination method.

2 Functional Envelope Linear Model

Let (Ω,F , P ) be a probability space, let N ⊆ R denote an interval and let HX and HY

denote separable Hilbert spaces of real-valued functions on N . Let X : Ω → HX be a

random element in HX and Y : Ω→ HY a random element in HY .

Recall that, if H is a generic Hilbert space, and X a random element in H with

E(‖X‖H) < ∞, then the function T : H → R, g → E(〈g,X〉H) is a bounded linear

functional, which has a Riesz representation g0 s.t. T (g) = 〈g0, g〉H for each g ∈ H. The

function g0 is defined as the expectation of X, and is written as E(X).

To define the second moment of X, recall that, if H1, H2 are Hilbert spaces and f1, f2

are members of H1, H2, respectively, then the tensor product f1 ⊗ f2 is a rank one linear

operator from H2 to H1 such that, for each g ∈ H2, (f1⊗f2)(g) = f1〈f2, g〉H2
. Let B(H2,H1)

denote the class of all bounded linear operators fromH2 toH1. Then B(H2,H1) is a Banach

space with respect to the operator norm. If A is a random operator in B(H2,H1), then

the function b : H1 × H2 → R, (f, g) → E(〈f, Ag〉H1
) is a bounded bilinear form,
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which induces a linear operator B ∈ B(H2,H1) such that b(f, g) = 〈f,Bg〉H1
. See, for

example, Conway (2013, Chapter 2). The operator B is then defined as the expectation

of A, written as E(A). Using this definition of expectation of a random operator, we

define the second moment operator of X as E(X ⊗X), and the variance operator of X as

E[(X − E(X))⊗ (X − E(X))], which is denoted by var(X).

Our definitions of E(X) and E(A) are different from the standard definitions of moments

in the functional data analysis, which are done through the pointwise moments such as

E[X(t)] and E[X(s)X(t)]. See, for example, Ramsay and Silverman (2007). The two

definitions of E(X), as the Riesz representation of the bounded linear functional f 7→

E〈X, f〉H and as the pointwise expectation function t 7→ EX(t), are equivalent under

mild conditions, for example, they are equivalent when H separable. However, the former

definition does not rely on the nature of H; that is, it does not require H to be a set of

functions of t, whereas the latter definition does.

For a subspace U of H, and a self-adjoint operator A : H → H, the A-envelope of U ,

denoted by E(U ;A), is defined as E(U ;A) = ∩{S : S ∈ LatU(A)}, where LatS(A) represents

the collection of all reducing subspaces of A that contain S. The symbol Lat comes from

the word “lattice”. For another-bounded linear operator B : H → H, let ran(B) represent

the range (or image) of B, and ran(B) the closure of ran(B). We abbreviate E(ran(B);A)

by E(B;A). In this paper, we will only deal with E(B;A) where ran(B) = ran(B).

Let B : HX → HY be a bounded linear operator. Let ε be a random element in HY

such that ε X and E(ε) = 0. For simplicity, we tentatively assume that E(X) = 0. We

consider the function-on-function linear regression

Y = α +BX + ε, (5)

where ε and X are Gaussian random elements in HY and HX, respectively, satisfying

E(ε) = 0, E(X) = 0, E‖ε‖2

HY
<∞, E‖X‖2

HX
<∞, (6)

and α is a nonrandom member of HY . Let Σε = E(ε ⊗ ε), ΣX = E(X ⊗ X), and ΣY =
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E(Y ⊗ Y ). It is easy to see these are self-adjoint operators. For an operator A, let A∗

represent the adjoint operator of A.

Next, we give a rigorous definition of FELM. Let {(λi, φi), i ∈ N}, {(ρi, χi), i ∈ N} and

{(τi, ψi), i ∈ N} be the sequences of eigenvalues and eigenfunctions for the linear operator

ΣY , Σε and ΣX. We say that a subspace S of HY is covered by a subset C of {χi, i ∈ N} if

S is contained in the subspace spanned by C. The same applies to a subspace of HX.

Definition 1. A functional linear model is called a functional envelope linear model (FELM)

with respect to the response envelope E(B; Σε) and predictor envelope E(B∗; ΣX). Further-

more:

(i) If at least one of the envelopes is a proper subset of its ambient space, then we call

the FELM a proper envelope model.

(ii) If ran(B) is covered by a finite subset of {χ1, χ2, . . .} and ran(B∗) by a finite subset

of {ψ1, ψ2, . . .}, then we call the FELM an eigen-sparse envelope model.

According to part (i) of this definition, any functional linear model is a FELM, but only

when one or both envelopes are proper subspaces, does the FELM lead to efficiency gains.

When the predictor envelope is the ambient space, the FELM reduces to the functional

response envelope model; when the response envelope is the ambient space, the FELM

reduces to the functional predictor envelope model. Since, in the multivariate setting, the

predictor envelope model is the underlying model of the partial least squares, the FELM

generalizes the partial least squares (Wold, 1966; De Jong, 1993; Cook et al., 2013) to the

functional setting. See also Delaigle and Hall (2012).

It is also reasonable to call E(B; Σε) the residual envelope, but, as we will show in

Theorem 2, this envelope is the same as E(B; ΣY ). Hence it is justified to call it the

response envelope.

In this paper, we focus on the eigen-sparse envelope model in part (ii) of Definition 1,

where the numbers of eigenfunctions χ’s and ψ’s that cover the response and predictor

envelopes are fixed. In principle, we can allow the numbers of the covering eigenfunctions

to grow with sample size n. The situation is similar to sparse estimation, except that,
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here, the sparsity is imposed on the eigenstructures. However, due to limited space, the

development for FELM where the numbers of the covering eigenfunctions increase with the

sample size is left to future research.

We next express the eigen-sparse FELM explicitly in terms of the eigenfunctions of the

covariance operators. Let I and J be the finite subsets of {1, 2, · · · } such that {χi : i ∈ I}

covers ran(B) and {ψj : j ∈ J} covers ran(B∗). Then we have

B =
∑

i∈I

∑
j∈Jbij(χi ⊗ ψj), (7)

where bij are real numbers. Corresponding to I and J , ΣX and Σε can be decomposed as

Σε =
∑

i∈Iρi(χi ⊗ χi) +
∑

i/∈Iρi(χi ⊗ χi), ΣX =
∑

j∈Jτj(ψj ⊗ ψj) +
∑

j /∈Jτj(ψj ⊗ ψj).

(8)

It is easy to see E(B; Σε) = span{χi : i ∈ I}, and E(B∗; ΣX) = span{ψj : j ∈ J}.

Let s and t denote the cardinalities of I the cardinality of J , respectively. Note that

E(B; Σε) is isomorphic to Rs via the isomorphism f ∈ E(B; Σε)↔ {〈f, χi〉HY : i ∈ I} ∈ Rs.

Similarly, E(B∗; ΣX) is isomorphic to Rt via the isomorphism f ∈ E(B∗; ΣX)↔ {〈f, ψj〉HX :

j ∈ J} ∈ Rt. The dimensions of E(B; Σε) and E(B∗; ΣX) are s and t.

Our Definition 1 of FELM was made solely in geometric terms, but, as the next theorem

will show, under the Gaussian assumption, they induce independence and conditional inde-

pendence relations parallel to (a), (b), (c), and (d) in (2) and (3) for MELM. These relations

are the true motivation behind our definition of FELM. Let PE(B;Σε), QE(B;Σε), PE(B∗;ΣX ), and

QE(B∗;ΣX ) be the projections onto E(B; Σε), E(B; Σε)
⊥, E(B∗; ΣX) and E(B∗; ΣX)⊥, then

PE(B;Σε) =
∑

i∈Iχi ⊗ χi, QE(B;Σε) =
∑

i/∈Iχi ⊗ χi,

PE(B∗;ΣX ) =
∑

j∈Jψj ⊗ ψj, QE(B∗;ΣX ) =
∑

j /∈Jψj ⊗ ψj.
(9)

The Karhunen-Loève expansions of ε and X are

ε =
∑∞

i=1
〈ε, χi〉HY χi =

∑∞
i=1
ρ1/2
i νi χi, X =

∑∞
i=1
〈X,ψi〉HX ψi =

∑∞
i=1
τ 1/2
i ξi ψi, (10)
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where by the Gaussian assumption, ν1, ν2, . . . are i.i.d. N(0, 1), and ξ1, ξ2, . . . , are i.i.d.

N(0, 1).

Theorem 1. Under the assumptions in Definition 1, we have

(a) QE(B;Σε) Y X, (b) PE(B;Σε) Y QE(B;Σε) Y | X,

(c) Y QE(B∗;ΣX ) X | PE(B∗;ΣX ) X, (d) PE(B∗;ΣX ) X QE(B∗;ΣX ) X.
(11)

Relationships (11a) and (11b) are the functional counterparts of (2a) and (2b), and

(11c) and (11d) are the functional counterparts of (3c) and (3d). Following the finite-

dimensional analog, (11a) and (11b) hold if and only if QE(B;Σε) Y (X,PE(B;Σε) Y ), and

(11c) and (11d) hold if and only if (Y, PE(B∗;ΣX ) X) QE(B∗;ΣX ) X. In consequence, if we

knew the envelopes E(B; Σε) and E(B∗; ΣX), then, to estimate B, all we would need to do

is to regress PE(B;Σε) Y on PE(B∗;ΣX ) X, while leaving QE(B;Σε) Y and QE(B∗;ΣX ) X solely for the

estimation of the corresponding parts of the covariance operator Σε and ΣX. This is the

underlying mechanism that drives the efficiency gains of the envelope model. Of course, at

the sample level, the envelopes themselves have to be estimated as well, and QE(B;Σε) Y and

QE(B∗;ΣX ) X do participate in the estimation of them, thus being indirectly involved in the

estimation of B.

The next theorem shows that E(B; Σε) and E(B; ΣY ) are in fact the same, which gen-

eralizes a result to the functional setting (see, Cook et al. (2010), Proposition 3.1).

Theorem 2. Under the functional linear model (5), E(B; Σε) = E(B; ΣY ).

Next we derive the Karhunen-Loève expansion of Y . In preparation, let i1, . . . , is be

the members of I. For k ∈ I, let Uk =
∑

j∈Jbkjτ
1/2
j ξj + ρ1/2

k νk, and U = (Ui1 , . . . , Uis)
T.

Let ΣU = var(U), and QDQT the spectral decomposition of ΣU , where Q ∈ Rs×s is an

orthogonal matrix and D ∈ Rs×s is a diagonal matrix. For a sequence a1, a2, . . ., and a

subset A ⊆ {1, 2, . . .}, we denote {ai : i ∈ A} by a(A). Using this notation, we have

E(B; Σε) = span{χ(I)} and E(B∗; ΣX) = span{ψ(J)}.

In the following, if A is a matrix and a is a vector, we use diagmv(A) to represent the
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diagonal vector of A, and diagvm(a) the diagonal matrix with a as its diagonal.

Theorem 3. Under the assumptions in Definition 1, the Karhunen-Loève expansion of

Y has the form Y = α +
∑∞

i=1
λ1/2
i ζiφi, where {φi : i = 1, 2, . . .}, {ζi : i = 1, 2, . . .}, and

{χi : i = 1, 2, . . .} are sequences such that

φ(I) = QTχ(I), ζ(I) = D−1/2QTU, λ(I) = diagmv(D),

φ(Ic) = χ(Ic), ζ(Ic) = ν(Ic), λ(Ic) = ρ(Ic).

This implies that there is an isomorphism between the eigenfunctions {φ1, φ2, . . . , } of

ΣY and the eigenfunctions {χ1, χ2, . . . , } of Σε. In particular, for the indices in I,

(φi1 , · · · , φis)
T = QT(χi1 , · · · , χis)

T. (12)

Using this relation we can reexpress B in terms of {φi} and {ψi} as follows:

B =
∑

i∈I

∑
j∈Jbij(χi ⊗ ψj) =

∑
j∈J

[(∑
i∈Ibijχi

)
⊗ ψj

]
.

By (12),
∑

i∈Ibijχi = (bi1j, . . . , bisj)QQ
T(χi1 , · · · , χis)T =

∑
i∈I b̃ijφi, where (b̃i1j, . . . , b̃isj) =

(bi1j, . . . , bisj)Q. Hence

B =
∑

i∈I

∑
j∈J b̃ij(φi ⊗ ψj). (13)

The exposition so far in this section is coordinate-free: the entire system is built on

invariant objects such as subspaces, lattices, and linear operators. To make the presentation

less abstract, we now give an alternative, and somewhat intuitive, construction of the FELM

based on orthonormal bases. Let {e(X)
i : i ∈ N} and {e(Y)

i : i ∈ N} be orthonormal bases of

HX and HY , respectively. Then X, Y , and ε can be expanded as

X =
∑

i∈N〈X, e
(X)
i 〉HX e

(X)
i , Y =

∑
i∈N〈Y, e

(Y)
i 〉HY e

(Y)
i , ε =

∑
i∈N〈ε, e

(Y)
i 〉HY e

(Y)
i .
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Let X◦ and Y ◦ and ε◦ represent the sequences

{〈X, e(X)

i 〉HX : i ∈ N}, {〈Y, e(Y)

i 〉HY : i ∈ N}, {〈ε, e(Y)

i 〉HY : i ∈ N}.

These establish one-to-one correspondences between HX and `2, and between HY and `2,

where `2 is the collection of all square summable sequences. In this framework the linear

operators ΣX and Σε correspond to the ∞×∞ matrices

ΣX◦ = {cov(X◦i , X
◦
j ) : i, j ∈ N}, Σε◦ = {cov(ε◦i , ε

◦
j) : i, j ∈ N}.

The eigenvectors of these ∞ × ∞ matrices are sequences in `2. Let {ψ◦i : i ∈ N} and

{χ◦i : i ∈ N} be the eigenvectors of ΣX◦ and Σε◦ , respectively, and let

X∗ = {〈X◦, ψ◦i 〉`2 : i ∈ N}, Y ∗ = {〈Y ◦, χ◦i 〉`2 : i ∈ N}.

Note that X∗ and X are different representations of the same random elements; the same

can be said of Y and Y ∗. The envelope model can be transparently explained in terms of X∗

and Y ∗: it simply assumes that only finite number of components of X∗ and Y ∗ participate

in the regression between X and Y ; that is, there exist finite subsets I and J of N such

that {Y ∗i : i ∈ I} and {X∗j : j ∈ J} follow a multivariate regression model. Furthermore,

the theoretical properties of the envelope structure guarantee that there is no additional

regression relation left in the rest of the components. Of course, the regression in terms of

Y ∗ versus X∗ needs to be translated back to the original spaces for Y and X through the

isomorphisms HX and `2 and HY and `2. The numerical procedures in Sections 5 and 6 are

simply the implementation of the above construction at the sample level.

3 From FELM to MELM

Our basic idea for estimating FELM consists of three steps: first, find its one-to-one re-

lation with MELM, second, use the available methods to estimate the MELM, and third,

transform the results back to FELM via the one-to-one relation. In this and the next
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sections we develop such a one-to-one relation.

Before proceeding further, we need to review the coordinate form of the MELM. Recall

from the Introduction that the multivariate linear regression model (1) is said to follow

MELM if Assumptions (a), (b), (c) and (d) hold with S = E(β; Σε) and T = E(βT; ΣX).

Also recall that Γ is an r × u matrix representing an orthonormal basis matrix of E(β; Σε)

and Φ is a p× d matrix representing an orthonormal basis matrix of E(βT; ΣX). Similarly,

Γ0 ∈ Rr×(r−u) and Φ0 ∈ Rp×(p−d) are matrices representing orthonormal basis matrices of

E(β; Σε)
⊥ and E(βT; ΣX)⊥, respectively. The coordinate form of MELM is

Y = µ+ ΓηΦTX + ε, Σε = ΓΩΓT + Γ0Ω0Γ
T

0 , ΣX = Φ∆ΦT + Φ0∆0Φ
T

0 , (14)

where β = ΓηΦT, Ω ∈ Ru×u and Ω0 ∈ R(r−u)×(r−u) carry the coordinates of Σε with respect

to Γ and Γ0, and ∆ ∈ Rd×d and ∆0 ∈ R(p−d)×(p−d) carry the coordinates of ΣX with respect

to Φ and Φ0. The matrix η ∈ Ru×d is the regression coefficient matrix for the reduced

multivariate linear model where Y is replaced by ΓTY and X by ΦTX.

Let {b1, b2, . . .} and {c1, c2, . . .} be orthonormal bases for HX and HY , respectively. We

need the following assumption.

Assumption 1. There are integers k > 0 and l > 0 such that

E(B∗; ΣX) ⊆ span{b1, . . . , bk}, E(B; Σε) ⊆ span{c1, . . . , cl}.

By construction, t ≤ k and s ≤ l. In the following, let b and c be the vectors of functions

(b1, . . . , bk)
T and (c1, . . . , cl)

T.

We need to introduce some additional notations. For a Hilbert spaceH, u = (u1, . . . , um) ∈

Hm, and v = (v1, . . . , vn) ∈ Hn, define the m× n inner product matrix between u and v as

〈u, vT〉H = (〈ui, vj〉H)i=1,...,m,j=1,...,n. Let Γ ∈ Rl×s and Φ ∈ Rk×t be matrices Γ = 〈c, φ(I)T〉HY
and Φ = 〈b, ψ(J)T〉HX . As implied by the notation, these will be the envelope basis matrices,

analogous to those in (14), that arise from mapping FELM to MELM. Because {c1, . . . , cl}
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and {b1, . . . , bk} are orthonormal sets, we have φ(I) = ΓTc, and ψ(J) = ΦTb, which imply

〈φ(I), ε〉HY = ΓT〈c, ε〉HY and 〈ψ(J), X〉HX = ΦT〈b,X〉HX . (15)

If B1 = {a1, . . . , am} and B2 = {b1, . . . , bn} are finite sets of vectors, and A : span(B1) →

span(B2) is a linear mapping, then B2
[A]B1

represents the coordinate of A; that is, for any

x = c1a1 + · · ·+ cmam ∈ span(B1), y = c′1b1 + · · ·+ c′nbn ∈ span(B2), we have c′ = (B2
[A]B1

)c,

where c = (c1, . . . , cm)T, c′ = (c′1, . . . , c
′
n)

T. In this notation, φ(I)[B]ψ(J) is an s× t matrix

φ(I)[B]ψ(J) =


b̃i1j1 · · · b̃i1jt

...
. . .

...

b̃isj1 · · · b̃isjt

 .

The next theorem describes how one goes from FELM to MELM, which is the theoretical

foundation for the two estimation methods to be developed in Sections 5 and 6. Let

X̃ = 〈b,X〉HX , Ỹ = 〈c, Y 〉HY , ε̃ = 〈c, ε〉HY , (16)

where b and c are as defined immediately following Assumption 1.

Theorem 4. If (X, Y ) follows the FELM in Definition 1 with response envelope E(B; Σε)

and predictor envelope E(B∗; ΣX), then (X̃, Ỹ ) follows the MELM

Ỹ = µ+ Γ(φ(I)[B]ψ(J))Φ
TX̃ + ε̃,

with response envelope E(φ(I)[B]ψ(J); Σε̃) = span(Γ), predictor envelope

E(φ(I)[B]Tψ(J); ΣX̃) = span(Φ), and µ = 〈c, α〉HY .

From Theorem 4, we obtain a corollary where {b1, . . . , bk} and {c1, . . . , cl} are eigen-

functions of X and Y ; that is, bi = ψi, cj = φj, for i = 1, . . . , k, j = 1, . . . , l. We

denote (φ1, . . . , φl) by φ(1 : l) and (ψ1, . . . , ψk) by ψ(1 : k). Define X◦ = 〈ψ(1 : k), X〉HX ,

Y ◦ = 〈φ(1 : l), Y 〉HY , and ε◦ = 〈φ(1 : l), ε〉HY . The next corollary shows that, if Y and X

follow FELM, then Y ◦ and X◦ follow MELM in Theorem 4 with Γ, Φ taking a special form.
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This fact is the theoretical foundation for estimation method developed in Section 6.

Corollary 1. If (X, Y ) follows FELM with response envelope E(B; Σε̃) and predictor en-

velope E(B∗; ΣX̃), then (X◦, Y ◦) follows MELM in Theorem 4 with

Γ = 〈φ(1 : l), φ(I)T〉HY , Φ = 〈ψ(1 :k), ψ(J)T〉HX . (17)

If l = s and k = t then Γ = Is, Φ = It and the MELM in Theorem 4 reduces to a

version of the multivariate linear regression model (1). We refer to this as the full model.

An alternative way to write the MELM in Theorem 4 is through the following pa-

rameterization. Let Φ0 ∈ Rk×(k−t) be a matrix whose columns form an orthonormal ba-

sis of E(Φ(φ(I)[B]ψ(J))
TΓT; ΣX̃)⊥, and let Γ0 ∈ Rl×(l−s) be a matrix whose columns form

an orthonormal basis of E(Γ(φ(I)[B]ψ(J))Φ
T; Σε̃)

⊥. Furthermore, let Ω = ΓTΣε̃Γ ∈ Rs×s,

Ω0 = Γ0
TΣε̃Γ0 ∈ R(l−s)×(l−s), ∆ = ΦTΣX̃Φ ∈ Rt×t, and ∆0 = Φ0

TΣX̃Φ0 ∈ R(k−t)×(k−t). In this

parameterization, the covariance matrices of ε̃ and X̃ can be rewritten as

ΣX̃ = Φ∆ΦT + Φ0∆0Φ
T

0 , Σε̃ = ΓΩΓT + Γ0Ω0Γ
T

0 ,

and the MELM in Theorem 4 can be restated as Ỹ | X̃ ∼ N(µỸ |X̃,ΣỸ |X̃), where

µỸ |X̃ = µ+ Γ(φ(I)[B]ψ(J))Φ
TX̃, ΣỸ |X̃ = Γ(φ(I)[B]ψ(J))Φ

TΣX̃Φ(φ(I)[B]ψ(J))
TΓT + Σε̃.

The parametrized form also applies to the MELM in Corollary 1 with Γ and Φ taking the

special form (17). Theorem 4 tells us that, under the conditions assumed therein, a FELM

can always be converted into a MELM. This means we can use available methodologies

and softwares to estimate the converted MELM.

4 From MELM to FELM

Suppose (X, Y ) obeys the FELM in Definition 1. Let (X̃, Ỹ ) be as defined in the last

section.
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Theorem 5. Under the conditions in the last paragraph, if (X̃, Ỹ ) follows the MELM

Ỹ = µ+ (ΓηΦT)X̃ + ε̃, (18)

with E(ΓηΦT; Σε̃) = span(Γ), E(ΦηTΓT; ΣX̃) = span(Φ), then (X, Y ) follows the FELM with

φ(I)[B]ψ(J) = η, where φ(I) = ΓTc, ψ(J) = ΦTb.

In the next two sections we will implement the theoretical results of Sections 3 and 4

to develop sample estimates of FELM. In the multivariate setting, since X and Y are

random vectors, it is natural to build the envelope model directly on X and Y themselves.

In particular, there seems no reason to build the envelope model, say, on the principal

components of X and Y . The situation is entirely different in the functional setting. Since

we do not have random vectors to begin with, we face two apparent options:

1. building the envelope model directly on the coordinates of X and Y with respect to

the bases in HX and HY that we happen to choose. This seems to be the most direct

generalization of the original idea of the envelope model;

2. building the envelope model on the coefficients of Karhunen-Loève expansions of X

and Y .

We next develop estimation procedures via both routes. In application we do not observe

the entire functions Y and X, but only at a finite number of points. So we need a method

to connect the points. As a pragmatic approach, we assume HY and HX have finite bases.

5 Direct estimation

We focus on the first approach in this section. To construct orthonormal bases for HX and

HY , we start with any finite bases b = (b1, . . . , bk)
T for HX, and c = (c1, . . . , cl)

T for HY . In

practice, k and l are picked according to the shape of the functions. For example, if cubic

splines are used, k and l are decided by the number of knots. More knots are needed for

a function with more fluctuation. As an illustration, let N = [0, 1], and {t0, . . . , tm1
} and

{s0, . . . , sm2
} be two sets of nodes in [0, 1] for HX and HY , respectively, with t0 = s0 = 0,
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tm1
= sm2

= 1. Let {b1, . . . , bk} and {c1, . . . , cl} be the cubic spline bases determined by

the nodes t0, . . . , tm1
and s0, . . . , sm2

, respetively. In this case, k = m1 + 3 and l = m2 + 3.

The specific forms of these bases can be found, for example, in Wang (2011). We use the

L2([0, 1]) inner product for HX and HY . For example, 〈bi, bj〉HX =
∫

1

0
bi(t)bj(t)dt, which can

be written down explicitly for cubic splines. To turn b = (b1, . . . , bk)
T and c = (c1, . . . , cl)

T

into orthonormal bases, let Gb and Gc denote the Gram matrices Gb = {〈bi, bj〉HX}
m1
i,j=1 and

Gc = {〈ci, cj〉HY }
m2
i,j=1. The orthonormal bases b∗ and c∗ are then calculated by b∗ = G−1/2

b b,

and c∗ = G−1/2
c c. For notational simplicity, we reset (b∗, c∗) to (b, c).

For a function h ∈ HX, we use [h]b to denote the coordinate of h with respect to

the basis b. That is, [h]b = (〈b1, h〉HX , · · · , 〈bm, h〉HX )T, and h = [h]Tb b. Let (X1, Y1), . . .,

(Xn, Yn) be an i.i.d. sample from (X, Y ), and let X̃i = [Xi]b, Ỹi = [Yi]c, X̃ = [X]b,

and Ỹ = [Y ]c. The coordinates [Xi]b and [Yi]c can be estimated by least squares. Let

{t∗0, . . . , t∗m∗1} and {s∗0, . . . , s∗m∗2} be the points at which Xi(t) and Yi(t) are observed. For

brevity of notations, we assume that these observed points do not change with i. The

method can be applied directly if (Xi, Yi) are observed at different points, see the simulation

in Section 9.3 of the Supplement. Since Xi = [Xi]
T
b b, we obtain [Xi]b by estimating the least

squares coefficients from the regression of Xi(t
∗
0), . . . Xi(t

∗
m∗1

) on b(t∗0), . . . b(t
∗
m∗1

). Specifically,

let T ∗X = {t∗0, . . . , t∗m∗1}, and let

Xi(T
∗
X) =


Xi(t

∗
0)

...

Xi(t
∗
m∗1

)

 , B(T ∗X) =


b1(t

∗
0) · · · bk(t

∗
0)

...
. . .

...

b1(t
∗
m∗1

) · · · bk(t
∗
m∗1

)

 .

Then coordinate [Xi]b is computed from [Xi]b = [B(T ∗X)TB(T ∗X)]−1B(T ∗X)TXi(T
∗
X). Note that

the above is exactly the spline estimate of the curve {Xi(t) : t ∈ [0, 1]} as expressed in

orthonormal basis. The coordinate of Yi with respect to c is computed similarly. Note that

this process does not assume t to be equally spaced, thus it is applicable if t is irregularly

distributed. When the observed points are sparse, e.g. m∗1 < k, we can use regularized

regression such as ridge regression or lasso to obtain [Xi]b. But further investigation will be

needed for its theoretical justification. We can also reduce the number of basis functions
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which is itself a kind of regularization, for instance, if spline functions are used as basis,

we can reduce the number of knots. Wang et al. (2016) has more detailed discussion on

the various situations where functional data is observed in practice, sparsely or densely

observed functional data.

Based on Theorem 4, we fit a MELM with X̃ as the predictor and Ỹ as the response

Ỹ = µ+ ΓηΦTX̃ + ε̃, Σε̃ = ΓΩΓT + Γ0Ω0Γ
T

0 , ΣX̃ = Φ∆ΦT + Φ0∆0Φ
T

0 . (19)

Let β = ΓηΦT denote the regression coefficients. Estimation of the parameters in (19)

is performed by maximizing the log likelihood function for (X̃, Ỹ ). We first estimate the

envelopes E(β; Σε̃) and E(βT; ΣX̃). Since both E(β; Σε̃) and E(βT; ΣX̃) are subspaces, the es-

timation involves optimization over Grassmann manifold. Let a, b be two positive integers,

and a > b. An a × b Grassmann manifold is the set of all b-dimensional subspace of an

a-dimensional space. An R package Renvlp for estimation for envelope models can be found

on CRAN, see Lee and Su (2022). Details can be found in Section 6 of the Supplement.

Once we have the estimated envelopes Ê(β; Σε̃) and Ê(βT; ΣX̃), Γ̂ and Φ̂ can be taken

as any orthonormal basis of Ê(β; Σε̃) and Ê(βT; ΣX̃), and η̂ = Γ̂TΣ̂Ỹ X̃Φ̂(Φ̂TΣ̂X̃Φ̂)−1, where

Σ̂Ỹ X̃ denotes the sample covariance matrix between Ỹ and X̃. The regression coefficient is

then estimated by β̂ = Γ̂η̂Φ̂T. The MLE of the rest of the parameters are Ω̂ = Γ̂TΣ̂Ỹ |Φ̂TX̃Γ̂,

Ω̂0 = Γ̂0
TΣ̂Ỹ Γ̂0, ∆̂ = Φ̂TΣ̂X̃Φ̂, ∆̂0 = Φ̂0

TΣ̂X̃Φ̂0, and µ̂ = 1
n

∑
n

i=1
Ỹi − β̂ 1

n

∑
n

i=1
X̃i.

In Section 8, we will develop the confidence and prediction bands of the FELM re-

gression estimate, which requires the asymptotic distribution of the above estimate. The

asymptotic distribution and efficiency gain of the MELM estimator are known (Cook

and Zhang (2015b)), which we now outline for later use. Let vec(·) denote the vec-

tor operator that stacks the columns of a matrix into a vector, and vech(·) denote the

vector-half operator that stacks the lower half (including the diagonal) of a symmet-

ric matrix into a vector. The vector of all parameters of interest under model (19) is

v1 = (vec(β)T, vech(Σε̃)
T, vech(ΣX̃)T, µT)T. The vector of all constituent parameters is

v2 = (vec(Γ)T, vec(η)T, vec(Φ)T, vech(Ω)T, vech(Ω0)
T, vech(∆)T, vech(∆0)

T, µT)T.
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Let G = ∂v1/∂v
T
2 and J the Fisher information for v1 under the full model. The explicit

forms of G and J are in Section 7 of the Supplement. Let v̂1,full be the maximum likelihood

estimator of v1 under the full model. Then
√
n(v̂1,full − v1)

d→ N(0, J−1), where
d→ denotes

convergence in distribution. The next theorem is due to Cook and Zhang (2015b).

Theorem 6. Assume that (X̃, Ỹ ) follows the MELM (19). Let v̂1,melm be the maximum

likelihood estimator of v1 under MELM (19), then

√
n(v̂1,melm − v1)

d→ N(0, Vmelm), Vmelm = G(GTJG)†GT,

where † denotes Moore-Penrose generalized inverse. Furthermore, we have G(GTJG)†GT ≤

J−1, which means that v̂1,melm is asymptotically more efficient than or as efficient as v̂1,full.

6 Karhunen-Loève expansion based estimation

We now turn to the second approach outlined at the end of Section 4. Let b and c be any

finite bases and Gb and Gc their Gram matrices. Let [Xi]b and [Yi]c be the least squares

approximations of the coordinates of Xi and Yi, as explained in Section 5. Let (τ̂r, ψ̂r) be the

rth eigenvalue-eigenfunction pair of Σ̂X. As shown in Solea and Li (2020), [ψ̂r]b = (G1/2

b )†vr,

where vr is the rth eigenvector of the matrix G1/2

b En{([X]b−En[X]b)([X]b−En[X]b)
T}G1/2

b ,

and τ̂r is the rth eigenvalue. The rth eigenfunction of Σ̂X is then ψ̂r = [ψ̂r]
T
b b. The empirical

Karhunen-Loève expansion of Xi is then

Xi − EnXi =
∑

k

r=1
〈Xi − EnXi, ψ̂r〉HX ψ̂r =

∑
k

r=1
τ̂ 1/2
r ξ̂irψ̂r,

where 〈Xi − EnXi, ψ̂r〉HX = τ̂ 1/2
r ξ̂ir = [Xi − EnXi]

T
bGb[ψ̂r]b = [Xi − EnXi]

T
bG

1/2

b vr. Similarly,

the empirical Karhunen-Loève expansion of Yi is

Yi − EnYi =
∑

l

r=1
〈Yi − EnYi, φ̂r〉HY φ̂r =

∑
l

r=1
λ̂1/2
r ζ̂irφ̂r,
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where 〈Yi − EnYi, φ̂r〉HY = [Yi − EnYi]
T
cGc[φ̂r]c = [Yi − EnYi]

T
cG

1/2
c ŵr, and (λ̂r, ŵr) is the rth

eigenvalue-eigenvector pair of the matrix G1/2
c En{([Y ]c −En[Y ]c)([Y ]c −En[Y ]c)

T}G1/2
c . Let

X̃ = (〈X, ψ̂1〉HX , . . . , 〈X, ψ̂k〉HX )T, and Ỹ = (〈Y, φ̂1〉HY , . . . , 〈Y, φ̂l〉HY )T.

Note that X̃ and Ỹ follow MELM (19) from Corollary 1. Estimation of the parameters in

MELM is the same as discussed in Section 5.

7 Order determination

In both the direct estimation in Section 5 and the Karhunen-Loève expansion based es-

timation in Section 6, the dimension s of the response envelope and the dimension t of

the predictor envelope need to be selected. Let (s0, t0) denote the true dimensions of the

response and predictor envelopes, and let (s, t) denote a generic pair of dimensions that is

varied in the set for optimization. To estimate (s0, t0), we compute the BIC value over a

grid of (s, t) from (1, 1) to (l, k), and find the pair which minimizes BIC. Specifically, for

the dimension pair (s, t), BIC(s, t) = −2ˆ̀(s, t) + log(n)K(s, t), where

ˆ̀(s, t) = ˆ̀(Γ̂, Φ̂, Ω̂, Ω̂0, ∆̂, ∆̂0η̂, µ̂) (20)

is the maximum of the likelihood for a fixed (s, t), and K(s, t) = 1
2
l(l+1)+ 1

2
k(k+1)+st+ l

is the total number of model parameters when the dimensions of the response and predictor

envelops are s and t. Note that all the hatted parameters in (20) depend on (s, t).

We estimate (s0, t0) by minimizing the above BIC-type criterion, assuming that we

search over the grid of Ξ = {1, . . . , l} × {1, . . . , k}, and denote the estimate by (ŝ, t̂). Note

that the consistency of order determination has not yet been proved for the envelope model

even in the multivariate setting. So the next result is novel to the envelope model in general.

Theorem 7. If (X̃, Ỹ ) satisfies MELM (19), then P
(
(ŝ, t̂) = (s0, t0)

)
→ 1.

When implementing the dimension selection procedure, we make the following adjust-

ment to speed up the computation. Let r denote the rank of β. Since r is no greater
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than min(s, t), if r were known, we would only need to compute the BIC value over

a grid of (s, t) from (r, r) to (l, k). Following Cook and Zhang (2015b), r can be es-

timated from a chi-squared test developed in Bura and Cook (2003). The test statis-

tic is Λd = n
∑

min(k,l)

i=d+1
e2
i , where e1 ≥ · · · ≥ emin(k,l) are singular values of the matrix

β̂std = [(n − p − 1)/n]1/2Σ̂1/2

X̃
β̂T

OLSΣ̂
−1/2

Ỹ |X̃ , and β̂OLS = Σ̂Ỹ X̃Σ̂−1

X̃
. According to Bura and Cook

(2003), the asymptotic distribution of Λd is χ2
(k−d)(l−d) under the null hypothesis that r = d.

Let r̂ be the smallest d for which this null hypothesis is not rejected. Instead of minimizing

BIC(s, t) over the grid {1, . . . , l} × {1, . . . , k}, we minimize it over {r̂, . . . , l} × {r̂, . . . , k},

which works well in our examples.

8 Confidence band and prediction band

In this section, we construct the confidence band for the mean of a new response and the

prediction band for the new response itself. Specifically, let Xnew be a new observation on

X. We are interested in constructing the confidence interval for E[Ynew(t)] and prediction

interval for Ynew(t), for each t ∈ N .

Let Ŷnew denote the estimate of E(Ynew), which is also the prediction of Ynew. We estimate

E(Ynew) as follows. First, we compute the coordinates [Xnew]b of Xnew relative to the basis

b. Then, the coordinates of Ŷnew with respect to the basis c in HY is [Ŷnew]c = µ̂+ β̂[Xnew]b.

Finally, the prediction itself is calculated as Ŷnew = [Ŷnew]Tc c.

We next approximate the variance of Ŷnew(t0) at some t0 ∈ T . Since Ŷnew = cT[Ŷnew]c,

we have Ŷnew(t0) = c(t0)
T[Ŷnew]c. Consequently, var[Ŷnew(t0)] = c(t0)

Tvar([Ŷnew]c)c(t0). Since

[Ŷnew]c = µ̂+ β̂[Xnew]b = µ̂+ ([Xnew]Tb ⊗ Il)vec(β̂), we have

var[Ŷnew(t0)] = c(t0)
T{var(µ̂) + ([Xnew]Tb ⊗ Il)var[vec(β̂)]([Xnew]b ⊗ Il)}c(t0).

We approximate var[vec(β̂)] by n−1 times the asymptotic variance of
√
n[vec(β̂)− vec(β)],

which is the upper left kl× kl block of Vmelm in Theorem 6. We approximate var(µ̂) by n−1

times the asymptotic variance of
√
n(µ̂ − µ), which is the lower right l × l block of Vmelm.
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In symbols, we use

σ2

est[Ŷnew(t0)] =n−1c(t0)
T{[Vmelm(β̂, Σ̂ε̃, Σ̂X̃, µ̂)]44

+ ([Xnew]Tb ⊗ Il)[Vmelm(β̂, Σ̂ε̃, Σ̂X̃, µ̂)]11([Xnew]b ⊗ Il)}c(t0)

to approximate var[Ŷnew(t0)], where [Vmelm(β̂, Σ̂ε̃, Σ̂X̃, µ̂)]11 is the upper left kl × kl block of

Vmelm(β̂, Σ̂ε̃, Σ̂X̃, µ̂) and [Vmelm(β̂, Σ̂ε̃, Σ̂X̃, µ̂)]44 is the lower right l×l block of Vmelm(β̂, Σ̂ε̃, Σ̂X̃, µ̂).

The asymptotic (1− α)-confidence interval for E[Ynew(t0)] is then

(
Ŷnew(t0)− z1−α/2 σest[Ŷnew(t0)], Ŷnew(t0) + z1−α/2 σest[Ŷnew(t0)]

)
,

where z1−α/2 is the 1− α/2 percentile of standard normal distribution.

To compute the prediction interval for Ynew(t0), let σ2
pred[Ŷnew(t0)] = σ2

est[Ŷnew(t0)] +

c(t0)
T Σ̂ε̃ c(t0). The asymptotic (1− α)-prediction interval for Ynew(t0) is then

(
Ŷnew(t0)− z1−α/2 σ

2

pred[Ŷnew(t0)], Ŷnew(t0) + z1−α/2 σpred[Ŷnew(t0)]
)
.

9 Simulations

We generate n independent Gaussian random functions using Fourier basisX(t) =
∑

11

i=1
τ 1/2
i ξiψi(t),

and ε(t) =
∑

11

i=1
0.2ρ1/2

i νiχi(t), where both χi’s and ψi’s are basis functions on [0, 1]:

{1,
√

2 sin(2πt),
√

2 cos(2πt),
√

2 sin(4πt),
√

2 cos(4πt), . . . ,
√

2 sin(10πt),
√

2 cos(10πt)},

ξi’s and νi’s are independent standard normal random variables, and τi’s and ρi’s are

constants. In general X and ε need not be in the same Hilbert space; the above construction

is for simplicity. The parameters τi’s and ρi’s are chosen as

{τ1, . . . , τ11} = {6.42, 1, 5.62, 22, 42, 3.22, 2.42, 1.62, 0.82, 0.52, 0.32},

{ρ1, . . . , ρ11} = {12, 0.52, 32, 12, 42, 22, 2.52, 32, 3.52, 42, 52}.
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The bij’s in the linear operator B are all zero except entries b22 = −1.25, b24 = −1, and

b42 = b44 = 0.4. Under this setting, HX and HY are finite dimensional. The linear operators

ΣX and Σε have the structure ΣX =
∑

11

i=1
τi(ψi ⊗ ψi) and Σε =

∑
11

i=1
ρi(χi ⊗ χi). We set I =

{2, 4}, J = {2, 4}. The predictor envelope E(B∗; ΣX) = span{
√

2 sin(2πt),
√

2 sin(4πt)},

the response envelope E(B; Σε) = span{
√

2 sin(2πt),
√

2 sin(4πt)} and the dimensions of the

envelopes are s = 2 and t = 2. The observed t are 10 evenly spaced points in N = [0, 1],

that is, {t1, . . . , t10} = {0.1, . . . , 1}, and they are the same for all the observations. The

sample size varies from 50 to 400, and 100 repetitions were generated for each sample size.

In the implementation of FELM, we use the cubic spline basis with five knots 0, 0.25,

0.5, 0.75 and 1 for both HX and HY . We compare FELM with three existing methods:

the full function-on-function regression model (FFFR), the principal component regression

(PCR), and the partial least squares regression (PLS). Similar to FELM, FFFR, PCR and

PLS can be performed either directly on the coordinates of X and Y as in Section 5, or

on the empirical Karhunen-Loève expansions of X and Y as in Section 6. Take the direct

estimation as an illustration, we first compute the coordinates [Xi]b and [Yi]c for the sample

(X1, Y1), . . . , (Xn, Yn). FFFR estimates the coefficients β by performing a standard multi-

variate regression on ([X1]b, [Y1]c), . . . , ([Xn]b, [Yn]c). PCR performs a standard multivariate

regression of [Yi]c on the first few principal components of [Xi]b, and then post-multiply

the coefficients by the transpose of the loading matrix of the principal components. PLS

is implemented with the R-function plsr, as applied to ([X1]b, [Y1]c), . . . , ([Xn]b, [Yn]c). In

the simulation we used two sets of tuning parameters: (i) we took s and t to be the true

envelope dimension 2, and chose the numbers of components of PCR and PLS also as 2;

(ii) we used the BIC-type criterion developed in Section 7 to estimate s and t, and used

five-fold cross validation to select the numbers of components in PCR and PLS.

We compare the four methods using prediction errors, which are computed by perform-

ing five-fold cross validation on each of the 100 simulated samples. Table 1 shows the above

mean squared error averaged over the 100 simulated samples. Comparing the four meth-

ods, we see that FELM significantly outperforms the three other methods. The second best

performer is FFFR, while PCR and PLS trail behind. Note that FFFR contains the true
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Table 1: Comparison on mean squared prediction errors

n 25 50 100 200 400 25 50 100 200 400
Method Fixed dimension Selected dimension

Direct

FELM 6.38 5.81 5.68 5.61 5.56 6.56 5.83 5.68 5.61 5.56
FFFR 7.92 6.39 5.92 5.72 5.61 7.92 6.39 5.92 5.72 5.61
PCR 12.99 12.02 11.69 11.63 11.54 9.78 7.19 5.98 5.74 5.61
PLS 13.01 11.44 10.50 9.57 8.62 12.58 11.82 11.45 11.33 11.23

K-L
expansion

FELM 6.38 5.81 5.68 5.61 5.56 6.59 5.83 5.68 5.61 5.56
FFFR 7.92 6.39 5.92 5.72 5.61 7.92 6.39 5.92 5.72 5.61
PCR 12.99 12.02 11.69 11.63 11.54 9.78 7.19 5.98 5.74 5.61
PLS 13.01 11.44 10.50 9.57 8.62 12.58 11.82 11.45 11.33 11.23

envelope model as a submodel, and is therefore asymptotically unbiased. Its difference from

FELM is caused completely by the smaller asymptotic variance of FELM. That explains

why the difference decreases with the sample size. In comparison, since PCR and PLS

each takes only two leading components, they do not contain the true envelope model as

a submodel, and are therefore asymptotically biased. This explains their large prediction

errors, and the fact that these errors do not significantly decrease with the sample size. We

also note that the results obtained by the direct methods do not significantly differ from

those obtained by the Karhunen-Loève expansion methods.

Due to space limitation, additional results on larger envelope dimensions and summary

of computation time are included in Sections 9.1 and 9.2 of the Supplement respectively.

FELM also performs well with irregular grid. An additional simulation with each sample

(Xi, Yi) observed in different random points is included in Section 9.3 of the Supplement.

During implementation, representation error may occur due to violation of Assumption 1.

Thus extra variation is involved in estimation of X̃ and Ỹ . To investigate its effect on

FELM, we include a simulation in Section 9.4 of the Supplement.

We now turn to confidence and prediction bands using n = 100 as an illustration. The

confidence and prediction intervals were constructed at t = 0.05, 0.15, 0.25, . . . , 0.95, which

are different from the points at which the functional data are observed. Because Table 1

shows no significant difference between the direct and the Karhunen-Loève expansion based

methods, here we only compare the intervals based on the direct method. Figure 1 shows the

confidence and prediction bands computed by FELM and FFFR. Comparing the confidence
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Figure 1: Confidence and prediction bands: solid lines indicate confidence bands of FELM;
dashed lines indicate confidence bands of FFFR; the dash-dotted lines represent prediction
bands of FELM; the dotted lines represent prediction bands of FFFR. The thick long
dashed line in the middle represents true mean response E[Y (t)]. The black dots represent
the observed response at 0.05, . . . , 0.95. For better visibility, the confidence band by FELM
is shaded gray.

intervals, we see that FELM’s intervals are much narrower than the FFFR’s intervals, and

at the same time has better coverage (note that the blue band does not cover the black

curve in the right portion of the plot, whereas the red band does). The prediction intervals

of FELM and FFFR have about the same length, which is because the efficiency gain is

eclipsed by the noise level. The envelope dimensions in FELM were set at the true values.

If the envelope dimensions were estimated by BIC, the confidence and prediction bands

were almost identical to those in Figure 1.

10 Data analysis

Economic data The World Bank website (https://data.worldbank.org/) contains com-

plete data on trade and gross domestic product (GDP) growth for 141 countries from 2001

and 2018. The Trade variable of a country is defined as the sum of exports and imports

of goods and services measured as a percentage of GDP of that country. GDP growth

24



is the annual percentage growth rate of GDP at market prices based on constant local

currency. Both Trade and GDP growth are functional data, as observed over the 18 years.

We treat Trade as the predictor and GDP growth as the response in a function-on-function

regression problem, and applied FELM to the data for each continent separately. Since

South America has data for only nine countries, we combined it with North America. The

continent of Australia has measurements for only seven countries, we omitted it from our

analysis. The sample sizes for Africa, America, Asia and Europe are 32, 30, 32 and 40,

respectively. Spaghetti plots of Trade and GDP growth for eight countries (two for each

region) are presented in Figure 2. The dimensions of the envelopes are selected by BIC. The

prediction errors are measured by five-fold cross validation with 100 random splits. The

percentages of the reduction of prediction error by FELM as compared with FFFR for the

four regions are shown in Table 2. Overall, FELM achieves very significant improvement

over FFFR. Moreover, it is interesting to note that the improvements are especially strong

for Europe and America.

A possible explanation for this discrepancy in the levels of improvement is that the GDP

growths for countries in Asia and Africa are more associated with main-stream products

such as clothing, crude oil, and electronic appliances (washing machines, refrigerators,

sewing machines, and so on), which are related to the leading eigenvectors of the responses.

In this situation, the envelope components and the principal components are somewhat

aligned, leading to milder (nonetheless significant) efficiency gains. In comparison, the

GDP growths for countries in Europe or America are more associated with less main-stream

products such as microchips, medicines, vaccines, or airplanes, which are more related to

the non-leading eigenvectors of the responses. In this situation, the envelope components

are largely orthogonal to the leading principal components, yielding substantial gains in

efficiency and prediction. For more discussions on when an envelope would achieve most

of its gains, see Cook (2018).

Covid-19 data Covid-19 is a global pandemic of the coronavirus disease, which has

up-to-date 212 million reported cases in 220 countries and territories. The Open Covid-

19 Dataset (https://github.com/open-covid-19/data#open-covid-19-dataset) collects daily
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Figure 2: Plot of trade and GDP growth for eight countries.
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Table 2: Mean squared prediction errors reduced by FELM as percentages of those of FFFR

Africa America Asia Europe
Envelope dimensions (s, t) (1, 2) (2, 2) (3, 3) (5, 2)
Prediction error reduction 9.79% 32.15% 24.22% 24.96%

data for more than 50 countries around the world. We focus on the daily new confirmed

cases and mobility data in June, 2020 in 21 counties in the state of New Jersey. We took the

new confirmed cases as the predictor and mobility of retail and recreation as the response.

The data for mobility of retail and recreation records percentage change in visits to places

like restaurants, shopping centers, museums, and movie theaters compared to a baseline

value. The baseline is the median value for the corresponding day of the week during the

five week period from Jan 3 to Feb 6 in 2020. Figure 3 shows the spagetti plots for the

predictor (upper panel) and response (lower panel) in six counties in New Jersey. We fit

FELM to the data. The dimensions of the response envelope and predictor envelope were

estimated as 3 and 2 by BIC, respectively. We computed the mean squared prediction errors

for FFFR and FELM with five-fold cross validation with 100 random splits. The predicted

results for Camden County and Atlantic County are in Figures 2 and 3 of the Supplement.

Compared with FFFR, FELM reduces the prediction error by 62.3%. The 95% confidence

and prediction bands for the daily mobility in Hudson County are displayed in Figure 4.

Notice that the confidence bands of both FELM and FFFR have good coverage, and FELM

has significantly narrower bands than FFFR. We also performed analysis taking the daily

new confirmed cases in May as the predictor, and the daily new confirmed cases in June

as the response. The dimensions for the response and predictor envelopes are inferred to

be 5 and 4 by BIC. FELM reduces the prediction error by 11.66% compared to FFFR.
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