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SUMMARY

We introduce the partial envelope model, which leads to a parsimonious method for multi-

variate linear regression when some of the predictors are ofspecial interest. It has the potential

to achieve massive efficiency gains compared to the standardmodel in the estimation of the co-

efficients for the selected predictors. The partial envelope model is a variation on the envelope

model proposed by Cook et al. (2010) but, as it focuses on partof the predictors, it has looser

restrictions and can further improve efficiency.

We develop maximum likelihood estimation for the partial envelope model and discuss appli-

cation of the bootstrap. An example is provided to illustrate some of its operating characteristics.

Some key words: Dimension reduction, Envelope model, Grassmann manifolds, Reducing subspaces.

1. INTRODUCTION

Introduced recently by Cook et al. (2010), enveloping is a new approach to multivariate anal-

ysis that has the potential to produce very substantial gains in efficiency. Their development was
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2

in terms of the standard multivariate linear model

Y = µ + βX + ε, (1)

whereµ ∈ R
r, the random responseY ∈ R

r, the fixed predictor vectorX ∈ R
p is centered to

have sample mean 0, and the error vectorε ∼ N(0,Σ). They demonstrated that an envelope

estimator of the unknown coefficient matrixβ ∈ R
r×p has the potential to achieve massive gains

in efficiency relative to the standard estimator ofβ, and that these gains will be passed on to other

tasks like prediction. In this article we propose an extension of envelopes called partial envelopes.

Partial envelopes can be focused on selected columns ofβ and can achieve gains in efficiency

beyond those possible by using an envelope. Additionally, the envelope estimator reduces to the

standard estimator whenr ≤ p andβ is of rankr, so there is no possibility for efficiency gains

in this setting. Partial envelopes remove this restriction, providing gains even whenr ≤ p.

In the next section we review envelopes and envelope estimation. Because this is a new area,

our goal is to provide intuition and insight rather than technical details. Additional results for

envelopes will be discussed during our extension to partialenvelopes given in§3.

2. ENVELOPES

It can happen in the context of model (1) that some linear combinations ofY are immaterial to

the regression because their distribution does not depend on X, while other linear combinations

of Y do depend onX and are thus material to the regression. In effect, envelopes separate the

material and immaterial parts ofY , and thereby allow for gains in efficiency.

Suppose that we can find a subspaceS ⊆ R
r so that

QSY | X ∼ QSY, QSY PSY | X, (2)
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3

where ’∼’ means identically distributed,P(·) projects onto the subspace indicated by its argument

andQ = Ir − P . For anyS with those properties,PSY carries all of the material information

and perhaps some immaterial information, whileQSY carries just immaterial information. Let

B = span(β). Then (2) holds if and only ifB ⊆ S andΣ = ΣS + ΣS⊥ , whereΣS = var(PSY )

andΣS⊥ = var(QSY ) (Cook et al., 2010). However,S is not necessarily unique because there

may be infinitely many subspaces that satisfy these relations in a particular problem. A reducing

subspaceS of Σ has the property thatΣS ⊆ S and ΣS⊥ ⊆ S⊥ (see, for example, Conway,

1990). Cook et al. (2010) showed thatS is a reducing subspace ofΣ if and only if Σ = ΣS +

ΣS⊥ . This enabled them to address the uniqueness issue and ensure thatPSY contains only

material information by defining the minimal subspace to be the intersection of all reducing

subspaces ofΣ that containB, which is called theΣ-envelope ofB and denoted asEΣ(B). Let

u = dim{EΣ(B)}. Then

B ⊆ EΣ(B), Σ = ΣE + ΣE⊥ , (3)

whereEΣ(B) is shortened toE for subscripts. These relationships establish a unique link be-

tween the coefficient matrixβ and the covariance matrixΣ of (1), and it is this link that has the

potential to produce gains in the efficiency of estimates ofβ. In particular, Cook et al. (2010)

demonstrated that these gains will be massive whenΣE⊥ contains at least one eigenvalue that

is substantially larger than the largest eigenvalue ofΣE , so that in effectY contains redundant

immaterial information. Model (1) will be called the standard model when (3) is not imposed

and called the envelope model when (3) is imposed.

The left-hand panel of Fig. 1 gives a schematic illustrationof envelope estimation in a regres-

sion withr = 2 responses and a single binary predictorX indicating one of two bivariate normal

populations represented by ellipses that cover, say, 99% oftheir distributions. Cook et al. (2010)
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Ȳ
2

-65 -44 -23 -2 19 40

-7
5

-5
0

-2
5

0
2
5

5
0

Fig. 1. Variance reduction by envelope estimation. Left-hand panel: Schematic representation of en-
velope estimation. Right-hand panel: Wheat protein data with points marked as high protein• and

low protein◦.

showed thatEΣ(B) is characterized by the identityEΣ(B) =
∑k

j=1 PjB, wherek ≤ r andPj is

the projection onto thej-th eigenspace ofΣ. WhenΣ has distinct eigenvaluesEΣ(B) could be

spanned by any of the2r possible subsets of its eigenvectors. In the left-hand panel of Fig. 1, the

Σ-envelope ofβ = (βj) = E(Y | X = 1) − E(Y | X = 0) is parallel to the second eigenvector

of Σ, and its orthogonal complement, which ties in with the immaterial part ofY , is parallel to

the first eigenvector. This setup meets the population requirements (3). Standard inference on the

second coordinateβ2 of β is based on marginal data obtained by projecting each data point onto

theY2 axis, represented by the line segment A from a representative data point marked with an

ex, giving rise to the usual two-sample inference methods. In contrast, for envelope inference

on β2 each data point is first projected ontoEΣ(B) and then projected onto the horizontal axis,

represented in the plot by the two line segments marked B. Imagining this process for many data

points from each population, it can be seen that the two empirical distributions of the projected

data from the standard method will have much larger variation than the empirical distributions

for the envelope method. The envelopeEΣ(B) is estimated in practice and so will have a degree

of wobble that spreads the distribution of the data projected along routes represented by path B.
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The asymptotic approximations of the variance of the envelope estimator ofβ take this wobble

into account.

For a numerical illustration of this phenomenon, the right-hand panel of Fig. 1 shows a plot

of r = 2 responses, the logarithms of near infrared reflectance at two wavelengths in the range

1680-2310 nm, measured on samples from two populations of ground wheat with low and high

protein content (24 and 26 samples, respectively). The plotted points resemble the schematic

representation in the left-hand panel of Fig. 1, and consequently an envelope analysis can be

expected to yield more precise results than the standard analysis. The standard estimate ofβ2 is

-2·1 with a standard error of 9·4. In contrast, the envelope estimate ofβ2 is -4·7 with a standard

error of 0·46. The standard and envelope analyses forβ1 are related similarly.

While EΣ(B) is necessarily spanned by some subset of the eigenvectors ofΣ, the maximum

likelihood estimator ofEΣ(B) shown in the right-hand panel of Fig. 1 is not spanned by a subset

of the eigenvectors of the usual pooled estimator ofΣ. This happens because the likelihood will

balance the mean and variance conditions in (3), leading away from the sample eigenvectors.

If r ≤ p andβ has full row rankr, thenB = R
r. ConsequentlyEΣ(B) = R

r, the envelope

estimator ofβ reduces to the standard estimator ofβ, and enveloping offers no gains. When

r > p it is still possible to haveEΣ(B) = R
r so again enveloping offers no gains over the standard

analysis. In these and other situations the partial envelopes developed in the next section can

provide gains over both the standard and envelope estimators ofβ.

3. PARTIAL ENVELOPES

3·1. Definition

A subset of the predictors is often of special interest in multivariate regression, particularly

when some predictors correspond to treatments while the remaining predictors are included to
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6

account for heterogeneity among the experimental units. Partial envelopes are designed to focus

consideration on the coefficients corresponding to the predictors of interest.

Partition X into to sets of predictorsX1 ∈ R
p1 and X2 ∈ R

p1, p1 + p2 = p, p1 < r, and

conformably partition the columns ofβ into β1 and β2. Then model (1) can be rewritten as

Y = µ + β1X1 + β2X2 + ε, whereβ1 corresponds to the coefficients of interest. We can now

consider theΣ-envelope forB1 = span(β1), leaving β2 as an unconstrained parameter. This

leads to the parametric structureB1 ⊆ EΣ(B1) andΣ = PE1
ΣPE1

+ QE1
ΣQE1

, wherePE1
de-

notes the projection ontoEΣ(B1), which is called the partial envelope forB1. This is the same as

the envelope structure, except the enveloping is relative to B1 instead of the larger spaceB. For

emphasis we will henceforth refer toEΣ(B) as the full envelope. BecauseB1 ⊆ B, the partial

envelope is contained in the full envelope,EΣ(B1) ⊆ EΣ(B), which allows the partial envelope

to offer gains that may not be possible with the full envelope.

To provide some insights into this setting, letR1|2 denote the population residuals from the

multivariate linear regression ofX1 on X2. Then, recalling that we have requiredX to be cen-

tered, the linear model can be re-parameterized asY = µ + β1R1|2 + β∗
2X2 + ε, whereβ∗

2 is

a linear combination ofβ1 andβ2. Next, letRY |2 = Y − µ − β∗
2X2, the population residuals

from the regression ofY on X2 alone. We can now write a linear model involvingβ1 alone:

RY |2 = β1R1|2 + ε. The partial envelopeEΣ(B1) is the same as the full envelope forB1 in the

regression ofRY |2 on R1|2. In other words, we can interpret partial envelopes in termsof the

motivating conditions (2) applied to the regression ofRY |2 on R1|2. In particular, the schematic

representation of Fig. 1 also serves for partial envelopes by reinterpretingY1 andY2 as the two

coordinates ofRY |2 and reinterpreting the binary predictor asR1|2. The classical added variable

plot (Cook & Weisberg, 1982) is simply a plot of the sample version R̂Y |2 of RY |2 versus the

sample version̂R1|2 of R1|2.
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3·2. Maximum likelihood estimators

Because we have centered the predictors, the maximum likelihood estimator ofµ is simply

µ̂ = Ȳ . The estimators of the remaining parameters require the estimator ofEΣ(B1). Let SY |2

denote the sample covariance matrix ofR̂Y |2, let SR|2 denote the sample covariance matrix of

the residual vectors from the regression ofR̂Y |2 on R̂1|2 and let|A|0 denote the product of the

non-zero eigenvalues of the square matrixA ≥ 0. Then, as shown in Appendix 1, the maximum

likelihood estimator ofEΣ(B1) for a fixed dimensionu1 is

ÊΣ(B1) = arg min
S∈G(u1,r)

{log |PSSR|2PS |0 + log |QSSY |2QS |0}, (4)

whereG(u1, r) denotes the Grassmann manifold of dimensionu1 in R
r. The Grassmann man-

ifold G(u1, r) is the set of allu1-dimensional subspaces inRr. The maximum likelihood es-

timator of the full envelopeEΣ(B) is obtained using the objective function on the right hand

side of (4) exceptSR|2 is replaced with the sample covariance matrixSR of the residual vectors

from the fit of the standard model,SY |2 is replaced with the sample covariance matrixSY of

the observed response vectors,u1 is replaced withu = dim{EΣ(B)} andS is reinterpreted as an

argument representing the full envelope (Cook et al., 2010). We see from this result that̂EΣ(B1)

is the same as the estimator of the full envelope applied in the context of the working model

R̂Y |2 = β1R̂1|2 + ε.

The maximum likelihood estimator̂β1 of β1 is the projection ontôEΣ(B1) of the estimator

of β1 from the standard model. The maximum likelihood estimatorβ̂2 of β2 is the coefficient

matrix from the ordinary least squares fit of the residualsY − Ȳ − β̂1X1 on X2. If X1 andX2

are orthogonal then̂β2 reduces to the maximum likelihood estimator ofβ2 from the standard
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model. The maximum likelihood estimatorΣ̂ of Σ is

Σ̂ = P̂E1
SR|2P̂E1

+ Q̂E1
SY |2Q̂E1

,

whereP̂E1
denotes the projection operator forÊΣ(B1), Σ̂E1

= P̂E1
SR|2P̂E1

is the estimated co-

variance matrix for the material part ofY andΣ̂E⊥
1

= Q̂E1
SY |2Q̂E1

is the estimated covariance

matrix for the immaterial part ofY .

3·3. Asymptotic distributions

In this section we give the asymptotic distributions ofn1/2(β̂j − βj), j = 1, 2. The results

are conveniently expressed in terms of a coordinate versionof the partial envelope model. Let

Γ ∈ R
r×u1 be a semi-orthogonal matrix,ΓT Γ = Iu1

, whose columns form a basis forEΣ(B1),

let (Γ,Γ0) ∈ R
r×r be an orthogonal matrix and letη ∈ R

u1×p1 be the coordinates ofβ1 in terms

of the basis matrixΓ. Then

Y = µ + ΓηX1 + β2X2 + ε, Σ = ΣE1
+ ΣE⊥

1

= ΓΩΓT + Γ0Ω0Γ
T
0 , (5)

whereΩ ∈ R
u1×u1 andΩ0 ∈ R

(r−u1)×(r−u1) are positive definite matrices that serve as coordi-

nates ofΣE1
andΣE⊥

1

relative to the basis matricesΓ for EΣ(B1) and its orthogonal complement.

In preparation for the limiting distributions of̂β1 andβ̂2, let ∆ denote the limit as the sample

sizen → ∞ of the sample covariance matrix ofX, and partition∆ = (∆jk) according to the

partitioning ofX, j, k = 1, 2. Let ∆1|2 = ∆11 − ∆12∆
−1
22 ∆21, with ∆2|1 defined similarly by

interchanging the subscripts. The matrix∆1|2 is constructed in the same way as the covariance

matrix for the conditional distribution ofX1 | X2 whenX is normally distributed, although here

X is fixed. ForA ∈ R
p1×p1 , define

M(A) = ηAηT ⊗ Ω−1
0 + Ω ⊗ Ω−1

0 + Ω−1 ⊗ Ω0 − 2Iu1(r−u1).
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Let β̂1(Γ), β̂1(η) andβ̂1(β2) denote the maximum likelihood estimators ofβ1 whenΓ, η andβ2

are known. If a random vectorwn has the property thatn1/2(wn − α) converges in distribution

to a N(0, A) then we will describe the asymptotic variance ofwn asavar(n1/2wn) = A. The

limiting distributions ofβ̂1 andβ̂2 are stated in the following proposition; justification is given

in Appendix 2.

PROPOSITION1. Under model (5),n1/2{ vec(β̂j) − vec(βj)}, j = 1, 2, converge in distri-

bution to normal random vectors with mean 0 and covariance matrices

avar{n1/2 vec(β̂1)} = ∆−1
1|2 ⊗ ΣE1

+ (ηT ⊗ Γ0)M
−1(∆1|2)(η ⊗ ΓT

0 ),

= avar[n1/2 vec{β̂1(Γ)}] + avar[n1/2 vec{QE1
β̂1(η)}];

avar{n1/2 vec(β̂2)} = {∆2|1 ⊗ Σ−1 − (∆21η
T ⊗ Γ0Ω

−1
0 )M−1(∆11)(η∆12 ⊗ Ω−1

0 ΓT
0 )}−1,

= {∆2|1 ⊗ Σ−1 − (∆21 ⊗ Γ0Ω
−1
0 ΓT

0 )avar{β̂1(β2)}(∆12 ⊗ Γ0Ω
−1
0 ΓT

0 )}−1,

whereavar[n1/2 vec{β̂1(Γ)}] = ∆−1
1|2 ⊗ ΣE1

and avar[n1/2 vec{QE1
β̂1(η)}] is defined implic-

itly.

Several comments on this proposition are in order. We first consider regressions in which

∆12 = 0. This will arise whenX1 andX2 are asymptotically uncorrelated or have been cho-

sen by design to be orthogonal. BecauseX is non-random, this condition can always be forced

without an inferential cost by replacingX1 with R̂1|2. As discussed in§3·1, this replacement

alters the definition ofβ2 but does not alter the parameter of interestβ1. When ∆12 = 0,

avar{n1/2 vec(β̂2)} = ∆22 ⊗ Σ−1, which is the same as the asymptotic covariance matrix for

the estimator ofβ2 from the standard model. Andavar{n1/2 vec(β̂1)} reduces to the asymp-

totic covariance matrix for the full envelope estimator ofβ1 in the modelR̂Y |2 = β1X1 + ε. No

longer requiring that∆12 = 0, we can carry out asymptotic inference forβ1 based on a par-
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tial envelope by using the full envelope forβ1 in the modelR̂Y |2 = β1R̂1|2 + ε. If we choose

β1 = β, soX1 = X, β2 is nil and∆1|2 = ∆, thenavar{n1/2 vec(β̂1)} reduces to the asymptotic

covariance matrix for the full envelope estimator ofβ derived by Cook et al. (2010).

We next turn to a comparison of the partial envelope estimator β̂1 of β1 and the full en-

velope estimatorβ̂1e, where the subscripte added to a statistic means computation based

on the full envelope. The next proposition provides a comparison of avar{n1/2 vec(β̂1)} and

avar{n1/2 vec(β̂1e)} at two extremes; justification is provided in Appendix 2.

PROPOSITION2. If EΣ(B) = R
r then avar{n1/2 vec(β̂1)} ≤ avar{n1/2 vec(β̂1e)}. If

EΣ(B) = EΣ(B1) thenavar{n1/2 vec(β̂1)} ≥ avar{n1/2 vec(β̂1e)}.

At one extreme, this proposition tells us that when the full envelope isRr, which is the situa-

tion that motivated this work, the covariance matrix for thepartial envelope estimator will never

be greater than the full envelope estimator, which is the same as the standard estimator. At the

other extreme, if the full and partial envelopes are the same, then the partial envelope estimator

of β1 will never do better than the full envelope estimator of the same quantity. The following

lemma will be helpful in developing some intuition for this conclusion.

LEMMA 1. LetB2 = span(β2). ThenEΣ(B) = EΣ(B1) + EΣ(B2).

This lemma says that the full envelope is the sum of the partial Σ-envelopes forB1 andB2.

The dimension ofEΣ(B1) ∩ EΣ(B2) can vary from 0 to the minimum of the two. ButEΣ(B) =

EΣ(B1) if and only if EΣ(B2) ⊆ EΣ(B1). This means thatEΣ(B2) can contain information on

EΣ(B1). This information is not used by the partial envelope, but isused by the full envelope and

consequently the full envelope estimator may have the smaller asymptotic variance.

Beyond the conclusions in Proposition 2, we were unable to develop practically ponderable

conditions for characterizing when the asymptotic variance of the partial envelope estimator of
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β1 is less than that of the full envelope estimator ofβ1. A straightforward course in practice is to

simply compute and compare the asymptotic variances.

3·4. Selecting dimension for envelopes

The dimensionu1 of the partial envelope is essentially a model selection parameter, and stan-

dard methods can be used to aid in its choice. We briefly describe two methods in this section.

The first is based on sequential hypothesis testing.

The hypothesisu1 = d, d < p1, can be tested by using the likelihood ratio statisticΛ(d) =

2{L̂(r) − L̂(d)}, where

L̂(d) = −(nr/2){1 + log(2π)} − (n/2) log |P̂E1
SR|2P̂E1

|0 − (n/2) log |Q̂E1
SY |2Q̂E1

|0

denotes the maximum value of the likelihood for the partial envelope model withu1 = d (See

Appendix A1). Whend = r the partial envelope model reduces to the standard model andthus

L̂(r) = −(nr/2){1 + log(2π)} − (n/2) log |SR|

is the value of the maximized log likelihood for the standardmodel. Following standard likeli-

hood theory, under the null hypothesisΛ(d) is distributed asymptotically as a chi-squared random

variable withp1(r − d) degrees of freedom. The test statisticΛ(d) can be used in a sequential

scheme to chooseu1: Starting withd = 0 and using a common test level, chooseu1 to be the

first hypothesized value that is not rejected.

The dimension of the partial envelope could also be determined by using an information cri-

terion:

û1 = arg min
d

{−2L̂(d) + h(n)g(d)},
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whereh(n) is equal tolog n for Bayes information criterion and is equal to2 for Akaike’s

information criterion, andg(d) is the number of real parameters in the partial envelope model,

g(d) = r + d(r − d) + dp1 + rp2 + d(d + 1)/2 + (r − d)(r − d + 1)/2.

Subtractingg(d) from the number of parametersr + pr + r(r + 1)/2 for the standard model

gives the degrees of freedom forΛ(d) mentioned previously.

3·5. Computing

Computational algorithms for Grassmann optimization typically require that the objective

function be written in terms of semi-orthogonal basis matrices rather than projection operators

(Edelman et al., 1999; Liu et al., 2004). Since eigenvalues are invariant under cyclic permuta-

tions, (4) can be expressed equivalently as

ÊΣ(B1) = span{arg min (log |GT SR|2G| + log |HT SY |2H|)}

= span{arg min (log |GT SR|2G| + log |GT S−1
Y |2G|)},

where the minimization is over semi-orthogonal matricesG ∈ R
r×u1 and (G,H) is

an orthogonal matrix. We adapted Lippert’s sgmin 2·4·1 computer code (www-

math.mit.edu/lippert/sgmin.html) to perform this numerical optimization. That program offers

several optimization methods including Newton–Raphson iteration on Grassmann manifolds

with analytic first and numerical second derivatives of the objective function, and we have found

it to be stable and reliable. However, like most numerical methods for optimizing nonlinear ob-

jective functions, it requires good starting values to facilitate convergence and avoid any lurking

local optima. A standard way to deal with multiple local optima is to use Newton–Raphson iter-

ation, beginning with a
√

n consistent starting value. An estimator that is one Newton–Raphson

iteration step away from a
√

n consistent estimator may be sufficient because it is asymptot-
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ically equivalent to the maximum likelihood estimator (see, for example, Small et al., 2000),

although we prefer to always iterate until convergence. In the remainder of this section we de-

scribe methods for determining starting values. Equally important, our descriptions should also

serve to highlight additional structure of the envelope model. Because these are new methods

we describe them in the context of the full envelope, understanding that they apply equally to

partial envelopes by replacingSR andSY with SR|2 andSY |2. We assume thatu = dim{EΣ(B)}

is known, and we use the notation of (5) to describe the coordinate model for the full envelope

whenβ2 is nil:

Y = µ + ΓηX + ε, Σ = ΣE + ΣE⊥ = ΓΩΓT + Γ0Ω0Γ
T
0 , (6)

whereΩ ∈ R
u×u andΩ0 ∈ R

(r−u)×(r−u) are positive definite matrices that serve as coordinates

of ΣE andΣE⊥ relative to the basis matricesΓ for EΣ(B) and its orthogonal complement.

The starting values that we use are functions ofSR, SY and the ordinary least squares estima-

tor B of β. The asymptotic behavior of these statistics is summarizedin the following lemma.

Because they are standard moment estimators its proof seemsstraightforward and is omitted.

LEMMA 2. The sample matricesB, SY andSR are
√

n consistent estimators of their popu-

lation counterpartsβ, ΣY = Γ(Ω + η∆ηT )ΓT + ΣE⊥ andΣ = ΣE + ΣE⊥ .

We see from this lemma that the eigenvectors of bothΣY andΣ will be in eitherEΣ(B) or its

orthogonal complement, but from one of these matrices alonethere is no way to tell in which

subspace an eigenvector lies. However, we can tell by usingΣY andΣ together, which is the role

of the partially maximized log likelihood:

LEMMA 3. Under the envelope model (6),

EΣ(B) = span{arg min
V (Σ)

(log |GT ΣG| + log |GT Σ−1
Y G|)},
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whereminV (Σ) means that the minimum is taken over all subsets ofu eigenvectors ofΣ.

This lemma says that we can always findEΣ(B) in the population by minimizing the log likeli-

hood function over all subsets ofu eigenvectors ofΣ. Its proof is in Appendix 2. Based on this,

we determine our first set of starting valuesG0 as the best set ofu eigenvectors ofSR,

G0 = arg min
V (SR)

(log |GT SRG| + log |GT S−1
Y G|),

When the number of subsets is too large for this to be practical, we have used a sequential scheme

that involves starting with a randomly selected subset ofu eigenvectors ofSR and then updating

each eigenvector in the subset from among those remaining, continuing for two or three iterations

through the entire subset ofu eigenvectors.

The starting valueG0 works well when the signal is sufficiently large, but may perform poorly

when the signal is small orr is large. In those cases we have found it useful to updateG0 by using

the ordinary squares estimatorB of β and Krylov subspaces. First, projectB ontospan(G0) to

updateB, B0 = PG0
B, and then form the updated estimator ofΣ,

SR,0 = (U − FBT
0 )T (U − FBT

0 )/n,

whereU is then × r matrix with rows(Y − Ȳ )T andF is then × p matrix with rowsXT .

Next, letK0 = (B0, SR,0B0, S
2
R,0B0, . . .), where the column dimension ofK0 must be at least

u. The new starting valueG1 then consists of the firstu left singular vectors ofK0. The pop-

ulation rationale for the final step comes from Cook et al. (2007) who showed that there al-

ways exists an integerk, which is bounded by the number of eigenspaces ofΣ, such that

EΣ(B) = span(β,Σβ, . . . ,Σk−1β).

To illustrate the behaviour of the starting valueG1 we simulated data from model (6) with

r = 100 responses,p = 3 predictors and an envelope of dimensionu = 4. Let W1 ∈ R
r×u,
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W2 ∈ R
u×p andW3 ∈ R

u×u be matrices of independent uniform(0, 1) random variables. Then

the various matrices in the model were generated as followsΓ = W1(W
T
1 W1)

−1/2, η = W2,

Ω = 0·01×W3W
T
3 , Ω0 = 0·64×Ir−u, andµ = 0. The predictors were also generated as vec-

tors of independent uniform random variables, centered to have mean 0 in the sample. To gain

a feeling for the sizes of the various matrices involved in this computation, we take the expec-

tationsEw with respect to the matricesWj used in their construction:tr{Ew(ΣE)} ≈ 0·05,

tr{Ew(ΣE⊥)} ≈ 61 and tr{Ew(Γη∆ηT ΓT )} ≈ 0·33. From this we see that the variationΣE in

the material part ofY will tend to be small relative to the variationΣE⊥ in the immaterial part of

Y , while the signal is larger thanΣE but is still small relative toΣE⊥ . Recalling the discussion

of §2, this is the kind of setting in which envelopes can provide substantial gains in efficiency.

To illustrate the advantages of the proposed starting values, we generatedn = 1000 obser-

vations from the above simulation model and started iteration atG1 and a randomly selected

starting valueG∗ = Z(ZTZ)−1/2, whereZ ∈ R
r×u is a matrix of independent standard normal

random variables. The two starting values converged to the same solution, the maximum angle

betweenÊΣ(B) andEΣ(B) being only about6 degrees. However, starting atG∗ required about

twice the number of iterations to reach convergence as when starting atG1, and the log likelihood

increased about8, 000 units when starting fromG∗, but increased only3 units when starting from

G1. We repeated this numerical experiment withn = 300 observations, which is a fairly small

sample size in view of the number of responses. In that case, starting fromG1 converged to a

solution ÊΣ(B) that was only about12 degrees away the true subspaceEΣ(B). The algorithm

also converged when starting fromG∗, but it reached a local solution that was about87 degrees

away from the true subspace. Generally, our experience indicates that random starts are not very

helpful since they tend to reach local maxima.
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4. ASYMPTOTIC APPROXIMATIONS AND THE BOOTSTRAP

In this section we report a few of our results from a simulation study to investigate the accuracy

of the asymptotic varianceavar{n1/2 vec(β̂1)} presented in Proposition 1. We simulated data

from model (5) withr = 10, p = 10, p1 = 1, µ = 0 η1 = 1 and the elements ofΓ ∈ R
10×1

andβ2 ∈ R
10×9 selected once at the outset as independent standard normal variables. For each

sample, the elements inX ∈ R
10 were generated as0 or 10 each with probability1/2. The

covariance matrixΣ had one small eigenvalue 0·0006 with corresponding eigenvectorΓ, eight

intermediate eigenvalues between 0·40 and51, and one large eigenvalue of about986. The actual

variance ofβ̂1 was estimated as the sample variance of the estimatesβ̂
(k)
1 , k = 1, . . . , 200, from

200 replications of the simulation scenario for each sample size. We also estimated the sample

variance ofβ̂1 based on200 residual bootstrap samples from one of the200 replications. The

results are shown in Fig. 2 for the four values ofu that were used to construct the estimators. For

clarity, we letu0 denote the true value ofu. In the simulation modelu0 = 1.

The vertical axis of each of the four panels in Fig. 2 is the standard deviation for one element

of β̂1 and the horizontal axis is the sample size. The results shownin Fig. 2 illustrate the general

conclusions that we reached from our simulation study. BecauseΓ corresponds to a relatively

small eigenvalue, we expected that the asymptotic variability of the envelope estimator withu =

u0 = 1 would be much smaller than that of the standard estimator. That expectation is confirmed

by the results shown in the first panel of Fig. 2. That plot alsoshows thatavar(n1/2β̂1) can give

a very good approximation of the actual variance whenu = u0. The remaining panels in Fig. 2

show that the envelope estimator can still give substantialgains over the standard estimator when

u > u0. This typically happens when the estimated envelope avoidsthe larger eigenvalues of

Σ, as was the case in the simulation. Nevertheless, whenu > u0 the actual variability of the

envelope estimator can be substantially larger thanavar(n1/2β̂1). The residual bootstrap is a
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Fig. 2. Simulation results on the asymptotic standard deviation of an element of̂β1. The horizontal dashed line at about
0·04 marks the standard deviation of the standard model estimator and the dashed line just above the horizontal axis
marks the asymptotic standard deviation of the envelope model estimator. The solid line corresponds to the estimated
actual standard deviation of the envelope estimator and theline marked with◦ corresponds to the bootstrap standard

deviation.

reliable method for estimating the actual variance ofβ̂1, regardless of the relation betweenu and

u0.

We also studied how the error distribution might affect the performance of the envelope es-

timator. The simulation scenario was identical to that described for Fig. 2, except thatε was

generated asΣ1/2ǫ, where the elements ofǫ were independent and identically distributed stan-

dard normal,t6/(3/2)1/2 , 121/2{U(0, 1) − 0 · 5} or (χ2
4 − 4)/

√
8 random variables. The results

shown in Fig. 3 indicate that the performance of the envelopeestimator is quite robust.

5. EXAMPLE

This section is devoted to an example that illustrates aspects of partial envelopes. The dataset

is from Johnson & Wichern (2007) and is on properties of pulp fibers and the paper made from
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Fig. 3. Simulation results for four error distributions. The contents of the plots are as described for Fig. 2, except the
standard deviation of the standard model estimator is not shown.

them. The reason for choosing this example is its richness reflecting multiple results within the

same context. The data has 62 measurements on four paper properties: breaking length, elastic

modulus, stress at failure and burst strength. The predictors are three properties of fiber: arith-

metic fiber length, long fiber fraction and fine fiber fraction.

First we fitted an envelope model to all the predictors. Likelihood ratio testing suggested

u = 2. The ratio of the asymptotic standard deviation from the standard model to that from the

envelope model was computed for each element inβ, the range is 0·98 to 1·10, with an average

of 1·03. This suggests that we do not gain much efficiency by fittingthe envelope. The reason is

apparent from the estimated structure ofΣ: the eigenvalues of̂ΣE are 4·9532 and 0·0143 while

the eigenvalues for̂ΣE⊥ are 0·1007 and 0·0060. So the part ofY that is material toX is no less

variable than the immaterial part, and not much efficiency isgained from envelopingβ.
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Next we fitted the partial envelope models to each column ofβ. We started with the fine

fiber fraction. Likelihood ratio testing selectedu1 = 1. The asymptotic standard deviation ratios

between the standard model and the partial envelope model for the elements in the third column

of β are 63·59, 6·79, 10·40 and 7·49. Substantial reduction is thus achieved when attention is

focused on fine fiber fraction since the part ofY that is material to this predictor is much less

variable than the immaterial part. A close look atΣ̂ reveals that̂ΣE1
has eigenvalue 0·0149 while

Σ̂E⊥
1

has eigenvalues 11·0981, 0·1008 and 0·0070.

As we indicated in Section 2·4·2, the actual variance can be estimated by the bootstrap vari-

ance. A simulation with 200 bootstrap replicates was run to investigate the actual variance ofβ̂1.

Under the partial envelope model, although the bootstrap standard deviations for the elements

in β̂1 are 9·70, 2·29, 2·57 and 1·49 times as large as their asymptotic counterparts, they arestill

6·56, 2·97, 4·05 and 5·03 times the size of the asymptotic standard deviations for the standard

model.

Next the partial envelope was fitted to arithmetic length andwe inferred thatu1 = 0. This

means that with the other two predictors present, paper properties are invariant to the change in

arithmetic length. The test of the hypothesisu1 = 0 under the partial envelope model is equiva-

lent to the F-test of the hypothesisβ1 = 0 under the standard model.

Finally, we applied the partial envelope model to the long fiber fraction. The estimated en-

velope had dimension two and it was only a small angle apart from the envelope model we

fitted in the first place. The standard deviation ratios between the envelope model and par-

tial envelope model for the second column ofβ are 0·9985, 0·9994, 0·9980 and 1·0046. This

illustrates our statement in Proposition 2 that whenEΣ(B) = EΣ(B1), the partial envelope

model cannot outperform the envelope model. By Lemma 1,EΣ(B) can be decomposed into

EΣ(B1) + EΣ(B2) + EΣ(B3), whereBi represents the space spanned by thei-th column ofβ.
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Recall the dimensions ofEΣ(B), EΣ(B1), EΣ(B2) andEΣ(B3) were inferred to be 2, 0, 2 and

1 respectively. ThenEΣ(B3) is forced to lie withinEΣ(B2), and the angle between the sample

version of the two is around 8 degrees.

This example illustrates situations in which we will or willnot expect to get significant reduc-

tion from fitting the partial envelope model. Basically, when Σ̂E⊥
1

has at least one large eigen-

value, massive reduction in variance is a typical result from applying the partial envelope model.

But if a large eigenvalue is associated withΣ̂E1
, we may achieve no noticeable reduction. In the

application context, we found that partial envelopes significantly reduced the standard errors of

the coefficients of fine fiber fraction.

While envelopes convert equivariantly under symmetric linear transformations of the response

that commute withΣ, they are not equivariant for all linear transformations (Cook et al., 2010).

Similarly, a partial envelope may not convert equivariantly under scale changes of the response

and for this reason it may be advantageous to choose commensurate scales. Nevertheless, as il-

lustrated in this example, useful results are often obtained using the original measurement scales.
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APPENDIX 1: MAXIMUM LIKELIHOOD ESTIMATORS

As described in§3·2, EΣ(B1) is the same as the full envelope in the modelR̂Y |2 = β1R̂1|2 + ε. Fol-

lowing the derivation in§4·2 of Cook et al. (2010) with theirY andX replaced bŷRY |2 andR̂1|2, ÊΣ(B1)
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can be obtained by minimizing the following function overS ∈ G(u1, r),

log |PSSR|2PS |0 + log |QSSY |2QS |0, (A1)

whereSR|2 = UT QF2
QF∗QF2

U/n, SY |2 = UT QF2
U/n, F ∗ = QF2

F1/n, F1 is then × p1 matrix with

rowsXT
1 , F2 is then × p2 matrix with rowsXT

2 andU is then × r matrix with rows(Y − Ȳ )T .

After gettingP̂E1
from optimizing (A1), β̂1 = P̂E1

β̃1, whereβ̃1 is the ordinary maximum likelihood

estimator of the coefficients forX1. Let Γ̂ be a semi-orthogonal basis for̂EΣ(B1). Then η̂ = Γ̂T β̂1,

Ω̂ = Γ̂T SR|2Γ̂, Ω̂0 = Γ̂T
0 SY |2Γ̂0, Σ̂1 = Γ̂Ω̂Γ̂T and Σ̂2 = Γ̂0Ω̂0Γ̂

T
0 . Having derivedβ̂1, the maximum

likelihood estimator ofβ2 is β̂2 = (U − F1β̂
T
1 )T F2(F

T
2 F2)

−1. Substitute all the above estimators into

the log likelihood function, with a fixed dimension of the enveloped, the maximized log likelihood is

equal to

L̂(d) = −(nr/2){1 + log(2π)} − (n/2) log |P̂E1
SR|2P̂E1

|0 − (n/2) log |Q̂E1
SY |2Q̂E1

|0.

APPENDIX 2: PROOFS

Proof of Proposition 1.Because of the over-parameterization in (5), we use Proposition 4·1 in Shapiro

(1986) to derive the asymptotic distributions. For simplicity, we denotevec(β2), vec(η), vec(Γ), vech(Ω)

and vech(Ω0) as φ0, φ1, φ2, φ3 and φ4, respectively, and then we combine them into the vector

φ = (φT
0 , φT

1 , φT
2 , φT

3 , φT
4 )T . Here vec and vech are the “vector” and “vector-half” operators defined by

Henderson & Searle (1979). Let

h(φ) =





vec(β2)

vec(β1)

vech(Σ)




=





vec(β2)

vec(Γη)

vech(ΓΩΓT + Γ0Ω0Γ
T
0 )




≡





h0(φ)

h1(φ)

h2(φ)




.
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Then n1/2(ĥ − h) converges in distribution toN(0, S0), whereS0 = H(HT JH)†HT and H =

(∂hi/∂φT
j ) is the gradient matrix (i = 0, 1, 2; j = 0, 1, 2, 3, 4),

H =





Irp2
0 0 0 0

0 Ip1
⊗ Γ ηT ⊗ Γ0 0 0

0 0 2Cr(ΓΩ ⊗ Γ0 − Γ ⊗ Γ0Ω0) Cr(Γ ⊗ Γ)Eu1
Cr(Γ0 ⊗ Γ0)E(r−u1)




.

The Fisher information for{vec(β2)
T , vec(β1)

T , vech(Σ)T }T in the standard model is

J =





∆22 ⊗ Σ−1 ∆21 ⊗ Σ−1 0

∆12 ⊗ Σ−1 ∆11 ⊗ Σ−1 0

0 0 1
2ET

r (Σ−1 ⊗ Σ−1)Er




,

whereCr ∈ R
r(r+1)/2×r2

andEr ∈ R
r2×r(r+1)/2 provide the contraction and expansion matrices for

the vec and vech operators: for any symmetricr × r matrix A, vech(A) = Crvec(A) and vec(A) =

Ervech(A).

The asymptotic variances for̂β1 and β̂2 are the first two diagonal blocks ofS0. After some matrix

multiplication, we have

avar{n1/2 vec(β̂1)} = ∆−1
1|2 ⊗ ΣE1

+ (ηT ⊗ Γ0)M
−1(∆1|2)(η ⊗ ΓT

0 ),

avar{n1/2 vec(β̂2)} = {∆2|1 ⊗ Σ−1 − (∆21η
T ⊗ Γ0Ω

−1
0 )M−1(∆11)(η∆12 ⊗ Ω−1

0 ΓT
0 )}−1. �

Proof of Proposition 2.When EΣ(B) = R
r, the full envelope model is the same as the standard

multivariate linear model. Thenavar{n1/2 vec(β̂1e)} = ∆−1
22 ⊗ Σ, which is the upper leftrp2 × rp2

block of J−1. From the proof of Proposition 1,avar{n1/2 vec(β̂1)} is the upper leftrp2 × rp2 block

of H(HT JH)†HT . SinceJ
1

2 {J−1 − H(HT JH)†HT }J 1

2 = Q
J

1

2 H
≥ 0, J−1 ≥ H(HT JH)†HT . So

avar{n1/2 vec(β̂1e)} ≥ avar{n1/2 vec(β̂1)}.

If EΣ(B) = EΣ(B1), the full and partial envelope models have the same envelope, and then the

parametersΓ, Γ0, Ω, Ω0 are the same in both models. We writeη as (η1, η2). Since vec(β1) =
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[(Ip1
, 0) ⊗ Ir] vec(β),

avar{n1/2 vec(β̂1e)} = (Ip1
, 0) ⊗ Iravar[n1/2 vec(β̂)](Ip1

, 0)T ⊗ Ir

= ∆−1
11 ⊗ ΓΩΓT + (ηT

1 ⊗ Γ0)M
−1
(∆)(η1 ⊗ ΓT

0 ),

whereM(∆) = η∆ηT ⊗ Ω−1
0 + Ω ⊗ Ω−1

0 + Ω−1 ⊗ Ω0 − 2Iu ⊗ Ir−u. And

avar{n1/2 vec(β̂1)} = ∆−1
11 ⊗ ΓΩΓT + (ηT

1 ⊗ Γ0)M
−1
∆11

(η1 ⊗ ΓT
0 ),

where M∆11
= η1∆11η

T
1 ⊗ Ω−1

0 + Ω ⊗ Ω−1
0 + Ω−1 ⊗ Ω0 − 2Iu1

⊗ Ir−u1
. As stated in§3·3, we as-

sume∆12 = 0 without loss of generality. Thenη∆ηT = η1∆11η
T
1 + η2∆22η

T
2 ≥ η1∆11η

T
1 , so we have

avar{n1/2 vec(β̂1)} ≥ avar{n1/2 vec(β̂1e)} because the other terms are the same. �

Proof of Lemma 3.Let Γ be a semi-orthogonal basis forEΣ(B), and letG be anr × u semi-orthogonal

matrix withG0 a basis of the orthogonal complement of its span. Then we have

log |GT ΣG| + log |GT Σ−1
Y G| = log |GT ΣG| + log |GT

0 ΣY G0| + log |Σ−1
Y |.

SinceΣY = Σ + Γη∆ηT ΓT ,

log |GT ΣG| + log |GT
0 ΣY G0|

= log |GT ΣG| + log |GT
0 ΣG0| + log |Ir−u + GT

0 Γη∆− 1

2 (GT
0 ΣGT

0 )−1∆− 1

2 ηT ΓT G0|

= log |Σ| + log |Ir−u + GT
0 Γη∆− 1

2 (GT
0 ΣG0)

−1∆− 1

2 ηT ΓT G0|.

The objective function takes its minimum atspan(G) = span(Γ), because it makes the second term zero,

otherwise that term will be positive. AsΓ is a subset ofu eigenvectors ofΣ, we can search all the subsets

of u eigenvectors ofΣ to get the minima. �
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