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SUMMARY

We introduce the partial envelope model, which leads to aipanious method for multi-
variate linear regression when some of the predictors aspadial interest. It has the potential
to achieve massive efficiency gains compared to the stamdadg! in the estimation of the co-
efficients for the selected predictors. The partial envelomdel is a variation on the envelope
model proposed by Cook et al. (2010) but, as it focuses ongbdhte predictors, it has looser
restrictions and can further improve efficiency.

We develop maximum likelihood estimation for the partialelope model and discuss appli-

cation of the bootstrap. An example is provided to illugrsdme of its operating characteristics.

Some key word®imension reduction, Envelope model, Grassmann marsfétéducing subspaces.

1. INTRODUCTION

Introduced recently by Cook et al. (2010), enveloping is\a approach to multivariate anal-

ysis that has the potential to produce very substantiakgaiefficiency. Their development was
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in terms of the standard multivariate linear model

Y =p+ X +e, (1)

wherep, € R", the random responseé € R", the fixed predictor vectoX € RP is centered to
have sample mean 0, and the error veeter N(0,3). They demonstrated that an envelope
estimator of the unknown coefficient matyixe R"*P has the potential to achieve massive gains
in efficiency relative to the standard estimatogpaind that these gains will be passed on to other
tasks like prediction. In this article we propose an extamsif envelopes called partial envelopes.
Partial envelopes can be focused on selected columpsaofd can achieve gains in efficiency
beyond those possible by using an envelope. Additiondlly envelope estimator reduces to the
standard estimator when< p andg is of rankr, so there is no possibility for efficiency gains
in this setting. Partial envelopes remove this restrigtipoviding gains even when< p.

In the next section we review envelopes and envelope estimaecause this is a new area,
our goal is to provide intuition and insight rather than tachl details. Additional results for

envelopes will be discussed during our extension to patiaélopes given ig3.

2. ENVELOPES

It can happen in the context of model (1) that some linear d¢oations ofY” are immaterial to
the regression because their distribution does not depedd, avhile other linear combinations
of Y do depend orX and are thus material to the regression. In effect, envelepparate the
material and immaterial parts &f, and thereby allow for gains in efficiency.

Suppose that we can find a subsp&ce R" so that

QsY | X ~QsY, QsY LPsY | X, 2)
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3

where ~"means identically distributedy,., projects onto the subspace indicated by its argument
and@ = I, — P. For anyS with those propertiesPsY carries all of the material information
and perhaps some immaterial information, wifjleY carries just immaterial information. Let
B = span(3). Then (2) holds ifand only iB C S and¥ = ¥s + Y1, whereXs = var(PsY’)
andXs. = var(QsY) (Cook et al., 2010). Howeve§ is not necessarily unique because there
may be infinitely many subspaces that satisfy these rektioa particular problem. A reducing
subspaceS of ¥ has the property thatS C S and S+ C S* (see, for example, Conway,
1990). Cook et al. (2010) showed thatis a reducing subspace Bfif and only if ¥ = Xs +
Ys.. This enabled them to address the uniqueness issue anc ehatiPsY contains only
material information by defining the minimal subspace to e intersection of all reducing
subspaces af that containB, which is called thez-envelope of8 and denoted a8y (B). Let

u = dim{&x(B)}. Then

BCé&n(B), ¥=X¢+Xe1, 3)

where&x;(B) is shortened t& for subscripts. These relationships establish a uniquelda:
tween the coefficient matrig and the covariance matriX of (1), and it is this link that has the
potential to produce gains in the efficiency of estimateg.ofn particular, Cook et al. (2010)
demonstrated that these gains will be massive whgn contains at least one eigenvalue that
is substantially larger than the largest eigenvalu& gf so that in effecty” contains redundant
immaterial information. Model (1) will be called the standlanodel when (3) is not imposed
and called the envelope model when (3) is imposed.

The left-hand panel of Fig. 1 gives a schematic illustratbenvelope estimation in a regres-
sion withr = 2 responses and a single binary predictoindicating one of two bivariate normal

populations represented by ellipses that cover, say, 9%%eofdistributions. Cook et al. (2010)
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Fig. 1. Variance reduction by envelope estimation. Leftchpanel: Schematic representation of en-
velope estimation. Right-hand panel: Wheat protein dath paints marked as high protesnand
low proteino.

showed thaty, (B) is characterized by the identifi(B) = Zle P;B, wherek < r andP; is
the projection onto thg-th eigenspace of. WhenX has distinct eigenvalueSs; (B) could be
spanned by any of th&F possible subsets of its eigenvectors. In the left-handlparteg. 1, the
Y-envelope of = (8;) = E(Y | X =1) — E(Y | X = 0) is parallel to the second eigenvector
of ¥, and its orthogonal complement, which ties in with the imenial part ofY’, is parallel to
the first eigenvector. This setup meets the population requénts (3). Standard inference on the
second coordinaté, of 3 is based on marginal data obtained by projecting each dataquto
the Y; axis, represented by the line segment A from a represeatdéita point marked with an
ex, giving rise to the usual two-sample inference methausohtrast, for envelope inference
on (3, each data point is first projected orfig(5) and then projected onto the horizontal axis,
represented in the plot by the two line segments marked Byitniray this process for many data
points from each population, it can be seen that the two écapidistributions of the projected
data from the standard method will have much larger vanati@an the empirical distributions
for the envelope method. The envelafyg(3) is estimated in practice and so will have a degree

of wobble that spreads the distribution of the data progkaleng routes represented by path B.
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193 The asymptotic approximations of the variance of the emp&lestimator ofs take this wobble
194 into account.
195 For a numerical illustration of this phenomenon, the rigatd panel of Fig. 1 shows a plot
196 of r = 2 responses, the logarithms of near infrared reflectanceaiavelengths in the range
197 1680-2310 nm, measured on samples from two populationsoohgrwheat with low and high
198 protein contentZ4 and 26 samples, respectively). The plotted points resemble thersatic
199 representation in the left-hand panel of Fig. 1, and corsatij an envelope analysis can be
200 expected to yield more precise results than the standalgsimarhe standard estimate 6f is
201 -2-1 with a standard error of-8. In contrast, the envelope estimatedfis -4-7 with a standard
202 error of 046. The standard and envelope analyse${are related similarly.
203 While &x(B) is necessarily spanned by some subset of the eigenvectarstioé maximum
204 likelihood estimator o€y, (B) shown in the right-hand panel of Fig. 1 is not spanned by aetubs
205 of the eigenvectors of the usual pooled estimatar. of his happens because the likelihood will
206 balance the mean and variance conditions in (3), leading &wen the sample eigenvectors.
207 If » < p andp has full row rankr, then3 = R". Consequentl\s.(B) = R", the envelope
208 estimator of3 reduces to the standard estimatorffand enveloping offers no gains. When
209 r > pitis still possible to havés;(B) = R" so again enveloping offers no gains over the standard
210 analysis. In these and other situations the partial enesla®veloped in the next section can
211 provide gains over both the standard and envelope estimatgr
212
213 3. PARTIAL ENVELOPES
214
3-1. Definition

215

A subset of the predictors is often of special interest intivauliate regression, particularly
710 when some predictors correspond to treatments while thairémg predictors are included to
217
218

219
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account for heterogeneity among the experimental unitsiaPanvelopes are designed to focus
consideration on the coefficients corresponding to theipi@d of interest.

Partition X into to sets of predictors{; € RP* and Xs € RPY, p; +ps = p, p1 < r, and
conformably partition the columns ¢f into 8; and 3,. Then model (1) can be rewritten as
Y = u+ 61 X1 + B X5 + €, where; corresponds to the coefficients of interest. We can now
consider theX-envelope for3; = span(3;), leaving 32 as an unconstrained parameter. This
leads to the parametric structue C Ex(By) andX = Pg, X Pe, + Qg, XQ¢,, Where Pe, de-
notes the projection ont (B, ), which is called the partial envelope Bi. This is the same as
the envelope structure, except the enveloping is relativg tinstead of the larger spad® For
emphasis we will henceforth refer &,(5) as the full envelope. Becaugh C B, the partial
envelope is contained in the full envelo@;(B;) C &x(B), which allows the partial envelope
to offer gains that may not be possible with the full envelope

To provide some insights into this setting, Igt|, denote the population residuals from the
multivariate linear regression df; on X5. Then, recalling that we have requiréfito be cen-
tered, the linear model can be re-parameterized as p + (1 Ry)p + 55 X2 + €, where3; is
a linear combination off; and 2. Next, let Ry, = Y — pu — 35 X5, the population residuals
from the regression oY on X, alone. We can now write a linear model involviry alone:
Ry = B1 )2 + €. The partial envelopé€s(5,) is the same as the full envelope By in the
regression ofi?y, on R;j5. In other words, we can interpret partial envelopes in teofnthe
motivating conditions (2) applied to the regression'qf; on R, . In particular, the schematic
representation of Fig. 1 also serves for partial envelope®interpretingY; andY; as the two
coordinates of?y |, and reinterpreting the binary predictor Ag,. The classical added variable
plot (Cook & Weisberg, 1982) is simply a plot of the samplesian Ry|2 of Ry, versus the

sample versiom, |, of Ry,



289 3:2. Maximum likelihood estimators

290 Because we have centered the predictors, the maximumhidaali estimator of: is simply
291 fi =Y. The estimators of the remaining parameters require thmastr of £x(B;). Let Sy,
292 denote the sample covariance matrix}ﬁﬁ‘z, let Sy, denote the sample covariance matrix of
293 the residual vectors from the regressiontjf, on R, and let| Al denote the product of the
294 non-zero eigenvalues of the square mattix 0. Then, as shown in Appendix 1, the maximum
295 likelihood estimator ofx;(3;) for a fixed dimension:; is

296 R

007 Es(By) = arg SE&L?’T){log |PsSgj2Pslo + log |QsSy2Qslo} (4)
298 whereG(uy,r) denotes the Grassmann manifold of dimensignn R”. The Grassmann man-
299 ifold G(uy,7) is the set of alki;-dimensional subspaces &'". The maximum likelihood es-
300 timator of the full envelopes,(B) is obtained using the objective function on the right hand
301 side of (4) excepb); is replaced with the sample covariance maffjxof the residual vectors
302 from the fit of the standard mode$y |, is replaced with the sample covariance matix of
303 the observed response vectarsis replaced with: = dim{&x(B)} andS is reinterpreted as an
304 argument representing the full envelope (Cook et al., 200@)see from this result thas; ()
305 is the same as the estimator of the full envelope appliedénctintext of the working model
306 Rypp = BiRyjp +e.

307 The maximum likelihood estimatg; of 3 is the projection ontds;(B;) of the estimator
308 of 3, from the standard model. The maximum likelihood estimatpof 3 is the coefficient
309 matrix from the ordinary least squares fit of the residials ¥ — 3, X; on Xs. If X; and X5
310 are orthogonal them, reduces to the maximum likelihood estimator ®f from the standard
311

312

313

314

315
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model. The maximum likelihood estimatirof X is

S = P, SpjaPe, + Qe, SypQe,

where Pe, denotes the projection operator % (B1), S¢, = Pe, Spjo P, is the estimated co-
variance matrix for the material part &f and ig% = le Sy|2le is the estimated covariance

matrix for the immaterial part of".

3-3.  Asymptotic distributions

In this section we give the asymptotic distributionSTdf@([?j —B4), j = 1,2. The results
are conveniently expressed in terms of a coordinate vexsfiohe partial envelope model. Let
I' € R"™" pe a semi-orthogonal matriX,’ T = I,,,, whose columns form a basis 6 (13;),
let (T',T'p) € R™*" be an orthogonal matrix and lgtc R***P1 be the coordinates ¢f; in terms

of the basis matrix'. Then
Y =p+ Xy + 6oXot+e, T=3g + 31 = ror? + reQere, (5)

whereQ € R“1*u1 andQ, € R("—u1)x(r—u1) gre positive definite matrices that serve as coordi-
nates ofX¢, andzgll relative to the basis matricé&sfor £ (B, ) and its orthogonal complement.
In preparation for the limiting distributions @f and g, let A denote the limit as the sample
sizen — oo of the sample covariance matrix &f, and partitionA = (A ;) according to the
partitioning of X, j, k = 1,2. Let Ay = Ayg — A12A2‘21A21, with Ay, defined similarly by
interchanging the subscripts. The matfix,, is constructed in the same way as the covariance
matrix for the conditional distribution oX; | X2 whenX is normally distributed, although here

X is fixed. ForA € RP1*P1 define

M(A) =nAn" @ Q' + Qe Qg + Q7 @ Qg — 2Ly, (r—uy)-
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Let 51(I), 51(n) and 31 (3,) denote the maximum likelihood estimatorsfwhenl’,  and 3,
are known. If a random vectar,, has the property that'/?(w, — «) converges in distribution
to aN (0, A) then we will describe the asymptotic variancewgf asavar(n'/?w,) = A. The
limiting distributions of3; and 3, are stated in the following proposition; justification ive

in Appendix 2.

PrOPOSITIONL. Under model (5)5'/2{ vec(;) — vec(f;)}, j = 1,2, converge in distri-

bution to normal random vectors with mean 0 and covarianc&ines

avar{n'/? vec(3)} = Al_é @ +(nF ® FO)M_I(AM)(W ®I7),
= avar[n'/? vec{ (1 (I }] + avar[n'/? vec{Qg, 51 (n) };
avar{n1/2 vec(ﬁg)} ={Ay1 ® > (Aot ® FoQo_l)M_l(All)(UAm ® Qo_lrg)}_17

= {2 T = (A ® ToQ ' T avar{f1(2) }(A12 ® ToQ 'TH)}

whereavar[n!/2 vec{,(I')}] = Al_é ® D¢, and avar[n'/2 vec{Qg, 41(n)}] is defined implic-

itly.

Several comments on this proposition are in order. We firesider regressions in which
Ao = 0. This will arise whenX; and X, are asymptotically uncorrelated or have been cho-
sen by design to be orthogonal. Becausés non-random, this condition can always be forced
without an inferential cost by replacing; with R1|2. As discussed i33-1, this replacement
alters the definition ofg; but does not alter the parameter of inter@st When A, = 0,
avar{n'/2 vec(f32)} = Ay ® £, which is the same as the asymptotic covariance matrix for
the estimator ofj, from the standard model. Angvar{n'/2vec(5;)} reduces to the asymp-
totic covariance matrix for the full envelope estimatorgfin the modelf%yp =1 X1 +¢e. No

longer requiring thatA;» = 0, we can carry out asymptotic inference fér based on a par-
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tial envelope by using the full envelope 6 in the modelRy 5 = 1 Ryjs + . If we choose
B = B,50X1 = X, By is nilandA;p = A, thenavar{n'/2 vec(5;)} reduces to the asymptotic
covariance matrix for the full envelope estimatordofierived by Cook et al. (2010).

We next turn to a comparison of the partial envelope estimatoof 5; and the full en-
velope estimator3,., where the subscript added to a statistic means computation based
on the full envelope. The next proposition provides a coiispar of avar{n'/? vec([?l)} and

avar{n!/2 vec(f1)} at two extremes; justification is provided in Appendix 2.

PROPOSITION2. If Ex(B) =R” then avar{n'/2vec(f;)} < avar{n'/?vec(fic)}. If

Ex(B) = Ex(By) thenavar{n'/2 vec(3,)} > avar{n'/2 vec(f1c)}.

At one extreme, this proposition tells us that when the filledope iSR", which is the situa-
tion that motivated this work, the covariance matrix for gfagtial envelope estimator will never
be greater than the full envelope estimator, which is theesasthe standard estimator. At the
other extreme, if the full and partial envelopes are the sdinem the partial envelope estimator
of 5, will never do better than the full envelope estimator of tame quantity. The following

lemma will be helpful in developing some intuition for thigreclusion.
LEMMA 1. LetBy = span(fz). ThenEx(B) = Ex(B) + Ex(B2).

This lemma says that the full envelope is the sum of the partianvelopes for3; and ;.
The dimension ofx(B;) N Ex(B2) can vary from 0 to the minimum of the two. Bét(B) =
Ex(By) if and only if £x(B2) C Ex(B1). This means thafx(B2) can contain information on
Es(B1). This information is not used by the partial envelope, buised by the full envelope and
consequently the full envelope estimator may have the smadlymptotic variance.

Beyond the conclusions in Proposition 2, we were unable weldp practically ponderable

conditions for characterizing when the asymptotic varaaotthe partial envelope estimator of
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(1 is less than that of the full envelope estimatoipf A straightforward course in practice is to

simply compute and compare the asymptotic variances.

3-4. Selecting dimension for envelopes

The dimension; of the partial envelope is essentially a model selectioampater, and stan-
dard methods can be used to aid in its choice. We briefly destno methods in this section.
The first is based on sequential hypothesis testing.

The hypothesisi;; = d, d < pi, can be tested by using the likelihood ratio statistiel) =

2{L(r) — L(d)}, where
L(d) = —(nr/2){1 + log(2m)} — (n/2)log | Pe, Sgi2 Pe, lo — (n/2) log |Qe, Sy12Qz, o

denotes the maximum value of the likelihood for the partialedope model withu; = d (See

Appendix Al). Whend = r the partial envelope model reduces to the standard mode¢hasd
E(T) = —(nr/2){1 +log(27)} — (n/2)log |Sk|

is the value of the maximized log likelihood for the standarddel. Following standard likeli-
hood theory, under the null hypothedi&d) is distributed asymptotically as a chi-squared random
variable withp, (r — d) degrees of freedom. The test statisti/) can be used in a sequential
scheme to choose;: Starting withd = 0 and using a common test level, choaseto be the
first hypothesized value that is not rejected.

The dimension of the partial envelope could also be detexthby using an information cri-

terion:

i = argmin{—2L(d) + h(n)g(d)},
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whereh(n) is equal tologn for Bayes information criterion and is equal 2ofor Akaike’s

information criterion, and(d) is the number of real parameters in the partial envelope mode
g(d)=r+d(r—d)+dpy +rps+dd+1)/2+ (r—d)(r—d+1)/2.

Subtractingg(d) from the number of parameters+ pr + r(r + 1)/2 for the standard model

gives the degrees of freedom f&fd) mentioned previously.

3:5. Computing
Computational algorithms for Grassmann optimization dgjly require that the objective
function be written in terms of semi-orthogonal basis neasirather than projection operators
(Edelman et al., 1999; Liu et al., 2004). Since eigenvaluesrwvariant under cyclic permuta-

tions, (4) can be expressed equivalently as

Es(B1) = span{arg min (log ]GTSR|2G\ + log ]HTSYBH])}

= span{arg min (log |GTSR|2G| + log |GTS;|12G|)},

where the minimization is over semi-orthogonal matricésc R™*"1 and (G, H) is
an orthogonal matrix. We adapted Lippert's _min 241 computer code (www-
math.mit.edu/lippert/sgmin.html) to perform this nuneatioptimization. That program offers
several optimization methods including Newton—Raphseraiton on Grassmann manifolds
with analytic first and numerical second derivatives of thgctive function, and we have found
it to be stable and reliable. However, like most numericalhods for optimizing nonlinear ob-
jective functions, it requires good starting values tolfte convergence and avoid any lurking
local optima. A standard way to deal with multiple local opdi is to use Newton—Raphson iter-
ation, beginning with a/n consistent starting value. An estimator that is one NewRaphson

iteration step away from gn consistent estimator may be sufficient because it is asympto
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ically equivalent to the maximum likelihood estimator (sém example, Small et al., 2000),
although we prefer to always iterate until convergencehtnremainder of this section we de-
scribe methods for determining starting values. Equallgdrtant, our descriptions should also
serve to highlight additional structure of the envelope etoBecause these are hew methods
we describe them in the context of the full envelope, undadihg that they apply equally to
partial envelopes by replacirfgy andSy with Sgj, andSy 5. We assume that = dim{€s(B)}

is known, and we use the notation of (5) to describe the coatdimodel for the full envelope

whengs is nil:
Y=p+InX+4e Y=3¢+ e =TT +ToQol'7, (6)

whereQ € R*** andQ), € R"—%x*(r—) gre positive definite matrices that serve as coordinates
of ¥¢ andX, . relative to the basis matricésfor £x(B) and its orthogonal complement.

The starting values that we use are function$ gf Sy and the ordinary least squares estima-
tor B of 5. The asymptotic behavior of these statistics is summatizeke following lemma.

Because they are standard moment estimators its proof sseaightforward and is omitted.

LEMMA 2. The sample matriceB, Sy and Sy are \/n consistent estimators of their popu-

lation counterparts, Xy = T'(Q + nAn)TT + X.1 andY = Xg + X0

We see from this lemma that the eigenvectors of Bothand > will be in either&x(B) or its
orthogonal complement, but from one of these matrices aloge is no way to tell in which
subspace an eigenvector lies. However, we can tell by dsjngndX. together, which is the role

of the partially maximized log likelihood:

LEMMA 3. Under the envelope model (6),

Ex(B) = span{arg g&rﬁ (log |GTSG| +log |GT231G))},
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625 whereminy, sy means that the minimum is taken over all subsetse&ifjenvectors of..
626

This lemma says that we can always fifig B) in the population by minimizing the log likeli-
627

hood function over all subsets afeigenvectors of. Its proof is in Appendix 2. Based on this,
628

we determine our first set of starting valugg as the best set of eigenvectors oby,
629
630 Go = arg min_(log |GT SgG| + log |GT S;*G),

V(Sr)

631

When the number of subsets is too large for this to be prdctieshave used a sequential scheme
632

that involves starting with a randomly selected subset @fenvectors ofz and then updating
633

each eigenvector in the subset from among those remaironginaing for two or three iterations
634

through the entire subset afeigenvectors.
635

The starting valu€:, works well when the signal is sufficiently large, but may pemi poorly

636

when the signal is small aris large. In those cases we have found it useful to updatey using
637

the ordinary squares estimatBrof 5 and Krylov subspaces. First, projeBtontospan(Gp) to
638

updateB, By = Pg, B, and then form the updated estimato2of
639
640 Spo = (U — FBOYT(U - FBY)/n,
641 )

whereU is then x r matrix with rows (Y — Y)? and F' is then x p matrix with rows X7
642

Next, let Ky = (Bo, Sr,0Bo, 5?%70307 ...), where the column dimension &f, must be at least
643

u. The new starting valué’; then consists of the first left singular vectors of<,. The pop-
644

ulation rationale for the final step comes from Cook et al0@Owho showed that there al-
645

ways exists an integet, which is bounded by the number of eigenspacespfuch that
646

Ex(B) = span(B3,24,...,5F10).
647

To illustrate the behaviour of the starting valGe we simulated data from model (6) with

648

r = 100 responsesp = 3 predictors and an envelope of dimension= 4. Let W; € R"™*%,
649
650

651
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Wy € R**P andWs3 € R*** be matrices of independent uniforif, 1) random variables. Then
the various matrices in the model were generated as followsIV, (W{W,)~1/2, n = Wy,
Q=001 ><W3W§F, Qo =064 xI,_,, andy = 0. The predictors were also generated as vec-
tors of independent uniform random variables, centerecate mean 0 in the sample. To gain
a feeling for the sizes of the various matrices involved is tomputation, we take the expec-
tations E,, with respect to the matriced’; used in their constructiontr{E,(X¢)} ~ 0-05,
tr{E,(Xe1)} ~ 61 and tr{E,, (I'nAnTTT)} ~ 0-33. From this we see that the variatidig in
the material part ot” will tend to be small relative to the variatidfc . in the immaterial part of
Y, while the signal is larger thaB¢ but is still small relative td-, . . Recalling the discussion
of §2, this is the kind of setting in which envelopes can providlessantial gains in efficiency.

To illustrate the advantages of the proposed starting sakve generated = 1000 obser-
vations from the above simulation model and started it@na¢it G; and a randomly selected
starting valueG* = Z(Z7Z)~1/2, whereZ € R™** is a matrix of independent standard normal
random variables. The two starting values converged todheessolution, the maximum angle
betweengg(B) and&sx(B) being only about degrees. However, starting @ required about
twice the number of iterations to reach convergence as wheimg atG;, and the log likelihood
increased abow, 000 units when starting fron&*, but increased onl§ units when starting from
GG1. We repeated this numerical experiment with= 300 observations, which is a fairly small
sample size in view of the number of responses. In that cteing from G, converged to a
solution 52(13) that was only about2 degrees away the true subspageg3). The algorithm
also converged when starting fro@, but it reached a local solution that was ab8uidegrees
away from the true subspace. Generally, our experiencedteli that random starts are not very

helpful since they tend to reach local maxima.
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4. ASYMPTOTIC APPROXIMATIONS AND THE BOOTSTRAP

In this section we report a few of our results from a simutastudy to investigate the accuracy
of the asymptotic variancevar{n'/2 vec((;)} presented in Proposition 1. We simulated data
from model (5) withr = 10, p =10, p; =1, u =0 n; = 1 and the elements df ¢ R!0*!
and 3, € R10%9 selected once at the outset as independent standard narisddles. For each
sample, the elements i € R'° were generated a or 10 each with probabilityl /2. The
covariance matrix. had one small eigenvalue0®06 with corresponding eigenvectbr eight
intermediate eigenvalues betweeA®ands1, and one large eigenvalue of ab®86. The actual
variance off; was estimated as the sample variance of the estim?é’fésk =1,...,200, from
200 replications of the simulation scenario for each sample.di¥e also estimated the sample
variance off3; based or200 residual bootstrap samples from one of £@ replications. The
results are shown in Fig. 2 for the four valuesudhat were used to construct the estimators. For
clarity, we letuy denote the true value af. In the simulation moded, = 1.

The vertical axis of each of the four panels in Fig. 2 is thedtad deviation for one element
of 3, and the horizontal axis is the sample size. The results shoWwig. 2 illustrate the general
conclusions that we reached from our simulation study. BegR corresponds to a relatively
small eigenvalue, we expected that the asymptotic vaitiabil the envelope estimator witlhh =
ug = 1 would be much smaller than that of the standard estimat@t &pectation is confirmed
by the results shown in the first panel of Fig. 2. That plot alsows thatwar(n!/23,) can give
a very good approximation of the actual variance whea 1. The remaining panels in Fig. 2
show that the envelope estimator can still give substagémls over the standard estimator when
u > ug. This typically happens when the estimated envelope aubigldarger eigenvalues of
Y., as was the case in the simulation. Nevertheless, whenu the actual variability of the

envelope estimator can be substantially larger tham(n!/ 231). The residual bootstrap is a
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Fig. 2. Simulation results on the asymptotic standard dieviaf an element of; . The horizontal dashed line at about

0-04 marks the standard deviation of the standard model astiraad the dashed line just above the horizontal axis

marks the asymptotic standard deviation of the envelopeetresiimator. The solid line corresponds to the estimated

actual standard deviation of the envelope estimator antinthenarked witho corresponds to the bootstrap standard
deviation.

reliable method for estimating the actual varianc&gfregardless of the relation betweemnd
UQ-

We also studied how the error distribution might affect tleef@rmance of the envelope es-
timator. The simulation scenario was identical to that dbsd for Fig. 2, except that was
generated a&!/2¢, where the elements efwere independent and identically distributed stan-
dard normaltg/(3/2)'/2,12'/2{U(0,1) — 0 - 5} or (x3 — 4)/+/8 random variables. The results

shown in Fig. 3 indicate that the performance of the enveégtienator is quite robust.

5. EXAMPLE

This section is devoted to an example that illustrates aspépartial envelopes. The dataset

is from Johnson & Wichern (2007) and is on properties of puprs and the paper made from
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Fig. 3. Simulation results for four error distributions.elbontents of the plots are as described for Fig. 2, except the
standard deviation of the standard model estimator is r@th

them. The reason for choosing this example is its richndiectimg multiple results within the
same context. The data has 62 measurements on four papertspbreaking length, elastic
modulus, stress at failure and burst strength. The pradieie three properties of fiber: arith-
metic fiber length, long fiber fraction and fine fiber fraction.

First we fitted an envelope model to all the predictors. Lil@bd ratio testing suggested
u = 2. The ratio of the asymptotic standard deviation from theddad model to that from the
envelope model was computed for each elemep ithe range is ®8 to 1.10, with an average
of 1-03. This suggests that we do not gain much efficiency by fittiegenvelope. The reason is
apparent from the estimated structureSbfthe eigenvalues df ¢ are 49532 and @143 while
the eigenvalues foﬁgL are 01007 and @060. So the part of that is material taX is no less

variable than the immaterial part, and not much efficiengaised from enveloping.
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865 Next we fitted the partial envelope models to each columip.ofVe started with the fine
866 fiber fraction. Likelihood ratio testing selected = 1. The asymptotic standard deviation ratios
867 between the standard model and the partial envelope madigelements in the third column
868 of 3 are 6359, 679, 1040 and 749. Substantial reduction is thus achieved when attenson i
869 focused on fine fiber fraction since the partYofthat is material to this predictor is much less
870 variable than the immaterial part. A close looRateveals thaks, has eigenvalue-0149 while
871 25% has eigenvalues 10981, 1008 and @070.

872 As we indicated in Section-22, the actual variance can be estimated by the bootstrap vari
873 ance. A simulation with 200 bootstrap replicates was runtestigate the actual variance
874 Under the partial envelope model, although the bootstrapdstrd deviations for the elements
875 in 3; are 970, 229, 257 and 149 times as large as their asymptotic counterparts, thegtiire
876 6-56, 297, 405 and 503 times the size of the asymptotic standard deviationshi@istandard
877 model.

878 Next the partial envelope was fitted to arithmetic length amdinferred thatu; = 0. This
879 means that with the other two predictors present, papereptiep are invariant to the change in
880 arithmetic length. The test of the hypothesis= 0 under the partial envelope model is equiva-
881 lent to the F-test of the hypothesis = 0 under the standard model.

882 Finally, we applied the partial envelope model to the longffifsaction. The estimated en-
883 velope had dimension two and it was only a small angle apan fthe envelope model we
884 fitted in the first place. The standard deviation ratios betwthe envelope model and par-
885 tial envelope model for the second columnfire 09985, 09994, 09980 and 10046. This
886 illustrates our statement in Proposition 2 that wh&nB) = £x(B,), the partial envelope
887 model cannot outperform the envelope model. By Lemmé&sI3) can be decomposed into
888 Ex(B1) + Ex(B2) + Ex(Bs), whereB; represents the space spanned byitte column of 3.
889

890

891
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Recall the dimensions &x(B), &x(B1), £x(B2) andEs(Bs) were inferred to be 2, 0, 2 and

1 respectively. Theds(Bs) is forced to lie within€s(B2), and the angle between the sample
version of the two is around 8 degrees.

This example illustrates situations in which we will or wilbt expect to get significant reduc-
tion from fitting the partial envelope model. Basically, mkﬁg% has at least one large eigen-
value, massive reduction in variance is a typical resuinfepplying the partial envelope model.
But if a large eigenvalue is associated \Aﬁtbl, we may achieve no noticeable reduction. In the
application context, we found that partial envelopes sicgmtly reduced the standard errors of
the coefficients of fine fiber fraction.

While envelopes convert equivariantly under symmetriedintransformations of the response
that commute witl, they are not equivariant for all linear transformation®d et al., 2010).
Similarly, a partial envelope may not convert equivarianthder scale changes of the response
and for this reason it may be advantageous to choose commagnsgales. Nevertheless, as il-

lustrated in this example, useful results are often obthirgng the original measurement scales.
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APPENDIX 1: MAXIMUM LIKELIHOOD ESTIMATORS

As described ir§3-2, £x(B;) is the same as the full envelope in the moﬁ”@l‘g = 51}?1‘2 + €. Fol-

lowing the derivation ir§4-2 of Cook et al. (2010) with thely” and X replaced bﬁy‘g andR1|2, 52(81)
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can be obtained by minimizing the following function oe G(uy,7),

log | PsSpgj2Pslo + 10g |Qs Sy 2Qslo (A1)

whereSgs = UTQp,Qr-QrU/n, Syjs = UTQpU/n, F* = Qp,F1/n, Fy is then x p; matrix with
rows X{, F is then x py matrix with rowsX? andU is then x r matrix with rows(Y — Y)7.

After getting P¢, from optimizing (A1), 3, = P, 31, wheref; is the ordinary maximum likelihood
estimator of the coefficients fok;. Let I' be a semi-orthogonal basis &k (5;). Then#n = I'7 3,
Q =T78gpl, Qo =TIFSyplo, 1 =TOIT and £, = [yQl'f . Having deriveds;, the maximum
likelihood estimator of3, is 3, = (U — F,37)T Fy(FJ F»)~!'. Substitute all the above estimators into

the log likelihood function, with a fixed dimension of the efaped, the maximized log likelihood is

equal to

L(d) = —(nr/2){1 +log(2m)} — (n/2) log |Pe, Sgj2Pe, |0 — (1/2) 1og |Qe, Sy 2Qe, lo-

APPENDIX 2: PROOFS

Proof of Proposition 1.Because of the over-parameterizationin (5), we use Propogi 1 in Shapiro
(1986) to derive the asymptotic distributions. For simipfiove denotevec((3s), vec(n), vec(I'), vech(2)
and vech(Qg) as ¢o, ¢1, P2, ¢3 and ¢4, respectively, and then we combine them into the vector
¢ = (¢F, 0T, 6L, ¢, ¢T)T. Here vec and vech are the “vector” and “vector-half” operatlefined by

Henderson & Searle (1979). Let

vec(32) vec(f2) ho(®)
h(¢) = vec(fB1) | = vec(I'n) = | hi(o)
vech(X) vech(IQI'T + ToQoI'Y) ha(¢)
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Then n!/2(h — h) converges in distribution taV (0, S), where So = H(HT JH)'HT and H =

(8hi /09T ) is the gradient matrixi(= 0,1,2; j = 0,1,2,3,4),

Ly, 0 0 0 0
H=1 0 I1,oT n" @ T 0 0

0 0 20.(I2®Ty—T ®TQ) Cr(TRT)E,, Cr(To @ To)Er—uy)

The Fisher information fofvec(32)7, vec(B31)T, vech(X)T}7 in the standard model is

AQQ X 271 Agl [ 271 0
J = AL 1A, X! 0 )
0 0 lET(®'eYY)E,

whereC, € R"(r+1/2x1* gnd E, € R™*"(*+1)/2 provide the contraction and expansion matrices for
the vec and vech operators: for any symmetrie » matrix A, vech(A4) = C,vec(A) andvec(A) =
E,.vech(A).

The asymptotic variances fat; and (3, are the first two diagonal blocks &f,. After some matrix

multiplication, we have

avar{n'/? vec(3)} = Al_é ®@Ye + (" @To)M (A1) (n®TY),

avar{n1/2 VGC(BQ)} = {A2|1 ® »olo (AglnT ® FQQaI)Mil(AH)(T]Alg (9 Qall—‘%ﬂ)}il ]

Proof of Proposition 2.When &x,(B) = R", the full envelope model is the same as the standard
multivariate linear model. Theavar{nl/2 Vec(Blc)} = A;zl ® X, which is the upper leftps x rps
block of J~1. From the proof of Proposition hvar{n'/2vec(3;)} is the upper left-p, x rps block
of H(HTJH)'H”. SinceJ2 {J = — H(HTJH)'HT}J> = Q 3 > 0,77 > H(HTJH)'H". So
avar{n/2 vec(fBe)} > avar{n'/2 vec(B)}.

If &s(B) = E&x(B1), the full and partial envelope models have the same envelape then the

parameterd’, Ty, , Qy are the same in both models. We wrifeas (11, 72). Since vec(s1) =
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1057 [(Ip,, 0) ® I.] vec(3),
1058 . )
avar{n/?vec(fie)} = (Ip,, 0) ® Laavar[n*/? vec(3)|(I,,, 0)T @ I,
1059
= AR T + (nf @ To)M(J (m ®T7),
1060
1061 whereM () = nAn" @ Q' + Q@ Q' + Q7 @ Qo — 21, @ I,—y. And
1062 .
avar{n'/?vec(f1)} = Ay @ T + (nf @ To) M) (m @ TF),
1063
1064 where Ma,, = mAunf @ Q'+ Qe Q0 + Q7' @ Qg — 21, ® I,_,,. As stated in§3-3, we as-
1065 sumeA, = 0 without loss of generality. ThepAn” = mAuan + n2A22n2T > 771A11771T, so we have
avar{n/2vec(3)} > avar{n'/2 vec(f.)} because the other terms are the same. 0
1066
1067 Proof of Lemma 3Let T be a semi-orthogonal basis i (5), and letG be anr x v semi-orthogonal
1068 matrix with Gy a basis of the orthogonal complement of its span. Then we have
1069 T Ty —1 T T —1
log |G* 2G| + 1log|G" £y G| = log |G £G| + log |Gy Xy Go| + log |Xy .
1070
SinceXy = ¥ + I'nAnTTT,
1071 v e
1072 log |GTRG| + log |G 2y Gy
1073 = log|GTEG| + 1og |GTSGo| + log |I,—y + GITnA "3 (GTSGT) 1A~ 27TTT Gy
1074 = log =] +log |I,—u + GTTHA~ (GTRG) A= 35TTT Gy|.
1075
The objective function takes its minimumsatan(G) = span(T'), because it makes the second term zero,
1076
otherwise that term will be positive. Asis a subset of, eigenvectors of, we can search all the subsets
1077
of u eigenvectors oF to get the minima. O
1078
1079
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