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Abstract

Partial least squares (PLS) is a widely used method for gtiedi in applied statistics,
especially in chemometrics applications. However, PLSoisimvariant or equivariant under
scale transformations of the predictors, which tends tdt lits scope to regressions in which
the predictors are measured in the same or similar unitsk @al. (2013) built a connect
between nascent envelope methodology and PLS, allowing®h&addressed in a traditional
likelihood-based framework. In this article, we use thermwtion between PLS and envelopes
to develop a new method — scaled predictor envelopes (SPEt-irtcorporates predictor
scaling into PLS-type applications. By estimating the appate scales, the SPE estimators
can offer efficiency gains beyond those given by PLS, anchéurteduce prediction errors.

Simulations and an example are given to support the thearktims.
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1. Introduction

Throughout the article, we consider multivariate linegression

Y = py + B (X — px) + e, (1)

whereY € R" is the response vectaX € RP? is the stochastic predictor vector having meap
and covariance matriXx > 0, the errorss € R" are distributed independently & with mean

0 and covariance matriXyix > 0, uy € R" and3 € RP*". Let Sx, Sxy andSy denote the
sample variance dX, the sample covariance betweKrandY, and the sample variance &f. In
this context we review partial least squares (PLS), enesd@nd the connections between them,

and describe how the scales of the predictors can impackettiermance of PLS.

1.1. Partial least squares

PLS originated as a method for prediction in chemometriod, tzas been historically defined in
terms of the iterative algorithms NIPALS (Wold, 1966) andV®LS (de Jong, 1993). Itis an
integral part of the chemometrics culture where much of @getbpment is taken place. Today
PLS is used in many disciplines, particularly as a methotlithproves prediction performance
over ordinary least square (OLS) regression.

PLS operates by reducing the predictors to a few linear coatioins, X — I'’X, that have
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the largest covariances with the responses subject tarcedastraints. Her& € RP*%, v < p,
is a semi-orthogonal matrix that we temporarily assume tdrmmvn, andu is called number
of components. Estimation and prediction are then base#h®®t_S fit of the reduced model
Y = py + 9T {T7T(X — px)} + €, where the coefficienty € R**". The PLS estimator g8 is
whereB

Bprs = i = T(ITSxT) " 'T7Sxy = Prsy,)B is the OLS estimator o8, Pas)

ols? ols

denotes the projection in tiginner product ontcA or span(A) if A is a subspace or a matrix,
andQas) = I — Pas). The population version g8, ¢ is Bpys = I'n = T(T7 ExT)~'T7 Sxy,
which depends only ompan(I') and not on a particular basis. Compared to OLS, PLS has a
dimension reduction step, which redugepredictorsX to v componentd” X. Whenu = p,
I' = I, and PLS degenerates to OLS. Wher p, PLS often shows better prediction performance
over OLS, particularly when there is collinearity among pinedictors.

The SIMPLS version of PLS uses the following algorithm to stouct an estimator df. Set
4, equal to the eigenvector &xy Sk corresponding to its largest eigenvalue, andﬁgt:

A1y Ye ) E=1,...,p. GivenI';, andk < D,
i1 = arg max g’ SxySkyeg, subject tOgTSXf‘k =0andg’g =1. (2)
g

Thenprs = fu is the SIMPLS estimator df'. This estimator does not require ti&¢ > 0, so
it does not run into computational difficulties when< p, depending on the size af However,
Chun and Keles (2010) showed tr@;LS is inconsistent ifp/n — k > 0. Therefore, in this
article we limit our asymptotic results to regressions inchp is fixed andr — oo. The NIPALS

definition of PLS is the same as SIMPLS, except it uses a diffeanner product in the constraints.



Since SIMPLS seems more popular and is implemented in sadtikee R, SAS and MATLAB
as the standard PLS algorithm, we will focus our discussio®SVPLS. Through the similarity
between the two algorithms, results on SIMPLS can be extestiaightforwardly to NIPALS.

Like principal component regression, ridge regressiomapeed regression and many other
methods,BPLS is not invariant or equivalent under scale transformatiobst D € RP*? be a
diagonal matrix with positive diagonal elements, transfX to X, = DX, and IetBD,PLS
denote the PLS estimator @f, for the transformed data. Then we do not hﬁi@,ms = EPLS
or Bpprs = D™ 'Bprg. In fact, the number of componenismay even change with a scale
transformation of the predictors. This suggests that tivartdges of PLS may not be realized if
some of the predictors are measured in different units.

We illustrate this lack of invariance in Figure 1, which depia stylized population regression
with a univariate response, = 2 two centered predictors represented along the axes, aee thr
different scalings for the predictors. Figure 1a shows aaamof the distribution of the original
unscaled predictorX = (X, X,)” along with the coefficient vectgs and the eigenvectors, ;
andv,; of £x. When the response is univarigi®&can always be represented uniquely as a linear
combination of the eigenvectors Bfx, and the number of componentss equal to the number
of eigenvectors needed for this representation (HellamdAdmay, 1994; Naik and Tsai, 2000).
In Figure 1a,3 aligns with neither the first eigenvector ; nor the second eigenvectos ;. This
means both eigenvectors are needed to repr¢gsant thus that. = 2, " = I, and PLS reduces
to OLS, so there is no predictive gain.

It is common practice to scale every predictor to have stahdaviation equal ta and then

apply PLS to the scaled predictors (cf. Chapter 10.2.1 ikdSon et al. (2006) for more de-



tails). We followed this practice in Figure 1b, which remess scaled predictod® !X, where
D = diag(oy, 02) with o7 ando, being the population standard deviations fgrand X,. The co-
efficient vector in this scale B3, and the eigenvectors ofir(D~'X) = D-'Xx D~ are denoted
asvy » andv, 2. The new coefficient vectddg still does not align withv; , or vo 5, which implies
thatu = 2 and PLS again degenerates to OLS. This illustrates thatigtdizing the predictors
does not necessarily improve the prediction performarfsee Section A in the Supplement for a
more general treatment of this phenomenon.)

In this article we propose a new scaling method that is desigo estimate a diagonal scaling
matrix A = diag(\;, \;) so that the coefficient vectdr3 for the rescaled predictors ™' X aligns
with an eigenvector ofar(A~'X). Consequently, we can expect improved performance of PLS
in the new scale. Applying the population version of the jsial method to Figure 1a results in
Figure 1c where the coefficient vectdg3 in the transformed scale aligns with the first eigenvectors
vy 5 Of var(A~'X), sou = 1 and we have predictive gains. Our development of the nevingcal
scheme exploits the connection between PLS and envelofasisised by Cook et al. (2013), so

the rest of this introduction is devoted to a review of enpekn

1.2. Envelopes

The overarching goal of envelope models and methods is tease efficiency in multivariate

parameter estimation and prediction. Speaking inform#iig is achieved by enveloping the in-
formation in the data that is material to the estimation efiarameters of interest while excluding
the information that is immaterial to estimation. The reducin estimative variation can be quite

substantial when the variation in the immaterial inforroatis relatively large.
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Figure 1: Working mechanism of PLS with (a) predictors initlegiginal scales, (b) predictors
rescaled to have unit variances, and (c) predictors scaled the proposed method.



Envelopes were first used by Cook et al. (2010) to accountnfionaterial variation in the
response vector, resulting in an estimatoBahat has the potential to be much less variable than
the standard OLS estimator. Cook et al. (2013) used envelopmccount for immaterial variation
in the predictor vector, resulting in a different envelogéireator that outperforms the OLS and
PLS estimators. We continue the review of envelopes in #ttgg), which is the context that leads
to our proposed scaling method.

Let S be a subspace d&” and suppose th&)sX satisfies the following two conditions: (I)
QsX is uncorrelated witiPsX and (II) Y is uncorrelated witlQsX given PsX. Cook et al.
(2013) showed that condition (1) is equivalent to requirthgt (A) S be a reducing subspace of
Y.x and that condition (Il) is equivalent to (B C S, whereB = span(3). The Xx-envelope
of span(3), denoted bys,, (B), is defined as the intersection of all the subspaces thafysé#i)
and (B). The envelopés, (B) then has the property thatv(P:X, Q:X) = cov(Y, QeX) = 0.
ConsequentlyQ¢X has no linear effect on eith& or P.X. We refer informally toPsX and
QsX as material and immaterial information X. We usef for £, (B) when it appears in
subscripts, and let = dim(Ex, (B)).

The coordinate form of the envelope model is

Y = py + ' TT(X — puy) +¢, Ix =TT 4 T\QT7, (3)

where the columns of € RP** form an orthogonal basis ds, (B), (I',T)) € RP*? is an
orthogonal matrixI'QI'" = var(P¢X) is the variation of the material informatioli‘oQol“OT =

var(QgX) is the variation of the immaterial information, aftlc R*** andQ, € RP—wx -



are positive definite matrices. Assuming thixt, Y') is multivariate normal, Cook et al. (2013)
developed the likelihood estimatﬁgnv of a basidI" for £x, (B). They showed that the resulting
envelope estimatq@onv = fenv(f;sxf‘env)—lf‘TSXy = me(sx)ﬁols of 3 is more efficient

than or at least as efficient as the OLS estimator asympligtiead that the efficiency gain can

be substantial whepQ2|| > ||€2

, where|| - || is the spectral norm. Additionally, they proved that
Bcnv is ay/n-consistent estimator ¢ under model (1) without normality.

Key findings for the purpose of this article are tihak 5 is a./n-consistent estimator of a basis
for £s, (B) and that the number of PLS components corresponds to thendiame: of s, (B)
(Cook et al. 2013). Thus there is a very close connection éatvthe SIMPLS implementation
of PLS and envelopes: The envelope and SIMPLS estima(Afg,(§andBPLS, have the same form
and are based on the same population consgiict3), but differ in their methods of estimating
a basis fol€x, (B). Further,ﬁel1V typically dominates@PLS in both estimation and prediction and
is less sensitive to the number of components selected (€oalk 2013).

Like PLS, envelope methods are not invariant or equivaladeu scale transformation. Meth-
ods to achieve scale invariance for envelopes applied fres® reduction in multivariate linear
regression were discussed by Cook and Su (2013). The basiaiierlying our proposed method
is the same: introduce scaling parameters to estimate giedsealing of the variables under con-
sideration. However, here our focus is on predictor redactvhich is a related but distinctly
different problem. The theoretical and methodologicalaliewments and the operating charac-
teristics of methods for predictor envelopes are quiteedifit than those for response envelopes.
For instance, Cook and Su (2013) conditioned on the pradicteating them as ancillary, while

here the predictors are random and not ancillary. The cdiomewith PLS arises in the context



of predictor reduction, not response reduction. Cook andl®wed one rescaling parameter for
each response variable, while here we allow groups of p@dito be scaled in the same way.
And there are natural constraints on the dimension of sgakedictor envelopes that do not occur
for scaled response envelopes, as described in PropogiBon

In the following section, we develop scale invariant vemsiofB andBPLS that can identify

env

the required scale transformation in Figure 1a, transfarfigure 1c where estimation is carried

out and then transform the estimator back to the origindésda Figure 1a.

2. Scaled Predictor Envelopes

2.1. Formulation

To develop scale invariant methodology, we add scalingrpatars to model (3). LeA € RP*?

be a diagonal matrix with repeated diagonal elements inkiSlog: - -, 1, Ay, -+, Ay, -+, Ag—1,
-+, Ag—1, Wherel, )\, - -+, \,_1 areq positive numbers. Suppose that thih of these; scalings
hasr; replications,y ] _, r; = p. We propose this construction &f because in application there
may be groups of variables that we want to scale in the same W&y seek a transformation
X — A™'X so that ()QsA~'X is uncorrelated wittP: A~'X and (ii) Y is uncorrelated with
QA 'X givenP:A~'X. Letu be the dimension &f, 15, 5-1(AB), which denotes the envelope
in the transformed scale, and Bte RP*" be an orthogonal basis. Then we have the following

extension of model (3),

Y = py + ' TTAN (X — pux) + 6, Ix = ATQTTA + AT QTE A, (4)



where3 = A~'T'n, n € R**" carries the coordinates &3 with respect tdl, Ty € Rr* (P-4
is the completion ofl’ such that(T',T'y) is an orthogonal matrix, anf2 € R*** andQ, €
R(P-w)x(r=u) gre positive definite matrices. We fixed the first diagonaielet of A to be1 for
identifiability; otherwise, we can always multiply by an arbitrary constartand multiplyn by
1/c. Whenu = p, there is no reduction and (4) degenerates to the standdtivamiate linear
regression model. This is consistent with PLS: when the rerrabcomponents ig, the SIMPLS
algorithm returns the OLS estimator.Afwere known, then model (4) would reduce to model (3)
for the regression o¥ on A~'X. We call model (4) a scaled predictor envelope (SPE) motlel. |
is scale invariant, as scaling is considered directly imtioglel building process.

An SPE model hasV(u) = r+p+q—1+ur +p(p+ 1)/2 + r(r + 1)/2 parameters,
u = 1,...,p — 1. This parameter count arises as follows. We neqmhrameters foj, p
parameters fouy, ¢ — 1 parameters for scaling parameters\inu(p — u) parameters to identify
Ep-1:,a-1 (AB), ur parameters fon, u(u+1)/2 parameters fof2, (p—u)(p—u+1)/2 parameters

for Qo, andr(r + 1)/2 parameters foEy x.

2.2. Estimation

In this section, we develop estimators fdrand Xx assuming thatX, Y') follows a multivariate
normal distribution. When this multivariate normality be| we refer to (4) as theormal SPE
model Normality is not required in the SPE model (4), but this aggtion produces estimators
that perform well when normality does not hold; see Sectidif@ a statement of consistency and
Section 4 for a numerical experiment.

Suppose that the datX,, Y;),7 = 1, ..., n, are independently and identically distributed. Let
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X andY denote the sample meansXfandY. LetX be ann x p matrix whosei-th row is X”

and letY be ann x r matrix whosei-th row isY?. The centered data matrices are denoted by
X, =X-1,X"andY, = Y — 1,Y7, wherel,, is ann x 1 vector of1’s. With fixed u, the
parameters to be estimated by maximum likelihoodiage iy, £5 15, o1 (AB) with basisT’, A,

n, Q and),. Estimates of these constituent parameters are then usstinmted = A ~'T'n.

The maximum likelihood estimators &f andI” are obtained by minimizing
L(T, A) = log [TT A7 (Sx — SxvSy'Syx)A'T| + log [TTASL' AT, (5)

over the set op x u semi-orthogonal matrices fdr and the positive real numbers for the di-
agonal elements oA. (See Section B in the Supplement for details.) Optimizatb (5) can
be performed by an alternating algorithm. Given an initialue A, of A, we minimize (5) on
thep x u Grassmannian to gdt, = arg minp L(T', A;). ThengAflzxA;1<AlB> = span(Ty).
Having f‘l, we can updaté\ by minimizing (5) using any standard program in R or MATLAB,
A, = argminy (I';, A). We iterate betweel and A until the difference between the objective
functions in two adjacent iterations is smaller than a grectfied value. Once we haie and

A, the maximum likelihood estimators for the rest of the partars are as followsfiy = X,

~T ~—

1 ~—l~n AT ~—1 ~ IS DU ATl =l
SxA I‘)‘lI‘ A Sxv, Q=T A SxA T, 6 Q= FOA SxA Ty
A

A~ A ST~
py =Y, n= (I A

andSyx = (Y, — XA Ti)7(Y, - XA Tn)/n. ThenB,, = A T4 and Sx e =
o~ ~T o~ ~~ o~ ~T ~
ATOL A + AT,QT, A.

. . . 3 ~—1 Sk - -1
Upon closer inspection, we find that,. = A Pf(rlsxrl)ﬁols, whereg ,, = SK,1XSK71X7Y

is the OLS estimator o8 based on the rescaled predict&élx andY. So SPE estimates the
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scaling parameteri, rescales the data, performs ordinary envelope estimatidhe rescaled data

to getPf( erl)ﬁ;s, and then transforms the estimator back to the originakscéhe SPE

i
model also provides an alternative estimatoklaf besides the standard estima®sy.

The global minimizer of the objective function (5) is not gue: if ' minimizes (5) then so
doesT'O for any orthogonal matriO € R“**. However, as optimization is essentially over a
Grassmannian;pan(f) is typically unique. Occasionally the objective functiomyrbe flat along
someA directions, and then the minimizers will not be unique of i ill determined. But these
non-uniquenesses are not an issueAasndI" are constituents of the parameters of intey@st

and Xx, which are both identifiable. Additionally, the SPE estimz;iAB is unique even when

spe
the global minimizer of (5) is not unique. These propertiesdiscussed further in Section C of
the Supplement. The uniquenessdf, andSx ... provides the foundation for our discussion of

their asymptotic distribution and consistency in Secti®i®sand 2.4. Section D of the Supplement

contains proofs of propositions to follow.

2.3. Asymptotic variance

In this section, we give the asymptotic variances of the Sétlﬁwators@ andf]xwe assuming

spe
normality.

If a quantity stems from the ordinary envelope model (3)sitdesignated with a subscript
o. For instancéY and A~'X follow an ordinary envelope model and thus we wite = A3,

andY, = A 'XSxAL We usevec(-) to denote the operator that maps a matrix to a vector

columnwise andvech(-) for the operator that maps the lower diagonal of a symmetatimto a
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vector columnwise. The gradient matrix under model (3) &nth

H, = 0{ vec’(8,), vech” (2,)}" /0{ vec” (n), vecT (T'), vech” (), vech” (Q)}.

Let bdiag(-) denote a block diagonal matrix with diagonal blocks as arguts The column
vectorA = (Ay,...,A\,1)" contains the; — 1 unique elements aA, so thatA\” = vec”(A)L,
whereL = (e, ;1®e, 1, - ,€p_ 410€,_; 41) € RP*<(a-1) extracts the —1 scaling parameters
from vec(A), @ denotes Kronecker produat; € RP*! contains al in the i-th position and)
elsewhere.

The Fisher information fof vec”(3,), vech” (£,)}7 is

Jo = bdiag{3yjx @ B, B, (57" @ I;1)E,/2} € RUPEHIERAm D2,

LetK = bdiag{—n'TT ©1,,2C,(%, ® I,)}(LY,L7)7, G = Qu, 3, K andD = bdiag{I,

A™',C,(A ® A)E,}. Then the Fisher information fdrvec” (3), vech” (£)}7 isD~'J, D,

Proposition 2.1 Under the normal SPE model (4),

Val{ veeT (Byye), vech” (Ex o)} — { vecT (), vech” (Sx)}]”

converges in distribution to a normal random vector with mearo and covariance matrix

V =DG(G"J,G)'G"D” + DH,(H!J,H,)'H/ D" =V, +V,.
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The estimator;@ and f)x,spo are more efficient than or at least as efficient as the OLS abirs

spe

asymptotically; that isDJ;'D” — V is a positive semi-definite matrix.

In Proposition 2.1, the asymptotic covariance mawiis decomposed into two partd/ is the
asymptotic variance when the scaling paramatés known. It is a rescaled version of the asymp-
totic variance given by Cook et al. (2013) for the regressiblY on A~'X. As a consequence,

we think of V; as the asymptotic cost of estimating

~

Now we focus on the asymptotic variancewafc(3,,.), which is the upper lefpr x pr block

spe)

of V. We denote the upper left- x pr block of V; asT; and the upper leftr x pr block of V, as

T,. Then we measure the relative cost of estimafingsC' = \/tr(Tz_l/leT;l/?). Section E
in the Supplement contains a plot on the relative cost ofreging A under different signal and

noise levels. It is possible to hate= 0 in some cases, as stated in the following corollary.

Corollary 2.2 Under the normal SPE model (4),M, = cI,,, wherec is a scalar, then there is
no asymptotic cost in estimatin’g andC' = 0. MoreoverX, = cI, if and only if©2 = cI,, and

QO = CIp_u.

Proposition 2.1 also states that the SPE estimator is asyitgity at least as efficient as the
OLS estimators. In the following discussion, we explore s@mases where the asymptotic variance
of the SPE estimator is the same as that of the OLS estimadi@ Wil give us clues on when SPE

model is likely to give more efficient estimators than OLS.

Proposition 2.3 Under the normal SPE model (4), when> p — (¢ — 1)/r, the estimator§

spe

and f)xﬁpc have the same asymptotic covariances as the OLS estimators.
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Let [-] denote the ceiling of a number and define= [p — (¢ — 1)/r]. Proposition 2.3 indicates
that whenu > u, the SPE estimators and the OLS estimators have the same tasignagriances.

Two special cases are summarized in the following cor@gari

Corollary 2.4 Under the normal SPE model (4),if> ¢, thenuy, = p and thus the SPE and OLS

estimators have the same asymptotic variance wherp.

As a consequence, when the number of respanseitly exceeds the number of estimated scaling
parameterg — 1, the SPE and OLS estimators have the same asymptotic vanemenu = p;

that is, when the SPE model (4) reduces to the standard rawidtie linear regression model.

Corollary 2.5 Under the normal SPE model (4),/if= 1 andq = p, thenug = 1 and thus the

SPE estimator always has the same asymptotic variance &@ltBeestimator.

It follows from this corollary that there is no point to reing all of the predictors in univariate
linear regression since then the asymptotic variance oS®PE estimator reduces to that of the
OLS estimator. However, progress is still possible in unata regressions when rescaling the
predictors in groups. For instance, supposeithatl, p = 20 andq = 5, so there are five groups
of predictors to be scaled in the same way. Then accordingdpadBition 2.3, the SPE and OLS
estimators have the same asymptotic variance only whenl6. Since in practice the number of
components is often small relative t@, we might reasonably expect gains in this setting.

As a consequence of Proposition 2.3, the SPE estimatordst@#ly constrained by the con-
ditionu < ug, and we normally do not bother computing the SPE estimatemnwh> . In those
cases we can still consider the OLS, SIMPLS and ordinarylepeeestimators, whose relative
performance was characterized by Cook, et al. (2013).
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Cook et al. (2013, Corollary 1) showed that the asymptotiarae of the envelope estimator
f-ienv is the same as that of the OLS estime@{S when the predictor are uncorrelated with equal
variances an@ has rank-. A similar result holds for the SPE estimaﬁsrIDC whenXx is diagonal
since then scaling with = Xx givesX, = I, where the result of Cook et al. applies. Accord-
ingly, like the envelope and PLS estimators, the SPE estinodfiers the greatest gains when there
is notable collinearity among the predictors.

The efficiency gain also depends on the relative magnitudeaiid(2,. Substantial efficiency
gain is expected whefi2|| > ||€]|. Otherwise we expect modest but still useful gains. The
effect of ||©2]| and||€2,|| on the SPE model is qualitatively similar to their effect be envelope

model (3). Figure 2 and Figure 5 in Section 4 demonstratesffest with numerical experiments.

2.4. Consistency

Although the SPE estimators ¢f and X« are derived using the normal likelihood, they gre

consistent without the normality assumption.

Proposition 2.6 Assume that model (4) holds and tlat, X) has finite fourth moments. Then

Vil{ vee” (Bype). vech” (Exgpe)}T = {vec” (8), vech” (£x)}]

is asymptotically normally distributed, arﬁlpe and f)x,spo are y/n consistent estimators ¢f and

x.

Although we do not have a useful expression for the asynptatiance in this case, we have
found in simulations that the bootstrap gives a good estinadtthe actual variance.
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2.5. Sdection of u

To select the dimension &, 15, o1 (AB), likelihood-based methods such as the Akaike infor-
mation criterion (AIC), the Bayesian information critami¢BIC), likelihood ratio testing (LRT) or
other information criteria can be used. Cross validatianaao be used. We tend to prefer BIC

for parameter estimation and cross validation for predirctifo use BIC, fof) < u < p, let

() = - 2* ") 1og(27)

nr n

2 2

-~ n a-1 n -~
log [Xx| — 5 tr(¥x Sx) — 5 log [ Zyvx|

be the maximized log likelihood under model (4), and\&t:) be the number of parameters as
discussed in Section 2.1. The BIC estimator.d$ arg min,, —2(u) + log(n)N (u).

Properties of BIC were studied by Cook and Su (2013, Prapost) in the context of response
scaling. Similar results hold for the SPE model: Let the cdaie set be the set of SPE models
having dimensions varying fromto p. If the true model is in the candidate set thenpas> oo,
BIC will select the true model with probability tending 19 AIC will select a model that at least
contains the true model and LRT will select the true modeh\piiobabilityl — «, wherea is the

significance level.

3. Scaled SIMPL S Algorithm

Recall that the algorithm described in Section 2.2 for maing the likelihood requires a starting
value A, for A. Our experience indicates that the algorithm convergesbiglusing the default

choiceA, = I,,, but also that it might take a long time to converge dependmgharacteristics of
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the regression. Better starting values can mitigate the toxconvergence.

In this section, we introduce a relatively fast scaled SINgRilgorithm, which we denote SPLS.
While main role of SPLS is to produce starting values for thienpry algorithm described in
Section 2.2, our experience indicates that it can serve adfective diagnostic on the need for
scaling since in that case it typically outperforms SIMPLBcooss validation prediction error. It
might be used as a stand-alone prediction method in somessgns. Compared to SIMPLS, it
incorporates a scaling parameterand returns a scale invariant SIMPLS estimator.

On the first iteration we se, = I, or any reasonable guess, and thenf@eby applying the
SIMPLS algorithm to the regression & on A;'X. Then givenlA“l we updateA by minimizing
the objective function (5), which giveﬁl. Subsequent iterations then proceed as follows. Let
fi andfxz- be the estimates df and A from thei-th iteration. We constru@i+1 by first getting
T from the SIMPLS algorithm applied to the regressionyobn ./A\i_lX. Then for a real number
a€ (0,1), we construcl’, as an orthogonal basis qﬁan{af‘i + (1 — )T} and find the optimal
value fora as

" . T ~—1 1 ~—1~ ST~ 10D
a = arg H%éri) 10g |Fa Ai (SX — SXYSY Syx)AZ Fa| + log ‘I‘a AZSX Aira‘.
ac(0,

The next updat(fm is constructed as an orthogonal basis of the spaﬁﬁ;er (1-— a*)f‘, and
KM is constructed using this value in (5). In this way, the optation processes fdr and A
share the same objective function, which is monotonicatigrdasing as we iterate.

The SPLS algorithm uses SIMPLS rather than Grassmann @atiion to updatd”, so SPLS

and SPE produce different estimatorsbrBut the SPLS algorithm is faster and typically provides
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a very good starting value for SPE. In timing experimentqiwit= 100, » = 8 andu = 5, the
running time for the SPLS algorithm was about 25% of that lier 8PE algorithm, both starting
at A, = I,. Using the SPLS algorithm to get starting values for SPE lirtinning time in half
relative to the SPE algorithm with, = I,. Additional support for using SPLS to get starting
values are given in Section 4. As mentioned previously, wesicker the SPE estimator only when

u < ug. To be consistent, we also consider the SPLS estimator amnw < .

4. Simulations

In this section, we report results from simulation studeeimvestigate the estimative and predictive

behaviors of methods discussed previous sections.

4.1. Estimative performance

To compare SPE, SIMPLS and OLS on estimative performancggewerated data from model (4)
with p = 10, » = 8, u = 5. We tookQ2 = %I, andQy = ¢21,_, with o = 5 ando, = /5. The
scaling paramete had diagonal elemeng$, 2% 2! ... 2%5 The elements i, andA ' puy
were independent standard normal variates, the elements/gre from the uniforn{0, 2) distri-
bution, andT", T';) was obtained by normalizingiax p matrix whose elements were generated as
independent unifornf0, 1) variates. We simulated the error vectoirom the multivariate normal
distribution with meard and covariance matrifyx = ADAT, whereA was an orthogonal
matrix obtained by normalizing anx ~ matrix of uniform(0, 1) random variates, anB was a

diagonal matrix with diagonal elements2, . . ., ». We generated00 replications for sample sizes
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100, 200, 300, 500, 800 and1200. With each replication, we estimatghtlby using SPE, SIMPLS
and OLS. For the SPE estimator, we used both the true valgd ofpan(I')} and the SPLS es-
timator { Ay, span(L'sp) } @s starting values. We computed the mean squared error (K6SE)
elements irﬁ(,) for each sample size, and the results for two elements awersimoFigure 2. We
always used the true = 5 for the SPE estimator.

Prediction is often the goal in applications of the ordin&tylPLS algorithm, and the number
of components is typically chosen by cross validation or a hold-out samplkecause of variance-
bias tradeoffs, the bestfor prediction might not be the best for estimation. To givBIBLS an
edge in this simulation, for each sample size, we selectdiimber of componentsto give the
smallest MSE of the selected elemenffAs it turned out in this example, usually larger value of
u minimizes the MSE, as a small valuewftypically leads to large bias. The two panels in Figure
2 give results for two elements 8, which represents two common patterns that appear actoss al
the elements ir8. For both patterns, we notice that the SIMPLS estimator HdSB larger than
the OLS estimator, that the SPE estimator has the smalle&tan8 that the SPLS estimator offers
a good starting value for the SPE estimator. Plots of thedst@hdeviation and absolute value of
the bias are included in the Supplement.

Table 1 provides the means and standard deviatioP@0EPE estimated scales. The estimates
seem quite good.

To gain insights into the effects of non-normality, we geted the errors from thiedistribution
with 6 degrees of freedom, the unifor(f, 1) distribution and the chi-square distribution with
degrees of freedom to represent distributions with healystzort tail and skewness. The results

for the SPE estimator are summarized in Figure 3. Since tte &fimator is asymptotically
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Table 1: Mean of bas2 logarithms of the diagonal elementsAy the number in parentheses are

their standard deviations.

n

100

500

1200

logy A2
log, A3
log, Ay
log, As
log, s
log, A7
log, As
log, Ao
log, 5\10

0.4499 (0.3257)
0.9873 (0.1330)
1.4981 (0.2153)
2.0060 (0.1769)
2.5020 (0.1252)
3.0003 (0.1096)
3.4974 (0.1463)
4.0030 (0.2245)
4.4995 (0.1293)

0.4993 (0.0983)
0.9964 (0.0590)
1.4999 (0.0974)
1.9953 (0.0826)
2.4999 (0.0521)
3.0016 (0.0501)
3.5019 (0.0609)
3.9996 (0.0905)
4.5010 (0.0564)

0.5050 (0.0576)
0.9995 (0.0355)
1.4982 (0.0582)
2.0066 (0.0475)
2.5011 (0.0317)
2.9983 (0.0304)
3.4999 (0.0417)
4.0006 (0.0548)
4.5008 (0.0365)

unbiased as indicated by Proposition 2.6, and estimatidanee is the main contributor to MSE
for the SPE estimator as demonstrated in Figure 2 and pld@gation F in the Supplement, we
provided the plots of standard deviations for clarity in garson. From Proposition 2.6, and this
and other simulations, we concluded that the SPE estimatoaibust to moderate departure from
normality.

We also checked the performance of the estimators whenalhessare all to obtain some idea
of the potential loss when the scaling is unnecessary. Weated the simulation with the same
settings as for Figure 2, but all scaleswere set tol. The results are displayed in Figure 4. For
the SIMPLS estimator, again we chose the number of compsneminimize the MSE and the
SPE estimator again has smallest MSE. The plots for stam#aidtion and absolute value of bias
are in Section F of the Supplement. Wh&n= I, no scaling is necessary and model (4) reduces
to the envelope model of Cook, et al. (2013). Figure 4 therficua what is known about the

relative behavior of the estimators: SIMPLS performs bie¢ttan OLS and the envelope estimator
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Figure 3: Comparison of SPE estimators with normgl[/(0, 1) and x? errors. The line marks
are the same as those in Figure 2.

performs better than both.

We also performed a simulation to demonstrate the effeg¢ftf and ||Q2|| on the efficiency
gains of the SPE model. We used the same setting as in Figlme Peversed the values of
andos?. From Figure 5, we notice that the efficiency gain from SPEnigls compared to that
in Figure 2 and that SIMPLS fails in this case because it abNagks in the direction with the
larger variation. This will not be an issue when the directiof larger variation are material, as in
many chemometrics applications. But it will be a seriousbpFm for SIMPLS and by extension
SPLS when the direction of larger variation is immaterialléwing the discussion at the end of
Section 2.3, the SPE model works as expected in both casets. ®lthe standard deviation and

absolute value of the bias are included in Section F of theBuapent.
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4.2. Predictive performance

To study predictive performance, we topk= 10, r = 8, v = 1, n = 60, and generated the
data under the SPE model (4). The covariance matriX diad the structur&x = ATQITTA +
AT QTEA, with Q@ = o2M M7, Q, = 02M,M?, wheres = 3, o, = 1, and elements in
M, € R** andM, € RP—x(r—v) were independent uniforrf0, 1) random variates. The
eigenvalues ok x ranged fronD.82 to 1.12¢ + 6. The orthogonal matrixI", I'y) was obtained by
normalizing ap x p matrix of independent uniforrf0, 1) random variates. The error vectowas
generated from a multivariate normal distribution with méand covariance matriXyx, where
Yy x had eigenvalues, 2, ..., . The diagonal elements & werel, 2', 2%, .., 2, soq = 10.
The vectorguy andA ' uy consisted of independent standard normal variatesyamas au. x
matrix of independent uniforr(0, 5) variates. We used cross validation to estimate the predicti

error, and the identity inner product was used to bind theetgs in(Y — SA{). With different
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number of components, we computed the average predictiorseior SPE with SPLS starting
values, SIMPLS, SPLS and OLS estimators based(ofive-fold cross validations with random
partitions. The results are summarized in Figure 6. Witk 1, the SPE estimator reduced the
prediction errors byl0.6% compared to the OLS estimator. If we overestimat¢he prediction
error of the SPE estimator will increase, but it was neveatgiethan that of the OLS estimator.
From Proposition 2.3y, = [p — (¢ — 1)/r] = 9 and, as expected, the SPE and OLS estimators
had essentially the same prediction error whek 9. The best SIMPLS estimator in this case
hadu = 8, its prediction error being.74% larger than the SPE estimator with= 1. Figure 6
shows that the SPLS algorithm does quite well at the trueavalu. It reduces the prediction error
by 28.9% compared to the SIMPLS estimatorat= 1, and by2.5% even compared to the best
SIMPLS estimator. The SIMPLS estimator seems quite sgaditi the number of components,

which is consistent with the findings in Cook et al. (2013).
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5. DataAnalysis

In this section, we demonstrate the performance of the Siaadsr using the chemometrics data
published by Skagerberg et al. (1992). The- 56 observations were collected to study the poly-
merization reaction along a reactor. The: 6 response variables are polymer properties: number-
average molecular weight, weight-average molecular vigfggguency of long chain branching,
frequency of short chain branching, the content of vinyugr®and vinylidene groups in the poly-
mer chain. The predictors are twenty temperatures measitiegual distances along the reactor
plus the wall temperature of the reactor and the solventfatd

If the multivariate linear model (1) holds for these datartlby extension the envelope (3)
and the SPE (4) models must hold as well. We performed a fegndgtic checks to see if the

data provide clear evidence to contradict model (1), catinythat it fits quite well. With their
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R?s ranging between.946 and0.997, the regressions of the six individual responses or2the
predictors all showed strong linear trends. There was nieexie of curvature in plots of the re-
sponses versus their fitted values, but there was a littteeacie of mild curvature based on adding
guadratic terms. Taking multiple testing into account, waatuded that there is not sufficient
evidence to justify remedial action. The eigenvalues®%, which range betweest.9 x 10~ to
6.9 x 1073, clearly indicate strong multi-colinearity among the potors and thus that PLS and
envelopes methods may provide better predictions than OLS.

Skagerberg et al. applied PLS after standardizing all béegainX andY to have sample mean
0 and sample variance We computed predictions based on SIMPLS, SIMPLS with stetdided
variables (standardized SIMPLS), SPE and SPLS with 22, and OLS, obtaining the results
displayed in Figure 7. The prediction performance was nreasby the average of the prediction
errors from50 five-fold cross validations with random splits. For bettesibility, we truncated
the vertical axis at. At v = 1, SIMPLS and standardized SIMPLS have average prediction
errors as large a$.335 and9.077, and SPLS has average prediction e6®58. SIMPLS has
its smallest average prediction errb621 at « = 5 and standardized SIMPLS has its smallest
average prediction errar.618 atu = 6. That is about al5.2% reduction of prediction errors
compared to the OLS, which has average prediction efdr2. The SPE estimator has average
prediction errorl.555 atu = 2 and its prediction error decreases thereafter mxreases until at
u = 11 it hits the minimum average predictor errbf75. Compared to SIMPLS or standardized
SIMPLS, that is &3.6% reduction of the prediction errors. We also notice that whea 1, the
SPE estimator has slightly better performance than OLSeviMPLS and standardized SIMPLS

both have very large prediction errors, and they did notgerfbetter than OLS untik = 3 and
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u = 4 respectively. SPE estimators seems more stable for smdlhe SPLS estimator has its
smallest average prediction errb615 atu = 4, which is about the same as the smallest average
prediction error from SIMPLS and standardized SIMPLS. BRLS achieves this prediction error
with a smaller:. Not shown here, we also fitted the envelope model in the pi@dspace (Cook et
al. 2013), obtaining minimum average prediction e2@60, which again indicates that properly
scaling the predictors can bring substantial efficiencygai

To gain more insights about the efficiency gains obtainedRly,Sve fitted the SPE model that
scales only the last two predictors, wall temperature ofélaetor and solvent feed rate. Recall that
in the formulation of the SPE model (4), we allow the scaliaggmeterA to have replicates in
order to accommodate regressions in which we want to scalggrof variables in the same way.
In this example, the first twenty predictors are all tempeed around the reactor and it may be
natural to apply the same scale to them. The diagonal elesnoént are thent, . . ., 1, Ay and\s.
Under this construction, the SPE estimator has minimumeaeeprediction error.140 atu = 11,
and the prediction performance acrossualt quite similar to that of the SPE estimator scaling all
the predictors, as indicated in Figure 7. This suggestghieagfficiency gain obtained by the SPE
estimator is largely due to rescaling the last two predgctanich measure different characteristics

from the first twenty predictors.

6. Discussion

Prediction in the context of the multivariate linear modBl flas been addressed by many tradi-

tional methods, including reduced rank regression (RRR)cjpal component regression (PCR)

28



w F o
w 5 IS wn o 5 o
T T T

oS

Average prediction error
N
&

N

=
o

Number of components

Figure 7: Comparison of SPE, SIMPLS, standardized SIMPLESIPLS and on prediction per-
formance. Horizontal dotted line: OLS. Solid line with aggks: SPE. Solid line: SPE scaling
only the last two predictors. Dashed line: SPLS. Dash-ddite: SIMPLS. Dash-dotted line with
asterisks: standardized SIMPLS.

and ridge regression (RR), all of which used informatioXigx. These methods together with PLS
have been studied and compared in the literature. For exafmnk and Friedman (1993) exam-
ined the mechanism behind PCR, PLS and RR and compared énfgirmppance numerically. Stone
and Brooks (1990) incorporated PLS and PCR into a generakfrnaork called continuum regres-
sion, and Yuan et al. (2007) compared RRR, PLS, PCR and RRnulaiions. However, none
of aforementioned methods are invariant or equivariantdcade transformation of the predictors,
while the SPE model is a scale-invariant method.

The other prediction methods operate from vantage poiatsatte distinctly different than that
for envelopes. For instance, RRR offers no gain in univariagressions, since then the only

possible ranks foB € RP*! are 0 and 1, while envelopes and scaled envelopes can stillipe
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gains. Similarly, RRR offers no gain wheh € RP*" has full rank, while again envelopes and
scaled envelopes can still give substantial gains. TathtiPCR neglects the response vector in
its reduction step, and can result in very inefficient regiaass. Ridge regression is a regulariza-
tion method that, depending on how the ridge parameterésiieiermined, can also neglect the
response. In contrast, envelopes, scaled envelopes anthBih®ds capitalize on the collinearity,
rather than attempt to mitigate its effects through regzddion.

The discussion in this paper is confined to regressions icwhi> p. Developing a scaled
invariant prediction method such as SPE modelfor p is an important problem as many con-

temporary applications feature small sample size.
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