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Abstract

Partial least squares (PLS) is a widely used method for prediction in applied statistics,

especially in chemometrics applications. However, PLS is not invariant or equivariant under

scale transformations of the predictors, which tends to limit its scope to regressions in which

the predictors are measured in the same or similar units. Cook et al. (2013) built a connect

between nascent envelope methodology and PLS, allowing PLSto be addressed in a traditional

likelihood-based framework. In this article, we use the connection between PLS and envelopes

to develop a new method – scaled predictor envelopes (SPE) – that incorporates predictor

scaling into PLS-type applications. By estimating the appropriate scales, the SPE estimators

can offer efficiency gains beyond those given by PLS, and further reduce prediction errors.

Simulations and an example are given to support the theoretic claims.
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1. Introduction

Throughout the article, we consider multivariate linear regression

Y = µY + βT (X− µX) + ε, (1)

whereY ∈ R
r is the response vector,X ∈ R

p is the stochastic predictor vector having meanµX

and covariance matrixΣX > 0, the errorsε ∈ R
r are distributed independently ofX with mean

0 and covariance matrixΣY|X > 0, µY ∈ R
r andβ ∈ R

p×r. Let SX, SXY andSY denote the

sample variance ofX, the sample covariance betweenX andY, and the sample variance ofY. In

this context we review partial least squares (PLS), envelopes and the connections between them,

and describe how the scales of the predictors can impact the performance of PLS.

1.1. Partial least squares

PLS originated as a method for prediction in chemometrics, and has been historically defined in

terms of the iterative algorithms NIPALS (Wold, 1966) and SIMPLS (de Jong, 1993). It is an

integral part of the chemometrics culture where much of its development is taken place. Today

PLS is used in many disciplines, particularly as a method that improves prediction performance

over ordinary least square (OLS) regression.

PLS operates by reducing the predictors to a few linear combinations,X 7→ ΓTX, that have
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the largest covariances with the responses subject to certain constraints. HereΓ ∈ R
p×u, u ≤ p,

is a semi-orthogonal matrix that we temporarily assume to beknown, andu is called number

of components. Estimation and prediction are then based on the OLS fit of the reduced model

Y = µY + ηT{ΓT (X − µX)} + ε, where the coefficientsη ∈ R
u×r. The PLS estimator ofβ is

β̂PLS = Γη̂ = Γ(ΓTSXΓ)
−1ΓTSXY = PΓ(SX)β̂ols, whereβ̂ols is the OLS estimator ofβ, PA(S)

denotes the projection in theS inner product ontoA or span(A) if A is a subspace or a matrix,

andQA(S) = I−PA(S). The population version of̂βPLS isβPLS = Γη = Γ(ΓTΣXΓ)
−1ΓTΣXY,

which depends only onspan(Γ) and not on a particular basis. Compared to OLS, PLS has a

dimension reduction step, which reducesp predictorsX to u componentsΓTX. Whenu = p,

Γ = Ip and PLS degenerates to OLS. Whenu < p, PLS often shows better prediction performance

over OLS, particularly when there is collinearity among thepredictors.

The SIMPLS version of PLS uses the following algorithm to construct an estimator ofΓ. Set

γ̂1 equal to the eigenvector ofSXYS
T
XY corresponding to its largest eigenvalue, and letΓ̂k =

(γ̂1, . . . , γ̂k), k = 1, . . . , p. GivenΓ̂k andk < p,

γ̂k+1 = argmax
g

gTSXYS
T
XYg, subject togTSXΓ̂k = 0 andgTg = 1. (2)

ThenΓ̂PLS = Γ̂u is the SIMPLS estimator ofΓ. This estimator does not require thatSX > 0, so

it does not run into computational difficulties whenn < p, depending on the size ofu. However,

Chun and Keleş (2010) showed thatβ̂PLS is inconsistent ifp/n → k > 0. Therefore, in this

article we limit our asymptotic results to regressions in which p is fixed andn → ∞. The NIPALS

definition of PLS is the same as SIMPLS, except it uses a different inner product in the constraints.
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Since SIMPLS seems more popular and is implemented in software like R, SAS and MATLAB

as the standard PLS algorithm, we will focus our discussion on SIMPLS. Through the similarity

between the two algorithms, results on SIMPLS can be extended straightforwardly to NIPALS.

Like principal component regression, ridge regression, penalized regression and many other

methods,β̂PLS is not invariant or equivalent under scale transformations. Let D ∈ R
p×p be a

diagonal matrix with positive diagonal elements, transform X to XD = DX, and letβ̂D,PLS

denote the PLS estimator ofβD for the transformed data. Then we do not haveβ̂D,PLS = β̂PLS

or β̂D,PLS = D−1β̂PLS. In fact, the number of componentsu may even change with a scale

transformation of the predictors. This suggests that the advantages of PLS may not be realized if

some of the predictors are measured in different units.

We illustrate this lack of invariance in Figure 1, which depicts a stylized population regression

with a univariate response,p = 2 two centered predictors represented along the axes, and three

different scalings for the predictors. Figure 1a shows a contour of the distribution of the original

unscaled predictorsX = (X1, X2)
T along with the coefficient vectorβ and the eigenvectorsv1,1

andv2,1 of ΣX. When the response is univariate,β can always be represented uniquely as a linear

combination of the eigenvectors ofΣX, and the number of componentsu is equal to the number

of eigenvectors needed for this representation (Helland and Almøy, 1994; Naik and Tsai, 2000).

In Figure 1a,β aligns with neither the first eigenvectorv1,1 nor the second eigenvectorv2,1. This

means both eigenvectors are needed to representβ and thus thatu = 2, Γ = I, and PLS reduces

to OLS, so there is no predictive gain.

It is common practice to scale every predictor to have standard deviation equal to1 and then

apply PLS to the scaled predictors (cf. Chapter 10.2.1 in Eriksson et al. (2006) for more de-
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tails). We followed this practice in Figure 1b, which represents scaled predictorsD−1X, where

D = diag(σ1, σ2) with σ1 andσ2 being the population standard deviations forX1 andX2. The co-

efficient vector in this scale isDβ, and the eigenvectors ofvar(D−1X) = D−1ΣXD
−1 are denoted

asv1,2 andv2,2. The new coefficient vectorDβ still does not align withv1,2 orv2,2, which implies

thatu = 2 and PLS again degenerates to OLS. This illustrates that standardizing the predictors

does not necessarily improve the prediction performance. (See Section A in the Supplement for a

more general treatment of this phenomenon.)

In this article we propose a new scaling method that is designed to estimate a diagonal scaling

matrixΛ = diag(λ1, λ2) so that the coefficient vectorΛβ for the rescaled predictorsΛ−1X aligns

with an eigenvector ofvar(Λ−1X). Consequently, we can expect improved performance of PLS

in the new scale. Applying the population version of the proposed method to Figure 1a results in

Figure 1c where the coefficient vectorΛβ in the transformed scale aligns with the first eigenvectors

v1,3 of var(Λ−1X), sou = 1 and we have predictive gains. Our development of the new scaling

scheme exploits the connection between PLS and envelopes established by Cook et al. (2013), so

the rest of this introduction is devoted to a review of envelopes.

1.2. Envelopes

The overarching goal of envelope models and methods is to increase efficiency in multivariate

parameter estimation and prediction. Speaking informally, this is achieved by enveloping the in-

formation in the data that is material to the estimation of the parameters of interest while excluding

the information that is immaterial to estimation. The reduction in estimative variation can be quite

substantial when the variation in the immaterial information is relatively large.
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Figure 1: Working mechanism of PLS with (a) predictors in their original scales, (b) predictors
rescaled to have unit variances, and (c) predictors scaled using the proposed method.
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Envelopes were first used by Cook et al. (2010) to account for immaterial variation in the

response vector, resulting in an estimator ofβ that has the potential to be much less variable than

the standard OLS estimator. Cook et al. (2013) used envelopes to account for immaterial variation

in the predictor vector, resulting in a different envelope estimator that outperforms the OLS and

PLS estimators. We continue the review of envelopes in this setting, which is the context that leads

to our proposed scaling method.

Let S be a subspace ofRp and suppose thatQSX satisfies the following two conditions: (I)

QSX is uncorrelated withPSX and (II) Y is uncorrelated withQSX givenPSX. Cook et al.

(2013) showed that condition (I) is equivalent to requiringthat (A) S be a reducing subspace of

ΣX and that condition (II) is equivalent to (B)B ⊆ S, whereB = span(β). TheΣX-envelope

of span(β), denoted byEΣX
(B), is defined as the intersection of all the subspaces that satisfy (A)

and (B). The envelopeEΣX
(B) then has the property thatcov(PEX,QEX) = cov(Y,QEX) = 0.

Consequently,QEX has no linear effect on eitherY or PEX. We refer informally toPEX and

QSX as material and immaterial information inX. We useE for EΣX
(B) when it appears in

subscripts, and letu = dim(EΣX
(B)).

The coordinate form of the envelope model is

Y = µY + ηTΓT (X− µX) + ε, ΣX = ΓΩΓT + Γ0Ω0Γ
T
0 , (3)

where the columns ofΓ ∈ R
p×u form an orthogonal basis ofEΣX

(B), (Γ,Γ0) ∈ R
p×p is an

orthogonal matrix,ΓΩΓT = var(PEX) is the variation of the material information,Γ0Ω0Γ
T
0 =

var(QEX) is the variation of the immaterial information, andΩ ∈ R
u×u andΩ0 ∈ R

(p−u)×(p−u)
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are positive definite matrices. Assuming that(X,Y) is multivariate normal, Cook et al. (2013)

developed the likelihood estimatorΓ̂env of a basisΓ for EΣX
(B). They showed that the resulting

envelope estimator̂βenv = Γ̂env(Γ̂
T

envSXΓ̂env)
−1Γ̂

T
SXY = P

Γ̂env(SX)β̂ols of β is more efficient

than or at least as efficient as the OLS estimator asymptotically, and that the efficiency gain can

be substantial when‖Ω‖ > ‖Ω0‖, where‖ · ‖ is the spectral norm. Additionally, they proved that

β̂env is a
√
n-consistent estimator ofβ under model (1) without normality.

Key findings for the purpose of this article are thatΓ̂PLS is a
√
n-consistent estimator of a basis

for EΣX
(B) and that the number of PLS components corresponds to the dimensionu of EΣX

(B)

(Cook et al. 2013). Thus there is a very close connection between the SIMPLS implementation

of PLS and envelopes: The envelope and SIMPLS estimators,β̂env andβ̂PLS, have the same form

and are based on the same population constructEΣX
(B), but differ in their methods of estimating

a basis forEΣX
(B). Further,β̂env typically dominateŝβPLS in both estimation and prediction and

is less sensitive to the number of components selected (Cooket al. 2013).

Like PLS, envelope methods are not invariant or equivalent under scale transformation. Meth-

ods to achieve scale invariance for envelopes applied to response reduction in multivariate linear

regression were discussed by Cook and Su (2013). The basic idea underlying our proposed method

is the same: introduce scaling parameters to estimate the best rescaling of the variables under con-

sideration. However, here our focus is on predictor reduction, which is a related but distinctly

different problem. The theoretical and methodological developments and the operating charac-

teristics of methods for predictor envelopes are quite different than those for response envelopes.

For instance, Cook and Su (2013) conditioned on the predictors, treating them as ancillary, while

here the predictors are random and not ancillary. The connection with PLS arises in the context
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of predictor reduction, not response reduction. Cook and Suallowed one rescaling parameter for

each response variable, while here we allow groups of predictors to be scaled in the same way.

And there are natural constraints on the dimension of scaledpredictor envelopes that do not occur

for scaled response envelopes, as described in Proposition2.3.

In the following section, we develop scale invariant versions ofβ̂env andβ̂PLS that can identify

the required scale transformation in Figure 1a, transform to Figure 1c where estimation is carried

out and then transform the estimator back to the original scales in Figure 1a.

2. Scaled Predictor Envelopes

2.1. Formulation

To develop scale invariant methodology, we add scaling parameters to model (3). LetΛ ∈ R
p×p

be a diagonal matrix with repeated diagonal elements in blocks 1, · · · , 1, λ1, · · · , λ1, · · · , λq−1,

· · · , λq−1, where1, λ1, · · · , λq−1 areq positive numbers. Suppose that thei-th of theseq scalings

hasri replications,
∑q

i=1 ri = p. We propose this construction ofΛ because in application there

may be groups of variables that we want to scale in the same way. We seek a transformation

X 7→ Λ−1X so that (i)QEΛ
−1X is uncorrelated withPEΛ

−1X and (ii) Y is uncorrelated with

QEΛ
−1X givenPEΛ

−1X. Letu be the dimension ofEΛ−1ΣXΛ−1(ΛB), which denotes the envelope

in the transformed scale, and letΓ ∈ R
p×u be an orthogonal basis. Then we have the following

extension of model (3),

Y = µY + ηTΓTΛ−1(X− µX) + ε, ΣX = ΛΓΩΓTΛ+ΛΓ0Ω0Γ
T
0Λ, (4)
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whereβ = Λ−1Γη, η ∈ R
u×r carries the coordinates ofΛβ with respect toΓ, Γ0 ∈ R

p×(p−u)

is the completion ofΓ such that(Γ,Γ0) is an orthogonal matrix, andΩ ∈ R
u×u andΩ0 ∈

R
(p−u)×(p−u) are positive definite matrices. We fixed the first diagonal element ofΛ to be1 for

identifiability; otherwise, we can always multiplyΛ by an arbitrary constantc and multiplyη by

1/c. Whenu = p, there is no reduction and (4) degenerates to the standard multivariate linear

regression model. This is consistent with PLS: when the number of components isp, the SIMPLS

algorithm returns the OLS estimator. IfΛ were known, then model (4) would reduce to model (3)

for the regression ofY onΛ−1X. We call model (4) a scaled predictor envelope (SPE) model. It

is scale invariant, as scaling is considered directly in themodel building process.

An SPE model hasN(u) = r + p + q − 1 + ur + p(p + 1)/2 + r(r + 1)/2 parameters,

u = 1, . . . , p − 1. This parameter count arises as follows. We needr parameters forµY, p

parameters forµX, q − 1 parameters for scaling parameters inΛ, u(p− u) parameters to identify

EΛ−1ΣXΛ−1(ΛB), ur parameters forη, u(u+1)/2 parameters forΩ, (p−u)(p−u+1)/2 parameters

for Ω0, andr(r + 1)/2 parameters forΣY|X.

2.2. Estimation

In this section, we develop estimators forβ andΣX assuming that(X,Y) follows a multivariate

normal distribution. When this multivariate normality holds, we refer to (4) as thenormal SPE

model. Normality is not required in the SPE model (4), but this assumption produces estimators

that perform well when normality does not hold; see Section 2.4 for a statement of consistency and

Section 4 for a numerical experiment.

Suppose that the data(Xi,Yi), i = 1, . . . , n, are independently and identically distributed. Let
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X̄ andȲ denote the sample means ofX andY. LetX be ann × p matrix whosei-th row isXT
i

and letY be ann × r matrix whosei-th row isYT
i . The centered data matrices are denoted by

Xc = X − 1nX̄
T andYc = Y − 1nȲ

T , where1n is ann × 1 vector of1’s. With fixed u, the

parameters to be estimated by maximum likelihood areµX, µY, EΛ−1ΣXΛ−1(ΛB) with basisΓ, Λ,

η, Ω andΩ0. Estimates of these constituent parameters are then used toestimateβ = Λ−1Γη.

The maximum likelihood estimators ofΛ andΓ are obtained by minimizing

L(Γ,Λ) = log |ΓTΛ−1(SX − SXYS
−1
Y SYX)Λ

−1Γ|+ log |ΓTΛS−1
X ΛΓ|, (5)

over the set ofp × u semi-orthogonal matrices forΓ and the positive real numbers for the di-

agonal elements ofΛ. (See Section B in the Supplement for details.) Optimization of (5) can

be performed by an alternating algorithm. Given an initial valueΛ1 of Λ, we minimize (5) on

the p × u Grassmannian to get̂Γ1 = argminΓ L(Γ,Λ1). ThenÊΛ−1

1
ΣXΛ−1

1

(Λ1B) = span(Γ̂1).

Having Γ̂1, we can updateΛ by minimizing (5) using any standard program in R or MATLAB,

Λ̂2 = argminΛ(Γ̂1,Λ). We iterate betweenΓ andΛ until the difference between the objective

functions in two adjacent iterations is smaller than a pre-specified value. Once we havêΓ and

Λ̂, the maximum likelihood estimators for the rest of the parameters are as follows:̂µX = X̄,

µ̂Y = Ȳ, η̂ = (Γ̂
T
Λ̂

−1
SXΛ̂

−1
Γ̂)−1Γ̂

T
Λ̂

−1
SXY, Ω̂ = Γ̂

T
Λ̂

−1
SXΛ̂

−1
Γ̂, Ω̂0 = Γ̂

T

0 Λ̂
−1
SXΛ̂

−1
Γ̂0

and Σ̂Y|X = (Yc − XcΛ̂
−1
Γ̂η̂)T (Yc − XcΛ̂

−1
Γ̂η̂)/n. Then β̂spe = Λ̂

−1
Γ̂η̂ and Σ̂X,spe =

Λ̂Γ̂Ω̂Γ̂
T
Λ̂+ Λ̂Γ̂0Ω̂0Γ̂

T

0 Λ̂.

Upon closer inspection, we find thatβ̂spe = Λ̂
−1
P

Γ̂(Λ̂
−1

SXΛ̂
−1

)
β̂

∗

ols,whereβ̂
∗

ols = S−1

Λ̂
−1

X
S
Λ̂

−1

X,Y

is the OLS estimator ofβ based on the rescaled predictorsΛ̂
−1
X andY. So SPE estimates the

11



scaling parameter̂Λ, rescales the data, performs ordinary envelope estimationon the rescaled data

to getP
Γ̂(Λ̂

−1

SXΛ̂
−1

)
β̂

∗

ols, and then transforms the estimator back to the original scale. The SPE

model also provides an alternative estimator ofΣX besides the standard estimatorSX.

The global minimizer of the objective function (5) is not unique: if Γ̂ minimizes (5) then so

doesΓ̂O for any orthogonal matrixO ∈ R
u×u. However, as optimization is essentially over a

Grassmannian,span(Γ̂) is typically unique. Occasionally the objective function may be flat along

someΛ directions, and then the minimizers will not be unique or will be ill determined. But these

non-uniquenesses are not an issue, asΛ andΓ are constituents of the parameters of interestβ

andΣX, which are both identifiable. Additionally, the SPE estimator β̂spe is unique even when

the global minimizer of (5) is not unique. These properties are discussed further in Section C of

the Supplement. The uniqueness ofβ̂spe andΣ̂X,spe provides the foundation for our discussion of

their asymptotic distribution and consistency in Sections2.3 and 2.4. Section D of the Supplement

contains proofs of propositions to follow.

2.3. Asymptotic variance

In this section, we give the asymptotic variances of the SPE estimatorsβ̂spe andΣ̂X,spe assuming

normality.

If a quantity stems from the ordinary envelope model (3), it is designated with a subscript

o. For instanceY andΛ−1X follow an ordinary envelope model and thus we writeβo = Λβ,

andΣo = Λ−1ΣXΛ
−1. We usevec(·) to denote the operator that maps a matrix to a vector

columnwise andvech(·) for the operator that maps the lower diagonal of a symmetric matrix to a
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vector columnwise. The gradient matrix under model (3) is then

Ho = ∂{ vecT (βo), vech
T (Σo)}T/∂{ vecT (η), vecT (Γ), vechT (Ω), vechT (Ω0)}.

Let bdiag(·) denote a block diagonal matrix with diagonal blocks as arguments. The column

vectorλ = (λ1, . . . , λq−1)
T contains theq − 1 unique elements ofΛ, so thatλT = vecT (Λ)L,

whereL = (er1+1⊗er1+1, · · · , ep−rq+1⊗ep−rq+1) ∈ R
p2×(q−1) extracts theq−1 scaling parameters

from vec(λ), ⊗ denotes Kronecker product,ei ∈ R
p×1 contains a1 in the i-th position and0

elsewhere.

The Fisher information for{ vecT (βo), vech
T (Σo)}T is

Jo = bdiag{Σ−1
Y|X ⊗Σo,E

T
p (Σ

−1
o ⊗Σ−1

o )Ep/2} ∈ R
{rp+p(p+1)/2}×{rp+p(p+1)/2}.

Let K = bdiag{−ηTΓT ⊗ Ip, 2Cp(Σo ⊗ Ip)}(LT ,LT )T , G = QHo(Jo)K andD = bdiag{Ir ⊗

Λ−1,Cp(Λ⊗Λ)Ep}. Then the Fisher information for{ vecT (β), vechT (Σ)}T isD−1JoD
−T .

Proposition 2.1 Under the normal SPE model (4),

√
n[{ vecT (β̂spe), vech

T (Σ̂X,spe)} − { vecT (β), vechT (ΣX)}]T

converges in distribution to a normal random vector with mean zero and covariance matrix

V = DG(GTJoG)†GTDT +DHo(H
T
o JoHo)

†HT
o D

T ≡ V1 +V2.
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The estimatorŝβspe andΣ̂X,spe are more efficient than or at least as efficient as the OLS estimators

asymptotically; that is,DJ−1
o DT −V is a positive semi-definite matrix.

In Proposition 2.1, the asymptotic covariance matrixV is decomposed into two parts:V2 is the

asymptotic variance when the scaling parameterΛ is known. It is a rescaled version of the asymp-

totic variance given by Cook et al. (2013) for the regressionof Y onΛ−1X. As a consequence,

we think ofV1 as the asymptotic cost of estimatingΛ.

Now we focus on the asymptotic variance ofvec(β̂spe), which is the upper leftpr × pr block

of V. We denote the upper leftpr×pr block ofV1 asT1 and the upper leftpr×pr block ofV2 as

T2. Then we measure the relative cost of estimatingΛ asC =

√
tr(T

−1/2
2 T1T

−1/2
2 ). Section E

in the Supplement contains a plot on the relative cost of estimatingΛ under different signal and

noise levels. It is possible to haveC = 0 in some cases, as stated in the following corollary.

Corollary 2.2 Under the normal SPE model (4), ifΣo = cIp, wherec is a scalar, then there is

no asymptotic cost in estimatingΛ andC = 0. MoreoverΣo = cIp if and only ifΩ = cIu and

Ω0 = cIp−u.

Proposition 2.1 also states that the SPE estimator is asymptotically at least as efficient as the

OLS estimators. In the following discussion, we explore some cases where the asymptotic variance

of the SPE estimator is the same as that of the OLS estimator. This will give us clues on when SPE

model is likely to give more efficient estimators than OLS.

Proposition 2.3 Under the normal SPE model (4), whenu ≥ p − (q − 1)/r, the estimatorŝβspe

andΣ̂X,spe have the same asymptotic covariances as the OLS estimators.
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Let ⌈·⌉ denote the ceiling of a number and defineu0 = ⌈p− (q − 1)/r⌉. Proposition 2.3 indicates

that whenu ≥ u0 the SPE estimators and the OLS estimators have the same asymptotic variances.

Two special cases are summarized in the following corollaries.

Corollary 2.4 Under the normal SPE model (4), ifr ≥ q, thenu0 = p and thus the SPE and OLS

estimators have the same asymptotic variance whenu = p.

As a consequence, when the number of responsesr strictly exceeds the number of estimated scaling

parametersq − 1, the SPE and OLS estimators have the same asymptotic variance whenu = p;

that is, when the SPE model (4) reduces to the standard multivariate linear regression model.

Corollary 2.5 Under the normal SPE model (4), ifr = 1 and q = p, thenu0 = 1 and thus the

SPE estimator always has the same asymptotic variance as theOLS estimator.

It follows from this corollary that there is no point to rescaling all of the predictors in univariate

linear regression since then the asymptotic variance of theSPE estimator reduces to that of the

OLS estimator. However, progress is still possible in univariate regressions when rescaling the

predictors in groups. For instance, suppose thatr = 1, p = 20 andq = 5, so there are five groups

of predictors to be scaled in the same way. Then according to Proposition 2.3, the SPE and OLS

estimators have the same asymptotic variance only whenu ≥ 16. Since in practice the number of

componentsu is often small relative top, we might reasonably expect gains in this setting.

As a consequence of Proposition 2.3, the SPE estimator is effectively constrained by the con-

ditionu < u0, and we normally do not bother computing the SPE estimator whenu ≥ u0. In those

cases we can still consider the OLS, SIMPLS and ordinary envelope estimators, whose relative

performance was characterized by Cook, et al. (2013).
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Cook et al. (2013, Corollary 1) showed that the asymptotic variance of the envelope estimator

β̂env is the same as that of the OLS estimatorβ̂ols when the predictor are uncorrelated with equal

variances andβ has rankr. A similar result holds for the SPE estimatorβ̂spe whenΣX is diagonal

since then scaling withΛ = ΣX givesΣo = Ip where the result of Cook et al. applies. Accord-

ingly, like the envelope and PLS estimators, the SPE estimator offers the greatest gains when there

is notable collinearity among the predictors.

The efficiency gain also depends on the relative magnitude ofΩ andΩ0. Substantial efficiency

gain is expected when‖Ω‖ ≫ ‖Ω0‖. Otherwise we expect modest but still useful gains. The

effect of‖Ω‖ and‖Ω0‖ on the SPE model is qualitatively similar to their effect on the envelope

model (3). Figure 2 and Figure 5 in Section 4 demonstrate thiseffect with numerical experiments.

2.4. Consistency

Although the SPE estimators ofβ andΣX are derived using the normal likelihood, they are
√
n

consistent without the normality assumption.

Proposition 2.6 Assume that model (4) holds and that(Y,X) has finite fourth moments. Then

√
n[{ vecT (β̂spe), vech

T (Σ̂X,spe)}T − { vecT (β), vechT (ΣX)}T ]

is asymptotically normally distributed, and̂βspe andΣ̂X,spe are
√
n consistent estimators ofβ and

ΣX.

Although we do not have a useful expression for the asymptotic variance in this case, we have

found in simulations that the bootstrap gives a good estimator of the actual variance.
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2.5. Selection of u

To select the dimension ofEΛ−1ΣXΛ−1(ΛB), likelihood-based methods such as the Akaike infor-

mation criterion (AIC), the Bayesian information criterion (BIC), likelihood ratio testing (LRT) or

other information criteria can be used. Cross validation can also be used. We tend to prefer BIC

for parameter estimation and cross validation for prediction. To use BIC, for0 ≤ u ≤ p, let

l̂(u) = −n(p + r)

2
log(2π)− nr

2
− n

2
log |Σ̂X| −

n

2
tr(Σ̂

−1

X SX)−
n

2
log |Σ̂Y|X|

be the maximized log likelihood under model (4), and letN(u) be the number of parameters as

discussed in Section 2.1. The BIC estimator ofu is argminu−2l̂(u) + log(n)N(u).

Properties of BIC were studied by Cook and Su (2013, Proposition 4) in the context of response

scaling. Similar results hold for the SPE model: Let the candidate set be the set of SPE models

having dimensions varying from0 to p. If the true model is in the candidate set then, asn → ∞,

BIC will select the true model with probability tending to1, AIC will select a model that at least

contains the true model and LRT will select the true model with probability1 − α, whereα is the

significance level.

3. Scaled SIMPLS Algorithm

Recall that the algorithm described in Section 2.2 for maximizing the likelihood requires a starting

valueΛ0 for Λ. Our experience indicates that the algorithm converges reliably using the default

choiceΛ0 = Ip, but also that it might take a long time to converge dependingon characteristics of
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the regression. Better starting values can mitigate the time to convergence.

In this section, we introduce a relatively fast scaled SIMPLS algorithm, which we denote SPLS.

While main role of SPLS is to produce starting values for the primary algorithm described in

Section 2.2, our experience indicates that it can serve as aneffective diagnostic on the need for

scaling since in that case it typically outperforms SIMPLS on cross validation prediction error. It

might be used as a stand-alone prediction method in some regressions. Compared to SIMPLS, it

incorporates a scaling parameterΛ, and returns a scale invariant SIMPLS estimator.

On the first iteration we setΛ0 = Ip or any reasonable guess, and then getΓ̂1 by applying the

SIMPLS algorithm to the regression ofY onΛ−1
0 X. Then given̂Γ1 we updateΛ by minimizing

the objective function (5), which giveŝΛ1. Subsequent iterations then proceed as follows. Let

Γ̂i andΛ̂i be the estimates ofΓ andΛ from thei-th iteration. We construct̂Γi+1 by first getting

Γ̃ from the SIMPLS algorithm applied to the regression ofY on Λ̂
−1

i X. Then for a real number

a ∈ (0, 1), we construct̂Γa as an orthogonal basis ofspan{aΓ̂i + (1 − a)Γ̃} and find the optimal

value fora as

a∗ = arg min
a∈(0,1)

log |Γ̂T

a Λ̂
−1

i (SX − SXYS
−1
Y SYX)Λ̂

−1

i Γ̂a|+ log |Γ̂T

a Λ̂iS
−1
X Λ̂iΓ̂a|.

The next updatêΓi+1 is constructed as an orthogonal basis of the span ofa∗Γ̂i + (1 − a∗)Γ̃, and

Λ̂i+1 is constructed using this value in (5). In this way, the optimization processes forΓ andΛ

share the same objective function, which is monotonically decreasing as we iterate.

The SPLS algorithm uses SIMPLS rather than Grassmann optimization to updateΓ, so SPLS

and SPE produce different estimators forβ. But the SPLS algorithm is faster and typically provides
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a very good starting value for SPE. In timing experiments with p = 100, r = 8 andu = 5, the

running time for the SPLS algorithm was about 25% of that for the SPE algorithm, both starting

atΛ0 = Ip. Using the SPLS algorithm to get starting values for SPE cut the running time in half

relative to the SPE algorithm withΛ0 = Ip. Additional support for using SPLS to get starting

values are given in Section 4. As mentioned previously, we consider the SPE estimator only when

u < u0. To be consistent, we also consider the SPLS estimator only whenu < u0.

4. Simulations

In this section, we report results from simulation studies to investigate the estimative and predictive

behaviors of methods discussed previous sections.

4.1. Estimative performance

To compare SPE, SIMPLS and OLS on estimative performance, wegenerated data from model (4)

with p = 10, r = 8, u = 5. We tookΩ = σ2Iu andΩ0 = σ2
0Ip−u with σ = 5 andσ0 =

√
5. The

scaling parameterΛ had diagonal elements20, 20.5, 21, · · · , 24.5. The elements inµY andΛ−1µX

were independent standard normal variates, the elements inη were from the uniform(0, 2) distri-

bution, and(Γ,Γ0) was obtained by normalizing ap×p matrix whose elements were generated as

independent uniform(0, 1) variates. We simulated the error vectorε from the multivariate normal

distribution with mean0 and covariance matrixΣY|X = ADAT , whereA was an orthogonal

matrix obtained by normalizing anr × r matrix of uniform(0, 1) random variates, andD was a

diagonal matrix with diagonal elements1, 2, . . . , r. We generated200 replications for sample sizes
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100, 200, 300, 500, 800 and1200. With each replication, we estimatedβ by using SPE, SIMPLS

and OLS. For the SPE estimator, we used both the true value of{Λ, span(Γ)} and the SPLS es-

timator{Λ̂spls, span(Γ̂spls)} as starting values. We computed the mean squared error (MSE)for

elements in̂β(·) for each sample size, and the results for two elements are shown in Figure 2. We

always used the trueu = 5 for the SPE estimator.

Prediction is often the goal in applications of the ordinarySIMPLS algorithm, and the number

of componentsu is typically chosen by cross validation or a hold-out sample. Because of variance-

bias tradeoffs, the bestu for prediction might not be the best for estimation. To give SIMPLS an

edge in this simulation, for each sample size, we selected the number of componentsu to give the

smallest MSE of the selected element ofβ. As it turned out in this example, usually larger value of

u minimizes the MSE, as a small value ofu typically leads to large bias. The two panels in Figure

2 give results for two elements inβ, which represents two common patterns that appear across all

the elements inβ. For both patterns, we notice that the SIMPLS estimator has aMSE larger than

the OLS estimator, that the SPE estimator has the smallest MSE and that the SPLS estimator offers

a good starting value for the SPE estimator. Plots of the standard deviation and absolute value of

the bias are included in the Supplement.

Table 1 provides the means and standard deviations of200 SPE estimated scales. The estimates

seem quite good.

To gain insights into the effects of non-normality, we generated the errors from thet distribution

with 6 degrees of freedom, the uniform(0, 1) distribution and the chi-square distribution with4

degrees of freedom to represent distributions with heavy tail, short tail and skewness. The results

for the SPE estimator are summarized in Figure 3. Since the SPE estimator is asymptotically
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Figure 2: Comparison of the SPE, SIMPLS and OLS estimators. The two horizontal lines mark
the asymptotic standard deviations: Dashed: SPE; dotted: OLS. Other lines mark square root of
MSE: Dash-dotted: SIMPLS; dotted: OLS; solid and dashed: SPE with starting values the true
values and SPLS values. The solid and dashed lines overlap and are indistinguishable in the lower
plot.
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Table 1: Mean of base2 logarithms of the diagonal elements in̂Λ, the number in parentheses are
their standard deviations.

n 100 500 1200
log2 λ̂2 0.4499 (0.3257) 0.4993 (0.0983) 0.5050 (0.0576)
log2 λ̂3 0.9873 (0.1330) 0.9964 (0.0590) 0.9995 (0.0355)
log2 λ̂4 1.4981 (0.2153) 1.4999 (0.0974) 1.4982 (0.0582)
log2 λ̂5 2.0060 (0.1769) 1.9953 (0.0826) 2.0066 (0.0475)
log2 λ̂6 2.5020 (0.1252) 2.4999 (0.0521) 2.5011 (0.0317)
log2 λ̂7 3.0003 (0.1096) 3.0016 (0.0501) 2.9983 (0.0304)
log2 λ̂8 3.4974 (0.1463) 3.5019 (0.0609) 3.4999 (0.0417)
log2 λ̂9 4.0030 (0.2245) 3.9996 (0.0905) 4.0006 (0.0548)
log2 λ̂10 4.4995 (0.1293) 4.5010 (0.0564) 4.5008 (0.0365)

unbiased as indicated by Proposition 2.6, and estimation variance is the main contributor to MSE

for the SPE estimator as demonstrated in Figure 2 and plots inSection F in the Supplement, we

provided the plots of standard deviations for clarity in comparison. From Proposition 2.6, and this

and other simulations, we concluded that the SPE estimator is robust to moderate departure from

normality.

We also checked the performance of the estimators when the scales are all1 to obtain some idea

of the potential loss when the scaling is unnecessary. We repeated the simulation with the same

settings as for Figure 2, but all scalesλi were set to1. The results are displayed in Figure 4. For

the SIMPLS estimator, again we chose the number of components to minimize the MSE and the

SPE estimator again has smallest MSE. The plots for standarddeviation and absolute value of bias

are in Section F of the Supplement. WhenΛ = Ip no scaling is necessary and model (4) reduces

to the envelope model of Cook, et al. (2013). Figure 4 then confirms what is known about the

relative behavior of the estimators: SIMPLS performs better than OLS and the envelope estimator
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Figure 3: Comparison of SPE estimators with normal,t6, U(0, 1) andχ2
4 errors. The line marks

are the same as those in Figure 2.

performs better than both.

We also performed a simulation to demonstrate the effect of‖Ω‖ and‖Ω0‖ on the efficiency

gains of the SPE model. We used the same setting as in Figure 2,but reversed the values ofσ2

andσ2
0. From Figure 5, we notice that the efficiency gain from SPE is small compared to that

in Figure 2 and that SIMPLS fails in this case because it always looks in the direction with the

larger variation. This will not be an issue when the directions of larger variation are material, as in

many chemometrics applications. But it will be a serious problem for SIMPLS and by extension

SPLS when the direction of larger variation is immaterial. Following the discussion at the end of

Section 2.3, the SPE model works as expected in both cases. Plots of the standard deviation and

absolute value of the bias are included in Section F of the Supplement.
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Figure 4: Comparison of the SPE , SIMPLS and OLS estimators whenΛ = Ip. The line marks are
the same as those in Figure 2.

4.2. Predictive performance

To study predictive performance, we tookp = 10, r = 8, u = 1, n = 60, and generated the

data under the SPE model (4). The covariance matrix ofX had the structureΣX = ΛΓΩΓTΛ +

ΛΓ0Ω0Γ
T
0Λ, with Ω = σ2M1M

T
1 , Ω0 = σ2

0M2M
T
2 , whereσ = 3, σ0 = 1, and elements in

M1 ∈ R
u×u andM2 ∈ R

(p−u)×(p−u) were independent uniform(0, 1) random variates. The

eigenvalues ofΣX ranged from0.82 to 1.12e+ 6. The orthogonal matrix(Γ,Γ0) was obtained by

normalizing ap× p matrix of independent uniform(0, 1) random variates. The error vectorε was

generated from a multivariate normal distribution with mean 0 and covariance matrixΣY|X, where

ΣY|X had eigenvalues1, 2, . . ., r. The diagonal elements ofΛ were1, 21, 22, . . ., 29, soq = 10.

The vectorsµY andΛ−1µX consisted of independent standard normal variates, andη was au× r

matrix of independent uniform(0, 5) variates. We used cross validation to estimate the prediction

error, and the identity inner product was used to bind the elements in(Y − Ŷ). With different
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Figure 5: Comparison of SPE, SIMPLS and OLS on estimation performance. The two horizontal
lines mark the asymptotic standard deviations: Dashed: SPE; dotted: OLS. Other lines mark
square root of MSE: Dash-dotted: SIMPLS; dotted: OLS; solid: SPE with the true values as
starting values.

number of components, we computed the average prediction errors for SPE with SPLS starting

values, SIMPLS, SPLS and OLS estimators based on50 five-fold cross validations with random

partitions. The results are summarized in Figure 6. Withu = 1, the SPE estimator reduced the

prediction errors by10.6% compared to the OLS estimator. If we overestimateu, the prediction

error of the SPE estimator will increase, but it was never greater than that of the OLS estimator.

From Proposition 2.3,u0 = ⌈p − (q − 1)/r⌉ = 9 and, as expected, the SPE and OLS estimators

had essentially the same prediction error whenu ≥ 9. The best SIMPLS estimator in this case

hadu = 8, its prediction error being8.74% larger than the SPE estimator withu = 1. Figure 6

shows that the SPLS algorithm does quite well at the true value ofu. It reduces the prediction error

by 28.9% compared to the SIMPLS estimator atu = 1, and by2.5% even compared to the best

SIMPLS estimator. The SIMPLS estimator seems quite sensitive to the number of components,

which is consistent with the findings in Cook et al. (2013).
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Figure 6: Comparison of the SPE, SIMPLS, SPLS and OLS estimators on prediction performance.
The Horizontal dotted line: OLS. Solid line: SPE. Dash-dotted line: SIMPLS. Dashed: SPLS.

5. Data Analysis

In this section, we demonstrate the performance of the SPE estimator using the chemometrics data

published by Skagerberg et al. (1992). Then = 56 observations were collected to study the poly-

merization reaction along a reactor. Ther = 6 response variables are polymer properties: number-

average molecular weight, weight-average molecular weight, frequency of long chain branching,

frequency of short chain branching, the content of vinyl groups and vinylidene groups in the poly-

mer chain. The predictors are twenty temperatures measuredat equal distances along the reactor

plus the wall temperature of the reactor and the solvent feedrate.

If the multivariate linear model (1) holds for these data, then by extension the envelope (3)

and the SPE (4) models must hold as well. We performed a few diagnostic checks to see if the

data provide clear evidence to contradict model (1), concluding that it fits quite well. With their
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R2s ranging between0.946 and0.997, the regressions of the six individual responses on the22

predictors all showed strong linear trends. There was no evidence of curvature in plots of the re-

sponses versus their fitted values, but there was a little evidence of mild curvature based on adding

quadratic terms. Taking multiple testing into account, we concluded that there is not sufficient

evidence to justify remedial action. The eigenvalues ofnSX, which range between84.9× 10−6 to

6.9 × 10+3, clearly indicate strong multi-colinearity among the predictors and thus that PLS and

envelopes methods may provide better predictions than OLS.

Skagerberg et al. applied PLS after standardizing all variables inX andY to have sample mean

0 and sample variance1. We computed predictions based on SIMPLS, SIMPLS with standardized

variables (standardized SIMPLS), SPE and SPLS withq = 22, and OLS, obtaining the results

displayed in Figure 7. The prediction performance was measured by the average of the prediction

errors from50 five-fold cross validations with random splits. For better visibility, we truncated

the vertical axis at6. At u = 1, SIMPLS and standardized SIMPLS have average prediction

errors as large as9.335 and9.077, and SPLS has average prediction error6.958. SIMPLS has

its smallest average prediction error1.621 at u = 5 and standardized SIMPLS has its smallest

average prediction error1.618 at u = 6. That is about a45.2% reduction of prediction errors

compared to the OLS, which has average prediction error2.952. The SPE estimator has average

prediction error1.555 atu = 2 and its prediction error decreases thereafter asu increases until at

u = 11 it hits the minimum average predictor error1.075. Compared to SIMPLS or standardized

SIMPLS, that is a33.6% reduction of the prediction errors. We also notice that whenu = 1, the

SPE estimator has slightly better performance than OLS, while SIMPLS and standardized SIMPLS

both have very large prediction errors, and they did not perform better than OLS untilu = 3 and
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u = 4 respectively. SPE estimators seems more stable for smallu. The SPLS estimator has its

smallest average prediction error1.615 at u = 4, which is about the same as the smallest average

prediction error from SIMPLS and standardized SIMPLS. But SPLS achieves this prediction error

with a smalleru. Not shown here, we also fitted the envelope model in the predictor space (Cook et

al. 2013), obtaining minimum average prediction error2.360, which again indicates that properly

scaling the predictors can bring substantial efficiency gains.

To gain more insights about the efficiency gains obtained by SPE, we fitted the SPE model that

scales only the last two predictors, wall temperature of thereactor and solvent feed rate. Recall that

in the formulation of the SPE model (4), we allow the scaling parameterΛ to have replicates in

order to accommodate regressions in which we want to scale groups of variables in the same way.

In this example, the first twenty predictors are all temperatures around the reactor and it may be

natural to apply the same scale to them. The diagonal elements ofΛ are then1, . . ., 1, λ2 andλ3.

Under this construction, the SPE estimator has minimum average prediction error1.140 atu = 11,

and the prediction performance across allu is quite similar to that of the SPE estimator scaling all

the predictors, as indicated in Figure 7. This suggests thatthe efficiency gain obtained by the SPE

estimator is largely due to rescaling the last two predictors which measure different characteristics

from the first twenty predictors.

6. Discussion

Prediction in the context of the multivariate linear model (1) has been addressed by many tradi-

tional methods, including reduced rank regression (RRR), principal component regression (PCR)
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Figure 7: Comparison of SPE, SIMPLS, standardized SIMPLS and SPLS and on prediction per-
formance. Horizontal dotted line: OLS. Solid line with asterisks: SPE. Solid line: SPE scaling
only the last two predictors. Dashed line: SPLS. Dash-dotted line: SIMPLS. Dash-dotted line with
asterisks: standardized SIMPLS.

and ridge regression (RR), all of which used information inΣX. These methods together with PLS

have been studied and compared in the literature. For example, Frank and Friedman (1993) exam-

ined the mechanism behind PCR, PLS and RR and compared their performance numerically. Stone

and Brooks (1990) incorporated PLS and PCR into a general framework called continuum regres-

sion, and Yuan et al. (2007) compared RRR, PLS, PCR and RR in simulations. However, none

of aforementioned methods are invariant or equivariant to ascale transformation of the predictors,

while the SPE model is a scale-invariant method.

The other prediction methods operate from vantage points that are distinctly different than that

for envelopes. For instance, RRR offers no gain in univariate regressions, since then the only

possible ranks forβ ∈ R
p×1 are 0 and 1, while envelopes and scaled envelopes can still produce
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gains. Similarly, RRR offers no gain whenβ ∈ R
p×r has full rank, while again envelopes and

scaled envelopes can still give substantial gains. Traditional PCR neglects the response vector in

its reduction step, and can result in very inefficient regressions. Ridge regression is a regulariza-

tion method that, depending on how the ridge parameter(s) are determined, can also neglect the

response. In contrast, envelopes, scaled envelopes and PLSmethods capitalize on the collinearity,

rather than attempt to mitigate its effects through regularization.

The discussion in this paper is confined to regressions in which n > p. Developing a scaled

invariant prediction method such as SPE model forn < p is an important problem as many con-

temporary applications feature small sample size.
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