Supplement to
Scaled Predictor Envelopes and Partial Least Squares

Regression

September 25, 2015

A. Marginal scaling

Itis common in chemometrics and other application areattuiardize the predictors marginally,
so they have common sample variance of 1, prior to applicati@LS. To see the consequences of
this in terms of model (4), leA be a diagonal matrix with diagonal elementsQy,, +~¢,. Qoo
wherevy] and~{, are thek-th rows ofl" andT'y. Then the diagonal matrix of population predictor
standard deviations can be representedA&€ A, and model (4) can be re-expressed in terms of

the standardized predictakss = A~/?2A"'X as

Y = py+ nTPTAl/z(XS — px,) €, (1)

Yx. = ATVPTQrTATY2 4+ ATV2rQ,rT ATV,
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From this representation we see that marginal scaling doesatessarily mitigate the scaling
issue, but rather induces a different rescaling &ia In fact, if no scaling is needed from the

original scale so\ = I,,, marginal scaling could actually induce a need for resgalin

B. Derivation of the SPE estimators

The log likelihood function is
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First we take derivative ofwith respect tqu?,, and set it to zero
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Then we gety — puy = n" TP A~ (X — puy ). Taking the derivative with respect (g, and setting

it to zero,
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Substitute the expression & — u+ into the preceding equality, then we obtgig = X and

ity = Y. Up to a constant, the partially maximized log likelihoodhigm
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Now we take derivative of; with respect taXy x,
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to obtainSyx = (Y. — X, A7'T'n)" (Y. — X,A~'T'n)/n and the next the partially maximized

log likelihood
_n 1 —IyTy 1 _ 1 N\T (v —1
ly = 5 log | 2x| 5 tr(X .25 X,) 5 log (Y. — XA T'n)" (Y. — XA I'n)|.

Take derivative ot, with respect tay and set it to zero
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Then the estimator aj is
N =TTA'XIXATD) ' TTAIXTY, = (TTA'SxA™'T) 'TT A 'Sxy.
As
Y, - XA'TH = Y. - XA 'TITTA XX AT ITTATXT Y,

= [L - XA'TT"ATXIXATT) ' TTATXT] Y,

- [In - PXCA*F} Y. = QXCA*1FYC>

the partially maximized log likelihood becomes
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Now we maximizd; over2 and$2,
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Then the estimators & and€2, areQ = T"A~'SxA~'T and€)y = TTA~'SxA~'T,. Since

tr(XATTQ'TTATX]) = o [XATTTTAT'SxA™'T) ' TTAT'X]]
= tr(nl,) =nu
tr(X.AT' T, 'TEAT'X]) = tr [XAT'To(Tg A 'SxA™'Ty) ' A™'XT ]

= tr(nl_,) = n(r —u),
the partially maximized log likelihood is
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The last equality is because thag |[A'Sx A™'| = log |Sx| — 2log|A].

Let W = S,/ then

log |[YZQx a-11 Y| = log |Sy|+log |I,—Swx A~ 'T(T"A™'Sx A~ 'T) " 'T" A" Sxw|-+constant



Maximizing, is equivalent to maximizing

Is = —g log [TTAS! AT
—g log [TTA'SxA~'T| — glog L, — SwxA T(TTA'Sx A1) 'TTA 'Sxw]|
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Therefore, the objective function to minimize is as givelGh

C. Identifiability

Recall the notation used in the main text: LettiAge R*** be a symmetric matrix, we reserve
C, € Reath)/2xa®> gnd E, e R***a(e+D?2 for the “contraction” and “expansion” matrices that
connect thevec and vech operators:vech(A) = C,vec(A) and vec(A) = E,vech(A). The
column vectorA = (), .. .,Aq_l)T contains they — 1 unique elements of\, so that\T =
vec” (A)L, whereL = (e, 11 ® €41, "+, €y r11 @ €, 11) € R extracts they — 1
scaling parameters fromec(\), ® denotes Kronecker produet, € RP*! contains al in thei-th

position and) elsewhere. Then the constituent parameters in the SPE t@)dek
¢ = {py, vech” (Zyx), px, A, vec' (n), vec” (T'), vech” (€2), vech” (£29)}”.

Turing to identifiability, if the SPE model (4) has indepentleut not necessarily normal errors

with finite second momentSx > 0 and certain technical conditions are met, then it follovesrfr



Shapiro (1986, Proposition 3.1) th@{¢) and Xx(¢) are identifiable an(;ABSIOC and f)x,spo are
uniquely defined. In the remainder of this section, we conhnac context with Shapiro’s result.
We match our notations with Shapiro’s during the discussion

Our ¢ corresponds to Shapirots The estimable functions in our context are
h(¢) = {ny, vech” (Eyix), ux, vec' (B), vech” (Ex)},
andh(¢) corresponds to Shapira&s Shapiro’sx corresponds to our
h = {Y7, vech? (Sy\x), X7, vecT (By.), vech? (Sx)}.

Shapiro’s discrepancy functiahi is our log likelihood function, except we omit a constanttec

n.

F = lI/n
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As F' is constructed under normal likelihood function, it sagisfconditions 1 - 4 in Section 3

of Shapiro (1986). Shapiro’V is 9°F/0¢0¢” evaluated at¢, £). It correspond to the Fisher



information matrixJ* of h which equals

Shapiro’sA is the gradient matrix¢ /00 and it is ourH* =
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where for notational convenience
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0 0
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Cp(AT ® AT)E, C,(AT( ® AT()E,_,

(2)

As we assume tha#ix > 0, J* is full rank, rank(H*"J*H*) = rank(H*) and that Shapiro’s

regularity condition holds. Therefore, all conditions ihairo’s Proposition 3.1 are satisfied,

andXx are identifiable, an@ andx are unique.



D. Proofs

Proof of Proposition 2.1 and Proposition 2.6: Since there is over-parameterizationIin we
apply Proposition 4.1 in Shapiro (1986) to compute the aggtigpvariance and prove the con-
sistency ofB andXx. We continue to use the notations defined in the proof of Fitipa ?7.
Shapiro’s Proposition 4.1 has the same conditions as higoBition 3.1, except that it needs an
additional condition tha{/ﬁ(ﬁ — h) has to be asymptotically normal. This requires in part that
V(B —B3) converge in distribution to a multivariate normal. Reca#ti3,,, = (X7X,)'X’Y..
Since(X”X,)/n converges in probability t&x, n(X?X,)~! converges in probability t&y'. As
(Y, X) has finite fourth moment, the sequenge(XXY./n — Xxy) converges in distribution. By
Slutsky’s theorem\/ﬁ(ﬁOlS — [3) converges in distribution to a multivariate normal digttibn. It
can be shown similarly that asymptotic distributionGi (h—h) is multivariate normal. Therefore
the conditions of Proposition 4.1 in Shapiro (1986) are afis§ied. Leth be the SPE estimator
of h, thenh is a consistent estimator af and\/ﬁ(fl — h) is asymptotically normally distributed.

As {vecT(8), vech” (Ex)}7 is part ofh, 3,,. andEx ... are consistent estimators Sfand X,

spe
and y/n[{ vecT (B,,.), vech” (Ex o) }T — { vec (), vech? (Sx)}7] is asymptotically normally
distributed. This establishes Proposition 2.6.

Assuming normality, again according to Proposition 4.1 im@ro (1986), the asymptotic
variance of the SPE estimator bfhas the formH*(H*7J*H*)'H*T. As J* andH* both have
block diagonal structure, the asymptotic variancé ofc”(3), vech” (£x)}7 is H(H”JH) H”,

where

. Eyx ® Tx 0

0 IET (%' @ 2%)E,



andH has the form

( —MTTTA @A™ YL LeoA'T nfeA™? 0 0 )
Y

2C, (A, ® I,)L 0 Hi;, C,(AT®AT)E, C,(AT® AT\)E, ,

whereH}; is given at (2). AsJ~! is the asymptotic covariance matrix of the OLS estimator of
{vec”(B), vech” (2x)}7, andJ~' — HH"JH)'H” = J~1/2Qy /25 J /% > 0, the SPE estima-
tors are more efficient than the OLS estimators.

LetH = (H,, H,), whereH, is the first column oH. We writeH, = DH,,, where

I, @ At 0
D= ,

0 C,(A® A)E,
and

I,®T n’ ®I, 0 0

0 2C,ITN2RIL, -TalIE) C,(I®DTE, C,(Ty®T\)E, .,

thenH,(HIJH,)'H! = DH,(H?J,H,)'HT D7, whereJ, = DTJD. Let

I, 0

- (HgJHZ)THgJHl I:n(p+1)/2

thenHT = (Hl — PHQ(J)H:[,HQ) = (QH2(J)H1,H2). As T is full rank, H(HTJH)THT =
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HT(TTHTJHT)'TTH”. Now T"H?JHT is a diagonal matrix. This is because

N|=

H,JQu,5) = HYJ — HY JPy,y) = HIJ — HJH,(HLJH,) HIJ = H]J2Q_,  J? =0,

J2H>
then

H{ Qyy

Tyl _ 2(J)

T'H'JHT - J ( Qu,H; H, )
1363

HIQf, I Qe Hi HI Qg ) JH

H}JQu, 5 Hy HIJH,

H{QEQ(J)JQHAJ)Hl 0

0 HIJH,
T
Since(TTHTJHT)' = bdiag(<HfQ€12(J)JQH2(J)H1> ,(HIJH,)'), we have

. T
HH'JH)'H" = (QHz(J)H17H2)bdlag((HTQTIjlz(J)JQHz(J)Hl) , (HI JH2) ") (Qp, oy Hy, Hy)"
T
= Qmu,H (H,{QEQ(J)JQH2(J)H1) HTQ:II:h(J) + H,(H]JH,)™H]
T
= QHQ(J)Hl (H{QEQ(J)JQHz(J)Hl) H{le_ﬂh(']) +DHO(H5JOHO)THZDT

A+ B.

In B, we notice that the upper lefit- x pr block of H,(HZJ,H,)™H is equal to the asymptotic

variance ofvec(3,), which does not depend on scaling Hence the upper leftr x pr block of

B is the asymptotic variance ¢f, @ A™") vee(3,), which is the cost of estimating whenA is

11



known. InA,

Qi = I-Hy(H]JH,)'H]J =1—-DH,(H!J,H,)'H]D"J

= I-DH,(H'J,H,)'H'D"JDD' =1 - DH,(H'J,H,)H!J,D!

= DQHO(JO)D_la
Qi1 I Q) = D' Qi)D" IDQm,a,)D ™" =D Qpy,5,) Q3D
_(,’,ITFTA—I ® A—l)
-1 . -1 -1
D'H, = bdiag(I, ® A, C,(A~' ® A")E,) L
2C,(AS, ® 1,)
—nTFTA_l ® Ip
2C, (2, @ A1)
AT ®I,
= bdiag(—n'T" @1,,2C,(2, ® L))
LLoA™!
(er +1 ® ey -1-1)>‘_1 s (e —rg—1+1 ®e _qul"l'l))\_—l
— bdiag(—nIT®L,2C,(S,@L) | e ’ ! !
(€rg1 @ o) AT ot (@pmry i1 @ €y, 1) A

= bdiag(-n'T?" @1,

whereA; ' = diag{\[", ..

,2C,(2, ® 1)) (1o @ L)AT = KAT,

LA K = bdiag(—n'TT @1, 2C,(8, ® 1)) (1, ® L), andl, =
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(1,1)". Notice thafK does not depend oh. SinceH{ Qf, ;I Qu,Hi = AT K™Qf 5 J0Qu, ) KATY,

A = DQu,u, KA (AT'K"Qfy, (1) ToQu, ) KAL) AT KT Qfy (5yD”

= DQu, 1, KK"Qf, 1) JoQm,0.K)'K'Qf, ;D"

LetG = Qu, s, K, thenA = DG(G”J,G)'G”D?, and the asymptotic variance pfec’ (3), vech” (3x)}”
has the formA + B = D{G(G*J,G)'GT + H,(HIJ,H,)"HZ}D. This completes the proof

of Proposition 2.1.

Proof of Corollary 2.2: As C' = \/tr(T;1/2T1T;1/2), we only need to show that, = 0. From

the proof of Proposition 2.1, we know that

Tl = (I;ln"u O)QHQ(J)HI (HfQﬂg(J)JQHQ(J)HI)T HfQEQ(J) (I;DTu O)T7

then it is sufficient to show thdfl,,, 0)Py,5)H, = (I,,,0)H;. Recall thatH, = DH,, then
(T, 0)PryyHi = (I, 0)Ho(HL JH,) HEJH, = (1,,,0)DH,(HJ,H,)'HDJH,. Notice
thatD, J andH,(HZJ,H,)"H are all block diagonal matrices. The upper |eftx pr blocks of
D andJ arel, ® A~! and EQX ® Xx. According to Cook et al. (2010), the upper lgft x pr
block of H,(HZJ,H,)'H! is Eyx ® £,' whenX, = cI,. The rest of the proof follows by
straightforward matrix multiplication.

Proof of Proposition 2.3: We continue to use the notations in the proof of Propositidn the
asymptotic variance of vec” (), vech” (Sx)}7 is H(HTJH)'H”, whereJ andH have dimen-

sions[rp+p(p+1)/2] x [rp+p(p+1)/2]and[rp+p(p+1)/2] x [¢— 1+ ru+u*+p(p+1)/2].
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We can writeH = MN, where therp + p(p + 1)/2] x [¢ — 1 + ru + p(p + 1)/2] matrix M has

the form
—'TTA '@ AL I, ® AT'T nT @ ATy 0 0
)
2C, (A, @ I,)L 0 2C,(ATQ ® ATy — AT ® AT¢Q0) C,(AT ® AT)E, C,(ATo® AT)E,_,

andthelg — 1 +ru+pp+1)/2] x [¢ — 1+ ru+u* + p(p + 1)/2] matrix N equals

I,, O 0 0 0
0 L, =n"er’ 0 0
0 0 IL,oTy 0 0
0 0 2C(Q2®T") Lt 0
0 0 0 0 Lip—u)(p—ut1)/2

As N has full row rank, the rank oH is equal to the rank oM, then the asymptotic variance
of { vec”(8), vech” (£x)}7 is M(MTIM)™MZ. Whenu > p — (¢ — 1)/r, rp + p(p + 1)/2 <
qg—1+ru+p(p+1)/2, M has more columns than rows. According to Shapiro (1986), the
rank of M is the number of independent parameters in the model, treerattk of M should be

rp + p(p + 1)/2. We perform a singular value decompositionkt M = LDR, whereLL €

Rrp+p+1)/2]x[rp+p(p+1)/2] gnd R € Rla—1+rutp(p+1)/2)x[g=1+rutp(p+1)/2] gre orthogonal matrices,

D = (D, 0) € RIrrtpe+1)/2xla=14rutp(p+1)/2] gndD,, € RIP+ee+)/2Axr+re+1)/2] s g diagonal

14



matrix with non-zero diagonal elements. Then

MM IM)M? = LDR(R'D'LTJLDR)'R'D’L”
= L(Dy, O)R[RT(D;!, 0)'LYJ'L(D;!, 0)RJRY(Dy, 0)'L”
= L(Dy, 0)(D;*, 0)"LTJ'L(D;*, 0)(Dy, 0)"L”

= LLTJ 'L =J°L

Note that] ~! is the asymptotic covariance matrix of the OLS estimatdraic” (3), vech” (£x)}7,

which establishes Proposition 2.3.

E. Relative cost of estimatingA

Under the simulation setup for Figure 2, we varied the sigmal noise levels to investigate the
relative costC' of estimatingA, as defined in Section 2.3. We fixed at /5 and lets equal to
0.1,0.2,0.5, 1, /5, 5 and10. We took different signal levels from multiplying by 0.2, 1 and5.

A plot of the relative cost’ is shown in Figure I. From Figure |, we notice that the costeéases

150

100~ b

Figure I: Relative cost’' versuss. —e—, — and —— correspond ta; multiplied by 0.2, 1 and5
respectively.
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when the signal level decreases and the discrepancy betwaerdo, increases. Whena = oy,

C=0.

F. Additional plots of standard deviations and absolute biges
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Figure IlI: Plots of standard deviations for the estimatoisSigure 2: Comparison of SPE, SIMPLS,
SPLS and OLS on estimation performance. The two horizoimias Imark the asymptotic standard
deviations: Dashed: SPE; dotted: OLS. Other lines mark d@ngp$e standard deviations: Dash-
dotted: SIMPLS; dotted: OLS; solid and dashed: SPE withtistavalues the true values and
SPLS values. The solid and dashed lines overlap and argingiisgshable in the lower plot.
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Figure IlI: Plots of absolute bias for the estimators in FegR: Comparison of the SPE, SIMPLS,
SPLS and OLS estimator on estimation performance. DadedloSIMPLS. Dotted: OLS. The
solid line and the dashed line overlap. They mark SPE withistavalues using true value and

SPLS.
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Figure 1V: Plot of standard deviations for the estimatord=igure 4. Comparison of the SPE
estimator, the scaled and ordinary SIMPLS estimators, leea@®LS estimator wheA = I,,. The
line marks are the same as those in Figure Il.
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Figure V: Plot of absolute biases for estimators in Figur€dmparison of the SPE estimator, the
scaled and ordinary SIMPLS estimators, and the OLS estimdienA = I,,. The line marks are
the same as those in Figure lIl.
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Figure VI: Plot of standard deviations for the estimatorSigure 5: Comparison of SPE, SIMPLS
and OLS on estimation performance. The two horizontal Imask the asymptotic standard devi-
ations: Dashed: SPE; dotted: OLS. Other lines mark the sast@hdard deviations: Dash-dotted:
SIMPLS; dotted: OLS; solid: SPE using the true values asistpvalues.
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Figure VII: Plot of absolute biases for the estimators inufgg5: Comparison of SPE, SIMPLS
and OLS on estimation performance. Dash-dotted: SIMPL8edpOLS; solid: SPE using the

true values as starting values.
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