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A. Marginal scaling

It is common in chemometrics and other application areas to standardize the predictors marginally,

so they have common sample variance of 1, prior to application of PLS. To see the consequences of

this in terms of model (4), let∆ be a diagonal matrix with diagonal elementsγT
kΩγk+γT

0kΩ0γ0k,

whereγT
k andγT

0k are thek-th rows ofΓ andΓ0. Then the diagonal matrix of population predictor

standard deviations can be represented as∆1/2Λ, and model (4) can be re-expressed in terms of

the standardized predictorsXS = ∆−1/2Λ−1X as

Y = µY + ηTΓT∆1/2(XS − µXS
) + ε, (1)

ΣXS
= ∆−1/2ΓΩΓT∆−1/2 +∆−1/2ΓΩ0Γ

T∆−1/2.
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From this representation we see that marginal scaling does not necessarily mitigate the scaling

issue, but rather induces a different rescaling via∆. In fact, if no scaling is needed from the

original scale soΛ = Ip, marginal scaling could actually induce a need for rescaling.

B. Derivation of the SPE estimators

The log likelihood function is

l = −n(p + r)

2
log(2π)− n

2
log |ΣX| −

1

2
tr
[
(X− 1nµ

T
X
)Σ−1

X
(X− 1nµ

T
X
)T
]
− n

2
log |ΣY|X|

−1

2
tr
[{

Y− 1nµ
T
Y
− (X− 1nµ

T
X
)Λ−1Γη

}
Σ−1

Y|X

{
Y− 1nµ

T
Y
− (X− 1nµ

T
X
)Λ−1Γη

}T
]
.

First we take derivative ofl with respect toµT
Y

, and set it to zero

∂l

∂µT
Y

= 1T
n

{
Y− 1nµ

T
Y
− (X− 1nµ

T
X
)Λ−1Γη

}
Σ−1

Y|X

set
= 0.

Then we get̄Y−µY = ηTΓTΛ−1(X̄−µX). Taking the derivative with respect toµT
X

, and setting

it to zero,

∂l

∂µT
X

= 1T
n (X− 1nµ

T
X
)Σ−1

X
− 1T

n

{
Y− 1nµ

T
Y
− (X− 1nµ

T
X
)Λ−1Γη

}
Σ−1

Y|Xη
TΓTΛ−1 set

= 0.
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Substitute the expression of̄Y − µY into the preceding equality, then we obtainµ̂X = X̄ and

µ̂
Y
= Ȳ. Up to a constant, the partially maximized log likelihood is then

l1 = −n

2
log |ΣX| −

1

2
tr(XcΣ

−1
X
X

T
c )−

n

2
log |ΣY|X|

−1

2
tr
{
(Yc − XcΛ

−1Γη)Σ−1
Y|X(Yc − XcΛ

−1Γη)T
}
.

Now we take derivative ofl1 with respect toΣY|X,

∂l1
∂ΣY|X

= −n

2
Σ−1

Y|X +
1

2
Σ−1

Y|X(Yc − XcΛ
−1Γη)T (Yc − XcΛ

−1Γη)Σ−1
Y|X

set
= 0,

to obtainΣ̂Y|X = (Yc − XcΛ
−1Γη)T (Yc − XcΛ

−1Γη)/n and the next the partially maximized

log likelihood

l2 = −n

2
log |ΣX| −

1

2
tr(XcΣ

−1
X
X

T
c )−

n

2
log |(Yc − XcΛ

−1Γη)T (Yc − XcΛ
−1Γη)|.

Take derivative ofl2 with respect toη and set it to zero

∂l2
∂η

= −n

2

∂

∂η
log |(Yc − XcΛ

−1Γη)T (Yc − XcΛ
−1Γη)|

= nΓTΛ−1
X

T
c (Yc − XcΛ

−1Γη)
[
(Yc − XcΛ

−1Γη)T (Yc − XcΛ
−1Γη)

]−1

set
= 0.
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Then the estimator ofη is

η̂ = (ΓTΛ−1
X

T
c XcΛ

−1Γ)−1ΓTΛ−1
X

T
c Yc = (ΓTΛ−1SXΛ

−1Γ)−1ΓTΛ−1SXY.

As

Yc − XcΛ
−1Γη̂ = Yc − XcΛ

−1Γ(ΓTΛ−1
X

T
c XcΛ

−1Γ)−1ΓTΛ−1
X

T
c Yc

=
[
In − XcΛ

−1Γ(ΓTΛ−1
X

T
c XcΛ

−1Γ)−1ΓTΛ−1
X

T
c

]
Yc

=
[
In −P

XcΛ
−1

Γ

]
Yc = Q

XcΛ
−1

ΓYc,

the partially maximized log likelihood becomes

l3 = −n

2
log |ΣX| −

1

2
tr(XcΣ

−1
X
X

T
c )−

n

2
log |YT

c QXcΛ
−1

ΓYc|

= −n

2
log |Ω| − n

2
log |Ω0| − n log |Λ| − 1

2
tr(XcΛ

−1ΓΩ−1ΓTΛ−1
X

T
c )

−1

2
tr(XcΛ

−1Γ0Ω
−1
0 ΓT

0Λ
−1
X

T
c )−

n

2
log |YT

c QXcΛ
−1

ΓYc|.

Now we maximizel3 overΩ andΩ0,

∂l3
∂Ω

= −n

2
Ω−1 +

1

2
Ω−1ΓTΛ−1

X
T
c XcΛ

−1ΓΩ−1 set
= 0,

∂l3
∂Ω0

= −n

2
Ω−1

0 +
1

2
Ω−1

0 ΓTΛ−1
X

T
c XcΛ

−1ΓΩ−1
0

set
= 0.
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Then the estimators ofΩ andΩ0 areΩ̂ = ΓTΛ−1SXΛ
−1Γ andΩ̂0 = ΓT

0Λ
−1SXΛ

−1Γ0. Since

tr(XcΛ
−1ΓΩ−1ΓTΛ−1

X
T
c ) = tr

[
XcΛ

−1Γ(ΓTΛ−1SXΛ
−1Γ)−1ΓTΛ−1

X
T
c

]

= tr(nIu) = nu

tr(XcΛ
−1Γ0Ω

−1
0 ΓT

0Λ
−1
X

T
c ) = tr

[
XcΛ

−1Γ0(Γ
T
0Λ

−1SXΛ
−1Γ0)

−1ΓT
0Λ

−1
X

T
c

]

= tr(nIr−u) = n(r − u),

the partially maximized log likelihood is

l4 = −n

2
log |ΓTΛ−1SXΛ

−1Γ| − n

2
log |ΓT

0Λ
−1SXΛ

−1Γ0| −
n

2
log |YT

c QXcΛ
−1

ΓYc| − n log |Λ|

= −n

2
log |ΓTΛ−1SXΛ

−1Γ| − n

2
log |Λ−1SXΛ

−1| − n

2
log |ΓTΛS−1

X
ΛΓ|

−n

2
log |YT

c QXcΛ
−1

ΓYc| − n log |Λ|

= −n

2
log |ΓTΛ−1SXΛ

−1Γ| − n

2
log |SX| −

n

2
log |ΓTΛS−1

X
ΛΓ| − n

2
log |YT

c QXcΛ
−1

ΓYc|.

The last equality is because thatlog |Λ−1SXΛ
−1| = log |SX| − 2 log |Λ|.

Let W = S
−1/2
Y

Y, then

log |YT
c QXcΛ

−1
ΓYc| = log |SY|+log |Ir−SWXΛ

−1Γ(ΓTΛ−1SXΛ
−1Γ)−1ΓTΛ−1SXW|+constant.
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Maximizing l4 is equivalent to maximizing

l5 = −n

2
log |ΓTΛS−1

X
ΛΓ|

−n

2
log |ΓTΛ−1SXΛ

−1Γ| − n

2
log |Ir − SWXΛ

−1Γ(ΓTΛ−1SXΛ
−1Γ)−1ΓTΛ−1SXW|

= −n

2
log |ΓTΛS−1

X
ΛΓ| − n

2
log |ΓTΛ−1SXΛ

−1Γ− ΓTΛ−1SXWSWXΛ
−1Γ|

= −n

2
log |ΓTΛS−1

X
ΛΓ| − n

2
log |ΓTΛ−1(SX − SXYS

−1
Y
SYX)Λ

−1Γ|.

Therefore, the objective function to minimize is as given in(5).

C. Identifiability

Recall the notation used in the main text: LettingA ∈ R
a×a be a symmetric matrix, we reserve

Ca ∈ R
a(a+1)/2×a2 andEa ∈ R

a2×a(a+1)2 for the “contraction” and “expansion” matrices that

connect thevec and vech operators:vech(A) = Ca vec(A) and vec(A) = Ea vech(A). The

column vectorλ = (λ1, . . . , λq−1)
T contains theq − 1 unique elements ofΛ, so thatλT =

vecT (Λ)L, whereL = (er1+1 ⊗ er1+1, · · · , ep−rq+1 ⊗ ep−rq+1) ∈ R
p2×(q−1) extracts theq − 1

scaling parameters fromvec(λ), ⊗ denotes Kronecker product,ei ∈ R
p×1 contains a1 in thei-th

position and0 elsewhere. Then the constituent parameters in the SPE model(4) are

φ = {µT
Y
, vechT (ΣY|X),µ

T
X
,λT , vecT (η), vecT (Γ), vechT (Ω), vechT (Ω0)}T .

Turing to identifiability, if the SPE model (4) has independent but not necessarily normal errors

with finite second moments,SX > 0 and certain technical conditions are met, then it follows from
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Shapiro (1986, Proposition 3.1) thatβ(φ) andΣX(φ) are identifiable and̂βspe and Σ̂X,spe are

uniquely defined. In the remainder of this section, we connect our context with Shapiro’s result.

We match our notations with Shapiro’s during the discussion.

Ourφ corresponds to Shapiro’sθ. The estimable functions in our context are

h(φ) = {µT
Y
, vechT (ΣY|X),µ

T
X
, vecT (β), vechT (ΣX)},

andh(φ) corresponds to Shapiro’sξ. Shapiro’sx̂ corresponds to our

h̃ = {ȲT , vechT (SY|X), X̄
T , vecT (β̂ols), vech

T (SX)}.

Shapiro’s discrepancy functionF is our log likelihood function, except we omit a constant factor

n:

F = l/n

= −(p+ r) log(2π)− 1

2
log |ΣX| −

1

2n
tr
[
(X− 1nµ

T
X
)Σ−1

X
(X− 1nµ

T
X
)T
]
− 1

2
log |ΣY|X|

− 1

2n
tr
[{

Y− 1nµ
T
Y
− (X− 1nµ

T
X
)Λ−1Γη

}
Σ−1

Y|X

{
Y− 1nµ

T
Y
− (X− 1nµ

T
X
)Λ−1Γη

}T
]

= −(p+ r) log(2π)− 1

2
log |ΣX| −

1

2
tr
[
Σ−1

X
{SX + (X̄− µX)

T (X̄− µX)}
]
− 1

2
log |ΣY|X|

−1

2
tr
[
Σ−1

Y|XSY|X + (β̂ols − β)Σ−1
Y|X(β̂ols − β)TΣ−1

X
{SX + (X̄− µ

X
)T (X̄− µ

X
)}
]
.

As F is constructed under normal likelihood function, it satisfies conditions 1 - 4 in Section 3

of Shapiro (1986). Shapiro’sV is ∂2F/∂ξ∂ξT evaluated at(ξ, ξ). It correspond to the Fisher
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information matrixJ∗ of h which equals




Σ
−1

Y|X 0 −Λ
−1

ΓηΣ−1

Y|X 0 0

0 1

2
E

T
r (Σ

−1

Y|X ⊗Σ
−1

Y|X)Er 0 0 0

−Σ
−1

Y|XηT
Γ
T
Λ

−1 0 Σ
−1

X
+ βΣ−1

Y|XβT 0 0

0 0 0 Σ
−1

Y|X ⊗ΣX 0

0 0 0 0 1

2
E

T
p (Σ

−1

X
⊗Σ

−1

X
)Ep




.

Shapiro’s∆ is the gradient matrix∂ξ/∂θ and it is ourH∗ = (∂h/∂φ) which equals

































Ir 0 0 0 0 0 0 0

0 Ir(r+1)/2 0 0 0 0 0 0

0 0 Ip 0 0 0 0 0

0 0 0 −(ηTΓ
T
Λ

−1 ⊗Λ
−1)L Ir ⊗Λ

−1
Γ η

T ⊗Λ
−1 0 0

0 0 0 2Cp(ΛΣo ⊗ Ip)L 0 H∗

56 Cp(ΛΓ⊗ΛΓ)Eu Cp(ΛΓ0 ⊗ΛΓ0)Ep−u

































where for notational convenience

H∗
56 = 2Cp(ΛΓΩ⊗Λ−ΛΓ⊗ΛΓ0Ω0Γ

T
0 ). (2)

As we assume thatSX > 0, J∗ is full rank, rank(H∗TJ∗H∗) = rank(H∗) and that Shapiro’s

regularity condition holds. Therefore, all conditions in Shapiro’s Proposition 3.1 are satisfied,β

andΣX are identifiable, and̂β andΣ̂X are unique.
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D. Proofs

Proof of Proposition 2.1 and Proposition 2.6: Since there is over-parameterization inΓ, we

apply Proposition 4.1 in Shapiro (1986) to compute the asymptotic variance and prove the con-

sistency ofβ̂ andΣ̂X. We continue to use the notations defined in the proof of Proposition ??.

Shapiro’s Proposition 4.1 has the same conditions as his Proposition 3.1, except that it needs an

additional condition that
√
n(h̃ − h) has to be asymptotically normal. This requires in part that

√
n(β̂ols−β) converge in distribution to a multivariate normal. Recall thatβ̂ols = (XT

c Xc)
−1
X

T
c Yc.

Since(XT
c Xc)/n converges in probability toΣX, n(XT

c Xc)
−1 converges in probability toΣ−1

X
. As

(Y,X) has finite fourth moment, the sequence
√
n(XT

c Yc/n−ΣXY) converges in distribution. By

Slutsky’s theorem,
√
n(β̂ols −β) converges in distribution to a multivariate normal distribution. It

can be shown similarly that asymptotic distribution of
√
n(h̃−h) is multivariate normal. Therefore

the conditions of Proposition 4.1 in Shapiro (1986) are all satisfied. Letĥ be the SPE estimator

of h, thenĥ is a consistent estimator ofh, and
√
n(ĥ− h) is asymptotically normally distributed.

As { vecT (β), vechT (ΣX)}T is part ofh, β̂spe andΣ̂X,spe are consistent estimators ofβ andΣX,

and
√
n[{ vecT (β̂spe), vech

T (Σ̂X,spe)}T − { vecT (β), vechT (ΣX)}T ] is asymptotically normally

distributed. This establishes Proposition 2.6.

Assuming normality, again according to Proposition 4.1 in Shapiro (1986), the asymptotic

variance of the SPE estimator ofh has the formH∗(H∗TJ∗H∗)†H∗T . As J∗ andH∗ both have

block diagonal structure, the asymptotic variance of{ vecT (β̂), vechT (Σ̂X)}T is H(HTJH)†HT ,

where

J =




Σ−1
Y|X ⊗ΣX 0

0 1
2
ET

p (Σ
−1
X

⊗Σ−1
X
)Ep


 ,
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andH has the form







−(ηT
Γ

T
Λ

−1
⊗Λ

−1)L Ir ⊗Λ
−1

Γ η
T
⊗Λ

−1 0 0

2Cp(ΛΣo ⊗ Ip)L 0 H
∗

56 Cp(ΛΓ⊗ΛΓ)Eu Cp(ΛΓ0 ⊗ΛΓ0)Ep−u






,

whereH∗
56 is given at (2). AsJ−1 is the asymptotic covariance matrix of the OLS estimator of

{ vecT (β), vechT (ΣX)}T , andJ−1 −H(HTJH)†HT = J−1/2QJ1/2HJ
−1/2 ≥ 0, the SPE estima-

tors are more efficient than the OLS estimators.

Let H = (H1,H2), whereH1 is the first column ofH. We writeH2 = DHo, where

D =




Ir ⊗Λ−1 0

0 Cp(Λ⊗Λ)Ep


 ,

and

Ho =




Ir ⊗ Γ ηT ⊗ Ip 0 0

0 2Cp(ΓΩ⊗ Ip − Γ⊗ Γ0Ω0Γ
T
0 ) Cp(Γ⊗ Γ)Eu Cp(Γ0 ⊗ Γ0)Ep−u


 ,

thenH2(H
T
2 JH2)

†HT
2 = DHo(H

T
o JoHo)

†HT
o D

T , whereJo = DTJD. Let

T =




Ip−1 0

−(HT
2 JH2)

†HT
2 JH1 Ip(p+1)/2


 ,

thenHT = (H1 − PH2(J)H1,H2) = (QH2(J)H1,H2). As T is full rank, H(HTJH)†HT =
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HT(TTHTJHT)†TTHT . NowTTHTJHT is a diagonal matrix. This is because

H2JQH2(J) = HT
2 J−HT

2 JPH2(J) = HT
2 J−HT

2 JH2(H
T
2 JH2)

†HT
2 J = HT

2 J
1
2Q

J
1
2 H2

J
1
2 = 0,

then

TTHTJHT =




HT
1Q

T
H2(J)

HT
2


J

(
QH2(J)H1 H2

)

=




HT
1Q

T
H2(J)

JQH2(J)H1 HT
1Q

T
H2(J)

JH2

HT
2 JQH2(J)H1 HT

2 JH2




=




HT
1Q

T
H2(J)

JQH2(J)H1 0

0 HT
2 JH2


 .

Since(TTHTJHT)† = bdiag(
(
HT

1Q
T
H2(J)

JQH2(J)H1

)†

, (HT
2 JH2)

†), we have

H(HTJH)†HT = (QH2(J)H1,H2) bdiag(
(
HT

1Q
T
H2(J)

JQH2(J)H1

)†
, (HT

2 JH2)
†)(QH2(J)H1,H2)

T

= QH2(J)H1

(
HT

1Q
T
H2(J)

JQH2(J)H1

)†
HT

1Q
T
H2(J)

+H2(H
T
2 JH2)

†HT
2

= QH2(J)H1

(
HT

1Q
T
H2(J)JQH2(J)H1

)†
HT

1Q
T
H2(J) +DHo(H

T
o JoHo)

†HT
o D

T

≡ A+B.

In B, we notice that the upper leftpr × pr block ofHo(H
T
o JoHo)

†HT
o is equal to the asymptotic

variance ofvec(β̂o), which does not depend on scalingΛ. Hence the upper leftpr × pr block of

B is the asymptotic variance of(Ip ⊗ Λ−1) vec(β̂o), which is the cost of estimatingβ whenΛ is
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known. InA,

QT
H2(J) = I−H2(H

T
2 JH2)

†HT
2 J = I−DHo(H

T
o JoHo)

†HT
o D

TJ

= I−DHo(H
T
o JoHo)

†HT
o D

TJDD−1 = I−DHo(H
T
o JoHo)

†HT
o JoD

−1

= DQHo(Jo)D
−1,

QT
H2(J)JQH2(J) = D−TQT

Ho(Jo)D
TJDQHo(Jo)D

−1 = D−TQT
Ho(Jo)JoQHo(Jo)D

−1,

D−1H1 = bdiag(Ir ⊗Λ,Cp(Λ
−1 ⊗Λ−1)Ep)




−(ηTΓTΛ−1 ⊗Λ−1)

2Cp(ΛΣo ⊗ Ip)


L

=




−ηTΓTΛ−1 ⊗ Ip

2Cp(Σo ⊗Λ−1)


L

= bdiag(−ηTΓT ⊗ Ip, 2Cp(Σo ⊗ Ip))




Λ−1 ⊗ Ip

Ip ⊗Λ−1


L

= bdiag(−ηTΓT ⊗ Ip, 2Cp(Σo ⊗ Ip))




(er0+1 ⊗ er0+1)λ
−1
1 . . . (ep−rq−1+1 ⊗ ep−rq−1+1)λ

−1
q−1

(er0+1 ⊗ er0+1)λ
−1
1 . . . (ep−rq−1+1 ⊗ ep−rq−1+1)λ

−1
q−1




= bdiag(−ηTΓT ⊗ Ip, 2Cp(Σo ⊗ Ip))(12 ⊗ L)Λ−1
1 ≡ KΛ−1

1 ,

whereΛ−1
1 = diag{λ−1

1 , . . . , λ−1
q−1}, K = bdiag(−ηTΓT ⊗ Ip, 2Cp(Σo ⊗ Ip))(12 ⊗L), and12 =

12



(1, 1)T . Notice thatK does not depend onΛ. SinceHT
1Q

T
H2(J)

JQH2(J)H1 = Λ−1
1 KTQT

Ho(J)
JoQHo(Jo)KΛ−1

1 ,

A = DQHo(Jo)KΛ−1
1 (Λ−1

1 KTQT
Ho(J)JoQHo(Jo)KΛ−1

1 )†Λ−1
1 KTQT

Ho(J)D
T

= DQHo(Jo)K(KTQT
Ho(J)JoQHo(Jo)K)†KTQT

Ho(J)D
T .

LetG = QHo(Jo)K, thenA = DG(GTJoG)†GTDT , and the asymptotic variance of{ vecT (β̂), vechT (Σ̂X)}T

has the formA + B = D{G(GTJoG)†GT + Ho(H
T
o JoHo)

†HT
o }DT . This completes the proof

of Proposition 2.1.

Proof of Corollary 2.2: As C =

√
tr(T

−1/2
2 T1T

−1/2
2 ), we only need to show thatT1 = 0. From

the proof of Proposition 2.1, we know that

T1 = (Ipr, 0)QH2(J)H1

(
HT

1Q
T
H2(J)

JQH2(J)H1

)†
HT

1Q
T
H2(J)

(Ipr, 0)
T ,

then it is sufficient to show that(Ipr, 0)PH2(J)H1 = (Ipr, 0)H1. Recall thatH2 = DHo, then

(Ipr, 0)PH2(J)H1 = (Ipr, 0)H2(H
T
2 JH2)

†HT
2 JH1 = (Ipr, 0)DHo(H

T
o JoHo)

†HT
oDJH1. Notice

thatD, J andHo(H
T
o JoHo)

†HT
o are all block diagonal matrices. The upper leftpr × pr blocks of

D andJ areIr ⊗ Λ−1 andΣ−1
Y|X ⊗ ΣX. According to Cook et al. (2010), the upper leftpr × pr

block of Ho(H
T
o JoHo)

†HT
o is ΣY|X ⊗ Σ−1

o whenΣo = cIp. The rest of the proof follows by

straightforward matrix multiplication.

Proof of Proposition 2.3: We continue to use the notations in the proof of Proposition 2.1, the

asymptotic variance of{ vecT (β̂), vechT (Σ̂X)}T is H(HTJH)†HT , whereJ andH have dimen-

sions[rp+ p(p+1)/2]× [rp+ p(p+1)/2] and[rp+ p(p+1)/2]× [q−1+ ru+u2+ p(p+1)/2].
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We can writeH = MN, where the[rp+ p(p + 1)/2]× [q − 1 + ru+ p(p+ 1)/2] matrixM has

the form







−(ηT
Γ

T
Λ

−1
⊗Λ

−1)L Ir ⊗Λ
−1

Γ η
T
⊗Λ

−1
Γ0 0 0

2Cp(ΛΣo ⊗ Ip)L 0 2Cp(ΛΓΩ⊗ΛΓ0 −ΛΓ⊗ΛΓ0Ω0) Cp(ΛΓ⊗ΛΓ)Eu Cp(ΛΓ0 ⊗ΛΓ0)Ep−u






,

and the[q − 1 + ru+ p(p+ 1)/2]× [q − 1 + ru+ u2 + p(p+ 1)/2] matrixN equals




Iq−1 0 0 0 0

0 Iru ηT ⊗ ΓT 0 0

0 0 Iu ⊗ ΓT
0 0 0

0 0 2Cu(Ω⊗ ΓT ) Iu(u+1)/2 0

0 0 0 0 I(p−u)(p−u+1)/2




.

As N has full row rank, the rank ofH is equal to the rank ofM, then the asymptotic variance

of { vecT (β̂), vechT (Σ̂X)}T is M(MTJM)†MT . Whenu > p − (q − 1)/r, rp + p(p + 1)/2 <

q − 1 + ru + p(p + 1)/2, M has more columns than rows. According to Shapiro (1986), the

rank ofM is the number of independent parameters in the model, then the rank ofM should be

rp + p(p + 1)/2. We perform a singular value decomposition toM: M = LDR, whereL ∈

R
[rp+p(p+1)/2]×[rp+p(p+1)/2] andR ∈ R

[q−1+ru+p(p+1)/2]×[q−1+ru+p(p+1)/2] are orthogonal matrices,

D = (D0, 0) ∈ R
[rp+p(p+1)/2]×[q−1+ru+p(p+1)/2] andD0 ∈ R

[rp+p(p+1)/2]×[rp+p(p+1)/2] is a diagonal
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matrix with non-zero diagonal elements. Then

M(MTJM)†MT = LDR(RTDTLTJLDR)†RTDTLT

= L(D0, 0)R[RT (D−1
0 , 0)TLTJ−1L(D−1

0 , 0)R]RT (D0, 0)
TLT

= L(D0, 0)(D
−1
0 , 0)TLTJ−1L(D−1

0 , 0)(D0, 0)
TLT

= LLTJ−1LLT = J−1.

Note thatJ−1 is the asymptotic covariance matrix of the OLS estimator of{ vecT (β), vechT (ΣX)}T ,

which establishes Proposition 2.3.

E. Relative cost of estimatingΛ

Under the simulation setup for Figure 2, we varied the signaland noise levels to investigate the

relative costC of estimatingΛ, as defined in Section 2.3. We fixedσ0 at
√
5 and letσ equal to

0.1, 0.2, 0.5, 1,
√
5, 5 and10. We took different signal levels from multiplyingη by 0.2, 1 and5.

A plot of the relative costC is shown in Figure I. From Figure I, we notice that the cost increases

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

σ

C

Figure I: Relative costC versusσ. −◦−, −− and−∗− correspond toη multiplied by0.2, 1 and5
respectively.
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when the signal level decreases and the discrepancy betweenσ andσ0 increases. Whenσ = σ0,

C = 0.

F. Additional plots of standard deviations and absolute biases
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Figure II: Plots of standard deviations for the estimators in Figure 2: Comparison of SPE, SIMPLS,
SPLS and OLS on estimation performance. The two horizontal lines mark the asymptotic standard
deviations: Dashed: SPE; dotted: OLS. Other lines mark the sample standard deviations: Dash-
dotted: SIMPLS; dotted: OLS; solid and dashed: SPE with starting values the true values and
SPLS values. The solid and dashed lines overlap and are indistinguishable in the lower plot.
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Figure III: Plots of absolute bias for the estimators in Figure 2: Comparison of the SPE, SIMPLS,
SPLS and OLS estimator on estimation performance. Dash-dotted: SIMPLS. Dotted: OLS. The
solid line and the dashed line overlap. They mark SPE with starting values using true value and
SPLS.
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Figure IV: Plot of standard deviations for the estimators inFigure 4: Comparison of the SPE
estimator, the scaled and ordinary SIMPLS estimators, and the OLS estimator whenΛ = Ip. The
line marks are the same as those in Figure II.
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Figure V: Plot of absolute biases for estimators in Figure 4:Comparison of the SPE estimator, the
scaled and ordinary SIMPLS estimators, and the OLS estimator whenΛ = Ip. The line marks are
the same as those in Figure III.
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Figure VI: Plot of standard deviations for the estimators inFigure 5: Comparison of SPE, SIMPLS
and OLS on estimation performance. The two horizontal linesmark the asymptotic standard devi-
ations: Dashed: SPE; dotted: OLS. Other lines mark the sample standard deviations: Dash-dotted:
SIMPLS; dotted: OLS; solid: SPE using the true values as starting values.
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Figure VII: Plot of absolute biases for the estimators in Figure 5: Comparison of SPE, SIMPLS
and OLS on estimation performance. Dash-dotted: SIMPLS; dotted: OLS; solid: SPE using the
true values as starting values.
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