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Abstract: In this article, we discuss response variable selection and subsequent

estimation of the regression coefficients in multivariate linear regression. Because

of the asymmetric roles of the predictors and responses in regression, response

variable selection is markedly different from the usual predictor variable selection.

When a response is inferred to have coefficients zero, it should not be simply

removed from subsequent estimation. Instead we analyze its relationship with

the responses that have nonzero coefficients, which we call the dynamic responses.

If it is correlated with the dynamic responses given all other responses, it should

be retained to improve the estimation efficiency of the nonzero coefficients, as an

ancillary statistic. Otherwise, it can be removed from further inference (leading to

significant resource savings in high-dimensional settings), and we call it a static

response. Therefore, we can classify the responses into three categories: the

dynamic responses, the ancillary responses, and the static responses. We derive

an algorithm to identify these response variables, and provide an estimator of the

regression coefficients based on the selection result. Applications on synthetic

and real data illustrate the efficacy of the proposed response variable selection



procedure in both low and high dimensional settings. Consistency of the variable

selection procedures and asymptotic properties of the estimators are established

both for the large sample setting and the high-dimensional small sample setting.

Key words and phrases: Response variable selection, High-dimensional data,

Group sparsity, Oracle property.

1. Introduction

Consider the standard multivariate linear regression

Y = α+ βX + ε, (1.1)

where Y ∈ Rr is the multivariate response vector, X ∈ Rp contains the

predictors with mean µX and positive definite covariance matrix ΣX, the

error vector ε has mean 0 and positive definite covariance matrix Σ. The

errors and the predictors are independent of each other. We use n to denote

the sample size. In this article, we assume that n > p since the main focus

of this article is response variable selection. If n < p, we can apply any

method in predictor variable selection to reduce the dimensionality of the

predictors and make p < n. However, we do allow the number of responses

r to be greater than the sample size n.

Motivation. Response variable selection is motivated by many appli-

cations where multiple outputs/responses are measured along with predic-



tors, and a classification of response variables based on their relationship

with the predictors is of interest. For example, in the development of a new

medicine, many clinical or hematological characteristics of a patient are

measured. It is of scientific interest to identify which characteristics change

after the intake of the medicine. In economics, it might be of strategic

importance to find out which industrial sectors are affected by a govern-

ment policy, such as imposing a tariff on an imported good like bauxite.

In particular, we categorize response variables into dynamic, ancillary and

static variables. The rigorous definitions are provided in Section 2, but

we briefly discuss the intuitive underpinnings and motivation here. For

dynamic response variables, the corresponding regression coefficient vector

(row of β) has at least one non-zero component. Identification of these

variables is of scientific interest in various applications. Let D denote the

set of indices of all dynamic responses, and let βD denote the regression

coefficients of dynamic responses. Once the dynamic responses have been

identified, one might be tempted to exclude/discard the non-dynamic re-

sponse variables form the estimation process, but these variables might still

carry information about βD through their correlations with the dynamic

variables. Non-dynamic response variables which are correlated with the

dynamic response variables (given all other response variables) are defined



as ancillary responses. Identification of ancillary responses is important as

it reduces the asymptotic variance of the MLE for βD (see Proposition 1).

All other non-dynamic responses are defined as static responses. Static re-

sponses carry no information about βD and can be eliminated from further

analysis. The categorization of non-dynamic responses into ancillary and

static responses helps researchers avoid collection of the static responses in

future experiments, thereby resulting in time/resource savings.

One might argue that just including all the non-dynamic responses in

the estimation of βD avoids the extra selection effort for ancillary responses

while getting us the same estimation efficiency. This is fine when the num-

ber of responses r is smaller than the sample size n. However, in high-

dimensional settings, where the number of response variables (and likely

the number of non-dynamic response variables) is comparable to or larger

than the sample size, inclusion of all non-dynamic responses creates several

methodological and computational complications and is not advisable.

Connections with existing literature. Compared to predictor vari-

able selection, the literature on response variable selection is surprisingly

limited. The standard method is to test if the regression coefficients for

each response equal to zero, adjusting for multiple testing, e.g. Benjamini

and Yekutieli (2001). The response variables with zero regression coeffi-



cients are usually discarded after selection. An and Zhang (2017) uses a

double group-lasso penalty to perform simultaneous selection of predictors

and responses, but the responses are treated as if they were uncorrelated,

i.e, the covariance structure among elements in Y is not used.

There is a rich body of literature which leverages generalized estimat-

ing equations (GEE) for improved estimation of regression coefficients by

accounting for correlated responses in longitudinal data and repeated mea-

surement data settings, see Lipsitz et al. (1994); Ballinger (2004); Leung

et al. (2009) and the references therein. A high-dimensional adaptation of

these methods in Wang et al. (2012) imposes generic sparsity in the re-

gression coefficients through penalization. There is also a growing body of

literature for joint sparse estimation of β and Σ−1, see Peng et al. (2009);

Rothman et al. (2010); Yin and Li (2011); Deshpande et al. (2019); Ha

et al. (2020); Li et al. (2021) and the references therein. To the best of

our knowledge, these methods either aim for parameter reduction through

imposition of general sparsity patterns in β and/or Ω, or for selection of

“master” predictor variables using column sparsity in β.

However, these methods do not provide tools for our key goal of identi-

fying dynamic, ancillary and static responses using specific and structured

sparsity in β and Ω = Σ−1 (see equation (2.6) below). While improved



efficiency of the regression coefficient estimates is a shared goal with this

literature, a key contribution/novelty of the proposed approach is the poten-

tial scientific insights through identification of dynamic responses and the

future computational and resource savings resulting from the identification

of ancillary/static responses (as discussed above).

Outline of the paper. In this article, we propose a two-step procedure

for response variable selection taking the covariance among the responses

into account - the first step identifies the dynamic variables, and the second-

step identifies the ancillary variables. We then perform the estimation of the

regression coefficients based on the selection results. The paper is organized

as follows. In Section 2 we formally define the three categories of response

variables, and derive various technical results which support the motivations

for response variable selection discussed above. In Sections 3.1-3.3, we

provide details of the proposed selection procedure for the low-dimensional

setting (n ≥ r) and derive its asymptotic properties. In Sections 3.4-3.5 we

consider methodology for the challenging high-dimensional setting (n < r)

and derive the corresponding asymptotic properties. Detailed experimental

validation is provided in Section 4.1 (simulated data) and Section 4.2 (real

data). Proofs of the technical results, implementation details, additional

simulations and future research directions are provided in the supplement.



2. Categories of response variables

In this section, we introduce three categories of responses and discuss about

estimation of the coefficients β after selection. The three categories of the

responses are defined based on the different roles they played in estimation.

A natural purpose of response variable selection is to identify the re-

sponses with nonzero coefficients, and those with zero coefficients.

Definition 1. Under the multivariate linear regression model (1.1), if a

response has a regression coefficient vector with at least one non-zero com-

ponent, we call it dynamic response.

Let D be a subset of {1, . . . , r} which contains the indices of all dynamic

responses and let rD be its cardinality. We use YD ∈ RrD to denote the

vector of dynamic response, and Y−D ∈ Rr−rD to denote the responses

whose coefficient vectors have identically zero components. Without loss

of generality, Y can be written as Y = (YT
D,Y

T
−D)T , and the regression

coefficients have corresponding partition β = (βTD,0)T . Each row in βD is

nonzero. Then the linear regression model (1.1) has the structure YD

Y−D

 =

 αD

α−D

+

 βD

0

X+

 εD

ε−D

 , var

 εD

ε−D

 =

 ΣD ΣD,−D

Σ−D,D Σ−D

 .

(2.2)



Suppose that the data consists of n independent and identically distributed

(IID) observations (Yi,Xi), where Yi is sampled from the conditional dis-

tribution of Y | Xi, i = 1, · · · , n. The following proposition (Proposition

2 in Su et al. (2016)) indicates that after selection, although Y−D has zero

coefficients, it can improve the efficiency in the estimation of βD via its

correlation with YD. Let β̃D and β̃−D be the ordinary least squares (OLS)

estimators of the coefficients from the regression of YD on X and Y−D on

X. Note that the OLS estimators do not account for the error correlations.

It is worth noting that the multivariate regression model in (1.1) can be

thought of as a special case of the seemingly unrelated regression (SUR)

model (Zellner, 1962) with common predictors across all responses. In such

a setting, the generalized least squares (GLS) estimate of regression coeffi-

cients is exactly the same as the OLS estimate (Amemiya, 1985, Page 197).

Let RD be the residuals from the regression of YD on X, and R−D the

residuals from the regression of Y−D on X. The operator vec(·) stacks a

matrix into a vector columnwise, and ⊗ stands for the Kronecker product.

Proposition 1. Assume that the errors are normally distributed in model

(2.2) and D is given. The maximum likelihood estimator of βD under model

(2.2) is β̂D = β̃D − β̃D|−Dβ̃−D, where β̃D|−D is the OLS estimator of the

coefficients from the regression of RD on R−D. The asymptotic distribution



of β̂D is given by

√
n{vec(β̂D)−vec(βD)} d→ N(0,V1), V1 = Σ−1

X ⊗(ΣD−ΣD,−DΣ−1
−DΣ−D,D).

Recall that β̃D is the maximum likelihood estimator of βD under the model

YD = αD + βDX + εD, var(εD) = ΣD.

The asymptotic distribution of β̃D is given by

√
n{vec(β̃D)− vec(βD)} d→ N(0,V2), V2 = Σ−1

X ⊗ΣD.

Moreover,

V2 −V1 = Σ−1
X ⊗Σ

1/2
D ρΣ

1/2
D ,

where ρ = Σ
−1/2
D ΣD,−DΣ−1

−DΣ−D,DΣ
−1/2
D , and the eigenvalues of ρ are squared

canonical correlations between YD and Y−D given X.

The normality assumption in Proposition 1 is just for getting explicit

forms of the asymptotic variance, which facilitates the comparison. Similar

results can be derived under non-normal errors, but the expression of V1

and V2 can be much more complicated. Proposition 1 suggests that β̂D is

a more efficient estimator for βD than β̃D, which only uses YD. The effi-

ciency gain increases with the canonical correlation between YD and Y−D.

This is an important difference between response variable selection and pre-

dictor variable selection. In predictor variable selection, if a predictor has



regression coefficients zero, we exclude it from the model, because it is more

efficient than retaining it in the model. But in response variable selection,

because that Y−D carries information on βD through its correlation with

YD, Y−D should be used in the construction of the estimator of βD to

improve efficiency. A generalization of Proposition 1 to a setting where rD̄

remains fixed, but the total number of responses r is allowed to grow with

n is provided in Supplemental Section S2.

In applications where Y is high dimensional, it is possible that Y−D

is also high dimensional, and only part of Y−D carries information on βD.

The other part of Y−D has regression coefficients zero and does not provide

information on βD, we can safely eliminate them from model (2.2), and

researchers do not need to take the time and efforts to measure Y−D in

future experiments. To distinguish these two types of responses, we define

ancillary and static responses.

Definition 2. If a response variable has zero regression coefficients, and

is independent of the dynamic responses YD given all the other response

variables, we call it static response. If a response variable has zero regres-

sion coefficients, but is not independent of YD given all the other response

variables, we call it ancillary response.

Let A and S be subsets of {1, . . . , r} that contain the indices of all ancil-



lary and static responses respectively. Let rA and rS denote the cardinalities

of A and S. Then we have rD + rA + rS = r. Based on Definition 2, we

have YD YS | (YA,X). Proposition 2 indicates that the static responses

do not improve the estimation efficiency of βD.

Proposition 2. Assume that D, A and S are known, and YD YS |

(YA,X). Suppose that the errors are normally distributed in the following

two models (2.3) and (2.4), where YD

YA

 =

 αD

αA

+

 βD

0

X+

 εD

εA

 , var

 εD

εA

 =

 ΣD ΣD,A

ΣA,D ΣA

 ,

(2.3)

and
YD

YA

YS

 =


αD

αA

αS

+


βD

0

0

X+


εD

εA

εS

 , var


εD

εA

εS

 =


ΣD ΣD,A ΣD,S

ΣA,D ΣA ΣA,S

ΣS,D ΣS,A ΣS

 .

(2.4)

Let β̂D,1 and β̂D,2 be the maximum likelihood estimator of βD under models

(2.3) and (2.4) respectively. Then β̂D,1 = β̃D − β̃D|Aβ̃A and β̂D,2 = β̃D −

β̃D|(A,S)β̃(A,S). The asymptotic distribution of β̂D,i, i = 1, 2, is given by

√
n{vec(β̂D,i)−vec(βD)} d→ N(0,V), V = Σ−1

X ⊗ (ΣD−ΣD,AΣ−1
A ΣA,D).

(2.5)



The forms of β̂D,1 and β̂D,2 can be obtained from Proposition 1 by

replacing −D by A and (A,S). Proposition 2 suggests after response vari-

able selection, we only need to use YD and YA for estimation; the static

responses YS can be eliminated. Proposition 3 gives an equivalent form

of β̂D,1. Let RD|A be the residuals from the regression of YD on YA, and

RX|A the residuals of X on YA.

Proposition 3. Assume that the error vector ε has finite second moments

in model (2.3), and D and A are known. Let β̂D,3 be the regression coeffi-

cients from the regression of RD|A on RX|A, then we have β̂D,3 = β̂D,1.

Proposition 3 indicates that after selection, the estimator of βD can be

obtained by conditioning both YD and X on YA, and then estimate the

regression coefficients. The responses in YA serve as the ancillary statistic,

based on which we give its name.

Proposition 4 also provides an alternative way to obtain the estimator

of βD by regressing YD on X and YA. This is in the same spirit of the

added variable plot in Cook and Weisberg (1982).

Proposition 4. Under model (2.6), let (β̂1, β̂2) be the OLS estimator for

(β1,β2) in the following model

YD = µ+ β1X + β2YA + ε∗,



where the error vector ε∗ has mean 0 and finite second moments. Then

β̂1 = β̂D,3 = β̂D,1.

Let Ω = Σ−1 be the precision matrix of ε. Based on three categories of

responses, Ω can be partitioned according to D, A and S. Since YD YS |

(YA,X) implies ΩD,S = 0, model (1.1) can then be written as
YD

YA

YS

 = α+


βD

0

0

X +


εD

εA

εS

 , Ω =


ΩD ΩD,A 0

ΩA,D ΩA ΩA,S

0 ΩS,A ΩS

 .

(2.6)

Note that no columns in ΩD,A is zero. From (2.6), it is easy to see the roles

of the three categories of responses, i.e., the dynamic responses YD have

nonzero coefficients βD, the ancillary responses YA have zero coefficients

but improve the efficiency in the estimation of βD, and the static responses

YS have zero coefficients and do not provide information for the estimation

of βD. The selection of D, A and S is based on the structure of β and

Ω in (2.6) and will be discussed in Section 3. Before we proceed, we first

introduce a property of model (2.6), which will be used to select A and S.

Proposition 5. Assume that the error vector ε = (εTD, ε
T
A, ε

T
S )T has finite

second moments and has covariance structure as in (2.6). Then the regres-

sion coefficients BD|(A,S) = (BD|A,BD|S) of the following regression model



εD = BD|(A,S)

 εA

εS

+ e (2.7)

satisfy that BD|S = 0 and each column in BD|A is nonzero.

Proposition 5 implies that identification of the zero block in Ω can be

converted to another response variable selection problem in which we only

need to identify the dynamic and non-dynamic responses.

3. Response Variable Selection

3.1. Construction of objective functions

We first discuss variable selection with fixed r and a large sample. Recall

that the data consists of n independent and identically distributed (IID)

observations (Yi,Xi), where Yi is sampled from the conditional distribution

of Y | Xi, i = 1, · · · , n. Let Y denote the n × r matrix whose ith row is

YT
i , X denote the n× p matrix whose ith row is XT

i , 1n be an n dimension

column vector of 1’s and tr denote the trace of a matrix. The log likelihood

of Yi | Xi, i = 1, . . . , n, is given by

l(α,β,Ω) = −nr
2

log(2π)+
n

2
log |Ω|−1

2
tr
{

(Y−1nα
T−XβT )Ω(Y−1nα

T−XβT )T
}
.

After some straightforward calculations, α is estimated as α̂ = Ȳ − βX̄,

where Ȳ =
∑n

i=1 Yi/n and X̄ =
∑n

i=1 Xi/n are the sample means of Y and



3.1 Construction of objective functions

X. Substituting α̂ to the log likelihood l(α,β,Ω), we obtain the objective

function for β and Ω

f(β,Ω) = − log |Ω|+ 1

n
tr
{

(Yc − Xcβ
T )Ω(Yc − Xcβ

T )T
}
, (3.8)

where Yc ∈ Rn×r and Xc ∈ Rn×p are centered data matrices, i.e., the ith

row of Yc is (Yi − Ȳ)T and ith row of Xc is (Xi − X̄)T . Based on the

objective function (3.8), the sets D, A and S can be estimated in two steps.

Step 1. The goal of this step is to estimate D. For this purpose,

we need to induce row-wise sparsity in the matrix β, and the group lasso

penalty (Yuan and Lin, 2006) is a natural choice. According to Wang and

Leng (2008) and Nardi and Rinaldo (2008), if we have an identical penalty

parameter λ for each group, the estimator may lack selection consistency

and estimation efficiency. Therefore we add a weight wi to make the penalty

in each group proportional to 1/‖β̂i·‖γ for γ > 0, where β̂ is a
√
n consistent

estimator of β and ‖·‖ is the Euclidean norm. This adaptive approach is also

used in adaptive lasso (Zou, 2006), sparse reduced-rank regression (Chen

and Huang, 2012) and sparse sufficient dimension reduction (Chen et al.,

2010). To be more specific, we solve the following optimization problem

f1(β) = log |SY|X|+
1

n
tr
{

(Yc − Xcβ
T )S−1

Y|X(Yc − Xcβ
T )T
}

+ λ1

r∑
i=1

wi‖βi·‖,
(3.9)



3.1 Construction of objective functions

where SY|X is the sample covariance matrix of the residuals from the OLS

fit of Y on X, βi· denotes the ith row of β, wi = 1/‖β̃i·‖γ1 , where β̃

is the OLS estimator of β, γ1 and λ1 are tuning parameters. Note that

the group lasso penalty λ1

∑r
i=1wi‖βi·‖ induces row-wise sparsity in β as

desired. Suppose we obtain β̂step1 as a minimizer of f1(β). Then, we set

D̂ = {j : (β̂step1)j· 6= 0}. The responses that have at least one nonzero

regression coefficient are in YD̂, and rD̂ is the cardinality of D̂. The response

variables that have all zero regression coefficients are either YÂ or YŜ , which

will be decided by Step 2.

Step 2. The goal of this step is to estimate A and S. Proposition

5 indicates that a difference between the ancillary and static response is

whether the corresponding column in BD|(A,S) is zero. Let R = Yc−Xcβ̂
T

step1

denote the residuals from Step 1. According to the estimated D̂ from Step

1, R is partitioned as R = (RD̂,R−D̂). We regress RD̂ on R−D̂ and use the

group lasso penalty to induce column-wise sparsity in BD̂|(A,S), leading to

the following objective function

f2(BD̂|(A,S)) = log |SD̂|−D̂|+
1

n
tr

{(
RD̂ −R−D̂BT

D̂|(A,S)

)
S−1

D̂|−D̂

(
RD̂ −R−D̂BT

D̂|(A,S)

)T}
+ λ2

r−rD̂∑
i=1

w̃i‖BD̂|(A,S),·i‖ (3.10)

where SD̂|−D̂ is the sample covariance matrix of the residuals from the re-



3.2 Computational algorithm

gression of RD̂ on R−D̂, the weights are w̃i = 1/‖B̃D̂|(A,S),·i‖γ2 , B̃D̂|(A,S) is

the OLS estimator from the regression of RD̂ on R−D̂, B̃D̂|(A,S),·i denotes

the ith column of B̃D̂|(A,S), and γ2 and λ2 are tuning parameters. Suppose

B̂D̂|(A,S),step2 is obtained as a minimizer of f2(BD̂|(A,S)), then YÂ contains

the responses whose corresponding columns in B̂D|(A,S),step2 are nonzero,

and rÂ is the cardinality of Â. The static responses in YŜ are estimated as

the responses whose corresponding columns in B̂D|(A,S),step2 are zero, and

rŜ is the cardinality of Ŝ.

After Step 1 and Step 2, β is estimated as β̂ = (β̂
T

D̂,0)T , where β̂D̂ =

β̃D̂−β̃D̂|Âβ̃Â as discussed in Proposition 2, where β̃D̂, β̃D̂|Â and β̃Â are OLS

estimators. In other words, β̂D̂ is the OLS estimator that uses information

from both the dynamic responses and the ancillary responses.

3.2. Computational algorithm

Algorithm for Step 1: We estimate β one row at a time. For a fixed j,

j = 1, . . . , r, it can be shown that minimizing f1 with respect to βj· is

equivalent to minimizing the function

1

n

{
(S−1

Y|X)jj
(
Yc,·j − Xcβ

T
j·
)T

(Yc,·j − Xcβ
T
j·) +

∑
k 6=j

2(S−1
Y|X)jk(Yc,·k − Xcβ

T
k·)

T (Yc,·j − Xcβ
T
j·)

}

+ λ1wj‖βj·‖ (3.11)



3.2 Computational algorithm

with respect to βj·, where Yc,·k denotes the kth column of Yc. Note that

the function in (3.11) is a non-differentiable convex function of βj·. Mini-

mization of such functions (quadratic form in vector plus its `2-norm) has

been considered in Foygel and Drton (2010), Puig et al. (2009) and Simon

et al. (2013) in the context of group lasso. In particular, Simon et al. (2013)

provides a reasonably fast majorize-minimize algorithm to solve this mini-

mization problem. This approach has been implemented in the R package

SGL, and we use it to solve for βj· in (3.11).

Algorithm for Step 2: The optimization problem in Step 2 is the

same as that in Simon et al. (2013), with S
−1/2

D̂|−D̂
RD̂ being their Y and

S
−1/2

D̂|−D̂
BD|(Â,Ŝ) being the coefficients. Note that a column in S

−1/2

D̂|−D̂
BD|(Â,Ŝ)

is zero if and only if the corresponding column in BD|(Â,Ŝ) is zero.

Remark 1. Simon et al. (2013) studies the “multi-response group-lasso”

problem, and provides an iterative algorithm for minimizing the objective

function

1

n
tr
{(

Yc − Xcβ
T
)T (Yc − Xcβ

T
)}

+ λ1

r∑
k=1

∥∥(βT )k·
∥∥ , (3.12)

where (βT )k· is the kth row of βT . See also Argyriou et al. (2007) and

Obozinski et al. (2007). However, this iterative algorithm presented in

Simon et al. (2013) is not applicable in the context of (3.9). There are



3.3 Theoretical Properties

two notable differences between the minimization problems in (3.9) and

(3.12). Firstly, in (3.9), we use the group-lasso penalty on the rows of β

with the purpose of response variable selection, whereas in (3.12), a group-

lasso penalty is used for the columns of β for the purpose of predictor

variable selection. Secondly, unlike (3.12), the trace term in (3.9) contains

the term Ω, since we consider a multi-response regression model with a

general covariance structure.

3.3. Theoretical Properties

In this section, we establish variable selection consistency and oracle prop-

erty of the estimator β̂D̂ in the fixed r setting. Let D̄, Ā and S̄ denote

the true sets of dynamic, ancillary and static responses, respectively, β̄D̄

the true regression coefficients of dynamic responses, and Σ̄ the true error

covariance matrix. Let P̄ denote the probability measure corresponding to

the true data generating model ((2.6) with the true parameters introduced

above). For consistency in the fixed r setting, normality of the true error

distribution is not needed, and we will only assume that the errors are IID

and have finite fourth moments under P̄ .

Theorem 1. Suppose n1/2λi → 0 and n(1+γi)/2λi →∞ for i = 1, 2. Then

1. (Dynamic response selection consistency) P̄ (D̂ = D̄)→ 1 as n→∞.



3.3 Theoretical Properties

2. (Ancillary response selection consistency) P̄ (Â = Ā)→ 1 as n→∞.

3. (Estimation consistency) ‖vec(β̂D̂)− vec(β̄D̄)‖ = OP̄ (n−1/2).

Theorem 1 indicates that the estimator β̂D̂ is
√
n-consistent, and our

variable selection procedure discussed in §3.1 is consistent.

To discuss the optimal estimation rate, we need to first introduce the

oracle model for response variable selection. If we know about the oracle

information on which responses are dynamic, ancillary and static, the oracle

model is model (2.3). Note that the oracle model includes the dynamic and

ancillary responses, but not the static responses. The oracle estimator of

βD̄ is β̂D̄,oracle = β̃D̄ − β̃D̄|Āβ̃Ā. The asymptotic distribution of β̂D̄,oracle

is the same as that of β̂D̄,1 in Proposition 2; see (2.5). Note that while

P̄ (D̂ = D̄) → 1, D̂ and D̄ may differ at some sample points. Hence, we

define ‖u − v‖ :=
√∑a

i=1(ui − vi)2 +
∑b

i=a+1 v
2
i if u ∈ Ra,v ∈ Rb with

a < b for the following result.

Theorem 2. Assume that the conditions in Theorem 1 hold, then ‖vec(β̂D̂)−

vec(β̂D̄,oracle)‖ = oP̄ (n−1/2).

Theorem 2 suggests that the estimator β̂D̂ has the same convergence

rate and asymptotic variance as the oracle estimator. Thus it has the oracle

property.
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3.4. Response variable selection in high dimensional setting

In the high dimensional setting, we allow r to grow with n, and denote r as

rn. In this section, we discuss adjustments to the selection algorithm under

this setting.

Note that SY|X in Step 1 is singular when n < rn. Hence, an esti-

mator of Σ−1
Y|X is needed for the objective function in (3.9). There are a

number of precision matrix estimators that adapt to the high-dimensional

setting, including constrained l1-minimization estimator (Cai et al., 2011,

CLIME), lasso penalized D-trace estimator (Zhang and Zou, 2014), scaled

lasso estimator (Sun and Zhang, 2013), and convex correlation selection

estimator (Khare et al., 2015, CONCORD). We adopt the CONCORD es-

timator since it computes fast and recovers the sparsity pattern with high

accuracy. Let ωij denote the (i, j)th element of Ω, and let Ri· denote the

ith column of the residual matrix R ∈ Rn×r from the OLS regression of Y

on X. Then the CONCORD estimator of Ω, denoted by Ω̂, is minimizer of

the objective function

Qcon(Ω) = −
r∑
i=1

n logωii +
1

2

r∑
i=1

‖ωiiRi· +
∑
j 6=i

ωijRj·‖2 + λ
∑

1≤i 6=j≤r

|Ωij|

(3.13)

over the space of positive definite matrices, for an appropriately chosen

penalty parameter λ. The CONCORD estimator is implemented in the



3.5 Response selection consistency in high-dimensional setting

R package gconcord. Then we place S−1
Y|X by Ω̂ in (3.9), and obtain the

objective function

f̃1(β) = − log |Ω̂|+ 1

n
tr{(Yc − Xcβ

T )Ω̂(Yc − Xcβ
T )T}+ λ1

rn∑
i=1

wi‖βi·‖,

(3.14)

then we follow the same algorithm for Step 1 in Section 3.2 to estimate D.

In Step 2, the matrix SD̂|−D̂ in (3.10) is singular if n < rn − rD̂.

Moreover, because S−1

D̂|−D̂
does not exist, the OLS estimator B̃D̂|(A,S) in

the weights w̃i does not exist either. To resolve the issues, we also turn

to the CONCORD estimator Ω̂. Since SD̂|−D̂ estimates Ω−1
D , we use the

corresponding block in Ω̂, i.e. Ω̂D, to replace S−1

D̂|−D̂
in (3.10). Note that

BD|(A,S) = −Ω−1
D (ΩD,A,ΩD,S) (see the proof of Proposition 5), and we

initialize BD|(A,S) by −Ω̂
−1

D Ω̂D,−D. The objective function is obtained as

f̃2(BD̂|(A,S)) = − log |Ω̂D̂|+
1

n
tr

{(
RD̂ −R−D̂BT

D̂|(A,S)

)
Ω̂D̂

(
RD̂ −R−D̂BT

D̂|(A,S)

)T}
+ λ2

rn−rD̂∑
i=1

w̃i‖BD̂|(A,S),·i‖ (3.15)

Then A and S are estimated following Step 2 in Section 3.2.

3.5. Response selection consistency in high-dimensional setting

In this section, we establish the consistency of the response variable selec-

tion procedure in Section 3.4 and the asymptotic properties of the estimator
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of βD when rn tends to infinity with n. Let D̄, Ā and S̄ denote the true

sets of dynamic, ancillary and static responses, respectively, β̄D̄ the true

regression coefficients of dynamic responses, and Σ̄ denote the true covari-

ance matrix of the errors, and Ω̄ = Σ̄
−1

. Note that the dimensions of Σ̄

and Ω̄ increase with n, but the dependence is suppressed for the simplicity

of notation. Mild regularity assumptions needed to establish the following

result are provided and discussed in S8 of the Supplement due to space

constraints. They include sub-Gaussianity of errors, uniform boundedness

of eigenvalues of Σ̄ (Assumption 1), incoherence and minimum signal size

conditions for consistency of Ω̂ (Assumptions 2 and 3), rate of growth of

true number of dynamic and ancillary variables (Assumption 4), minimum

signal size assumptions corresponding to Step 1 and Step 2 of the procedure

(Assumptions 5-6), and assumptions controlling the group-specific penalty

parameters in Step 1 and Step 2 (Assumptions 7-8). In particular, these

assumptions allow r to increase at a faster rate (almost sub-exponentially)

compared to n.

Theorem 3. Under Assumptions 1-8 (provided in the Supplement), the

following holds for every η > 0.

1. (Dynamic response selection consistency) Let β̂step1 denote the so-

lution to (3.14), and D̂ = {j : β̂step1,j· 6= 0}. Then D̂ = D̄ with



probability at least 1− 6r−ηn for large enough n (depending on η).

2. (Ancillary and static response selection consistency) Let B̂ denote the

solution to (3.15), and Â = {j : B̂·j 6= 0}. Then, for large enough n,

Â = Ā and Ŝ = S̄ with probability at least 1− 22r−ηn for large enough

n (depending on η).

Theorem 3 establishes the selection consistency of three categories of the

response variables. As a direct consequence of the selection consistency,

asymptotic distribution of β̂D is given in Theorem 4 (proof in Supplement).

Theorem 4. Assume that the conditions in Theorem 3 hold, the errors are

normally distributed, and rD̄ is fixed as n grows. Then

√
n{vec(β̂D̂)− vec(β̄D̂)} d→ N(0,V), V = Σ̄

−1
X ⊗ (Σ̄D − Σ̄D,AΣ̄

−1
A Σ̄A,D).

Theorem 4 implies that β̂D̂ also has the same asymptotic distribution as

the oracle estimator β̂D̂,oracle when rn grows with n.

4. Data analysis

4.1. Simulation

This simulation focuses on the high-dimensional setting where n < r. We

fixed n = 50, p = 8, rD = 6 and rA = 2. The response dimension r was
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ranged from 200 to 1000. Elements in βD were independent N(0, 0.52) vari-

ates, the intercept was α = 0. The covariance matrix Σ was generated such

that the squared largest canonical correlation between YD and YA is about

0.9 for all r. The details on generating Σ is included in S13 of the Supple-

ment. We generated X from Np(0, 0.5
2Ip) and Np(0, 0.252Ip) to represent

different signal strengths. We also generated X from Np(0, (Ip + 1p1
T
p )/8)

to represent correlated predictors, where 1p denotes a p-dimensional vector

of 1. Tuning for parameters is detailed in Section S11 of the Supplement.

For each setting, we simulated 200 replications, and evaluated the selection

performance by true positive rates TPRD, TPRA and TPRS for all three

categories of the responses: TPRD = |D̄ ∩ D̂|c/|D̄|c, TPRA = |Ā ∩ Â|c/|Ā|c

and TPRS = |S̄ ∩ Ŝ|c/|S̄|c, where for a set S, |S|c denotes its cardinality.

We added precision measures PPVD, PPVA and PPVS for sensitivity anal-

ysis, where PPVD = |D̄ ∩ D̂|c/|D̂|c, i.e. the ratio of true positive over the

sum of true positive and false positive. The measures PPVA and PPVS are

defined accordingly. We measured the efficiency gain of a randomly picked

element, say βij, by the efficiency ratio Rij defined as

Rij =
var(β̃ij)

var(β̂ij)
, (4.16)

where var(β̃ij) and var(β̂ij) are the variances of the OLS estimator β̃ij and

our estimator β̂ij calculated based on 200 replications. Then Rmedian is
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the median of all the Rij for the nonzero elements in β. The results are

in Table 1. Both the TPR and PPV measures show that the variable

selection procedure can identify the dynamic and ancillary responses quite

well when r is much larger than n. A weaker signal slightly reduces the

efficiency gains, but does not have a large impact on the results. The

correlated predictors do not seem to have any obvious negative effect on

variable selection or efficiency gains. We also investigated the ratio of the

MSE’s. The measure Rall
MSE computes the median of ‖β̃ − β‖2

F/‖β̂ − β‖2
F

(over the 200 replications), where ‖ · ‖F denotes the Frobenius norm of a

matrix. Since β̃ is the OLS estimator using all the responses, it is not sparse,

and all the errors on the sparse and non-sparse parts of β accumulate.

On the other hand, because of the consistency of the response selection

procedure stated in Theorem 3, when β̂ correctly identifies the zero elements

in β, the sparse part of β does not contribute in the MSE, except for a few

false positive cases. When r is large, the sparse part of β is also large,

which has a big contribution for β̃. Thus ratios Rall
MSE are very large. We

also investigated RDMSE, which is similar to Rall
MSE, but only focuses on the

nonzero part of β and is defined as the median of ‖β̃D−βD‖2
F/‖β̂D−βD‖2

F

(over the 200 replications). The ratios are still significantly greater than

1, indicating the response variable selection procedure indeed improves the
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estimation performance.

Table 1: Summary of selection and estimation performance when r >> n
r 200 300 500 1000 200 300 500 1000 200 300 500 1000

X ∼ Np(0, 0.5
2Ip) X ∼ Np(0, 0.252Ip) X ∼ Np(0,

1
8
(1p1

T
p + Ip))

TPRD 0.998 1.000 1.000 1.000 0.949 0.994 0.998 1.000 0.992 0.996 1.000 1.000

TPRA 0.985 0.978 0.953 0.898 0.970 0.975 0.950 0.898 0.980 0.978 0.953 0.898

TPRS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

PPVD 0.997 0.997 0.999 0.999 0.997 0.999 0.999 0.999 0.997 1.000 0.997 0.996

PPVA 0.998 1.000 1.000 0.991 0.907 0.990 0.996 0.991 0.979 0.993 1.000 0.991

PPVS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Rmedian 4.054 3.945 3.350 2.687 2.587 3.347 3.171 2.687 3.308 3.115 3.380 2.651

Rall
MSE 99.12 140.20 206.09 370.40 87.63 138.18 205.06 370.40 98.80 140.73 201.52 363.26

RDMSE 4.440 3.934 3.029 2.391 3.188 3.891 2.993 2.391 4.356 3.834 3.030 2.410

An additional simulation for low dimension setting is in Section S12 of

the Supplement. The simulation shows the consistency of variable selection

on all three categories of the responses as well as the estimator of β. It

also demonstrates the estimator from the two-stage selection procedure is

more efficient than the estimator of βD that uses the oracle information of

the true dynamic responses. In other words, the efficiency gains from the

ancillary responses can be more substantial to offset the cost of the selection

of all three categories.

4.2. Applications

Glioblastoma multiforme (GBM) is the most aggressive type of brain cancer

with a median survival time of 15 months (Shea et al., 2016). A dataset from
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the Cancer Genome Atlas (TCGA) Research network contains expression

values for various microRNA and genes on 192 patients with GBM. Follow-

ing Wang (2015); Molstad (2019), we chose a subset of 20 microRNA with

the largest median absolute deviation, and a subset of 500 genes similarly.

MicroRNAs are known to contribute to the development of GBM by bind-

ing to target messenger RNAs and regulating gene expressions (Xiong et al.,

2019). While there is an abundance of Gene Expression Profiling (GEP)

data in the post-genomic era, microRNA expression data is not as prevalent.

Hence, methods for imputation of microRNA values given gene expression

values are useful for understanding the role of microRNAs in disease patho-

genesis when only gene expression data are available (see Kuo et al. (2012)).

Consequently, several papers in the statistical literature (see Lee and Liu

(2012); Wang (2015); Molstad (2019)) have considered a multivariate re-

gression model with the microRNA expressions as response variables and

the gene expressions as predictors. Also, identification of dynamic, ancillary

and static responses might help identify functionally relevant miRNAs for

GBM, and shed light on the internal dependence structure of the miRNA

expressions. Since the number of predictors is larger than the sample size,

before applying the response variable selection procedure, we reduced the

dimension of predictors by two types of procedures: multi-response lasso
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(Simon et al., 2013) and principal component analysis (PCA).

The R package glmnet was used to perform predictor variable selec-

tion with multi-response lasso, and 31 genes were selected. Hence we have

r = 20, p = 31 and n = 192. Then we performed the response variable se-

lection using the algorithm in Section 3.2. Two microRNAs were identified

as dynamic: miR-124a and miR-219. The role of miR-124a in inhibiting

the proliferation of GBM has been discussed in Silber et al. (2008), and

the close association of miR-219 with GBM is discussed in Xiong et al.

(2019). Six microRNAs are identified as ancillary miR-136, miR-338, miR-

34a, miR-377, miR-7 and miR801, others are identified as static. We also

reduced the dimension of the predictors using PCA, and kept 34 principal

components, which explains 80% of the total variation in 500 genes. After

performing response variable selection, the same two microRNAs (miR-124a

and miR-219) are identified as dynamic. Eight microRNAs are identified

as ancillary – the six ancillary microRNAs mentioned before and two addi-

tional microRNAs: miR-204 and miR-370.

We also computed the OLS estimator β̃ of the regression coefficients.

For additional validation, we explored miRNA and target gene pairs identified using

data for other diseases such as neural tube defects (Stingo et al., 2010), but did not find

an overlap with the current GBM based setting.
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Note that the OLS estimator is computed using the entire response vector

Y. To compare the estimation efficiency, we bootstrapped the residuals for

200 times to compute the bootstrap standard deviations for each element in

βD̂ for both β̃D, the OLS estimator, and the proposed estimator β̂D̂ (with

the predictors selected by multi-response lasso), then we computed the ratio

Rij in (4.16). The ratios ranged from 1.43 to 1.90, which implies that to

achieve the same efficiency, the OLS estimator needs at least 1.432 ≈ 2 times

the original sample size. To test the prediction performance, we randomly

split the data into two parts of equal size. Half of the data is used as the

training set and the other half is used as the testing set. The prediction

error is computed as

Prediction error =

√√√√ 1

n

2∑
j=1

∑
i∈test set j

(Yi − Ŷi,predict)T (Yi − Ŷi,predict).

Then the prediction error is averaged over 100 random splits. The estimator

of β after the response variable selection is β̂ = (β̂
T

D̂,0)T . Compared to the

OLS estimator β̃, the estimator β̂ reduces the prediction error by 8.38%.

When the reduced set of predictors is chosen using PCA, the efficiency

ratio Rij ratios ranged from 1.47 to 2.86, and the estimator β computed

after the response variable selection reduced the prediction error by 12.72%

compared to the OLS estimator β̃.

We now demonstrate response variable selection in a high-dimensional
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setting on a breast cancer data set (Chin et al., 2006), which is included

in the R package PMA. The data set contains gene expression profiles and

comparative genomic hybridization (CGH) measurements for all 23 chro-

mosomes from 89 patients. Previous studies reveal that DNA copy number

alteration is associated to the development or progression of human breast

tumor (Pollack et al., 2002). CGH is a molecular cytogenetic method for

detecting DNA copy number alteration in tumor cells, and measures the

DNA copy number in several spots along a chromosome (Witten et al.,

2009). There is a close association between the gene expression profiling

data and the CGH measurements. Models which predict copy number alter-

ation (CNA) values based on gene expression profiling data can be useful for

imputing CNA for relevant analyses with datasets where only gene expres-

sion profiling data is available (Geng et al., 2011). In particular, following

Chen et al. (2013); Lian et al. (2015); Molstad and Rothman (2016), we use

multivariate linear regression with CGH measurements being the response

variables and gene expression profiles as the predictor variables. Both the

predictor and response variables are standardized. Chen et al. (2013) fo-

cused on chromosome 21 and Lian et al. (2015) focused on chromosome

18. We include the results for all 23 chromosomes. Each chromosome has

66 to 1942 gene expression profiles. So p is larger than n = 89 for most
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chromosomes. Using multi-response lasso to select a common small set of

predictors for all the response variables is not appropriate in this setting,

since gene expressions around a region are generally expected to be more

informative of the corresponding CNA values than expressions at more dis-

tant sites. This insight is also supported by earlier analyses in Chen et al.

(2013); Molstad and Rothman (2016). Hence, instead we applied PCA to

the predictors and due to the small sample size, we retained the smallest

number of components that explain 70% of the variation. We then applied

the response variable selection procedure in Section 3.4 with the chosen

PCA components as the predictors.

To summarize, 23 response variable selection procedures were performed,

corresponding to data for each of the 23 chromosomes. The response vari-

able selection results are summarized in Table 2. For some chromosomes

all responses are chosen as dynamic, while for some others all responses are

chosen as static (entire β estimated as zero). For others, a non-trivial mix of

the three categories is obtained. For example, for Chromosome 9, the CGH

measurements at 36 chromosomal spots, including 2644, 12628, 35800, etc,

were chosen as dynamic, the CGH measurements at 7 chromosomal spots,

including 13369, 33163, 36175, etc, were chosen as ancillary and the other

64 responses were chosen as static. As discussed in the introduction, the
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removal of a large number of static responses can stabilize the subsequent

βD estimation in high-dimensional settings, and also lead to cost savings in

future data collection.

Table 2: Selection of three categories of responses for breast cancer data

Chromosome 1 2 3 4 5 6 7 8 9 10 11 12

Dynamic 136 0 126 0 0 76 19 137 36 0 96 42

Ancillary 0 0 2 0 0 3 45 1 7 0 83 12

Static 0 72 0 167 98 0 97 0 64 124 0 37

Chromosome 13 14 15 16 17 18 19 20 21 22 23

Dynamic 58 76 0 0 84 51 0 63 0 18 0

Ancillary 0 0 0 0 0 0 0 12 0 0 0

Static 0 0 67 61 3 0 41 36 44 0 55

The prediction error of the OLS estimator β̃ and the proposed estima-

tor β̂ = (β̂
T

D̂,0)T were also compared. The prediction error is computed by

cross validation averaged over 500 random splits of the data. Results are

included in Table 3. Take chromosome 9 as an example, it has 107 DNA

copy-number variations and gene expression profiles for 706 genes. Seven-

teen gene expression PCA components accounted for 70% of the variation,

thus we have r = 107, p = 17. The OLS estimator β̃ has prediction error

1.90. In this example 36 responses are selected as dynamic, 7 responses

are selected as ancillary and 64 responses are selected as static. We set the



coefficients of the dynamic responses as β̂D̂ = β̃D̂−β̃D̂|Âβ̃Â and others as 0,

and the prediction error is 1.74 (an 8.42% reduction). For chromosome 11,

96 responses are selected as dynamic, 83 responses are selected as ancillary

(no static responses). Since we are fitting a regression with X and YÂ as

predictors (see Proposition 4), the sample size 44 in the training dataset is

too small for the regression, and we set the dynamic response coefficients

as their OLS estimators, and the rest of the coefficients as zero. This still

achieves a 8.14% gain in prediction error compared to the OLS estimator.

Table 3 demonstrates that the proposed response variable selection proce-

Table 3: Improvement of prediction error for breast cancer data
Chromosome 1 2 3 4 5 6 7 8 9 10 11 12

Prediction error 0.00% 24.46% 0.33% 20.22% 15.43% 0.68% 18.60% 0.04% 8.42% 17.72% 8.14% 6.73%

Chromosome 13 14 15 16 17 18 19 20 21 22 23

Prediction error 0.00% 0.00% 14.72% 3.91% 0.35% 0.00% 23.44% 4.80% 2.23% 0.00% 30.58%

dure can significantly improve the prediction error compared to the OLS

estimator in a practical setting with rn > n.
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