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ENVELOPE-BASED SPARSE PARTIAL LEAST SQUARES

By Guangyu Zhu and Zhihua Su†

University of Rhode Island and University of Florida

Sparse partial least squares (SPLS) is widely used in applied sci-
ences as a method that performs dimension reduction and variable
selection simultaneously in linear regression. Several implementations
of SPLS have been derived, among which the SPLS proposed in Chun
and Keleş (2010) is very popular and highly cited. However, for all of
these implementations, the theoretical properties of SPLS are largely
unknown. In this paper, we propose a new version of SPLS, called the
envelope-based SPLS, using a connection between envelope models
and partial least squares (PLS). We establish the consistency, ora-
cle property and asymptotic normality of the envelope-based SPLS
estimator. The large-sample scenario and high-dimensional scenario
are both considered. We also develop the envelope-based SPLS esti-
mators under the context of generalized linear models, and discuss
its theoretical properties including consistency, oracle property and
asymptotic distribution. Numerical experiments and examples show
that the envelope-based SPLS estimator has better variable selec-
tion and prediction performance over the SPLS estimator (Chun and
Keleş, 2010).

1. Introduction. Consider the multivariate linear regression model

(1) Y = µ+ βT (X− µX) + ε,

where Y ∈ Rr is the response vector, and X ∈ Rp is the stochastic predictor
vector having mean µX and covariance matrix ΣX. The errors ε ∈ Rr are
independent of X, and have mean 0 and covariance matrix ΣY|X. The in-
tercept and the regression coefficients are denoted by µ ∈ Rr and β ∈ Rp×r.

Partial least squares (PLS) is introduced by Wold (1966) as an alter-
native method to ordinary least squares (OLS) for estimating β. It is the
dominant method in chemometrics and is now widely used in many other
applied sciences such as econometrics and genetics. It is known that PLS
often has a better prediction performance compared to OLS, and the PLS
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algorithms can be adapted directly to the n < p case, where n denotes sam-
ple size. Variable selection is desirable in many applications to identify the
predictors that have zero regression coefficients, and has been studied in the
context of PLS. A few variants of sparse partial least squares (SPLS) have
been proposed in the statistics, genetics and chemometrics communities, e.g.
Chun and Keleş (2010); Huang et al. (2004); Lê Cao et al. (2008); Lee et al.
(2011), etc. Among these works, Chun and Keleş (2010) used penalization
to induce sparsity and proposed an efficient optimization algorithm (see R
package spls). This method is very popular in statistics and applied sci-
ences, and is the most cited among these works. Despite advances in SPLS,
the theoretical properties of the SPLS estimator are largely unknown. This
is because PLS was developed as an iterative moment-based algorithm. Be-
cause its development does not reference a population model, it is difficult
to investigate its theoretical properties, and those of SPLS. As a result, it
is hard to determine when PLS is more advantageous than OLS, what are
the limitations for PLS and how to improve PLS.

Recently Cook, Helland and Su (2013) built a connection between PLS
with a recently developed method called the envelope model. They showed
that at the population level, PLS and the envelope model have the same
target parameter, but they use different algorithms for estimation. This
connection allows PLS to be studied in a traditional likelihood framework.

In this article, we develop a new version of SPLS, called the envelope-
based SPLS, by using the connection between PLS and the envelope model.
Based on this connection, we are able to investigate the theoretical properties
of envelope-based SPLS estimator:

√
n-consistency, asymptotic normality

and the oracle property are established for large sample case; while rate
of convergence and selection consistency are studied in high-dimensional
case. Numerically, we find that the envelope-based SPLS estimator typically
has variable selection and prediction performances that are superior to the
SPLS estimator (Chun and Keleş, 2010) both in small p large n scenario
and small n large p scenario. Specifically, we find that SPLS (Chun and
Keleş, 2010) is more advantageous than OLS when the material part of the
predictor has larger variability than the immaterial part. However, if the
immaterial part has larger variability, SPLS often has inferior performance
in estimation and prediction than OLS. The performance of the envelope-
based SPLS estimator dominates the SPLS estimator in both cases: it has
similar performance as SPLS when the material part has larger variability,
and it is superior to SPLS and OLS when the immaterial part has larger
variability.

Generalized linear models are very useful when the response variables are
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binary, counts or other non-normal measurements. And variable selection
is important when we want to identify the predictors that do not affect
the distribution of the response. In the current literature, SPLS is devel-
oped only for binary and multinomial responses (Chung and Keleş, 2010),
and no theoretical results are available for those estimators. We develop
the envelope-based SPLS estimator when the conditional distribution of Y
given X belongs to a natural exponential family, with a general link func-
tion. The consistency and oracle properties of the estimator are established.
We compare the estimator with the SPLS estimator in the literature and
the OLS estimator, and find that the envelope-based SPLS estimator has
better selection and prediction performance in numerical experiments and
examples.

The contributions of this article are three-fold. First, we propose an
envelope-based SPLS model in which the development of the theoretical
properties of the estimator is feasible. Second, we show that the model-
based approach offers an alternative avenue to advance SPLS. Currently,
most developments of SPLS are algorithm-based. For example, generalized
sparse partial least squares (Chung and Keleş, 2010) is derived by embedding
the SPLS algorithm in the generalized linear model setting. It is difficult to
develop such an algorithm in some contexts, such as quantile regression or
expectile regression. In contrast, the envelope-based SPLS can be extended
to other models by imposing the envelope assumption and a sparsity as-
sumption on the model parameters, which is easier in these contexts. Third,
we show that the manifold techniques in the proof can be generalized to
other contexts where model parameters are defined on a manifold. Since
estimation of the envelope subspace is performed by Grassmann manifold
optimization, the study of the theoretical properties of the envelope-based
SPLS estimator involves manifold theory and techniques. Although Chen
and Huang (2012) and Chen, Zou and Cook (2010) studied problems that
involve manifolds, their techniques rely heavily on a specific form of the
objective function, either the least squares objective function or the trace
function. The techniques developed in this article can be applied to a general
objective function.

The rest of the article is organized as follows. Section 2 is devoted to a
review of PLS, the envelope model and the connection between them. We
introduce the envelope-based SPLS estimator and discuss its properties in
Section 3. The envelope-based SPLS estimator for generalized linear models
is developed in Section 4. Some concluding remarks are in Section 5. Proofs
and technical details are included in a supplement.
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2. Review of PLS and envelopes.

2.1. PLS. PLS is a method based on predictor reduction. PLS first re-
duces X to a few linear combinations WTX, where W ∈ Rp×d with d ≤ p.
Considering WTX as the new predictor vector, we regress Y on WTX by
writing

Y = µW + βTWWT (X− µX) + εW.

The OLS estimator of βW is β̂W = (WTSXW)−1WSXY, where SX ∈ Rp×p
is the sample covariance matrix of X and SXY ∈ Rp×r is the sample covari-
ance matrix of X and Y. Then the PLS estimator of β is β̂pls = Wβ̂W =

PW(SX)β̂ols, where β̂ols denotes the OLS estimator of β and PW(SX) denotes
the projection matrix onto span(W) in the SX inner product. PLS has a
few variants, corresponding to different ways of obtaining W. One of the
most popular variant is SIMPLS proposed by De Jong (1993). In SIMPLS,
a sequential algorithm is used to obtain the columns of W. Let wk be the
kth column in W, and Wk = (w1, · · · ,wk), k < d. Then wk+1 is given by

wk+1 = arg max
w

(wTΣXYΣT
XYw),

subject to wTΣXWk = 0 and wTw = 1.
(2)

Another popular variant is NIPALS (Wold, 1975), which has the same objec-
tive function as SIMPLS but uses a different inner product in the constraints.
Our discussion will focus on SIMPLS, since SIMPLS is implemented as the
standard PLS algorithm in software like R, SAS and MATLAB. Results
on SIMPLS can be extended in a straightforward manner to NIPALS. The
dimension of the reduction WTX, i.e. d, is usually called the “number of
components”, and it is typically selected in a data-driven way, e.g. cross vali-
dation. This is illustrated in the simulations and data analysis in Sections 3.3
and 3.4.

In the high-dimensional scenario, the PLS algorithms can be easily adapted,
but the estimators can be inconsistent. Let β̂pls denote the PLS (SIMPLS

or NIPALS) estimator of β. Chun and Keleş (2010) showed that β̂pls is con-
sistent if and only if p/n→ 0. Therefore it is necessary to use SPLS if some
predictors have zero coefficients.

2.2. The envelope model and its connection with PLS. The envelope
model was originally developed in Cook, Li and Chiaromonte (2010) to
achieve efficient estimation in multivariate linear regression. After its ini-
tial introduction, it was applied to more general contexts, and new models
were proposed to achieve even greater efficiency gains, see e.g. Su and Cook
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(2011), Su and Cook (2012), Cook and Zhang (2015), and Khare, Pal and
Su (2017). In particular, a predictor envelope model was developed in Cook,
Helland and Su (2013), and this paper also established a connection be-
tween PLS and the predictor envelope model. This connection allows PLS
to be studied under the framework of envelope models. We will review the
envelope model in this context, and this will lead to the development of the
envelope-based SPLS model.

The predictor envelope model achieves efficient estimation by identifying
the immaterial information in the predictors. Let S be a subspace of Rp, and
PS be the projection matrix onto S. We decompose X into two parts: PSX
and QSX, where QS = Ip − PS . Assume that PSX and QSX satisfy the
following two conditions: (i) Y is uncorrelated with QSX given PSX, and
(ii) QSX is uncorrelated with PSX. Then S is called a reducing subspace
of ΣX containing B, where B = span(β) (Cook, Helland and Su, 2013).
The ΣX-envelope of B, denoted by EΣX

(B) or E for short, is defined as the
smallest reducing subspace of ΣX that contains B. In other words, EΣX

(B)
is the smallest subspace that satisfies conditions (i) and (ii). It can be shown
that QEX is uncorrelated with PEX and Y. So QEX does not affect the
distribution of Y directly or indirectly. We refer to QEX and PEX as the
immaterial part and the material part of X, respectively.

For S = EΣX
(B), conditions (i) and (ii) are equivalent to the following

two conditions: (a) B ⊆ EΣX
(B) and (b) ΣX = PEΣXPE + QEΣXQE . We

call (1) the predictor envelope model if conditions (a) and (b) are imposed.
The coordinate form of the predictor envelope model is

(3) Y = µ+ ηTΓT (X− µX) + ε, ΣX = ΓΩΓT + Γ0Ω0Γ
T
0 ,

where β = Γη, Γ ∈ Rp×d is an orthonormal basis of EΣX
(B), and Γ0 ∈

Rp×(p−d) is a completion of Γ. The integer d denotes the dimension of
EΣX

(B), and 0 ≤ d ≤ p. The matrices Ω ∈ Rd×d and Ω0 ∈ R(p−d)×(p−d)

are positive definite and η ∈ Rd×r carries the coordinates of β with respect
to Γ. If d = p, then (3) reduces to the standard model (1), and the envelope
estimator of β is the same as the standard estimator β̂ols. If d < p, the pre-
dictor envelope model (3) states that B is contained in the subspace spanned
by a few (not all) eigenvectors of ΣX (Cook, Li and Chiaromonte, 2010).
Because that β and ΣX are independent parameters, when p increases, this
happens with probability tending to 1 (Diaconis and Freedman, 1984). When
p is small or moderate, some dependence structures among the predictors
naturally satisfy conditions (a) and (b). For example, suppose that ΣX has
the following structure ΣX = MMT + cIp, where c > 0 is a constant and
M ∈ Rp×k with k � p. This covariance structure is commonly used in factor
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analysis, where most of the variation in X is explained by a few factors. And
the predictor envelope model (3) holds under this structure.

The estimator of EΣX
(B) is obtained by solving the following optimization

problem:

(4) ÊΣX
(B) = arg min

S∈G(p,d)
log |PSSX|YPS |+ log |PSS−1

X PS |,

where SX|Y = SX−SXYS−1
Y STXY is the sample covariance matrix of X given

Y, and SY is the sample covariance matrix of Y. The optimization is per-
formed on G(p, d), which denotes a p×d Grassmann manifold. A p×d Grass-
mann manifold is the set of all d-dimensional subspaces in a p-dimensional
space. Since the estimation of EΣX

(B) involves manifold optimization, it can
be slow in high-dimensional settings. To resolve this problem, we convert the
problem into a non-manifold optimization through a reparameterization of
Γ (Cook, Forzani and Su, 2016; Ma and Zhu, 2013). Since Γ has rank d,
there exists d rows in Γ, say rows i1, i2, . . . , id (1 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ p),
that form a d × d nonsingular matrix Γ1. If there are multiple sets of d
rows that form a nonsingular matrix, we take the set with the smallest in-
dices. The submatrix formed by the remaining p − d rows is denoted by
Γ2. We define A = Γ2Γ

−1
1 and GA = ΓΓ−1

1 . Then rows i1, i2, . . ., id in
GA form an identity matrix, and the remaining rows in GA constitute A.
Note that A ∈ R(p−d)×d characterizes EΣX

(B) since A depends on Γ only
through span(Γ). Under this parameterization, the optimization problem in
(4) is converted to the following unconstrained non-manifold optimization
problem:
(5)

Â = arg min
A∈R(p−d)×d

{−2 log |GT
AGA|+ log |GT

ASX|YGA|+ log |GT
AS−1

X GA|}.

Cook, Forzani and Su (2016) discussed the methods to estimate the indices
i1, i2, . . . , id and obtain a

√
n-consistent initial value of A, as well as an

algorithm to solve (5). Once we get Â, Γ̂ can be taken as an orthonormal
basis of ĜA. The envelope estimator of β is then β̂env = P

Γ̂(SX)
β̂ols, where

P
Γ̂(SX)

denotes the projection matrix onto span(Γ̂) in the SX inner product.

By the results of Cook, Helland and Su (2013), the envelope estimator β̂env

is as efficient as or more efficient than β̂ols.
The predictor envelope model (3) has a close relationship with PLS. In

the SIMPLS algorithm, let Wk = span(Wk). Cook, Helland and Su (2013)
showed that W1 ⊂ W2 ⊂ · · · ⊂ Wd = EΣX

(B) = Wd+1 ⊂ · · · ⊂ Wp. This
indicates that the SIMPLS algorithm is estimating the target parameter
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EΣX
(B). While the predictor envelope model (3) estimates EΣX

(B) through
the optimization in (5), SIMPLS uses a moment-based iterative algorithm
(2) to obtain the estimator. Cook, Helland and Su (2013) showed that β̂env

usually has a better performance in estimation and prediction than β̂pls. If
there is no immaterial part in X, then d = p and EΣX

(B) = Rp. The enve-

lope estimator β̂env reduces to the standard estimator β̂ols. In the SIMPLS
algorithm, we have W1 ⊂ W2 ⊂ · · · ⊂ Wp−1 ⊂ Wp = EΣX

(B), which yields

W = Ip. The SIMPLS estimator β̂pls also reduces to the standard estimator

β̂ols.

3. Envelope-based SPLS.

3.1. Formulation. We first define active predictors and inactive predic-
tors. In Chun and Keleş (2010), a predictor variable is viewed active or
inactive if the corresponding row in W has nonzero elements or not. Based
on the connection between PLS and the predictor envelope model, we call
a predictor inactive if the corresponding row in Γ consists of all zeros, and
we call a predictor active if the corresponding row in Γ is nonzero. Then
without loss of generality, we can write X = (XT

A,X
T
I )T , where XA ∈ RpA

denotes the active predictors and XI ∈ RpI denotes the inactive predictors.
The subscripts A and I are attached to a quantity if it is associated with
active and inactive predictors. For example, pA and pI denote the number
of active and inactive predictors, and pA + pI = p. Then the basis for the
predictor envelope model (3) has the following sparse structure

(6) Γ =

(
ΓA
0

)
.

We call (3) the sparse predictor envelope model if Γ has the sparse structure
(3). Its estimator of β is the envelope-based SPLS estimator, and we call it
the E-SPLS estimator. Under the sparse predictor envelope model, β = Γη
also has a sparse structure. And we denote the coefficients for the active
predictors by βA = ΓAη. When d = p, there is no immaterial part and no
inactive predictors, and the E-SPLS estimators reduces to the OLS estima-
tor. The sparsity assumption (6) is quite common in dimension reduction
literature (Chen, Zou and Cook, 2010; Chen and Huang, 2012; Chun and
Keleş, 2010). It basically means that the conditional distribution of Y given
X does not depend on these predictors.

The parameterization of A preserves the sparse structure of Γ, i.e., a row
in Γ consists of all zeros if and only if the corresponding row in A consists
of all zeros. Therefore the inactive predictors can be determined from the
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sparsity structure of A. This can be seen from the definition of A. Recall
that A = Γ2Γ

−1
1 . Let γT2,i denote the ith row in Γ2, and let aTi denote the

ith row in A. Then we have γT2,i = aTi Γ1, for i = 1, . . . , p− d. Because Γ1 is

non-singular, aTi = 0 if and only if γT2,i = 0. Suppose that the ith row in Γ2

corresponds to the jth row in Γ. Then aTi = 0 implies that the jth predictor
is inactive; and vice versa. The explanation is easiest to see in the following
special case. If i1 = 1, i2 = 2, . . . , id = d, we have

Γ =

(
Γ1

Γ2

)
=

(
Id
A

)
Γ1.

Then γT2,i = aTi Γ1, for i = 1, . . . , p − d. Therefore aTi = 0 if and only if

γT2,i = 0. Since γ2,i = γi+d, where γi+d denotes the (i+ d)th row of Γ, then

aTi = 0 if and only if the (i+ d)th predictor is inactive.
To make the E-SPLS estimator of β a sparse estimator, we induce the

sparsity in A by adding an adaptive group lasso penalty to the objective
function in (5):

Â = arg min
A∈R(p−d)×d

−2 log |GT
AGA|+ log |GT

ASX|YGA|

+ log |GT
AS−1

X GA|+ λ

p−d∑
i=1

wi‖ai‖2,
(7)

where ‖ · ‖2 is the norm of a vector, λ is the tuning parameter and the wi’s
are the adaptive weights. Following Zou (2006), we set wi = 1/‖âi‖γ2 , where
γ is a tuning parameter and âi is a

√
n-consistent estimator of ai, e.g., the

envelope estimator. The tuning parameter γ can be chosen from a small
candidate set such as {0.5, 1, 2, 4, 8} (Zou, 2006). The adaptive group lasso
penalty is also used in Chen and Huang (2012), Chen, Zou and Cook (2010),
and Su et al. (2016) to induce row-wise sparsity of a matrix, and it enjoys
desirable properties such as consistency and the oracle property. Su et al.
(2016) compared this penalized method with a hard-thresholding method in
the context of the sparse envelope model, and concluded that the penalized
method outperforms the hard-thresholding method for variable selection.

If p grows to infinity with n, we denote p by pn. Let ΣX|Y = ΣX −
ΣXYΣ−1

Y ΣT
XY. When pn > n, SX and SX|Y are both singular. But S−1

X

appears in the objective function (7) and S−1
X|Y is needed in the estimation

algorithm (c.f. Algorithm 1 in the Supplement). Then we replace S−1
X and

S−1
X|Y by alternative estimators of Σ−1

X and Σ−1
X|Y such as sparse permutation

invariant covariance estimators (Rothman et al., 2008, SPICE), sparse par-
tial correlation estimation (Peng et al., 2009, SPACE), convex correlation
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selection method (Khare, Oh and Rajaratnam, 2015, CONCORD), lasso
penalized D-trace estimation (Zhang and Zou, 2014), etc. The consistency
of the SPICE estimators of Σ−1

X and Σ−1
X|Y can be established without any

sparsity assumptions, while for the other methods we need to assume some
sparsity structure in Σ−1

X and Σ−1
X|Y to establish consistency. In our case,

Σ−1
X and Σ−1

X|Y are not necessarily sparse. We then use the SPICE estima-

tors S−1
X,spice and S−1

X|Y,spice, although the other methods typically enjoy a
convergence rate that is faster than that of SPICE due to the sparsity as-
sumptions. We obtain SX,spice and SX|Y,spice by taking the inverse of S−1

X,spice

and S−1
X|Y,spice. And the objective function is

Â = arg min
A∈R(pn−d)×d

−2 log |GT
AGA|+ log |GT

ASX|Y,spiceGA|

+ log |GT
AS−1

X,spiceGA|+ λ

pn−d∑
i=1

wi‖ai‖2.
(8)

The optimizations of (7) and (8) are similar to the optimization problem
discussed in Su et al. (2016). To update each row in A, it takes O(pd+ d3)
flops. The details of the estimation algorithm and computational complexity
calculations are included in the Supplement. Once we have obtained Â from
(7) or (8), ÊΣX

(B) = span(ĜA) and Γ̂ is any orthonormal basis for ÊΣX
(B).

Then the E-SPLS estimator of β and ΣX are β̂ = Γ̂(Γ̂
T
SXΓ̂)−1Γ̂

T
SXY =

P
Γ̂(SX)

β̂ols and Σ̂X = P
Γ̂
SXP

Γ̂
+ Q

Γ̂
SXQ

Γ̂
. The other constituent pa-

rameters are estimated by µ̂X = X̄, µ̂ = Ȳ, η̂ = (Γ̂
T
SXΓ̂)−1Γ̂

T
SXY,

Ω̂ = Γ̂
T
SXΓ̂, Ω̂ = Γ̂

T

0 SXΓ̂0 and Σ̂Y|X = SY − β̂Σ̂Xβ̂
T

, where X̄ and Ȳ

are the sample mean of X and Y, and Γ̂0 is a completion of Γ̂. In the high-

dimensional situation, β is estimated by β̂ = Γ̂(Γ̂
T
SX,spiceΓ̂)−1Γ̂

T
SXY.

3.2. Theoretical properties. Because the E-SPLS estimator is derived
from the sparse predictor envelope model (3) and (6), its properties can be
investigated through this model. We investigate the consistency, asymptotic
distribution or convergence rate of the E-SPLS estimator in the scenario
where p is fixed and n tends to infinity, as well as the scenario where pn and
n both tend to infinity.

We start with the case where p is fixed and n tends to infinity. Suppose
that under (6), rows i1, . . ., id in Γ constitute a non-singular matrix Γ1,
1 ≤ ij ≤ pA for j = 1, . . . , d. Then the first pA−d rows of A correspond to the
nonzero rows in Γ but not in Γ1. This implies that the first pA−d rows of A
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are nonzero and the rest rows of A are zero. Let λA = λmax{w1, . . . , wpA−d}
and λI = λmin{wpA−d+1, . . . , wp−d}.

Theorem 1 Assume that the sparse predictor envelope model (3) and (6)
holds, and X has finite fourth moments. We further assume that

√
nλA → 0.

Then there exists a local minimizer Â of (7), such that Â is a
√
n-consistent

estimator of A, and β̂ is a
√
n-consistent estimator of β.

Theorem 1 establishes the
√
n-consistency of the E-SPLS estimator of A

and β. Since other estimators such as Σ̂X and Σ̂Y|X are smooth functions

of Â, they are
√
n-consistent estimators as well. Notice that the objective

function for A (7) is derived from the normal likelihood, but we do not need
normality in order to obtain the

√
n-consistency of Â. If the weights are

taken as wi = 1/‖âi‖γ2 for γ > 0, the condition
√
nλA → 0 is equivalent

to λ = o(n−1/2) or n1/2λ → 0. Theorem 2 further establishes the selection
consistency of the E-SPLS estimator.

Theorem 2 Assume that the conditions in Theorem 1 hold, and further
assume that

√
nλI →∞. Then P (âi = 0)→ 1 for i = pA− d+ 1, . . . , p− d.

Theorem 2 indicates that the inactive predictors are selected to be inactive
with probability tending to 1, and Theorem 1 indicates that the active pre-
dictors are selected to be active asymptotically. The condition

√
nλI → ∞

is equivalent to n(1+γ)/2λ → ∞, if we use the weights wi = 1/‖âi‖γ2 . Here
γ usually takes value in {0.5, 1, 2, 4, 8} (Zou, 2006; Chen and Huang, 2012).
Therefore if n1/2λ → 0 and n(1+γ)/2λ → ∞, then the assumptions on the
tuning parameters in both Theorems 1 and 2 hold. But Theorem 1 only
requires the assumption n1/2λ→ 0.

We next study the asymptotic variance of the E-SPLS estimator. In prepa-
ration, we first define the oracle predictor envelope estimator and study its
properties. Suppose we possess the oracle information, i.e., we know in ad-
vance which predictors are active and which predictors are inactive. We
would then construct the oracle predictor envelope model by specifying
(9)

Y = µ+ηTΓT
(

XA − µXA
XI − µXI

)
+ε, ΣX = ΓΩΓT+Γ0Ω0Γ

T
0 , Γ =

(
ΓA
0

)
.

Notice that we still include XI in the oracle predictor envelope model even
though we know that its coefficients are zero. This is because inclusion of XI
improves the estimation of βA. To demonstrate this, we need to look more
closely at the immaterial information. When Γ has the sparse structure (6),
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Γ0 may have the block diagonal structure

(10)

(
ΓA,0 0

0 IpI

)
,

where ΓA,0 ∈ RpA×(pA−d) is a completion of ΓA. If Γ0 has this structure, we

denote it by Γ̃0. A general structure for Γ0 is Γ̃0O, where O ∈ R(p−d)×(p−d)

is an orthogonal matrix. Then the immaterial part is QEX = P
Γ̃0

X =

(XT
AQΓA ,X

T
I )T . We see that the immaterial part has two sources, one from

the immaterial part in the active predictors QΓAXA and the other from the

inactive predictors XI . Under the basis Γ̃0, we denote the coordinates Ω0

as Ω̃0, where

(11) Ω̃0 =

(
Ω̃0,A Ω̃0,AI
Ω̃0,IA Ω̃0,I

)
,

and Ω̃0,A ∈ R(pA−d)×(pA−d). We can see that the two sources QΓAXA and

XI are correlated with each other: Cov(QΓAXA,XI) = ΓA,0Ω̃0,AIΓ̃
T

0 if

Ω̃0,AI 6= 0. Therefore the existence of XI helps identify the immaterial part
and lowers the cost of estimating EΣX

(B).
Mathematically, we can show that the presence of XI increases efficiency

by comparing the asymptotic variance of the estimators obtained by includ-
ing or excluding XI . When we include XI in the estimation, Proposition 1
in the Supplement gives the expression of the oracle predictor envelope es-
timator β̂A,O as well as its asymptotic variance when X and ε are normally
distributed. We assume normality in this proposition only to obtain an ex-
plicit form for the asymptotic variance. It can be proved that without the
normality assumption β̂A,O is a

√
n-consistent estimator as long as X has

finite fourth moments. A subscript “O” is attached to an estimator if it
is based on the oracle predictor envelope model. Let vec be the operator
that stacks the columns of a matrix into a column vector, and let Ω̃0,A|I =

Ω̃0,A − Ω̃0,AIΩ̃
−1

0,IΩ̃0,IA. With the normality assumption, the asymptotic

variance of vec(β̂A,O) is denoted by VO, and VO = ΣY|XA ⊗ ΓAΩ−1ΓTA +

(ηT ⊗ ΓA,0)T−1(η ⊗ ΓTA,0), where ⊗ denotes the Kronecker product and

T = (ηΣ−1
Y|XAη

T + Ω−1) ⊗ Ω̃0,A + Ω ⊗ Ω̃
−1

0,A|I − 2Id ⊗ IpA−d. The asymp-

totic variance VO contains two parts: ΣY|XA⊗ΓAΩ−1ΓTA is the asymptotic

variance of vec(β̂A,O) if ΓA is known, and (ηT ⊗ΓA,0)T−1(η⊗ΓTA,0) is the
cost for estimating EΣX

(B). If we exclude XI in (9), and only use XA to
construct the predictor envelope model, the asymptotic variance of the esti-
mator of vec(βA) is V2 = ΣY|XA ⊗ΓAΩ−1ΓTA+ (ηT ⊗ΓA,0)T−1

2 (η⊗ΓTA,0),
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and T2 = (ηΣ−1
Y|XAη

T + Ω−1)⊗ Ω̃0,A+ Ω⊗ Ω̃
−1

0,A− 2Id⊗ IpA−d. Comparing
VO and V2, we see that the first part is exactly the same, but the cost
of estimating EΣX

(B) differs. Specially, since Ω̃0,A|I ≤ Ω̃0,A, T−1 ≤ T−1
2 .

Notice that XI plays a role in T, but not in T2. Moreover, the higher the
correlation between XA and XI , the greater are the efficiency gains.

Remark In standard linear regression, if we possess the oracle informa-
tion, we would eliminate the inactive predictor; otherwise, we lose efficiency.
But under the predictor envelope model, retaining the inactive predictors
actually improves the estimation efficiency.

A simulation is included in the Supplement to provide some numerical
support of the Remark.

Now we study the asymptotic distribution of the E-SPLS estimator.

Theorem 3 Assume that the conditions in Theorem 2 hold. Then
√
n{vec(β̂A)−

vec(βA)} is asymptotically normally distributed with mean 0 and variance
the same as that of β̂A,O.

Theorem 3 indicates that the E-SPLS estimator has the optimal estimation
rate. Together with Theorem 2, it shows that the E-SPLS estimator enjoys
the oracle property: it correctly selects the inactive predictors with prob-
ability tending to 1, and estimates the coefficients of the active predictors
with the same efficiency as if the true model were known.

When pn →∞ as n→∞, we establish the convergence rate and selection
consistency of the E-SPLS estimator. Let s1 and s2 denote the number of
nonzero off-diagonal elements in the lower triangle of Σ−1

X and Σ−1
X|Y, and

s = max{s1, s2}. We use ‖ · ‖F to denote the Frobenius norm of a matrix.
A random variable V with mean µV follows a sub-Gaussian distribution
with parameter σ2 if E[et(V−µV )] ≤ exp(t2σ2/2) for all t ∈ R. Let ΣY|X,ii
and ΣX,ii denote the (i, i)th element in ΣY|X and ΣX, and let εi and Xi

denote the ith element in ε and X. Let λA = λmax{w1, . . . , wpA−d} and
λI = λmin{wpA−d+1, . . . , wp−d}.

Theorem 4 Assume that the sparse predictor envelope model (3) and (6)
holds, the largest eigenvalue of ΣX is upper bounded by a constant k̄ and the
smallest eigenvalue of ΣX|Y is lower bounded by a constant k. Furthermore,
assume each εi/

√
ΣY|X,ii follows a sub-Gaussian distribution with parame-

ter σ2
1, i = 1, . . . , r, and each Xi/

√
ΣX,ii follows a sub-Gaussian distribution

with parameter σ2
2, i = 1, . . . , p. If λA = o

(√
(pn + s) log(pn)/n

)
, then there

exists a local minimizer Â of (8), such that ‖Â−A‖F = Op

(√
(pn + s) log(pn)/n

)
,
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and the E-SPLS estimator of β converges at the same rate: ‖β̂ − β‖F =

Op

(√
(pn + s) log(pn)/n

)
.

Theorem 4 gives the convergence rate of the E-SPLS estimator. It is the
same as that of the SPICE estimator of ΣX and ΣX|Y, which are used in

the objective function (8). Since SPICE does not assume sparsity on Σ−1
X or

Σ−1
X|Y, the total number of parameters under the sparse predictor envelope

model is p + r + d(r − pI) + p(p + 1)/2 + r(r + 1)/2, which is of the order
of p2. We can improve the convergence rate to a faster rate if we further
impose sparsity assumption on Σ−1

X , e.g., assume that the total number of
non-zero off-diagonal elements is a fixed number or grows slower than n.

Theorem 5 Assume that the conditions in Theorem 4 hold,
√

(pn + s) log(pn)/n→
0 as n → ∞ and

√
(pn + s) log(pn)/n = o(λI). Then P (âi 6= 0) → 1 for

i = 1, . . . , pA − d, and P (âi = 0, i = pA − d+ 1, . . . , pn − d)→ 1.

Theorem 5 establishes the selection consistency of the E-SPLS estimator.
When pn grows with n, the E-SPLS estimator correctly identifies active
and inactive predictors with probability tending to 1. Regarding the tuning

parameters, the condition λA = o
(√

(pn + s) log(pn)/n
)

is equivalent to

n1/2(pn + s)−1/2{log(pn)}−1/2λ → 0. With λI , the range of λ depends on
how fast min{wpA−d+1, . . . , wpn−d} diverges. If min{wpA−d+1, . . . , wp−d} =
Op(n

v1pv2n ), where v1 > 0 and v2 > 0, then
√

(pn + s) log(pn)/n = o(λI)
is equivalent to n(1+2v1)/2pv2n (pn + s)−1/2{log(pn)}−1/2λ → ∞. If λ satisfies
both conditions, then the assumptions of the tuning parameters in both
Theorems 4 and 5 hold. But Theorem 4 only requires that λ satisfy the
former assumption.

3.3. Simulations. We investigate the numerical performance of the E-
SPLS estimator through simulation studies. In all simulations, we use the
SPLS estimator (Chun and Keleş, 2010) as a benchmark since it is the “state-
of-art” method for variable selection in PLS. We generated the data from
the sparse predictor envelope model (3) and (6) with r = 3, p = 20, pA = 4
and d = 2. The parameter ΓA was obtained by orthogonalizing a pA × d
matrix of independent standard normal random variates. The intercept µ
was a vector of zeros, µX = 0, and the elements in η were independent nor-
mal random variates with mean 0 and variance 0.25. The covariance matrix
ΣX followed the structure ΣX = ΓΩΓT + Γ0Ω0Γ

T
0 , with Ω = 4Id and Ω0

being a diagonal matrix. The first pA−d diagonal elements of Ω0 were 0.36
and the rest of the diagonal elements were 1. The error covariance matrix
was ΣY|X = MTM, where the elements in the matrix M ∈ Rr×r were inde-
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pendent uniform (0, 3) random variates. We simulated 200 replications for
each sample size from 50 to 1000, and computed the OLS estimator, the
SPLS estimator, the E-SPLS estimator and the oracle predictor envelope
estimator. For each elements in βA, the estimation standard deviation was
obtained by computing the standard deviation of the 200 estimators. The
results are summarized in Figure 1. The trend of the solid line in Figure 1
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Fig 1. Comparison of the estimation standard deviations of four estimators: line — marks
the E-SPLS estimator, line – · – marks the SPLS estimator, line – – marks the oracle
predictor envelope estimator and line · · · marks the OLS estimator. The horizontal lines
mark the asymptotic standard deviation of the corresponding estimators.

agrees with the
√
n-consistency of the E-SPLS estimator stated in Theorem

1. The standard deviation of the OLS estimator is 1.16 at sample size 50,
which is about four times the standard deviation of the E-SPLS estimator.
The ratio of the asymptotic standard deviation of the OLS estimator versus
the E-SPLS estimator is 6.12. The SPLS estimator is more efficient than the
OLS estimator, but it is not as efficient as the E-SPLS estimator. The ratio
of the standard deviation of the SPLS estimator versus the E-SPLS estima-
tor at sample size 1000 is 4.18. Since the asymptotic variance of the SPLS
estimator is unknown, we cannot compare the asymptotic standard devia-
tions for SPLS estimator and E-SPLS estimator. The difference between the
E-SPLS estimator and the oracle predictor envelope estimator diminishes
when the sample size increases, which confirms the oracle property stated
in Theorem 3. We also studied the variable selection performance of the E-
SPLS estimator on true positive rate (TPR), true negative rate (TNR) and
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Table 1
Comparison of selection performances of the E-SPLS estimator and the SPLS estimator.

E-SPLS SPLS
Sample size TPR TNR Accuracy TPR TNR Accuracy

50 96.38% 96.16% 68.50% 69.25% 71.97% 3.00%
100 98.88% 98.78% 83.00% 75.88% 83.59% 9.00%
200 99.75% 99.50% 92.50% 84.62% 89.91% 27.00%
400 99.88% 99.88% 97.50% 87.75% 92.00% 43.00%
1000 100.00% 100.00% 100.00% 91.62% 92.91% 55.50%

accuracy. Accuracy takes value 1 when all the active and inactive predictors
are correctly selected, and 0 otherwise, TPR= p∗A/pA, and TNR= p∗I/pI
where p∗A and p∗I denote the number of correctly selected active and inactive
predictors. The averages of TPR, TNR and accuracy were computed for 200
replications and are summarized in Table 1. From Table 1, we notice that
the E-SPLS estimator has a better selection performance than the SPLS
estimator. The E-SPLS estimator has 100% accuracy when n = 1000, which
confirms the selection consistency stated in Theorem 2. We also conducted
a simulation to investigate the performance of the E-SPLS estimator under
model violation. The results are included in section D.2 in the Supplement.

Now we report a simulation that studies the prediction performance of
the E-SPLS estimator. We generated the data from the sparse predictor
envelope model with n = 50, p = 200, r = 3, pA = 5 and d = 3. The
elements in η were independent normal random variates with mean 0 and
variance 25. We set Ω = Id and Ω0 to be a diagonal matrix. The error
covariance matrix was ΣY|X = MTM, where the elements in M ∈ Rr×r
were independent uniform (0, 4) random variates. The first pA − d elements
of Ω0 were 9 and the remaining pI elements were 25. Note that in this
setting, the variability of the immaterial part is larger than the variability
of the material part. We computed the mean prediction error (MPE) for each
d by five-fold cross-validation, repeated 50 times with random splits of the
data. The results are summarized in Figure 2. Since we have p > n in this
setting, the OLS estimator cannot be computed. We included the results
from SIMPLS as a reference. From the plot, we notice that the SIMPLS
estimator and SPLS estimator are quite similar. The minimum MPE is 14.01
for SIMPLS and 13.94 for SPLS. The E-SPLS estimator has minimum MPE
5.69, which is a 59.18% reduction compared to the SPLS estimator. The
selection performance of the E-SPLS estimator is also superior to that of
the SPLS estimator in this setting. Table 2 summarized the average TPR,
TNR and accuracy from 50 replications.

In the simulation setting that was used to generate Figure 2, we kept all
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Fig 2. Comparison of the MPE: Line — marks the E-SPLS estimator, line · · · marks the
SIMPLS estimator, and line – – marks SPLS estimator.

Table 2
Comparison of selection performances of the SPLS estimator and E-SPLS estimator.

TPR TNR Accuracy

SPLS 51.60% 29.85% 0.00%
E-SPLS 88.00% 100.00% 40.00%

the parameters the same but changed the relative magnitude of Ω and Ω0.
We set Ω = 36Id and Ω0 to be a diagonal matrix, with its first pA − d
elements being 9 and other elements being 1. Then the variability of the
material part is larger than the variability of the immaterial part. The results
are summarized in Figure 3. The minimum MPE is 13.02 for the SIMPLS
estimator, 5.83 for SPLS estimator and 6.02 for the E-SPLS estimator. The
prediction performance of the SPLS estimator and the E-SPLS estimator is
about the same. We also compared the selection performance of the SPLS
estimator and the E-SPLS estimator, and the results are in Table 3. The
selection performances of the two estimators are also similar.

From the comparison, we notice that the performances of the SPLS and
E-SPLS estimators are similar when ‖Ω‖ > ‖Ω0‖, but the performance of
the SPLS estimator tends to be inferior to that of the E-SPLS estimator
when ‖Ω‖ < ‖Ω0‖. This is because SPLS estimates EΣX

(B) with directions
that maximize the objective function in (2). If ‖Ω‖ < ‖Ω0‖, the objective
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Fig 3. Comparison of prediction errors: Line — marks the E-SPLS estimator, line · · ·
marks the SIMPLS estimator, and line – – marks SPLS estimator.

Table 3
Comparison of selection performances of the SPLS estimator and E-SPLS estimator.

TPR TNR Accuracy

SPLS 98.40% 100.00% 92.00%
E-SPLS 99.60% 100.00% 98.00%

function in (2) tends to be large if a direction close to EΣX
(B)⊥ is picked.

On the other hand, the E-SPLS estimator is
√
n-consistent (Theorem 1),

and its performance is quite stable in both cases.

3.4. Data analysis.

SAT scores data. The SAT dataset (Ramsey and Schafer, 2012) contains
the average SAT score of the fifty states in the U.S. in 1982, as well as six
variables that are used to predict the average SAT score. The six variables
are: percentage of the total eligible students in the state who took the exam;
the median income of families of the test takers; the average number of years
that the test takers had formal studies in social sciences, natural sciences and
humanities; the percentage of the test takers who attended public secondary
schools; the total state expenditure on secondary schools; and the median
percentile ranking of the test takers within their secondary school classes.
We took the six variables and their cross-terms as our predictors, so p = 21.
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We computed the MPE of the E-SPLS estimator for each d by five-fold cross
validation, repeated 50 times with random splits of the data, and compared
the results with those of the SPLS estimator in Figure 4. The MPE of the
OLS estimator is 49.94. The minimum MPE for the SPLS estimator is 38.92,
and it is achieved at d = 16. The minimum MPE for the E-SPLS estimator
is 29.28 achieved at d = 3. Compared to the SPLS estimator, the E-SPLS
estimator reduced the MPE by 24.76%, and the E-SPLS estimator achieved
this reduction with a much smaller d.
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Fig 4. Comparison of the MPE: Line — marks the E-SPLS estimator and line – – marks
the SPLS estimator.

Yeast cell cycle data. This data set was analyzed in Chun and Keleş (2010)
to illustrate the numerical performance of the SPLS estimator. The dataset
contains measurements of binding information of 106 transcription factors
(TFs) and messenger ribonucleic acid (mRNA) levels on 542 genes. TFs
belong to a class of proteins called DNA binding proteins, and control the
rate at which DNA is transcribed into mRNA. The mRNA levels are mea-
sured on approximately two cell cycles with 18 equally spaced time points
from 0 minutes to 119 minutes. Following Chun and Keleş (2010), we took
the TFs as the predictors and the mRNA levels as the responses. The goal
is to identify the TFs that contribute to the variations of mRNA levels in
cell cycles. Out of the 106 TFs, 21 TFs are known and experimentally con-
firmed cell cycle related TFs (Wang, Chen and Li, 2007). We computed
the E-SPLS estimator, the SPLS estimator and the SIMPLS estimator, and
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selected the dimension d for all three estimators by cross validation. The
E-SPLS estimator identified 20 active TFs including 10 confirmed TFs, the
SPLS estimator identified 32 active TFs including 10 confirmed TFs and
the SIMPLS estimator is non-sparse. Table 4 computes the probability of
containing at least q confirmed TFs from a group of Q randomly chosen
TFs from a hypergeometric distribution. Chun and Keleş (2010) used this
criterion to demonstrate the selection performance of the SPLS estimator,
in which the Lasso was listed as a benchmark. We included the results for
the Lasso in Table 4 for completeness. The small probability of the E-SPLS
estimator suggests that the large number of confirmed TFs selected is not
due to chance.

Table 4
Probability of containing at least q confirmed TFs from Q randomly chosen TFs

Method Q q P (Q ≥ q)

Lasso 100 21 0.256
SPLS 32 10 0.049

E-SPLS 20 10 0.00065

The E-SPLS estimator of the coefficients for the 10 confirmed TFs are
in Figure 5. The coefficients for many TFs such as FKH2, SWI4 exhibit
periodical behaviors during the cell cycles. The MPE for the E-SPLS, SPLS
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Fig 5. Estimated coefficients for 10 yeast TFs selected by the E-SPLS estimator.

and SIMPLE estimators were computed and are summarized in Figure 6. We
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notice that the SPLS estimator has a better prediction performance than the
SIMPLS estimator especially when d is large, while the E-SPLS estimator
dominates both the SPLS and SIMPLS estimators for all d. The minimum
MPE is 3.050 for the E-SPLS estimator, 3.399 for the SPLS estimator, 3.442
for the SIMPLS estimator and 3.869 for the OLS estimator.
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Fig 6. Comparison of the MPE: Line — marks the E-SPLS estimator, line – – marks the
SPLS estimator and line · · · marks the SIMPLS estimator.

4. Extension to Generalized Linear Model. Now we derive the
envelope-based sparse PLS estimator under the context where the distribu-
tion of Y belongs to a natural exponential family. Let f be the probability
mass function or probability density function of Y . Consider the standard
generalized linear model
(12)
log(f(Y | θ)) = Y θ−b(θ)+c(Y ), θ(ζ) = (b′)−1{g−1(ζ)}, ζ(α,β) = α+βTX,

where θ is the natural parameter, b(·) is the cumulant function, b′(·) is the
derivative of b(·), g(·) is a monotonic smooth link function (McCullagh and
Nelder, 1989, page 27), (b′)−1(·) and g−1(·) denote the inverse functions of
b′(·) and g(·), and c(·) is some specific function. The predictor X follows a
distribution with mean µX and covariance matrix ΣX, where α ∈ R and
β ∈ Rp are unknown parameters. Then under model (12), we have

E(Y | θ) = b′(θ) = g−1(α+ βTX).
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For simplicity, we focus on the natural exponential family where the disper-
sion parameter is ignored. The natural exponential family includes many im-
portant distributions such as binomial, Poisson and negative binomial, and
provides useful models for binary outcomes, counts or other non-Gaussian
measurements.

PLS has been adapted to the generalized linear model and used for vari-
ous applications. Marx (1996) embeds the PLS algorithm into the iteratively
reweighted steps in generalized linear models. Ding and Gentleman (2005)
applied PLS in two-group and multi-group classification problems. PLS is
also used in Poisson regression (Park, Tian and Kohane, 2002) to study
the link between gene expression and patient survival time. In the high-
dimensional scenario, sparse PLS estimators are derived to address variable
selection in generalized linear models. For example, Chung and Keleş (2010)
developed a sparse version of a PLS-based classification method, called
sparse generalized partial least squares (SGPLS), and applied the method
to tumor classification with microarray gene expression data. However the
theoretical properties of these PLS or sparse PLS-based methods are largely
unknown. Our goal is to develop an envelope-based sparse PLS estimator
with tractable theoretical properties and good numerical performance on
variable selection and prediction under the generalized linear model.

The idea of the envelope model can be extended to the generalized linear
model naturally. Cook and Zhang (2015) derived an envelope estimator of β
under the context of (12) but with canonical link functions, and proved that
this envelope estimator is asymptotically at least as efficient as the standard
estimator obtained by Fisher scoring. We can adapt this idea to a general
link function g. Cook and Zhang (2015) considered the ΣX-envelope on B,
denoted by EΣX

(B), where B = span(β). Let Γ ∈ Rp×d be an orthonormal
basis of EΣX

(B) and Γ0 ∈ Rp×(p−d) be a completion of Γ, where d is the
dimension of EΣX

(B), d ≤ p. Then the envelope model under the context of
the generalized linear model (12) is

log(f(Y | θ)) =Y θ − b(θ) + c(Y ), θ(ζ) = (b′)−1{g−1(ζ)},
ζ(α,Γ,η) =α+ ηTΓTX, ΣX = ΓΩΓT + Γ0Ω0Γ

T
0 .

(13)

Under this envelope model, the coefficients can be written as β = Γη, where
η ∈ Rd carries the coordinates of β with respect to Γ, and Ω ∈ Rd×d and
Ω0 ∈ R(p−d)×(p−d) carry the coordinates of ΣX with respect to Γ and Γ0.
When d = p, (13) reduces to (12). To obtain an estimator for model (13),
Cook and Zhang (2015) suggested an iterative algorithm. With a fixed Γ, α̂
and η̂ can be obtained from the standard procedure like Fisher scoring with
Y being the response and ΓTX being the predictor vector. Given α̂ and η̂,
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ÊΣX
(B) is given by

(14)

ÊΣX
(B) = arg min

span(Γ)∈G(p,d)
− 2

n

n∑
i=1

D{α̂+η̂(Γ)TΓTXi}+log |ΓTSXΓ|+log |ΓTS−1
X Γ|,

where D(·) = C[(b′)−1{g−1(·)}] and C(θ) = Y θ − b(θ). We treat η̂ as a
function of Γ and write it as η̂(Γ) to emphasize this. The optimization (14)
can be solved by the 1D algorithm (Cook and Zhang, 2016) that estimates Γ
columnwise using analytical first derivative and numerical second derivative
of the objective function. The algorithm alternates between (α,η) and Γ
until convergence. The envelope estimator of β is then β̂ = Γ̂η̂.

Now we assume that under model (13), some predictors do not contain
material information and have no contribution to the material part ΓTX.
These predictors are called inactive predictors, and their corresponding rows
in Γ are 0. The predictors that correspond to nonzero rows in Γ are called
active predictors. Without loss of generality, we write X = (XT

A,X
T
I )T ,

where XA ∈ RpA contains active predictors and XI ∈ RpI contains inactive
predictors. Then Γ has a sparse structure as in (6). The sparse envelope
model under generalized linear regression is

log(f(Y | θ)) =Y θ − b(θ) + c(Y ), θ(ζ) = (b′)−1{g−1(ζ)},

ζ(α,Γ,η) =α+ ηTΓTX, ΣX = ΓΩΓT + Γ0Ω0Γ
T
0 , Γ =

(
ΓA
0

)
,

(15)

where each row in ΓA ∈ RpA×d is nonzero. The sparse envelope model (15)
has the same formulation as the envelope model (13) except that Γ has
a sparse structure. Under the sparse envelope model (15), the coefficients
β also have a sparse structure β = (βTA, 0)T , where βA = ΓAη ∈ RpA
contains the coefficients for the active predictors. Model (15) extends the
sparse envelope-based partial least squares from standard linear regression
to generalized linear regression, and we call its estimator the envelope-based
sparse generalized partial least squares (E-SGPLS) estimator. When d = p,
there is no immaterial part and no inactive predictors and model (15) reduces
to the standard generalized linear regression model (12).

To induce sparsity in the rows of Γ, we add a group-lasso penalty to the
objective function in (14). If γTi denotes the ith row of Γ, the objective
function for Γ is
(16)

− 2

n

n∑
i=1

D(α̂+ η̂(Γ)TΓTXi) + log |ΓTSXΓ|+ log |ΓTS−1
X Γ|+

p∑
i=1

λi‖γi‖2,
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where λi’s are the tuning parameters. We use a subgradient method to
optimize (16) because the objective function is not differentiable. With a
fixed Γ, α and η can be obtained using the Fisher scoring method with Y
being the response and ΓTX being the predictor vector. Then we alternate
between (α,η) and Γ until convergence. The E-SGPLS estimator of β is
β̂ = Γ̂η̂, where Γ̂ and η̂ are the values at convergence.

Suppose we have oracle information on which predictors are active or
inactive. Based on the discussion in Section 3.2, the oracle model has the
same form as model (15) except that we know which rows in Γ are zero or
nonzero. The estimator from the oracle model is called the oracle estimator,
and the oracle estimator of βA is denoted by β̂A,O.

Before we discuss the properties of the E-SGPLS estimator, we first in-
troduce some notation. Let ΓA,0 ∈ RpA×(pA−d) be a completion of ΓA, and

let Γ̃0 be a block diagonal matrix with diagonal blocks ΓA,0 and IpI . When

Γ0 has the block diagonal structure Γ̃0, we denote the corresponding Ω0 by
Ω̃0. And the structure of Ω̃0 follows (11). If S is a subspace, we say that Ŝ
is a
√
n-consistent estimator of S if PŜ is a

√
n-consistent estimator of PS .

Let λA = max{λ1, . . . , λpA} and λI = min{λpA+1, . . . , λp}.

Theorem 6 Assume that the sparse envelope model (15) holds and X fol-
lows a normal distribution. We further assume that

√
nλA → 0 as n→∞.

(a)
√
n-consistency: The E-SGPLS estimators α̂ and β̂ are

√
n-consistent

estimators of α and β, and ÊΣX
(B) is a

√
n-consistent estimator of

EΣX
(B).

(b) Selection consistency: If we further assume that
√
nλI → ∞ as n →

∞, then P (γ̂i = 0)→ 1 for i = pA + 1, . . . , p.
(c) Optimal estimation rate: Assume that the same conditions in (b) hold,

√
n{vec(β̂A)− vec(βA)} d→ N(0,V),

where V is the same as the asymptotic variance of β̂A,O.

Theorem 6 establishes the
√
n-consistency, asymptotic normality, selection

consistency and optimal estimation rate of the E-SGPLS estimator. With the
normality assumption on X, we also have a closed form for the asymptotic
variance V, which is included in the Supplement.

Now we report results on the numerical performance of the E-SGPLS es-
timator on estimation, variable selection and prediction. We generated data
from a logistic regression model with the sparse envelope structure (15). We
set pA = 4, pI = 6, d = 2 and varied the sample size from 100 to 1000. The
matrix ΓA was obtained by orthogonalizing a pA× d matrix of independent
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standard normal random variates. We set α = 0.5, µX = 0, Ω to be a diag-
onal matrix with diagonal elements 1 and 2, and Ω0 to be a diagonal matrix
with the first pA−d diagonal elements being 0.25 and the remaining diagonal
elements being 0.09. The elements in η were independent standard normal
random variates. For each sample size, we generated 200 replications, and
computed the standard logistic regression estimator, the E-SGPLS estimator
and the oracle estimator for each replication. We calculated the estimation
standard deviation of each element in β for the standard logistic regression
estimator, E-SGPLS estimator and the oracle estimator based on the 200
replications. The results for a randomly selected element are summarized
in Figure 7. Figure 7 also includes the asymptotic standard deviation for
each estimator. Compared to the standard logistic regression estimator, the
E-SGPLS estimator achieves substantial efficiency gains. The ratio of the
asymptotic standard deviation of the standard logistic regression estimator
versus the E-SGPLS estimator is 4.77. The difference between the E-SGPLS
estimator and the oracle estimator becomes hard to notice after sample size
200, which confirms the oracle property stated in Theorem 6.
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Fig 7. Standard deviations of three estimators: Line — marks the E-SGPLS estimator,
line – – marks the oracle estimator and line · · · marks the standard logistic regression es-
timator. The horizontal lines mark the asymptotic standard deviation of the corresponding
estimators (the lines for the E-SGPLS and oracle estimators are identical).

We studied the selection performance of the E-SGPLS estimator using
TPR, TNR and accuracy as the criteria, which are defined in Section 3.3.
We also computed these criteria for the SGPLS estimator (Chung and Keleş,
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2010) as a benchmark for comparison. The results are summarized in Ta-
ble 5. The accuracy of the E-SGPLS estimator tends to 1 as n increases,
which confirms the selection consistency stated in Theorem 6. Compared to
the SGPLS estimator, the E-SGPLS estimator has a better selection perfor-
mance under all three criteria.

Table 5
Comparison of selection performances of the E-SGPLS estimator and the SGPLS

estimator.

E-SGPLS SGPLS
n TPR TNR Accuracy TPR TNR Accuracy

100 88.90% 96.10% 62.50% 65.40% 86.40% 4.00%
200 97.60% 99.50% 93.50% 68.70% 89.50% 8.50%
300 99.80% 100.00% 99.50% 71.10% 92.20% 16.00%
400 99.60% 100.00% 99.00% 74.30% 90.50% 14.50%
500 100.00% 100.00% 100.00% 77.70% 93.10% 26.50%
1000 100.00% 100.00% 100.00% 79.10% 93.70% 30.00%

We also compared the classification performance between the E-SGPLS
estimator and the SGPLS estimator in the context of logistic regression. We
generated data from model (15), and set n = 100, p = 20, pA = 4 and d = 2.
The intercept α was 0.5, µX = 0 and η = (3

√
2, 3
√

2)T . The two columns
of ΓA were (1/

√
2, 1/
√

2, 0, 0)T and (0, 0, 1/
√

2, 1/
√

2)T . The matrix Ω was
diagonal with diagonal elements 0.1 and 0.5, and Ω0 was a block diagonal
matrix with the upper left block 9IpA−d and lower right block 4IpI . For each
d, we computed the mean misclassification rate by the average of 50 indepen-
dent five-fold cross validation. The results are summarized in Figure 8. The
minimal mean misclassification rate is 29.84% for the SGPLS estimator, and
it is achieved at d = 4. The minimal mean misclassification rate is 24.40%
for the E-SGPLS estimator, and it is achieved at d = 2. Compared to the
SGPLS estimator, the E-SGPLS estimator reduces the mean misclassifica-
tion rate by 18.23%. Furthermore, it achieves this smaller misclassification
rate with a smaller number of components. The mean misclassification rate
for the standard logistic regression estimator is 30.66%.

A simulation that demonstrates the performance of E-SGPLS estimator
with non-canonical link is included in the Supplement.

Vertebral column data. The vertebral column data, publicly available on
the UC Irvine Machine Learning Repository (Lichman, 2013), contains mea-
surements for 310 orthopaedic patients. For each patient, six biomechanical
features including pelvic incidence, pelvic tilt, lumbar lordosis angle, sacral
slope, pelvic radius and grade of spondylolisthesis were recorded. These
features were used to classify the patients into two categories: normal or
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Fig 8. Comparison of the mean misclassification rate: Line — marks the E-SGPLS esti-
mator, line −− marks the SGPLS estimator.

abnormal (disc hernia or spondylolisthesis). These data were analyzed by
logistic model tree, which combines the techniques of a decision tree and lo-
gistic linear regression, in Karabulut and Ibrikci (2014). We performed the
classification based on the E-SGPLS estimator and the SGPLS estimator,
and computed the mean misclassification rate from 50 independent five-fold
cross validation for each d. The results are displayed in Figure 9. The mean
misclassification rate of the standard logistic regression estimator is 15.52%.
The minimal mean misclassification rate is 15.81% achieved at d = 3 for
the SGPLS estimator, and 14.44% achieved at d = 2 for the E-SGPLS esti-
mator. The SGPLS estimator identifies lumbar lordosis angle, sacral slope,
and grade of spondylolisthesis as inactive predictors, and E-SGPLS identi-
fies only one inactive predictor, lumbar lordosis angle. Comparing the mis-
classification rate, the SGPLS has no advantage over the standard logistic
regression estimator, maybe because the model it selected is overly sparse.
Theorem 6 indicates that the E-SGPLS estimator is selection consistent. In
this example, it reduces the mean misclassification rate by 7.1% compared
to the standard logistic regression estimator.

Horseshoe crab mating data. This data is presented in Agresti (2002) to il-
lustrate Poisson regression. Horseshoe crabs are marine arthropods that live
in shallow ocean waters. During the breeding season, the female crabs come
to the shore with a male attached to her back. Often, there are multiple
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Fig 9. Comparison of the mean misclassification rate: Line — marks E-SGPLS estimator,
line −− marks the SGPLS estimator.

male crabs that cluster around the couple and fertilize the eggs. Those male
crabs are called satellites. The number of satellites depends on the charac-
teristics of the female crab. This dataset includes measurements on color,
spine condition, weight and carapace width and the number of satellites for
173 female crabs in the Gulf of Mexico. We take the number of satellites as
the response and other variables as predictors. Color and spice conditions
are categorical variables, and have four levels (light medium, medium, dark
medium, dark) and three levels (both good, one worn or broken, both worn
or broken) respectively. Since we did not find any sparse PLS method in
this context, we compared the E-SGPLS estimator with the standard Pois-
son regression estimator. The MPE for each d was calculated by 50 five-fold
cross validations. Note that when d = 7, the E-SGPLS estimator reduces to
the standard Poisson regression estimator. The results are summarized in
Table 6. The minimum MPE for the E-SGPLS estimator is 9.07 achieved
at d = 1. Compared with the standard Poisson regression estimator, the
E-SGPLS estimator reduces the MPE by 10.82%. The weight and carapace
width of the female crab are identified as active predictors, while the stan-
dard Poisson regression model gives large coefficients on the color of the
female crab and much smaller coefficients on the weight (c.f. Table 7).

5. Discussion. In this paper, we developed the envelope-based sparse
PLS model under the linear model and generalized linear model. The tech-
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Table 6
MPE of the E-SGPLS estimators

d 1 2 3 4 5 6 7

E-SGPLS 9.07 9.37 9.97 10.17 10.18 10.18 10.17

Table 7
Regression coefficients of the E-SGPLS model and standard Poisson regression model

Color 1 Color 2 Color 3 Spine 1 Spine 2 Weight Width

E-SGPLS 0 0 0 0 0 0.1555 0.0387
Poisson −0.2649 −0.5137 −0.5309 −0.1504 0.0873 0.0167 0.4965

niques in this paper can be applied to other contexts where PLS is relevant,
for example, tensor regression and discriminant analysis. A Bayesian version
of this method is desirable if prior information is present. The same idea and
techniques can be generalized to semiparametric settings, such as quantile
regression and expectile regression.
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Supplemental document for “Envelope-Based Sparse Partial Least
Squares”
(doi: NA). The supplement provides details of estimation algorithm, ad-
ditional simulations and proofs for the theoretical results in the authors’
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