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1. Technical Proof

1.1. Proof of Lemma 1

If Γπ takes the form of (Iuπ ,AT )T , then any basis matrix of EΣX
(βπ) has its

first uπ rows being a non-singular matrix. We denote Γ∗π as an orthonormal
basis matrix of EΣX

(βπ) and Γ∗0π as an orthonormal basis matrix of EΣX
(βπ)⊥.

Thus, (Γ∗π, Γ∗0π) is an orthogonal matrix and we rewrite it as a 2 by 2 block
matrix:

(Γ∗π,Γ
∗
0π) =

(
Γ∗π1
Γ∗π2

Γ∗0π1
Γ∗0π2

)
,

where Γ∗π1 is the matrix containing the first uπ rows of Γ∗π. Since both (Γ∗π,
Γ∗0π) and Γ∗π1 are non-singular, the schur complement of Γ∗π1, donated by Q, is
nonsingular. In this case, the inverse of (Γ∗π, Γ∗0π) is

(Γ∗π,Γ
∗
0π)−1 =

(
Γ∗−1π1 + Γ∗−1π1 Γ∗0π1Q

−1Γ∗π2Γ
∗−1
π1

−Q−1Γ∗π2Γ
∗−1
π1

−Γ∗−1π1 Γ∗0π1Q
−1

Q−1

)
=

(
Γ∗Tπ1
Γ∗T0π1

Γ∗Tπ2
Γ∗T0π2

)
.

The second equality sign in the equation above comes from the fact that the
inverse of an orthogonal matrix is the transpose of the orthogonal matrix. It
turns out that Γ∗T0π2 = Q−1, which are nonsingular. Therefore, Γ0π2 is nonsin-
gular and invertible. It indicates that Γ∗0π has its last (p − uπ) rows being a
nonsingular matrix. Then, we can decompose Γ∗0π as

Γ∗0π =

(
Γ∗0π1
Γ∗0π2

)
=

(
Γ∗0π1Γ

∗−1
0π2

Ip−uπ

)
Γ∗0π2 ≡

(
B

Ip−uπ

)
Γ∗0π2 ≡ Γ0πΓ∗0π2. (1.1)

Apparently, Γ0π is a basis matrix of EΣX
(βπ)⊥ and we have ΓTπΓ0π = 0,

which means B + AT = 0 and B = -AT . Therefore, Γ0π takes the form of
(−A, Ip−uπ )T .

1.2. Proof of Theorem 1

We apply Theorem 3.3 of [5] to derive the asymptotic distribution of θ̃. There
are five conditions (i)–(v) in their Theorem and we need to check them. We
denote e(θ) = Eθ0

[s(Z;θ)].
Based on the conditions (C1)–(C3) and Theorem 3 of [4], we have θ̃1

p−→
θ10 and θ10 is the unique point satisfying Eθ0

[s1(Z;θ10)] = 0. Therefore, it is
obvious that θ̃ p−→ θ0 and θ0 is the unique point in Θ satisfying e(θ) = 0.

Because θ̃ is the minimizer of ||en(θ)||, the condition (i) holds. The conditions
(ii) and (v) automatically hold given (C4) and (C5). By Central Limit Theorem,
√
n(en(θ0)−Eθ0

[s(Zi;θ0)])
d−→ N (0,G) , where Eθ0

[s(Zi;θ0)] = e(θ0) = 0 and
G = Eθ0

[s(Z;θ0)s(Z;θ0)T ]. The condition (iv) holds.
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To prove the condition (iii) holds, we need to prove the following Lemma as
first.

Lemma 1. supθ:‖θ−θ0‖≤δn ‖en(θ)− e(θ)− en(θ0)‖ = op(n
−1/2), where δn is

any sequence of positive numbers with limitation 0.

Proof. Let wj , µj , σj , s1,j , s2,j and s3,j represent the jth component of W, µX,
vech(ΣX), s1(Z;θ1), s2(Z;θ2) and s3(Z;θ2) respectively. For any θ∗ ∈ Θ and
j = 1, . . . , p + 1,

|s1,j(Z;θ1)− s1,j(Z;θ∗1)|2 = w2
j

(
(Y −WTθ1)

∣∣I(Y < WTθ1)− π
∣∣

−(Y −WTθ∗1)
∣∣I(Y < WTθ∗1)− π

∣∣ )2.
If I(Y < WTθ1) = I(Y < WTθ∗1), then(

(Y −WTθ1)
∣∣I(Y < WTθ1)− π

∣∣− (Y −WTθ∗1)
∣∣I(Y < WTθ∗1)− π

∣∣ )2
= (I(Y < WTθ1)− π)(Y −WTθ1 − Y + WTθ∗1))2

= (I(Y < WTθ1)− π)
(
WT (θ∗1 − θ1)

)2
≤
(
WT (θ∗1 − θ1)

)2 ≤ ‖W‖2 ‖θ∗1 − θ1‖2 .
If I(Y < WTθ1) 6= I(Y < WTθ∗1), then(

(Y −WTθ1)
∣∣I(Y < WTθ1)− π

∣∣− (Y −WTθ∗1)
∣∣I(Y < WTθ∗1)− π

∣∣ )2
≤ (Y −WTθ1 − Y + WTθ∗1))2

=
(
WT (θ∗1 − θ1)

)2 ≤ ‖W‖2 ‖θ∗1 − θ1‖2 .
Therefore, by condition (C2), there exists a positive constant c1 such that

Eθ0

[
sup

θ∗:‖θ−θ∗‖≤δn
|s1,j(Z;θ1)− s1,j(Z;θ∗1)|2

]
≤Eθ0

[
w2
j ‖W‖

2 ‖θ∗1 − θ1‖
2 ] ≤ δ2nEθ0

[
‖W‖4

]
≤ c1δ2n.

(1.2)

Let µ∗j , σ∗j and vech[·]j represent the jth component of µ∗X, vech(Σ∗X) and vech[·].
Then for j = 1, . . . , (p+ 1)p/2,
|s2,j(Z;θ2)− s2,j(Z;θ∗2)|2 =

(
σj −vech[(X−µX)(X−µX)T ]j −σ∗j + vech[(X−

µ∗X)(X−µ∗X)T ]j
)2. By (C2), it is easy to verify there exists a positive constant

c2 such that

Eθ0

[
sup

θ∗:‖θ−θ∗‖≤δn
|s2,j(Z;θ2)− s2,j(Z;θ∗2)|2

]
≤ c2δ2n. (1.3)

Similarly, for j = 1, . . . , p, there exists a positive constant c3 such that

Eθ0

[
sup

θ∗:‖θ−θ∗‖≤δn
|s3,j(Z;θ2)− s3,j(Z;θ∗2)|2

]
= Eθ0

[
sup

θ∗:‖θ−θ∗‖≤δn
(µj−µ∗j )2

]
≤ c3δ2n.

(1.4)
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Combining the results in (1.2), (1.3) and (1.4), we know s(Z;θ) is L2(P ) con-
tinuous at θ for all θ ∈ Θ. By applying Lemma 2.17 in [5], we have

n−1/2 sup
θ:‖θ−θ0‖≤δn

∥∥∥∥∥
n∑
i=1

{s(Z;θ)− Eθ0
[s(Z;θ)]− s(Z;θ0)}

∥∥∥∥∥
=n−1/2 sup

θ:‖θ−θ0‖≤δn
‖nen(θ)− ne(θ)− nen(θ0)‖ = op(1).

Thus, supθ:‖θ−θ0‖≤δn ‖en(θ)− e(θ)− en(θ0)‖ = op(n
−1/2).

With the result of Lemma 2,

sup
θ:‖θ−θ0‖≤δn

‖en(θ)− e(θ)− en(θ0)‖
n−1/2 + ‖en(θ)‖+ ‖e(θ)‖

≤ op(1).

The condition (iii) holds. We have already verified all the conditions of Theorem
3.3 in [5]. With the result of Theorem 3.3, we have

√
n(θ̃ − θ0)

d−→ N (0, (CTC)−1CTGC(CTC)−1),

where C=∂Eθ0
[s(Z;θ)]

∂θT

∣∣∣∣
θ=θ0

and G = Eθ0 [s(Z;θ0)s(Z;θ0)T ].

According to [4], we know that

∂Eθ0
[s1(Z;θ1)]

∂θT1

∣∣∣∣
θ=θ0

= −Eθ0

[
WWT

∣∣I(Y < WTθ10)− π
∣∣ ].

As a result, it is easy to give the expression of C as

C =

−Eθ0

[
WWT

∣∣I(Y < WTθ10)− π
∣∣ ] 0 0

0 Ip(p+1)/2 0
0 0 Ip

 .

Next, we give the expression of G in the form of (Gij)i,j=1,2,3. It is easy to
check
G11 = Eθ0

[s1(Z;θ10)s1(Z;θ10)T ] = Eθ0

[
WWT (Y−WTθ10)2

∣∣I(Y < WTθ10)− π
∣∣2 ];

G22 = Eθ0 [s2(Z;θ20)s2(Z;θ20)T ] = Varθ0{vech[(X− µ0)(X− µ0)T ]};
G33 = Eθ0

[s3(Z;θ20)s3(Z;θ20)T ] = Varθ0
[X];

G23 = Eθ0
[s2(Z;θ20)s3(Z;θ20)T ] = Eθ0

{vech[(X− µ0)(X− µ0)T ](µ0 −X)T }
and
G12 = Eθ0

[s1(Z;θ10)s2(Z;θ20)T ]

= Eθ0

{
Ws2(Z;θ20)TEθ0

[
(Y −WTθ10)

∣∣I(Y < WTθ10)− π
∣∣ ∣∣∣W]}

= 0.

Similarly, G13 = 0. Since C is full rank and symmetric, we have
√
n(θ̃ − θ0)

d−→ N (0,C−1G C−1).

We complete the proof of Theorem 1.
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1.3. Proof of Theorem 2

For notation simplicity, let Qn(θ) = eTn (θ)∆̂en(θ) and Q(θ) = eT (θ)∆e(θ),

where ∆ = G−1 = {Eθ0
[s(Z;θ0)s(Z;θ0)T ]}−1 and ∆̂ =

[
1
n

∑n
i=1 s(Zi;ψ(ζ̂

∗
))s(Zi;ψ(ζ̂

∗
))T
]−1

.

Let ln(γ) = en(γ/
√
n+θ0) and l(γ) = e(γ/

√
n+θ0). Let Tn(γ) = lTn (γ)∆̂ln(γ)

and T (γ) = lT (γ)∆l(γ). In addition, let εn(γ) = [ln(γ)− ln(0)− l(γ)]/[1+‖γ‖],
κn(γ) = εTn (γ)∆̂εn(γ)+2ln(0)T ∆̂εn(γ) and ρn(γ) = n[Tn(γ)−κn(γ)−Tn(0)−
D̂Tγ/

√
n− T (γ)], where D̂ = 2C∆̂ln(0). We firstly prove three Lemmas.

Lemma 2. Under the same conditions in Theorem 2, θ̂ p−→ θ0.

Proof. Let F = {s(Z;θ),θ ∈ Θ}. Based on the fact that s(Z;θ) is a contin-
uous function of θ and conditions (C2) and (C5), it is easy to verify F satis-
fies all the conditions of Uniform Law of Large Numbers. Therefore, we have
supθ:θ∈Θ ‖en(θ)− e(θ)‖ a.s.−→ 0. As a result, Qn(θ) uniformly converges to Q(θ)
in probability in the domain Θe = {θ : θ ∈ Θ and θ = ψ(ζ)}. Since Θe is
compact, Q(θ) is continuous and θ0 is the unique minimizer of Q(θ), all the
conditions of Theorem 2.1 in [3] are satisfied. By the result of Theorem 2.1, we
have θ̂ p−→ θ0.

Lemma 3. Under the same conditions in Theorem 2, supγ:‖γ‖/
√
n≤δn

|ρn(γ)|
‖γ‖(1+‖γ‖) =

op(1), where δn is any sequence of positive numbers with limitation 0.

Proof. From the definition of εn(γ), we can decompose Tn(γ) as

Tn(γ) = (1 + ‖γ‖)2εTn (γ)∆̂εn(γ) + lTn (0)∆̂ln(0) + lT (γ)∆̂l(γ)

+ 2(1 + ‖γ‖)εTn (γ)∆̂ln(0) + 2(1 + ‖γ‖)εTn (γ)∆̂l(γ) + 2lTn (0)∆̂l(γ).

It can be shown that |ρn(γ)|/(‖γ‖ (1 + ‖γ‖)) ≤
∑n
i=1Bj(γ), where

B1(γ) = n(2+‖γ‖)εTn (γ)∆̂εn(γ)/(1+‖γ‖),B2(γ) = 2n|εTn (γ)∆̂ln(0)|/(1+
‖γ‖),
B3(γ) = 2n|εTn (γ)∆̂l(γ)|/ ‖γ‖,B4(γ) = n|2lTn (0)∆̂l(γ)−D̂Tγ/

√
n|/(‖γ‖ (1+

‖γ‖))
B5(γ) = n|lT (γ)(∆̂−∆)l(γ)|/(‖γ‖ (1 + ‖γ‖)).

From Lemma 2, we know supγ:‖γ‖/
√
n≤δn ‖εn(γ)‖)2 = op(n

−1/2). We define
ν = {γ : ‖γ‖ /

√
n ≤ δn} and consider B1–B5 separately. We have

sup
ν
B1(γ) = n sup

ν

2 + ‖γ‖
1 + ‖γ‖

εTn (γ)∆̂εn(γ) ≤ n
∥∥∥∆̂∥∥∥ sup

ν

2 + ‖γ‖
1 + ‖γ‖

(sup
ν
‖εn(γ)‖)2 = op(1) and,

sup
ν
B2(γ) ≤ sup

ν
2n|εTn (γ)∆̂ln(0)| ≤ 2n sup

ν
‖εn(γ)‖

∥∥∥∆̂∥∥∥ ‖ln(0)‖

= 2
∥∥∥∆̂∥∥∥∥∥√nln(0)

∥∥√n sup
ν
‖εn(γ)‖ = op(1).

imsart-ejs ver. 2014/10/16 file: SuppEER.tex date: December 27, 2019



Chen et al./Efficient Estimation in Expectile Regression Using Envelope Models 6

By Taylor expansion, l(γ) = e(γ/
√
n+ θ0) = Cγ/

√
n+ o(γ/

√
n). Thus,

sup
ν
B3(γ) = sup

ν
2n|εTn (γ)∆̂(e(γ/

√
n+ θ0))|/ ‖γ‖

≤ sup
ν

2n ‖εn(γ)‖
∥∥∥∆̂∥∥∥ (‖C‖ ‖γ‖ /

√
n+ o(‖γ‖ /

√
n))/ ‖γ‖

= 2
∥∥∥∆̂∥∥∥ (‖C‖+ o(1))

√
n sup

ν
‖εn(γ)‖

= op(1)

sup
ν
B4(γ) = sup

ν
n|2lTn (0)∆̂(l(γ)−Cγ/

√
n)|/(‖γ‖ (1 + ‖γ‖))

≤ 2n sup
ν
‖ln(0)‖

∥∥∥∆̂∥∥∥ o(1/√n)

= 2o(1)
∥∥∥∆̂∥∥∥√n ‖ln(0)‖

= op(1).

Finally,

sup
ν
B5(γ) ≤ sup

ν
n ‖l(γ)‖2

∥∥∥∆̂−∆
∥∥∥ /(‖γ‖ (1 + ‖γ‖))

≤ sup
ν
‖γ‖2 (‖C‖+ o(1))2

∥∥∥∆̂−∆
∥∥∥ / ‖γ‖2

=
∥∥∥∆̂−∆

∥∥∥ (‖C‖+ o(1))2 = op(1).

Therefore, supν
|ρn(γ)|

‖γ‖(1+‖γ‖) = op(1).

Before stating the next Lemma, we define γ̂ =
√
n(θ̂− θ0). Note that Tn(γ)

is minimized at γ̂.

Lemma 4. Under the same conditions in Theorem 2, ‖γ̂‖ = Op(1).

Proof. Let ν be the same defined in Lemma 4. Firstly,

sup
ν
|κn(γ)| = sup

µ
|εTn (γ)∆̂εn(γ) + 2ln(0)T ∆̂εn(γ)|

≤
∥∥∥∆̂∥∥∥ (sup

µ
‖εn(γ)‖)2 +

∥∥∥∆̂∥∥∥ sup
µ
‖ln(0)‖ ‖εn(γ)‖

= op(n
−1).

Since Tn(γ̂) ≤ Tn(0) and γ̂ ∈ ν, Tn(γ̂) − κn(γ̂) = Tn(γ̂) + op(n
−1) ≤ Tn(0) +

op(n
−1). We define

M = −n[Tn(γ̂)−κn(γ̂)−Tn(0)−op(n−1)] = −ρn(γ̂)−
√
nD̂T γ̂−nT (γ̂)+op(1) ≥ 0.

By Taylor expansion, we have T (γ̂) = γ̂THγ̂/2n + o(‖γ̂‖2 /n), where H =

n∂
2T (γ)
∂γγT

∣∣∣ γ=0 = ∂2Q(θ)

∂θθT

∣∣∣ θ=θ0 = 2CG−1C. Because H is a positive definite
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matrix by (C4), there exists a positive constant c such that with probability one
T (γ̂) ≥ c ‖γ‖2 /n. Therefore, by applying Lemma 4, we have

M ≤ ‖γ̂‖ (1 + ˆ‖γ‖)op(1) +
√
n
∥∥∥D̂∥∥∥T ‖γ̂‖ − c ‖γ̂‖2 + op(1)

≤ ‖γ̂‖ (1 + ˆ‖γ‖)op(1) + 2
√
n ‖C‖

∥∥∥∆̂∥∥∥ ‖ln(0)‖ ‖γ̂‖ − c ‖γ̂‖2 + op(1)

= ‖γ̂‖ (1 + ˆ‖γ‖)op(1) +Op(1) ‖γ̂‖ − c ‖γ̂‖2 + op(1)

= [−c+ op(1)] ‖γ̂‖2 + ‖γ̂‖Op(1) + op(1).

Since M ≥ 0 ,

(c− op(1)) ‖γ̂‖2 −Op(1) ‖γ̂‖ ≤ op(1) =⇒ ‖γ̂‖2 −Op(1) ‖γ̂‖ ≤ op(1) =⇒ γ̂ = Op(1).

To prove Theorem 2, we define Zn(γ) = n[Tn(γ)− Tn(0)]. Obviously, Zn(γ)
is minimized at γ̂. Based on Lemma 4, Lemma 5 and Taylor expansion, we have

Zn(γ) =
√
nD̂Tγ +

1

2
γTHγ + o(‖γ‖2) + ρn(γ) + nκn(γ)

d−→ NTγ +
1

2
γTHγ,

where N is a random vector distributed as N (0, 4CG−1C). We define Z(γ) =

NTγ + 1
2γ

THγ. By Corollary 5.58 in [8], we have γ̂ d−→ γ̃, where

γ̃ = argmin
γ/
√
n+θ0∈Θe

Z(γ) = argmin
γ/
√
n+θ0∈Θe

1

2
(γ + H−1N)TH(γ + H−1N).

The parameter vector γ is overparameterized. We apply Proposition 4.1 in [6]
to solve this problem. The discrepancy function can be formed as

F (x, ξ) =
1

2
(
γ√
n

+
H−1N√

n
)TH(

γ√
n

+
H−1N√

n
).

It is easy to check this discrepancy function satisfies Shapiro’s assumptions and
∂2F
∂ξξT

= H. In addition, −H−1N
d−→ N (0,C−1G C−1). Therefore, by Propo-

sition 4.1 in [6], we have γ̃ d−→ N (0,Λg), where Λg = Ψ(ΨTCG−1CΨ)†ΨT.
Hence,

γ̂ =
√
n(θ̂ − θ0)

d−→ N (0,Ψ(ΨTCG−1CΨ)†ΨT).

We complete the proof of Theorem 2.
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1.4. Corollary

Proof. Let Υ = C−1GC−1. According to the results in Theorem 1 and Theorem
2,

avar(
√
nθ̃)− avar(

√
nθ̂) = C−1G C−1 −Ψ(ΨTCG−1CΨ)†ΨT

= Υ−Ψ(ΨTΥ−1Ψ)†ΨT

= Υ1/2(I−PΥ−1/2Ψ)Υ1/2

= Υ1/2QΥ−1/2ΨΥ1/2

≥ 0.

2. Simulations Under Variable Selection Settings (Without
Envelope Structure)

In this section, we investigate the performance of the ER model, the EER model,
the boosting model and the sparse ER model under the settings in which sparsity
structure exists but no (nontrivial) envelope structure exists. In this case, uπ =
p, and the EER model degenerates to the ER model. We consider the following
settings:

Yi = 3 +αT
1 Xi + (2 +αT

2 Xi)εi, for i = 1, . . . , n.

We set p = 6 and pA = 3, where pA denotes the number of active predictors.
Both α1 and α2 were p-dimensional vectors. The first pA elements in α1 were
4 and the rest p− pA elements were 0. The first pA elements in α2 were 0.1 and
the rest p− pA elements were 0. The error term ε was generated from standard
normal distribution ε ∼ N (0, 1).

Based upon the settings, the πth conditional expectile of Y had the following
form

fπ(Y |X) = 3 +αT
1 X + (2 +αT

2 X)fπ(ε) = 3 + 2fπ(ε) + (α1 +α2fπ(ε))TX,

where fπ(ε) represented the πth expectile of the error distribution. Thus the
coefficients were contained in βπ = α1 +α2fπ(ε) and the last p−pA elements of
βπ were 0. This means that the first pA predictors were active predictors, and
the rest were inactive. The predictor vector X followed a normal distribution
with mean 0 and covariance matrix ΣX. The upper left pA × pA block of ΣX

was a diagonal matrix with diagonal elements being 1, 2 and 4. The bottom
right block was a (p − pA) × (p − pA) diagonal matrix with diagonal elements
being 8, 16 and 32. The off-diagonal blocks of ΣX were 3M and 3MT , where
M was a randomly generated pA× (p− pA) orthogonal matrix (generated using
randortho function in R package pracma). In this case, the envelope subspace
EΣX

(βπ) = Rp and the EER model reduces to the ER model since no immaterial
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(b) π = 0.9

Fig 1: Comparison of the sample standard deviations. Red lines mark the ER es-
timator. Blue lines mark the sparse ER estimator. Green lines mark the boosting
estimator. Black lines mark the EER estimator.

information is present. Therefore, for this scenario, the sparsity structure exists
but no (nontrivial) envelope structure exists.

We varied the sample size n from 50 to 800. For each sample size, 100 repli-
cations were generated. For each replication, we computed the EER estimator
(uπ chosen by RCV), the ER estimator, the boosting estimator as well as the
sparse ER estimator of βπ. For each element in βπ, we computed the sample
standard deviation from the 100 EER estimators, 100 ER estimators, 100 boost-
ing estimators and 100 sparse ER estimators. We took expectile levels 0.50 and
0.90 as examples. The results of a randomly chosen nonzero element in βπ with
π = 0.50 and π = 0.90 are summarized in Figure 1.

In each panel of Figure 1, the line for the EER estimator almost overlaps with
the line for the ER estimator when sample size exceeds 100. This is expected
as when RCV selected uπ = p and the EER estimator degenerates to the ER
estimator. With small sample size, there was a little variation in the model
selection for the EER model, so the EER estimator was more variable than the
ER estimator. The efficiency gains from the sparse ER model and the boosting
model is obvious under this setting. Take n = 200 as an example, the standard
deviation is 0.23 for the ER or EER estimator, 0.18 for the boosting estimator
and 0.15 for the sparse ER estimator for π = 0.5. The efficient gains is because
that the boosting estimator and the sparse ER estimator correctly identified
the underlying sparsity structure. Therefore, in the case where there is sparsity
structure but no (nontrivial) envelope structure, the boosting estimator and
the sparse ER estimator achieves more efficiency gains than the EER estimator.
However, if the sparsity structure and the envelope structure both exist, the EER
estimator may be more efficient than the boosting and sparse ER estimator as
shown in Section 3.
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3. Simulations Under Variable Selection Settings (With Envelope
Structure)

In this section, we investigate the performance of the EER model when the
underlying model has both the sparsity structure and the envelope structure.
We consider the following simulation settings:

Yi = 3 +αT
1 Xi + (8 +αT

2 Xi)εi, for i = 1, . . . , n.

We set p = 12, uπ = 2 and pA = 6, where pA denotes the number of active
predictors. Both α1 and α2 were p-dimensional vectors. The first pA elements
in α1 were 4 and the rest p− pA elements were 0. The first pA elements in α2

were 0.1 and the rest p − pA elements were 0. Four types of error distribution
were used to generate ε: standard normal distribution ε ∼ N (0, 1), student’s
t–distribution with 4 degrees of freedom ε ∼ t4, mixed normal distribution
ε ∼ 0.9N (0, 1) + 0.1N (1, 5), and exponential distribution ε ∼ Exp(1).

Based upon the settings, the πth conditional expectile of Y had the following
form

fπ(Y |X) = 3 +αT
1 X + (8 +αT

2 X)fπ(ε) = 3 + 8fπ(ε) + (α1 +α2fπ(ε))TX,

where fπ(ε) represented the πth expectile of the error distribution. Thus βπ =
α1 +α2fπ(ε) and the last p− pA elements of βπ were 0, which means only the
first pA components in X were active predictors. The predictor vector X followed
a normal distribution with mean 0 and covariance matrix ΣX = ΦΛΦT +
Φ0Λ0Φ

T
0 , where Λ was a uπ × uπ diagonal matrix with diagonal elements

100 and 9, and Λ0 was a 2 × 2 block matrix. The upper left block of Λ0 was
a (pA − uπ) × (pA − uπ) identity matrix and the bottom right block was a
(p− pA)× (p− pA) identity matrix. The off-diagonal blocks of Λ0 were 0.8Λ0∗
and 0.8ΛT

0∗ where Λ0∗ was a randomly generated (p − pA) × (pA − uπ) semi-
orthogonal matrix. The matrix Φ ∈ Rp×uπ was a semi-orthogonal matrix with
the first pA/2 rows being (

√
3/3, 0), the following pA/2 rows being (0,

√
3/3)

and the remaining p− pA rows being (0, 0). The matrix Φ0 ∈ Rp×(p−uπ) was a
semi-orthogonal matrix that satisfied ΦTΦ0 = 0. Since α1 = Φ · (4

√
3, 4
√

3)T

and α2 = Φ · (
√

3/10,
√

3/10)T , fπ(Y |X) and X satisfied the EER model with
EΣX

(βπ) = span(Φ).
Under this setting, we repeated the sample standard deviations comparison,

the prediction performance comparison and the RCV performance examination
as described in Section 5 of the paper. To be noted, here for the sample stan-
dard deviations comparison, we randomly choose an active component of βπ to
display the outcomes. All results are given in Figures 2 – 7 and Tables 1 – 2.

Figure 2 shows substantial efficiency gains from the EER model in the estima-
tion of βπ. In all the plots with different error distributions and expectile levels
π, the sample standard deviations of the EER estimators are much smaller than
the sample standard deviations of the ER estimators, the boosting estimators
and the sparse ER estimators under all sample sizes. As variable selection meth-
ods, the boosting model and the sparse ER model are more efficient than the
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ER model since they correctly identify the underlying sparse structure. However,
they do not account for the immaterial information in X in the estimation. The
EER model can still be more efficient than the boosting model and the sparse
ER model if the variation of the immaterial part has a large effect on estimation,
such as in this example.

Figure 3 indicates that the bootstrap standard deviation is a good approx-
imation to the actual sample standard deviation. Table 1 and Figures 4 – 7
summarize the RMSEs under the EER model, the ER model, the boosting
model and the sparse ER model with different error distributions. We can see
a notable improvement of the prediction performance for the EER model. Take
Table 1 (a) as an example, the EER model reduces the average RMSE by about
40% comparing with the ER model, by about 30% comparing with the boosting
model and by about 60% comparing with the sparse ER model. Both the sparse
ER model and the boosting model identifies the active predictors. But the sparse
ER model tends to put more shrinkage on the nonzero coefficients, while the
boosting estimator does not over shrink the nonzero coefficients. Therefore, we
notice that the boosting estimator has a better prediction performance than the
ER estimator, but the sparse ER estimator has the largest prediction error.

Table 2 summaries the fraction that RCV selects the true dimension uπ = 2.
RCV selects the true dimension more than 90% of the time when sample size
reaches 100. And it still gives an accuracy over 75% with a small sample size
25.
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Fig 4: Boxplots of RMSEs under the four models with ε ∼ N (0, 1).
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(a) Standard normal with π = 0.5
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(b) Standard normal with π = 0.9
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(c) t4 with π = 0.5
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(d) t4 with π = 0.9
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(e) Mixed normal with π = 0.5
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(f) Mixed normal with π = 0.9
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(g) Exp(1) with π = 0.5
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(h) Exp(1) with π = 0.9

Fig 2: Sample standard deviations. Red lines mark the ER estimator. Blue
lines mark the sparse ER estimator. Green lines mark the boosting estimator.
Black lines mark the EER estimator. The horizontal lines mark the asymptotic
standard deviations of the ER estimator (the upper line in each panel) and the
EER estimator (the lower line in each panel).
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Table 1
The average RMSEs of the 300 replications under the four models with different error

distributions.
(a) ε ∼ N (0, 1)

EER ER Boosting Sparse ER
π = 0.10 1.05 1.82 1.54 2.65
π = 0.25 0.88 1.57 1.32 2.51
π = 0.50 0.87 1.49 1.26 2.50
π = 0.75 0.94 1.58 1.38 2.62
π = 0.90 1.09 1.83 1.67 2.89

(b) ε ∼ t4

EER ER Boosting Sparse ER
π = 0.10 1.77 3.42 2.89 6.00
π = 0.25 1.20 2.40 2.02 4.84
π = 0.50 1.08 2.09 1.77 4.52
π = 0.75 1.24 2.39 2.06 5.04
π = 0.90 1.79 3.41 3.06 6.54

(c) ε ∼ 0.9N (0, 1) + 0.1N (1, 5)

EER ER Boosting Sparse ER
π = 0.10 1.15 2.16 1.86 3.53
π = 0.25 1.01 1.83 1.55 3.35
π = 0.50 1.01 1.81 1.54 3.55
π = 0.75 1.20 2.15 1.85 4.24
π = 0.90 1.72 3.06 2.72 5.59

(d) ε ∼ Exp(1)

EER ER Boosting Sparse ER
π = 0.10 0.64 0.74 0.67 1.85
π = 0.25 0.73 1.04 0.90 2.42
π = 0.50 0.93 1.51 1.29 3.17
π = 0.75 1.33 2.22 1.95 4.19
π = 0.90 1.96 3.31 2.99 5.53
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(a) Standard normal with π = 0.5
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(b) Standard normal with π = 0.9

Fig 3: Sample standard deviations and bootstrap standard deviations. Red lines
mark the ER estimator. Blue lines mark the sparse ER estimator. Green lines
mark the boosting estimator. Black lines mark the EER estimator. Lines with
“+” mark the bootstrap standard deviations for the corresponding estimators.
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Fig 5: Boxplots of RMSEs under the four models with ε ∼ t4.
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Fig 6: Boxplots of RMSEs under the four models with ε ∼ 0.9N (0, 1) +
0.1N (1, 5).
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Fig 7: Boxplots of RMSEs under the four models with ε ∼ Exp(1).
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Table 2
The fraction that RCV selects the true uπ with different error distributions.

(a) ε ∼ N (0, 1)

π = 0.10 π = 0.25 π = 0.50 π = 0.75 π = 0.90

n = 25 79% 83% 80% 79% 82%

n = 50 95% 94% 94% 92% 88%

n = 100 97% 97% 99% 98% 96%

n = 200 99% 100% 99% 100% 99%

n = 400 99% 100% 100% 100% 100%

n = 800 100% 100% 100% 100% 100%

(b) ε ∼ t4

π = 0.10 π = 0.25 π = 0.50 π = 0.75 π = 0.90

n = 25 84% 88% 89% 88% 80%

n = 50 90% 94% 95% 91% 93%

n = 100 98% 98% 99% 99% 96%

n = 200 100% 100% 100% 100% 100%

n = 400 100% 100% 100% 100% 100%

n = 800 100% 100% 100% 100% 100%

(c) ε ∼ 0.9N (0, 1) + 0.1N (1, 5)

π = 0.10 π = 0.25 π = 0.50 π = 0.75 π = 0.90

n = 25 80% 85% 88% 84% 84%

n = 50 90% 96% 96% 91% 91%

n = 100 93% 99% 99% 98% 98%

n = 200 98% 100% 100% 100% 100%

n = 400 100% 100% 100% 100% 100%

n = 800 100% 100% 100% 100% 100%

(d) ε ∼ Exp(1)

π = 0.10 π = 0.25 π = 0.50 π = 0.75 π = 0.90

n = 25 78% 78% 76% 79% 78%
n = 50 95% 95% 98% 94% 84%
n = 100 99% 99% 100% 99% 96%
n = 200 100% 100% 100% 99% 99%
n = 400 100% 100% 100% 100% 100%
n = 800 100% 100% 100% 100% 100%
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4. Simulations Under No Immaterial Part Settings

In this section, we conduct a simulation study to investigate the performance of
the EER model if no immaterial part exists. The data was generated from the
following model

Yi = 3 +αT
1 Xi + (8 +αT

2 Xi)εi, for i = 1, . . . , 800.

We set p = 6 and each element in α1 was drawn from independent stan-
dard normal distribution. Each elements in α2 was 0.1. The predictor vector
X followed a normal distribution with mean 0 and covariance matrix ΣX =
PTDP, where P was a randomly generated orthogonal matrix (generated using
randortho function in R package pracma), and D was a diagonal matrix with
diagonal elements being 1, 2, 4, 8, 16 and 32. The error ε was generated from
the normal distribution ε ∼ N (0, 5).

Based upon the settings, the πth conditional expectile of Y has the following
form

fπ(Y |X) = 3 +αT
1 X + (8 +αT

2 X)fπ(ε) = 3 + 8fπ(ε) + (α1 +α2fπ(ε))TX,

where fπ(ε) represents the πth expectile of the error distribution, the intercept is
3+8fπ(ε) and the coefficients are βπ = α1 +α2fπ(ε). In this case, ΣX does not
have the decomposition as a sum of the variation of the material part (related
to βπ) and the variation of the immaterial part. So the envelope subspace is the
full space Rp, and there is no immaterial part.

Although no envelope structure is present, we will compute an approximate
“EER” estimator and compare it with the ER estimator. We know that under
an EER model, the envelope subspace EΣX

(βπ) = span(Γπ) is spanned by the
eigenvectors of ΣX. Therefore, for each 1 ≤ uπ ≤ p, we approximate Γπ by
Γ̂π, which is a p × uπ matrix whose columns were the uπ eigenvectors of Σ̂X

corresponding to the uπ largest eigenvalues. We note that under the exact EER
model, Γπ is chosen to be the eigenvectors of ΣX that contains βπ. They may
not necessarily be the eigenvectors corresponding to the largest eigenvalues.
Since the exact (nontrivial) EER model does not exist here, we are proposing
a way to approximate the Γπ such that its estimator is least variable. Then we
defined the “EER” estimator as β̂π=Γ̂πη̂π, where η̂π was the ER estimator with
Y being the response and Γ̂

T

πX being the predictors.
We generated 100 replications and computed the mean squared error (MSE)

‖β̂π −βπ‖2 at expectile levels π = 0.5 and 0.9 for each replication. The average
MSE are summarized in Figure 8. Because the true uπ equals p, a smaller uπ
leads to larger bias, but its estimator is less variable. As uπ increases, the bias
of β̂π becomes smaller but its variance becomes larger. When π = 0.5, the bias-
variance tradeoff makes the average MSE reach its minimum 1.03 at uπ = 3.
When π = 0.9, the average MSE reaches its minimum 0.94 at uπ = 2. Note that
when uπ = p, the EER estimator β̂π reduces to the ER estimator. The MSE of
the ER estimator is 3.91 for π = 0.5 and 5.92 for π = 0.9. The results shows that
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when there is no immaterial part, we can still expect to have a smaller MSE from
an approximate EER estimator in some cases due to the bias-variance tradeoff.
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Fig 8: Average MSE with respect to uπ. Note that the MSE corresponding to
uπ = p = 6 is the MSE of the ER estimator.

5. Analysis of “state.x77” with Predictors in Original Scale

We perform the same data analysis on the “state.x77” data again, but with the
predictors in the original scale instead of the standardized predictors. We first
select the dimension of the envelope subspace with RCV. For all quantile levels,
RCV selects uπ = 4(= p). This indicated that there is no immaterial part in the
data and the EER estimator reduces to the ER estimator. In this case, the EER
estimator and the ER estimator have the same efficiency. Detailed information
about the estimated regression coefficients are provided in the following Table 3.
Because uπ = p, the estimated regression coefficients given by the EER model
and the ER model are exactly the same.

Table 3
The estimated regression coefficients for the predictors in the original scale given by the

EER model, the ER model, the boosting model and the sparse ER model.

EER ER

Population Income Illiteracy Frost Population Income Illiteracy Frost

π = 0.10 0.29×10−3 -1.14×10−3 3.30 -9.24×10−3 0.29×10−3 -1.14×10−3 3.30 -9.24×10−3

π = 0.25 0.26×10−3 -0.66×10−3 3.65 -5.39×10−3 0.26×10−3 -0.66×10−3 3.65 -5.39×10−3

π = 0.50 0.22×10−3 0.06×10−3 4.14 0.58×10−3 0.22×10−3 0.06×10−3 4.14 0.58×10−3

π = 0.75 0.21×10−3 0.55×10−3 4.48 5.22×10−3 0.21×10−3 0.55×10−3 4.48 5.22×10−3

π = 0.90 0.18×10−3 0.72×10−3 4.58 7.89×10−3 0.18×10−3 0.72×10−3 4.58 7.89×10−3

Boosting Sparse ER

Population Income Illiteracy Frost Population Income Illiteracy Frost

π = 0.10 0.29×10−3 -1.12×10−3 3.22 -10.00×10−3 0.10×10−3 0.00×10−3 2.28 -9.34×10−3

π = 0.25 0.23×10−3 -0.41×10−3 3.59 -5.05×10−3 0.08×10−3 0.00×10−3 2.89 -2.95×10−3

π = 0.50 0.19×10−3 0.00×10−3 3.79 0.00×10−3 0.04×10−3 0.00×10−3 2.70 0.00×10−3

π = 0.75 0.12×10−3 0.00×10−3 3.36 0.00×10−3 0.00×10−3 0.00×10−3 2.12 0.00×10−3

π = 0.90 0.06×10−3 0.00×10−3 2.92 0.00×10−3 0.00×10−3 0.00×10−3 0.73 0.00×10−3
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We took a close look at the data and found that the scales of the four pre-
dictors are quite different. For example, population varies from 365 to 21198
(thousand) while illiteracy level varies from 0.5 to 2.8 (percent). This makes
the eigenvalues of ΣX range from 0.17 to 1.99 × 107 and the eigenvectors are
very close to the standard basis vectors, i.e, (1, 0, 0, 0)T , (0, 1, 0, 0)T , (0, 0, 1, 0)T

and (0, 0, 0, 1)T . In this case, if βπ belongs to an envelope subspace that is a
proper subset of Rp, then we are essentially performing variable selection. For
example, if the dimension of envelope subspace is u = 3, then the envelope
subspace is spanned by 3 out of the 4 eigenvectors of ΣX. Since βπ lies in the
envelope subspace, one component of βπ has to be 0, which means the corre-
sponding predictor is immaterial to the conditional expectile of the response.
The dimension selection results from RCV indicates the EER model finds that
all four predictors are material to the conditional expectile of the response at
all investigated expectile levels.

This situation is also shared by other dimension reduction based methods
such as principal component analysis (PCA). If one component is selected, which
corresponds to direction (0, 1, 0, 0)T , then only one variable (income) is included
in subsequent analysis. Thus when variables have drastically different scales,
PCA normally standardize the variables. We followed this practice and presented
the results with standardized predictor variables in Section 6 of the paper.

6. Prediction Performance Comparison on “state.x77”

We compared the prediction performance between the ER model and the EER
model on “state.x77” using five fold cross-validation repeated with 50 random
splits to compute the mean predicted expectile losses. The results are summa-
rized in the following table. The predicted expectile losses from the EER model

Table 4
Mean of the predicted expectile losses under the ER and the EER model with different

expectile levels.

π = 0.10 π = 0.25 π = 0.50 π = 0.75 π = 0.90

ER 1.48 2.79 3.75 3.29 2.45
EER 1.58 2.82 3.86 3.85 2.72

are slightly larger than those from the ER model. This may due to the criterion
we use to select the dimension of the envelope subspace uπ. We selected uπ by
RCV with one standard deviation rule. In other words, instead of choosing the
dimension that has the minimum RCV, we choose the smallest dimension hav-
ing RCV less than one standard deviation above the minimum value of RCV.
Therefore this criterion tends to select a more parsimonious model by sacrific-
ing some predictive accuracy comparing to the best model. In this case, it is
possible that the full model, i.e., the ER model, has an RCV that is closer to
the minimum value of RCV compared to the selected model.
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7. Simulation Results at More Expectile Levels

In Section 5 of the paper, we give the results at expectile levels 0.50 and 0.90 in
Figure 1. Here we provide the results at expectile levels 0.10, 0.25 and 0.75 in
Figure 9.

Figure 9 shows a similar pattern as Figure 1 of the paper. For every error
distribution and expectile level, the sample standard deviations of the EER
estimators are much smaller than the sample standard deviations of the ER
estimators, the boosting estimators and the sparse ER estimators under all
sample sizes.

8. Analysis of Computational Complexity of the GMM Algorithm

We give an analysis about the computational burden on the parameter estima-
tion approach – generalized method of moments (GMM). There are three steps
in GMM and we will count the number of flops for each step.

Step 1 : Get the intermediate estimator ζ̂
∗
by minimizing e∗n(ζ)T e∗n(ζ), where

e∗n(ζ) =

 1
n

∑n
i=1 Wi(Yi − µπ −XT

i Γπηπ)
∣∣I(Yi < µπ + XT

i Γπηπ)− π
∣∣

vech(ΓπΩπΓπ
T + Γ0πΩ0πΓ0π

T )− vech(SX)
µX − X̄

 .

In this step, we apply Nelder-Mead method to find the minimum of the
objective function. It is an iterative method and the number of flops in each
iteration is O(Tf ), where Tf represents the number of flops to compute
the value of the objective function e∗n(ζ)T e∗n(ζ) for a given ζ ([7]).

– Because Xi is a p-dimensional vector, Γπ is a p by uπ matrix and ηπ is
a uπ-dimensional vector, it takes O(puπ) flops to compute XT

i Γπηπ.
Afterwards, because Yi, µπ and XT

i Γπηπ are scalars, it takes O(1)
flops to compute (Yi−µπ−XT

i Γπηπ) and
∣∣I(Yi < µπ + XT

i Γπηπ)− π
∣∣.

Next, because Wi is a (p+1)-dimensional vector, it takesO(p) flops to
compute the product Wi(Yi−µπ−XT

i Γπηπ)
∣∣I(Yi < µπ + XT

i Γπηπ)− π
∣∣.

Finally, we need to perform the above multiplication for each sam-
ple and then take the average. Hence, the total number of flops to
compute the first line in e∗n(ζ) is O(npuπ).

– Because Γπ is a p by uπ matrix and Ωπ is a uπ by uπ matrix, it takes
O(p2uπ) flops to compute ΓπΩπΓπ

T . In addition, because Γ0π is a p
by (p−uπ) matrix and Ω0π is a (p−uπ) by (p−uπ) matrix, it takes
O(p(p−uπ)2) = O(p3) flops to compute Γ0πΩ0πΓ0π

T . Afterwards, it
takes O(np2) flops to compute SX =

∑n
i=1(Xi −µX)(Xi −µX)T /n.

Finally, because vech(ΓπΩπΓπ
T + Γ0πΩ0πΓ0π

T ) and vech(SX) are
O(p2)-dimensional vectors, it takes O(p2) flops to compute the dif-
ference between them. Hence, the total number of flops to compute
the second line in e∗n(ζ) is O(np2 + p3).
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(a) Standard normal with
π = 0.1

200 400 600 800

0.
0

0.
5

1.
0

1.
5

Sample Size

S
ta

nd
ar

d 
D

ev
ia

tio
n

(b) Standard normal with
π = 0.25
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(c) Standard normal with
π = 0.75
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(d) t4 with π = 0.1
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(e) t4 with π = 0.25
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(f) t4 with π = 0.75
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(g) Mixed normal with π =
0.1
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(h) Mixed normal with π =
0.25
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(i) Mixed normal with π =
0.75
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(j) Exp(1) with π = 0.1
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(k) Exp(1) with π = 0.25
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(l) Exp(1) with π = 0.75

Fig 9: Comparison of the sample standard deviations. Red lines mark the ER
estimator. Blue lines mark the sparse ER estimator. Green lines mark the boost-
ing estimator. Black lines mark the EER estimator. The horizontal lines mark
the asymptotic standard deviations of the ER estimator (the upper line in each
panel) and the EER estimator (the lower line in each panel).
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– Because µX is a p-dimensional vector and X̄ is also a p-dimensional
vector, it takes O(p) flops to compute the difference between them.
Hence, the total number of flops to compute the third line in e∗n(ζ)
is O(p).

To sum up, it takes O(np2 + p3) flops to compute e∗n(ζ). Once we have
e∗n(ζ), it takes another O(p2) flops to compute the objective function
e∗n(ζ)T e∗n(ζ). So the total number of flops to compute the value of the
objective function is Tf=O(np2 + p3). Therefore, the number of flops in
each iteration of the Nelder-Mead algorithm is O(np2 + p3).

Step 2 : Compute the scale matrix

∆̂ =

[
1

n

n∑
i=1

s(Zi;ψ(ζ̂
∗
))s(Zi;ψ(ζ̂

∗
))T

]−1
,

where

s(Z;ψ(ζ)) =

 W(Y − µτ −XTΓτητ )
∣∣I(Y < µτ + XTΓτητ )− τ

∣∣
vech(ΓτΩτΓτ

T + Γ0τΩ0τΓ0τ
T )− vech{(X− µX)(X− µX)T }

µX −X.


In this step, we firstly compute the matrix 1

n

∑n
i=1 s(Zi;ψ(ζ̂

∗
))s(Zi;ψ(ζ̂

∗
))T .

Following similar calculations in Step 1, it takes O(p3) flops to compute
s(Zi;ψ(ζ̂

∗
)). Upon we get s(Zi;ψ(ζ̂

∗
)), it takes another O(p4) flops to

compute the multiplication s(Zi;ψ(ζ̂
∗
))s(Zi;ψ(ζ̂

∗
))T . We need to do this

multiplication for each sample and then take the average, then the number
of flops to get the matrix 1

n

∑n
i=1 s(Zi;ψ(ζ̂

∗
))s(Zi;ψ(ζ̂

∗
))T is O(np4). Af-

terwards, we need to solve for the inversion of the matrix. Matrix inversion
takes O(m3) flops for an m by m matrix. In our case, it takes O(p6) flops
for the matrix inversion. So the number of flops in this step is O(np4+p6).

Step 3 : Obtain the GMM estimator ζ̂ by minimizing e∗n(ζ)T ∆̂e∗n(ζ).
Similar as Step 1, we apply Nelder-Mead method to find the minimum
of the objective function e∗n(ζ)T ∆̂e∗n(ζ). It takes O(np2 + p3) to compute
e∗n(ζ). Once we get e∗n(ζ), it takes another O(p4) flops to compute the
objective function e∗n(ζ)T ∆̂e∗n(ζ). So the total number of flops to compute
the value of the objective function is Tf = O(np2 + p4). Therefore, the
number of flops in each iteration of the Nelder-Mead algorithm is O(np2 +
p4).

9. Comparison Between EQR and EER

In this section, we compare the performance between the envelope quantile
regression (EQR; [1]) model and the EER model with simulated data and S&P
500 data.

For the simulated data, we use same settings in Section 5 of the paper. Since
the true underlying distributions are known, we are able to map expectiles to
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quantiles under each distribution. For example, 0.19 quantile is identical to 0.10
expectile under the standard normal distribution ε ∼ N (0, 1). The mappings
for the four error distributions considered in the simulation are shown in the
following Table 5.

Table 5
The mappings between expectiles and quantiles under the four types of distributions.

(a) ε ∼ N (0, 1)

Expectile levels π 0.10 0.25 0.50 0.75 0.90

Quantile levels α 0.19 0.33 0.50 0.67 0.81

(b) ε ∼ Exp(1)

Expectile levels π 0.10 0.25 0.50 0.75 0.90

Quantile levels α 0.34 0.48 0.63 0.77 0.87

(c) ε ∼ 0.9N (0, 1) + 0.1N (1, 5)

Expectile levels π 0.10 0.25 0.50 0.75 0.90

Quantile levels α 0.19 0.34 0.52 0.70 0.84

(d) ε ∼ t4

Expectile levels π 0.10 0.25 0.50 0.75 0.90

Quantile levels α 0.16 0.30 0.50 0.70 0.84

We repeated the simulation in Section 5 of the manuscript for the EQRmodel.
Then we compared the sample standard deviations of the EER estimator and the
EQR estimator, as well as the prediction performance. Note that the expectile
levels investigated for the EER model were still 0.10, 0.25, 0.50, 0.75 and 0.90,
while their corresponding quantile level mappings given in Table 5 were used
for the EQR model. The results are summarized in Figure 10 and Tables 6.
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(a) Standard normal with π = 0.5
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(b) Standard normal with π = 0.9
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(c) Exp(1) with π = 0.5
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(d) Exp(1) with π = 0.9
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(e) Mixed normal with π = 0.5
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(f) Mixed normal with π = 0.9
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(g) t4 with π = 0.5

200 400 600 800

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Sample Size

S
ta

nd
ar

d 
D

ev
ia

tio
n

(h) t4 with π = 0.9

Fig 10: Sample standard deviations. Solid lines mark the EER estimator. Dashed
lines mark the EQR estimator.
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Table 6
The average RMSEs of the 300 replications under the EER model and EQR model with

different error distributions.

(a) ε ∼ N (0, 1)

π(α) 0.10 (0.19) 0.25 (0.33) 0.50 (0.50) 0.75 (0.67) 0.90 (0.81)

EER 1.05 0.94 0.93 0.98 1.12

EQR 1.06 1.00 0.98 1.01 1.09

(b) ε ∼ Exp(1)

π(α) 0.10 (0.34) 0.25 (0.48) 0.50 (0.63) 0.75 (0.77) 0.90 (0.87)

EER 0.70 0.77 0.95 1.32 2.01

EQR 0.76 0.86 1.06 1.29 1.70

(c) ε ∼ 0.9N (0, 1) + 0.1N (1, 5)

π(α) 0.10 (0.19) 0.25 (0.34) 0.50 (0.52) 0.75 (0.70) 0.90 (0.84)

EER 1.19 1.02 1.02 1.21 1.71

EQR 1.11 0.99 0.99 1.07 1.29

(d) ε ∼ t4

π(α) 0.10 (0.16) 0.25 (0.30) 0.50 (0.50) 0.75 (0.70) 0.90 (0.84)

EER 1.71 1.22 1.11 1.27 1.82

EQR 1.40 1.09 1.01 1.09 1.36

The estimation efficiency is similar for the EER estimator and the EQR es-
timator. The sample standard deviations of the EER estimators are very close
to those of the EQR estimators, as indicated in Figure 10. Additionally, we ob-
served that under the distributions with relatively smaller variance (standard
normal and Exp(1)), the sample standard deviations of the EER estimators are
slightly smaller than those of the EQR estimators. While under the distribu-
tions with relatively larger variance (mixed normal and t4), the sample standard
deviations of the EER estimators become slightly larger than those of the EQR
estimators. The observation is consistent with the property that expectiles are
more sensitive to extreme values. Under distributions with relatively larger vari-
ance, it is more likely to have extreme values in the data, which results in more
variant EER estimators than the EQR estimators. Similar observation is shown
in Table 6 as well. Under standard normal and Exp(1), the average RMSEs from
the EER model are slightly smaller than those from the EQR model for most
expectile levels. While under mixed normal and t4, the average RMSEs from
the EER model become larger than those from the EQR model.

For S&P 500 data, since we do not have direct knowledge on the underlying
distribution, a grid of 23 levels (0.01, 0.02, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30,
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0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 0.98
and 0.99) were investigated as quantiles under the EQR model and expectiles
under the EER model. To compare prediction performance, we notice that the
measure of prediction performance are different for the EQR model and the EER
model: EQR model uses the quantile loss and EER model uses the expectile loss.
Therefore we firstly computed the mean of the predicted quantile loss for each
level under both the EQR model and the EER model. Among the 23 levels, the
mean of predicted quantile loss under the EQR model ranges from 3.0×10−3

to 3.1×10−2 with an average of 2.0×10−2. The mean of predicted quantile loss
under the EER model ranges from 3.0×10−3 to 3.1×10−2 with an average of
2.1×10−2. Boxplots of the predicted quantile loss under the two models are
included in the left panel of Figure 11. Secondly we computed the mean of the
predicted expectile loss under both models for each level, and the results are
included in the boxplots in the right panel of Figure 11. Among the 23 levels,
the mean of the predicted expectile loss under the EQR model ranges from
8.8×10−4 to 3.3×10−3 with an average of 2.5×10−3. The mean of predicted
expectile loss under the EER model ranges from 4.7×10−4 to 3.6×10−3 with
an average of 2.3×10−3. Based on the ranges and averages, we can not identify
a statistically significant difference of the prediction performance between the
EQR model and the EER model in this case.
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Fig 11: Boxplots of predicted quantile loss and expectile loss for the two models.

Similar to the relationship between the QR and the ER, the EQR model
and the EER model have their unique advantages over each other, and neither
approach is uniformly superior. We need to choose the appropriate model based
on the goal and context of the problems. For example, if we want to evaluate
the potential loss from a portfolio and we are strongly risk averse, then we may
use the EER model because it is more sensitive to the extreme losses. If we hope
to have a model that is easier to interpret, then we may want to use the EQR
model.
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10. Simulation Results for Sparse Expectile Regression Estimator
with an Alternative Tuning Parameter

In the same setting as in Section 5 of the manuscript, we update the results of
the sparse ER estimator with a different tuning parameter. The sparse ER esti-
mator was computed by R package SALES [2]. It gives two choices of the tuning
parameter λ: λmin, which is the value of λ that minimizes the cross validation
error, and λ1se, which is the largest value of λ having its cross validation error
within one standard error of the minimum cross validation error. The package
takes λ1se as the default value for the subsequent variable selection and param-
eter estimation, and the corresponding results are included in the manuscript.
In this section, we update the results using λmin as the tuning parameter. We
included the ER estimator, EER estimator and the boosting estimator in all
figures and tables for completeness. Note that the results for these estimators
are unchanged.

The sample standard deviations are included in Figure 12. We do not observe
a big difference in sample standard deviation between the sparse ER estimators
using λ1se (page 14 of the manuscript) and using λmin. But it seems that the
sparse ER estimator has a slightly smaller sample standard deviation with λmin.

We also calculated the root mean squares errors (RMSE) of the sparse ER
estimator using λmin as the tuning parameter. The results are in Table 7. Com-
pared to Table 1 of the manuscript (page 16), we notice that the performance
of the sparse ER estimator gets better, and its RMSE is very close to the ER
estimator and the boosting estimator. It seems that the default value λ1se gives
a model that is too parsimonious for this settings.
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(a) Standard normal with π = 0.5
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(b) Standard normal with π = 0.9
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(c) t4 with π = 0.5
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(d) t4 with π = 0.9
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(e) Mixed normal with π = 0.5
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(f) Mixed normal with π = 0.9
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(g) Exp(1) with π = 0.5
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(h) Exp(1) with π = 0.9

Fig 12: Comparison of the sample standard deviations. Red lines mark the ER
estimator. Blue lines mark the sparse ER (with λmin as the tuning parameter)
estimator. Green lines mark the boosting estimator. Black lines mark the EER
estimator. imsart-ejs ver. 2014/10/16 file: SuppEER.tex date: December 27, 2019



Chen et al./Efficient Estimation in Expectile Regression Using Envelope Models 29

Table 7
Comparison of the RMSEs, averaged over 300 replications. Using λmin as the selected value

of λ for the sparse ER estimator.

(a) ε ∼ N (0, 1)

EER ER Boosting Sparse ER
π = 0.10 1.04 1.85 1.86 1.86
π = 0.25 0.93 1.60 1.60 1.60
π = 0.50 0.90 1.52 1.52 1.52
π = 0.75 0.95 1.61 1.62 1.61
π = 0.90 1.10 1.87 1.91 1.88

(b) ε ∼ t4

EER ER Boosting Sparse ER
π = 0.10 1.84 3.49 3.50 3.54
π = 0.25 1.28 2.46 2.47 2.47
π = 0.50 1.15 2.14 2.15 2.14
π = 0.75 1.31 2.44 2.45 2.44
π = 0.90 1.85 3.46 3.51 3.47

(c) ε ∼ 0.9N (0, 1) + 0.1N (1, 5)

EER ER Boosting Sparse ER
π = 0.10 1.20 2.21 2.22 2.23
π = 0.25 1.05 1.87 1.87 1.88
π = 0.50 1.05 1.86 1.87 1.86
π = 0.75 1.24 2.21 2.22 2.22
π = 0.90 1.75 3.14 3.18 3.16

(d) ε ∼ Exp(1)

EER ER Boosting Sparse ER
π = 0.10 0.70 0.76 0.79 0.75
π = 0.25 0.77 1.07 1.07 1.06
π = 0.50 0.96 1.54 1.54 1.54
π = 0.75 1.34 2.27 2.28 2.27
π = 0.90 1.99 3.37 3.40 3.39
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