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The supplementary materials contain proof of theorems, lemmas and propositions, de-

tails on estimation and asymptotics, as well as additional simulations.

1 Proof of Theorem 1

Proof. By the expansions in (7), (9) and (10), we have

QE(B;Σε) (Y − α) =QE(B;Σε)(BX + ε)

=
(∑

i/∈I

χi ⊗ χi
)[∑

i∈I

∑
j∈J

bij(χi ⊗ ψj)X +
∞∑
i=1

ρ1/2

i νi χi

]
=
∑
i/∈I

ρ1/2

i νi χi,

where, for the third equality, we have used the fact 〈χi, χj〉HY = 0 for any i ∈ I, j /∈ I.

Hence QE(B;Σε) (Y − α) X, which is equivalent to relation (11a). Next,

PE(B;Σε) (Y − α) =PE(B;Σε)(BX + ε)

=
(∑

i∈I

χi ⊗ χi
)[∑

i∈I

∑
j∈J

bij(χi ⊗ ψj)X +
∞∑
i=1

ρ1/2

i νi χi

]
=
∑
i∈I

∑
j∈J

bij(χi ⊗ ψj)X +
∑
i∈I

ρ1/2

i νi χi.

Since elements in the two sets {νi : i ∈ I} and {νi : i /∈ I} are independent of each other,

we have PE(B;Σε) (Y − α) QE(B;Σε) (Y − α) | X, which is equivalent to (b).

Similarly, since

PE(B∗;ΣX ) X =
(∑

j∈J

ψj ⊗ ψj
)( ∞∑

j=1

〈X,ψi〉HX ψi
)

=
∑
j∈J

τ 1/2

i ξi ψi,

QE(B∗;ΣX ) X =
(∑

j /∈J

ψj ⊗ ψj
)( ∞∑

j=1

〈X,ψi〉HX ψi
)

=
∑
j /∈J

τ 1/2

i ξi ψi,
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we have PE(B∗;ΣX ) X QE(B∗;ΣX ) X, proving (11c). Finally, because

Y =α +BX + ε = α +B
(
PE(B∗;ΣX ) X +QE(B∗;ΣX ) X

)
+ ε

=α +B PE(B∗;ΣX ) X + ε,

and because X ε, we have relation (d). 2

2 Proof of Theorem 2

Proof. It suffices to show that LatB(Σε) = LatB(ΣY ). Since Y = α + BX + ε, we have

ΣY = BΣXB
∗ + Σε. Let S ∈ LatB(Σε) and v ∈ S. Then ΣY v = BΣXB

∗v + Σεv. Since

S ∈ LatB(Σε), we have Σεv ∈ S. Since BΣXB
∗v ∈ ran(B) and S contains ran(B), we have

BΣXB
∗v ∈ S. Hence ΣYS ⊆ S, which implies S ∈ LatB(ΣY ).

Conversely, let S ∈ LatB(ΣY ) and v ∈ S. Then Σεv = ΣY v − BΣXB
∗v. Similar

to the argument in the last paragraph, we have ΣY v ∈ S, BΣXB
∗v ∈ S, which implies

S ∈ LatB(Σε). 2

3 Proof of Theorem 3

Proof. Since Y = α +BX + ε, we have

Y − α =
∑
i∈I

∑
j∈J

bij(χi ⊗ ψj)
∞∑
k=1

τ 1/2

k ξkψk +
∞∑
i=1

ρ1/2

i νiχi

=
∑
i∈I

(∑
j∈J

bijτ
1/2

j ξj + ρ1/2

i νi

)
χi +

∑
i/∈I

ρ1/2

i νiχi

=
∑
i∈I

Uiχi +
∑
i/∈I

ρ1/2

i νiχi.
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Since ∑
i∈I

Uiχi = UTχ(I) = UTQD−1/2D1/2QTχ(I) = ζ(I)TD1/2φ(I),

we have

Y = α + ζ(I)Tdiagvm
(
λ(I)

)1/2
φ(I) +

∑
i/∈I

ρ1/2

i νiχi.

The claim follows by updating the notation as indicated in the theorem. For example, for

i /∈ I, χi = φi, νi = ζi and ρi = λi. 2

4 Proof of Theorem 4

We first introduce two lemmas that will be needed to prove Theorem 4. Lemma 1 was

proved independently by Cook, Forzani and Liu (Cook et al., 2020, Prop. 3.3) for envelopes

in model (1) with linearly constrained coefficients. The proof here, which uses our novel

lattice context, is different from that of Cook et al.

Lemma 1. Suppose Σ ∈ Rr×r is a symmetric and positive definite matrix, and M ∈ Rt×r

is a matrix with t > r and MTM = Ir. Then, for any matrix A ∈ Rr×s, we have

E(MA;MΣMT) = ME(A; Σ).

Proof. We first show that the asserted equality is implied by

E(MA;MΣMT) ⊆ME(A; Σ) ⊆MMTE(MA,MΣMT). (1)

In fact, if this holds, then E(MA,MΣMT) ⊆MMTE(MA,MΣMT), but we know E(MA,MΣMT)

cannot be a proper subset of MMTE(MA,MΣMT) because the dimension of the latter is

no greater the dimension of the former. Hence the three spaces in (1) must be the same.

We now prove the first inclusion in (1), for which it suffices to show that ME(A; Σ) ∈

LatMA(Σ). Because E(A; Σ) is an invariant subspace of Σ, we have ΣE(A; Σ) ⊆ E(A; Σ).
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Hence

MΣMTME(A; Σ) = MΣE(A; Σ) ⊆ME(A; Σ),

which means ME(A; Σ) is a reducing subspace of MΣMT. Since span(A) ⊆ E(A; Σ), we

have span(MA) ⊆ME(A; Σ). Therefore, ME(A; Σ) ∈ LatMA(Σ).

To show the second inclusion in (2), it suffices to show

E(A; Σ) ⊆MTE(MA,MΣMT),

which is implied by MTE(MA,MΣMT) ∈ LatA(Σ). Since

ΣMTE(MA,MΣMT) =MTMΣMTE(MA,MΣMT)

⊆MTE(MA,MΣMT),

MTE(MA,MΣMT) is a reducing subspace of Σ. Since E(MA;MΣMT) contains span(MA),

MTE(MA;MΣMT) must contain span(A). Therefore

MTE(MA;MΣMT) ∈ LatA(Σ),

as desired. 2

Lemma 2. If the conditions in Lemma 1 are satisfied and Λ ∈ Rr×r is a symmetric and

positive semidefinite matrix such that MΛ = ΛM = 0, then

E(MA;MΣMT + Λ) = E(MA;MΣMT).

Proof. It suffices to show that

E(MA;MΣMT) ∈ LatMA(MΣMT + Λ),

E(MA;MΣMT + Λ) ∈ LatMA(MΣMT).
(2)
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To show the first relation, note that

(MΣMT + Λ)E(MA;MΣMT)

= MΣMTE(MA;MΣMT) + ΛE(MA;MΣMT).

Let us show that the second term on the right is the space {0}. To do so, it suffices to show

that E(MA;MΣMT) ⊆ span(M), which, in turn, is implied by span(M) ∈ LatMA(MΣMT).

This is obviously true:

MΣMTspan(M) ⊆ span(M); span(MA) ⊆ span(M).

Hence

(MΣMT + Λ)E(MA;MΣMT) =MΣMTE(MA;MΣMT)

⊆E(MA;MΣMT).

Meanwhile, it is also true that span(MA) ⊆ E(MA;MΣMT). This proves the first relation

(2).

To show the second relation in (2), note that

MΣMTE(MA;MΣMT + Λ)

= (MΣMT + Λ)E(MA;MΣMT + Λ)− ΛE(MA;MΣMT + Λ)

Let us show the second term is the space {0}. Again, it suffices to show that span(M) ∈

LatMA(MΣMT + Λ). This is true because

(MΣMT + Λ)span(M) = MΣMTspan(M) ⊆ span(M) and

span(MA) ⊆ span(M).
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It follows that

MΣMTE(MA;MΣMT + Λ) = (MΣMT + Λ)E(MA;MΣMT + Λ)

⊆ E(MA;MΣMT + Λ).

Again, it is obvious that E(MA;MΣMT + Λ) contains span(MA). Hence the second rela-

tion in (2) holds. 2

Now we prove Theorem 4. Proof. Taking the inner product with c on both sides of

(5), we have

〈c, Y 〉HY = µ+ 〈c, BX〉HY + 〈c, ε〉HY . (3)

Since

BX =[BX]Tφ(I)φ(I)

=[X]Tψ(J)(φ(I)[B]ψ(J))
Tφ(I)

=[X]Tψ(J)(φ(I)[B]ψ(J))
T〈φ(I), cT〉HY c

=〈X,ψ(J)T〉HX (φ(I)[B]ψ(J))
T〈φ(I), cT〉HY c

=cT〈c, φ(I)T〉HY (φ(I)[B]ψ(J))〈ψ(J), X〉HX ,

we have

〈c, BX〉HY =〈c, cT〉HY 〈c, φ(I)T〉HY (φ(I)[B]ψ(J))〈ψ(J), X〉HX

=〈c, φ(I)T〉HY (φ(I)[B]ψ(J))〈ψ(J), X〉HX

=〈c, φ(I)T〉HY (φ(I)[B]ψ(J))〈ψ(J), bT〉HX 〈b,X〉HX .

where, for the second equality, we have used the relation 〈c, cT〉HY = Il. Substituting the
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above into (3), we have

〈Y, c〉HY = µ+ 〈c, φ(I)T〉HY (φ(I)[B]ψ(J))〈ψ(J), bT〉HX 〈b,X〉HX + 〈ε, c〉HY .

In other words,

Ỹ = µ+ Γ(φ(I)[B]ψ(J))Φ
TX̃ + ε̃, (4)

where Γ = 〈c, φ(I)T〉HY and Φ = 〈b, ψ(J)T〉. It remains to show that span(Γ) and span(Φ)

are the envelopes stated in the theorem.

Let

X4 = 〈ψ(J), X〉HX , Y 4 = 〈φ(I), Y 〉HY , ε4 = 〈φ(I), ε〉HY .

Taking c = φ(I) and b = ψ(J), we get a special case of (4)

Y 4 = µ+ (φ(I)[B]ψ(J))X
4 + ε4. (5)

Without assuming any further structure, (5) is just a multivariate linear model with re-

sponse envelope E(φ(I)[B]ψ(J); Σε4) = Rs, and predictor envelope E(φ(I)[B]Tψ(J); ΣX4) = Rt.

Now we show that the response envelope of (4) is span(Γ). We first derive the covariance

matrix of ε̃. Since

ε =
∑
i∈I

〈ε, φi〉HY φi +
∑
i/∈I

〈ε, φi〉HY φi = 〈ε, φ(I)T〉HY φ(I) +
∑
i/∈I

〈ε, φi〉HY φi,

we have

〈c, ε〉HY =
∑
i∈I

〈ε, φi〉HY 〈c, φi〉HY +
∑
i/∈I

〈ε, φi〉HY 〈c, φi〉HY .
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Hence

Σε̃ =ΓΣε4ΓT +
∑
i/∈I

var
(
〈ε, φi〉HY

)
〈c, φi〉HY 〈φi, c

T〉HY

≡ΓΣε4ΓT + Λε.

Note that, if i ∈ I and j /∈ I, then 〈c, φi〉THY 〈c, φj〉HY = 0. This is because

0 = 〈φi, φj〉HY =
〈
〈φi, cT〉HY c, φj

〉
HY

= 〈φi, cT〉HY 〈c, φj〉HY .

This implies ΓT〈c, φj〉HY = 0 whenever j /∈ I, which further implies ΛεΓ = 0.

For the rest of the proof, we abbreviate φ(I)[B]ψ(J) by [B], which will not cause any

ambiguity. Since Σε̃ = ΓΣε4ΓT + Λε, we have

E(Γ[B]ΦT; Σε̃) = E(Γ[B]; Σε̃) = E(Γ[B]; ΓΣε4ΓT + Λε).

By ΛεΓ = 0 and Lemma 2,

E(Γ[B]; ΓΣε4ΓT + Λε) = E(Γ[B]; ΓΣε4ΓT).

By Lemma 1,

E(Γ[B]; ΓΣε4ΓT) = ΓE([B],Σε4) = ΓRs = span(Γ).

Therefore E(Γ[B]ΦT; Σε̃) = span(Γ).

Next, we show that

E(Φ[B]TΓT; ΣX̃) = E(Φ[B]T; ΣX̃) = span(Φ).

We first derive ΣX̃. Since

X =
∑
j∈J

〈X,ψj〉HXψj +
∑
j /∈J

〈X,ψj〉HXψj,
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we have

X̃ = 〈b,X〉HX

=
∑
j∈J

〈X,ψj〉HX 〈b, ψj〉HX +
∑
j /∈J

〈X,ψj〉HX 〈b, ψj〉HX

= ΦX4 +
∑
j /∈J

〈X,ψj〉HX 〈b, ψj〉HX .

Hence

ΣX̃ =ΦΣX4ΦT +
∑
j /∈J

var(〈X,ψj〉HX )〈b, ψj〉HX 〈b
T, ψj〉HX

≡ΦΣX4ΦT + ΛX.

By the similar argument used in deriving the response envelope, we have that ΛXΦ = 0.

Note that

E(Φ[B]TΦ; ΣX̃) = E(Φ[B]T; ΣX̃) = E(Φ[B]T; ΦΣX4ΦT + ΛX).

By ΛXΦ = 0 and Lemma 2,

E(Φ[B]T; ΦΣX4ΦT + ΛX) = E(Φ[B]T; ΦΣX4ΦT).

By Lemma 1,

E(Φ[B]T; ΦΣX4ΦT) = ΦE([B]T; ΣX4) = ΦRt = span(Φ).

Hence E(Φ[B]TΓ; ΣX̃) = span(Φ). 2
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5 Proof of Theorem 5

Proof. Since (X, Y ) obeys the FELM in Definition 1, by (4), we have

Ỹ = µ+ Γ(φ(I)[B]ψ(J))Φ
TX̃ + ε̃,

thus we have

Γ(φ(I)[B]ψ(J))Φ
T = ΓηΦT.

Pre-multiply both sides by ΓT and post-multiply both sides by Φ, we have φ(I)[B]ψ(J) = η. 2

6 Details on estimation

The likelihood function of model (19) is

`(µ,Γ,Φ,Ω,Ω0,∆,∆0, η) = −n(l + k)

2
log(2π)− n

2
log |Φ∆ΦT + Φ0∆0Φ

T

0 |

− 1

2

n∑
i=1

X̃T

i (Φ∆ΦT + Φ0∆0Φ
T

0)−1X̃i −
n

2
log |ΓΩΓT + Γ0Ω0Γ

T

0 |

− 1

2

n∑
i=1

(Ỹi − µ− ΓηΦTX̃i)
T(ΓΩΓT + Γ0Ω0Γ

T

0)−1(Ỹi − µ− ΓηΦTX̃I).

(6)

We maximize the likelihood function over ΓTΓ = Is, ΦTΦ = It, Ω � 0, Ω0 � 0, ∆ � 0,

∆0 � 0, η ∈ Rs×t, where � denotes Loewner ordering, i.e., A � B if and only if A − B is

a positive definite matrix. The likelihood involves the parameters µ, Γ, Φ, Ω, Ω0, ∆, ∆0,

η. As shown in Cook (2018, page 114), given Γ and Φ, the MLE of parameters µ, Ω, Ω0,

∆, ∆0, η can all be expressed as explicit functions of Γ and Φ. Thus, the key is to find

the MLE of Γ and Φ, or equivalently, E(β; Σε̃) and E(βT; ΣX̃). To estimate E(β; Σε̃) and

E(βT; ΣX̃), we alternate between the following optimization problems

Ê(β; Σε̃) = arg min
span(Γ)∈G(l,s)

log |ΓTΣ̂Ỹ |ΦTX̃Γ|+ log |ΓTΣ̂−1

Ỹ
Γ|,
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and

Ê(βT; ΣX̃) = arg min
span(Φ)∈G(k,t)

log |ΦTΣ̂X̃|ΓTỸ Φ|+ log |ΦTΣ̂−1

X̃
Φ|,

where G(a, b), a ≥ b, denotes the a× b Grassmann manifold, Σ̂X̃ and Σ̂Ỹ denote the sample

covariance matrices of X̃ and Ỹ , and Σ̂Ỹ |ΦTX̃ and Σ̂X̃|ΓTỸ denote the residual sample variance

matrices of the regressions Ỹ vs ΦTX̃ and X̃ vs ΓTỸ respectively. That is,

Σ̂Ỹ |ΦTX̃ =
1

n

n∑
i=1

(Ỹi − γ̂TΦTX̃i)(Ỹi − γ̂TΦTX̃i)
T,

Σ̂X̃|ΓTỸ =
1

n

n∑
i=1

(X̃i − δ̂TΓTỸi)(X̃i − δ̂TΓTỸi)
T,

where γ̂ and δ̂ are the usual regression coefficients:

γ̂ =

(
n∑
i=1

ΦTX̃iX̃
T

i Φ

)−1 n∑
i=1

ΦTX̃iỸ
T

i ,

δ̂ =

(
n∑
i=1

ΓTỸiỸ
T

i Γ

)−1 n∑
i=1

ΓTỸiX̃
T

i .

A package for optimization over Grassmann manifold for envelope models can be found

on CRAN (R package Renvlp. Links to envelope computing packages are available at

z.umn.edu/envelopes.).

7 Forms of G and J

For an a × a symmetric matrix M , we define Ca ∈ Ra2×[a(a+1)/2] and Ea ∈ R[a(a+1)/2]×a2
as

the contraction matrix and expansion matrix that connect the vec(·) and vech(·) operator:

vech(M) = Cavec(M) and vec(M) = Eavech(M). See Henderson and Searle (1979). Then

G =
∂v1

∂vT
2

=


ΦηT ⊗ Il Φ⊗ Γ (Ik ⊗ Γη)Kkt 0 0 0 0 0

G21 0 0 G24 G25 0 0 0

0 0 G33 0 0 G36 G37 0

0 0 0 0 0 0 0 Il

 ,
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where Kkt ∈ Rkt×kt is a commutation matrix such that, for any k× t matrix M , vec(MT) =

Kktvec(M), and

G21 = 2Cl(ΓΩ⊗ Il − Γ⊗ Γ0Ω0Γ
T

0), G24 = Cl(Γ⊗ Γ)Es,

G25 = Cl(Γ0 ⊗ Γ0)El−s, G33 = 2Ck(Φ∆⊗ Ik − Φ⊗ Φ0∆0Φ
T

0),

G36 = Ck(Φ⊗ Φ)Et, G37 = Ck(Φ0 ⊗ Φ0)Ek−t.

Since ε is a Gaussian element in HY and X is a Gaussian element in HX independent of

ε, X̃ and ε̃ are independent Gaussian random vectors. Then the Fisher information for v1

under the full model (s = l, t = k) is

J =


ΣX̃ ⊗ Σ−1

ε̃ 0 0 0

0 1
2
ET
l (Σ−1

ε̃ ⊗ Σ−1
ε̃ )El 0 0

0 0 1
2
ET
k (Σ−1

X̃
⊗ Σ−1

X̃
)Ek 0

0 0 0 Σ−1
ε̃

 .

8 Proof of Theorem 7

To show the consistency of (ŝ, t̂), we first show that the parameter space of a MELM

with response and predictor envelopes E1,ε and E1,X is nested within that of a MELM with

response and predictor envelopes E2,ε and E2,X if E1,ε ⊆ E2,ε and E1,X ⊆ E2,X. To see that,

we perform a slight reparameterization on MELM. In the reparameterization, we require

that Γ and Γ0 are chosen such that Ω and Ω0 are diagonal matrices with their diagonal

elements in descending order, and Φ and Φ0 are chosen such that ∆ and ∆0 are diagonal

matrices with their diagonal elements in descending order. We further assume that the

first nonzero element in each column of Γ, Γ0, Φ and Φ0 are positive. Then Γ, Γ0, Φ and

Φ0 are unique orthonormal basis of E(β; Σε̃), E(β; Σε̃)
⊥, E(βT; ΣX̃) and E(βT; ΣX̃)⊥. Under
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this parameterization, the full parameter vector in MELM (19) with dimensions (s, t) is

Θ(s, t) = (vec{(Γ,Γ0)}T, vec(η)T, vec{(Φ,Φ0)}T, diagmv(Ω)T, diagmv(Ω0)
T,

diagmv(∆)T, diagmv(∆0)
T, µT)T.

For convenience, we assume all the eigenvalues in Ω, Ω0 are distinct, and all the eigenvalues

in ∆, ∆0 are distinct. We believe this assumption can be relaxed by a more elaborate proof.

Lemma 3. Suppose the elements of (diagmv(Ω)T, diagmv(Ω0)
T) are distinct, and the ele-

ments of (diagmv(∆)T, diagmv(∆0)
T) are distinct. Then the parameter space of a MELM

with response and predictor envelopes E1,ε and E1,X is contained in that of a MELM with

response and predictor envelopes E2,ε and E2,X if and only if E1,ε ⊆ E2,ε and E1,X ⊆ E2,X.

Proof. Let s1, t1, s2 and t2 denote the dimensions of E1,ε, E1,X, E2,ε and E2,X. For a generic

pair of integers (s, t), let MELM(s, t) denote the MELM with dimensions (s, t). Note that

each column of Γ in MELM(s1, t1) is either a column of Γ or a column of Γ0 in MELM(s2, t2).

And each column of Γ0 in MELM(s1, t1) is either a column of Γ or a column of Γ0 in the

MELM(s2, t2). So the parameter vec{(Γ,Γ0)} in MELM(s1, t1) has a one-to-one correspon-

dence with the parameter vec{(Γ,Γ0)} in MELM(s2, t2). The same result also holds for

the parameter vec{(Φ,Φ0)}, (diagmv(Ω)T, diagmv(Ω0)
T) and (diagmv(∆)T, diagmv(∆0)

T).

Recall that the η matrix in a MELM contains the coefficients of the regression of ΓTY on

ΦTX. Thus the η matrix in MELM(s1, t1) is a submatrix of the η matrix in MELM(s2, t2) if

and only if E1,ε ⊆ E2,ε and E1,X ⊆ E2,X. In other words, the parameter space of MELM(s1, t1)

is contained in that of MELM(s2, t2) if and only if E1,ε ⊆ E2,ε and E1,X ⊆ E2,X. 2

We now prove the consistency of (ŝ, t̂).

Proof. Let `(Θ(s, t)) denote the log likelihood in (6) for a fixed (s, t), let `0(Θ(s, t)) =

E[`(Θ(s, t))], and let

˜̀
0(s, t) = sup

Θ(s,t)

`0(Θ(s, t)).

Then E[BIC(s, t)] = −2˜̀
0(s, t) + log(n)K(s, t). For the rest of the proof, we denote the

response and predictor envelopes for MELM(s, t) as Eε and EX, and the true response and
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predictor envelopes (that is, the envelopes for MELM(s0, t0)) as E0,ε and E0,X. We consider

the following two scenarios.

Scenario 1: E0,ε ⊆ Eε, E0,X ⊆ EX and (s0, t0) 6= (s, t). From Lemma 3, MELM(s0, t0) is

nested within MELM(s, t). Hence,

˜̀
0(s0, t0) = ˜̀

0(s, t). (7)

By the asymptotic distribution of Wilks’ statistic (see, for example, Li and Babu (2019,

Chapter 11)), we have, for any (s, t) ∈ Ξ,

l̂(s, t)− l̂(s0, t0) = OP (1). (8)

Hence

BIC(s, t)− BIC(s0, t0)

=− 2[l̂(s, t)− l̂(s0, t0)] + log(n)[K(s, t)−K(s0, t0)]

= OP (1) + log(n)[K(s, t)−K(s0, t0)].

(9)

Since E0,ε ⊆ Eε, E0,X ⊆ EX, (s0, t0) 6= (s, t) implies s0 ≤ s, t0 ≤ t, and at least one of

the inequalities is strict, we have K(s, t) > K(s0, t0), which, combined with (9), implies

BIC(s, t) > BIC(s0, t0) with probability tending to 1.

Scenario 2: at least one of E0,ε * Eε and E0,X * EX is true. Under this scenario, for some

c > 0,
1

n
˜̀
0(s, t) >

1

n
˜̀
0(s0, t0) + c.

Hence, with probability tending to 1,

BIC(s0, t0)− BIC(s, t)

= 2n

{
1

n
˜̀
0(s, t)−

1

n
˜̀
0(s0, t0)

}
+ log(n)[K(s0, t0)−K(s, t)]

> nc+ log(n)[K(s0, t0)−K(s, t)].
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Since log(n)/n→ 0, BIC(s0, t0)− BIC(s, t) > nc/2. Therefore BIC(s, t) > BIC(s0, t0) with

probability tending to 1.

Combining the results for the two scenarios, we see that, whenever (s, t) 6= (s0, t0),

BIC(s, t) > BIC(s0, t0) with probability tending to 1. Meanwhile, if (s, t) = (s0, t0), then

BIC(s, t) = BIC(s0, t0). Because Ξ is a finite set, we conclude that with probability tending

to 1, BIC(s, t) is minimized uniquely at (s0, t0). 2

9 Additional simulations

9.1 Larger envelope dimensions

To study the performance of FELM with larger envelope dimensions, we consider the

simulation setting with envelope dimensions (s, t) (3, 3), . . ., (6, 6) and full dimensions.

Everything else in the model is generated in the same way as in Section 9 of the manuscript.

Note that the dimensions of response envelope and predictor envelope can be different,

which can induce many combinations. Here we increase the dimensions s and t together

instead of looking into all possible combinations for it better reveals the trend. When

(s, t) = (3, 3), the bij’s in the linear operator B are all zero except that b22 = −1.25,

b24 = −1, b42 = b44 = 0.4, b53 = 1/28. When (s, t) = (4, 4), we further set b33 = 5/56,

b35 = 3/80; when (s, t) = (5, 5), we further set b62 = 0.3, b66 = −3/32; when (s, t) = (6, 6),

we further set b76 = 1/32, b77 = −1/24; when the envelope dimensions are the same as full

dimensions, we further set b87 = 1/48, b88 = 1/32. The sample size n was fixed at 25. The

implementation for each method was the same as that for fixed dimension. The results are

shown in Table 1.

Comparing with FFFR, the reduction of the prediction error by FELM decreases as

(s, t) increases, from 19.4% when s = t = 2, to 13.0%, 8.7%, 5.2%, 2.2% as s = t increases

to 3, 4, 5 and 6. This is consistent with the theory that the envelope method is most

effective when the dimensions of the envelopes are small. When the envelope subspace is

the full space, it reduces to the full model, which is why the last column that the results
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for FELM and FFFR are the same. Both the direct method and K-L expansion method

have the same trend.

Table 1: Comparison on mean squared prediction errors

(s, t) (2, 2) (3, 3) (4, 4) (5, 5) (6, 6) Full

Direct

FELM 6.38 6.90 7.23 7.61 7.88 8.07
FFFR 7.92 7.93 7.92 8.03 8.06 8.07
PCR 12.99 13.62 14.43 10.53 8.99 8.07
PLS 13.01 11.96 12.02 9.72 8.22 8.07

K-L
expansion

FELM 6.38 6.92 7.23 7.61 7.88 8.07
FFFR 7.92 7.93 7.92 8.03 8.06 8.07
PCR 12.99 13.62 14.43 10.53 8.99 8.07
PLS 13.01 11.96 12.02 9.72 8.22 8.07

9.2 Computing time

The computation time for each method in Table 1 of the main text is included below in

Table 2. For each case, the computation time is the average of 100 runs performed on a

single core of a MacBook Pro laptop with 2.6 GHz 6-core Intel Core i7 processor. For fixed

dimension, each method can be computed well under 1 second. FFFR, PCR and PLS take

roughly the same amount of computation time. For larger sample sizes, the computation

time of FELM is also comparable with the other methods. However, when the sample size is

smaller, FELM requires longer computation time than the other methods. This is because

FELM involves a nonlinear optimization on a Grassmann manifold, which is typically faster

with a larger sample size since one can obtain a better starting value leading to a faster

convergence.

With selected dimensions, PCR and PLS take slightly longer to compute than FFFR

due to selection of number of components. The computation time of FELM is significantly

longer (up to 4 seconds) since it has to fit an envelope model with all possible dimensions

and compare the BIC values as discussed in Section 7 on order determination. However, as

the sample size increases, the computation time of FELM decreases. Since the computation

of BIC can be paralleled, in the high-dimensional setting, parallel computing can be utilized
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to reduce the computation time. The computation time of FELM we report here is based

on a single core.

Table 2: Comparison on computational time (Seconds)

n 25 50 100 200 400 25 50 100 200 400
Method Fixed dimension Selected dimension

Direct

FELM 0.249 0.133 0.163 0.254 0.447 3.919 1.851 1.589 1.705 1.939
FFFR 0.034 0.066 0.113 0.213 0.410 0.032 0.055 0.111 0.238 0.516
PCR 0.034 0.067 0.111 0.208 0.413 0.041 0.063 0.114 0.243 0.518
PLS 0.034 0.066 0.113 0.213 0.412 0.070 0.090 0.145 0.281 0.564

K-L
expansion

FELM 0.114 0.130 0.176 0.246 0.512 2.901 1.983 1.887 1.855 1.670
FFFR 0.036 0.074 0.122 0.209 0.471 0.035 0.069 0.137 0.263 0.444
PCR 0.036 0.075 0.119 0.209 0.472 0.044 0.078 0.146 0.267 0.454
PLS 0.036 0.074 0.118 0.206 0.468 0.077 0.112 0.183 0.316 0.498

9.3 Irregular time points

We used the same simulation setting in Section 9 of the paper, except that elements

of {t1, . . . , t10} were generated from uniform distributions on (0.05, 0.1), (0.15, 0.2), . . .,

(0.95, 1) for each sample (Xi, Yi). The results have similar patterns to those in Table 1 of

the main text.

Table 3 shows the above mean squared error averaged over the 100 simulated samples.

Table 3: Comparison on mean squared prediction errors

n 25 50 100 200 400 25 50 100 200 400
Method True dimension Selected dimension

Direct

FELM 8.50 6.60 6.27 6.08 6.03 8.41 6.58 6.26 6.07 6.03
FFFR 9.53 7.27 6.58 6.21 6.10 9.53 7.27 6.58 6.21 6.10
PCR 12.93 12.11 11.62 11.40 11.33 9.71 7.30 6.58 6.21 6.10
PLS 12.24 10.23 8.60 7.66 7.24 12.48 11.54 10.64 10.10 9.75

K-L
expansion

FELM 8.56 6.60 6.27 6.08 6.04 8.48 6.58 6.26 6.07 6.03
FFFR 9.53 7.27 6.58 6.21 6.10 9.53 7.27 6.58 6.21 6.10
PCR 12.93 12.11 11.62 11.40 11.33 9.71 7.30 6.58 6.21 6.10
PLS 12.24 10.23 8.60 7.66 7.24 12.52 11.54 10.64 10.10 9.75
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9.4 Representation errors

To investigate the impact of the representation error caused by using the wrong basis in

our simulation in Section 9, we considered the ideal scenario where the basis generating the

data agrees with the basis used for estimation. We used the simulation settings in Section 9

but, this time, we set bi = ψi, for i = 1, 2, . . ., cj = χj, for j = 1, 2, . . .. In this case, the

direct method and K-L expansion method are numerically equivalent. We then reperformed

the simulation in Section 9 using the true basis. The results are shown in Table 4 below.

Compared with the results in Table 1 of the main paper, where the bases are assumed to

be unknown and representation errors are present, the mean squared prediction errors are

reduced for both FELM and FFFR. However, the reduction is less noticeable when the

sample size increases. The difference in prediction errors between FELM and FFFR also

seems to be less significant than the case where the representation errors are present. Take

sample size 25 with fixed dimension as an example, the FELM reduces the prediction error

from FFFR by 11.4% with known bases, and the reduction is 19.4% with unknown bases.

This implies that FELM is less prone to be affected by the representation error.

Table 4: Comparison on mean squared prediction errors

n 25 50 100 200 400 25 50 100 200 400
Fixed dimension Selected dimension

FELM 5.50 5.41 5.37 5.34 5.30 5.49 5.40 5.37 5.34 5.30
FFFR 6.21 5.69 5.50 5.40 5.34 6.21 5.69 5.50 5.40 5.34
PCR 13.00 12.19 11.86 11.79 11.70 6.21 5.69 5.50 5.40 5.34
PLS 10.00 8.09 7.05 6.57 6.35 12.00 10.80 9.84 8.93 8.09

10 Additional details on the analysis fo Covid-19 data

Since the mobility data has periodical trends, it is reasonable to include the Fourier func-

tions in the basis. If we use only cubic splines in the basis functions, the prediction results

look like those in Figure 1. The predictions tend to be smooth curves capturing the overall

trend, while missing the obvious periodical fluctuation in the data. Therefore, we now use
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a combination of polynomial functions and Fourier functions as basis. More specifically, we

used the basis functions 1, t, t2,
√

2 sin(8πt),
√

2 cos(8πt),
√

2 sin(10πt) and
√

2 cos(10πt).

The results are shown in Figure 2. The predictions are noticeably improved. The prediction

for Camden County is one of the best cases in terms of prediction errors for both models.

A typical prediction is presented in Figure 3which shows the results of the alphabetically

first county, i.e. Atlantic County. The difference between FFFR and FELM is also more

noticeable in the Atlantic County data.
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Figure 1: Results using spline basis: Actual data and predictions from FELM and FFFR.
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Figure 2: Mobility to retail and recreation for Camden County: Actual data and predictions
from FELM and FFFR.
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Figure 3: Mobility to retail and recreation for Atlantic County: Actual data and predictions
from FELM and FFFR.
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