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A Proof of Theorem 1

Since the estimating equations (3.1) contain non-smoothing functions, we apply the result

in Theorem 3.3 of Pakes and Pollard (1989) to derive the asymptotic distribution of θ̃. In

order to use their result, we firstly need to check the conditions (i)-(v) in their theorem.

The conditions (ii) and (v) automatically hold given (C2) and (C3). Since Eθ0 [hn(θ0)] = 0,

the condition (iv) can be easily verified by the central limit theorem and (C3). Hence we

only need to check the conditions (i) and (iii) in their paper.

By the subgradient condition of quantile regression (Koenker, 2005), there exists a

vector v with components |vi| < 1 such that

||h1,n(θ̃1)|| = n−1||(Wivi : i ∈ Υ)|| = op(n
−1/2), by condition (C3),

where Υ denotes a p-element subset of {1, 2, · · · , n} and Wi = (1,XT
i )T . Since h2,n(θ̃2)

and h3,n(θ̃2) are both equal to zero, we have ||hn(θ̃)|| = ||h1,n(θ̃1)|| = op(n
−1/2). Hence the

condition (i) in Pakes and Pollard (1989) is satisfied.

To prove their condition (iii), it suffices to show the following Lemma 1. Let h(θ) =
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Eθ0 [g(Zi,θ)] = Eθ0 [g(Z,θ)].

Lemma 1. Under (C1) and (C3), for every sequence of positive numbers δn = o(1),

sup
θ:||θ−θ0||≤δn

||hn(θ)− h(θ)− hn(θ0)|| = op(n
−1/2). (A.1)

Proof. For notational simplicity, in the following we omit the subscript ‘X’ in µX and ΣX.

Let wj, µj, σj, gi,j, i = 1, 2, 3, denote the jth components of W, µ, Σ, g1(Z;θ1), g2(Z;θ2)

and g3(Z;θ2), respectively. Let c be some positive constant. Then for any θ? ∈ Θ and

j = 1, . . . , p+ 1,

∣∣∣ g1,j(Z;θ1)− g1,j(Z;θ?1)
∣∣∣2≤ w2

j

∣∣∣ I(Y < WTθ1)− I(Y < WTθ?1)
∣∣∣

It can be shown that

sup
θ?:||θ−θ?||≤δn

∣∣∣ I(Y < WTθ1)− I(Y < WTθ?1)
∣∣∣≤ ||W||[I(Y < WTθ1 + δn)− I(Y < WTθ1 − δn)

]
.

Hence by (C1) and (C3), there exists a positive constant c, such that

E
(

sup
θ?:||θ−θ?||≤δn

∣∣∣ g1,j(Z;θ1)− g1,j(Z;θ?1)
∣∣∣2 )

≤ E
(
w2
j ||W||

[
I(Y < WTθ1 + δn)− I(Y < WTθ1 − δn)

])
≤ E

(
||W||3

[
FY (WTθ1 + δn|X)− FY (WTθ1 − δn|X)

])
≤ cδn.

(A.2)
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Let µ?j and σ?j be the jth components of µ? and Σ?, respectively, and let vech[ · ]j be

the jth component of the corresponding vech[ · ]. Then for any j = 1, . . . , s,

∣∣∣ g2,j(Z;θ2)−g2,j(Z;θ?2)
∣∣∣2=∣∣∣ σj−vech[(X−µ)(X−µ)T )]j−σ?j+vech[(X−µ?)(X−µ?)T )]j

∣∣∣2 .
By Condition (C3), it is easy to verify that

E
(

sup
θ?:||θ−θ?||≤δn

∣∣∣ g2,j(Z;θ2)− g2,j(Z;θ?2)
∣∣∣2 ) ≤ kδ2n, for any j = 1, . . . , s, (A.3)

where k is some positive constant. Next for any j = 1, . . . , p, we have

E
(

sup
θ?:||θ−θ?||≤δn

∣∣∣ g3,j(Z;θ2)− g3,j(Z;θ?2)
∣∣∣2 ) = E

(
sup

θ?:||θ−θ?||≤δn

∣∣∣ µj − µ?j ∣∣∣2) ≤ δ2n. (A.4)

The results in (A.2), (A.3), and (A.4) together imply that g(Z;θ) belongs to the “type IV

class” of Andrews (1994) and is L2(P )–continuous at θ, for all θ ∈ Θ. For details regarding

this statement, see (5.3) in Andrews (1994). In addition, by (C3), Eθ0 [g
2
i,j] < ∞ for all

i = 1, 2, 3 and the corresponding indices j. Thus, by applying Lemma 2.17 in Pakes and

Pollard (1989), we have

n−1/2 sup
θ:||θ−θ0||≤δn

∣∣∣∣∣∣ n∑
i=1

{
g(Z;θ)− Eθ0 [g(Z;θ)]− g(Z;θ0)

} ∣∣∣∣∣∣= op(1).

This result can also be obtained by using Theorem 3 in Chen, Linton, and Van Keilegom

(2003) while omitting the infinite dimensional parameter h.
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So far, we have verified the conditions (i)-(v) in Theorem 3.3 of Pakes and Pollard

(1989). In addition, it is easy to show that θ̃ is a consistent estimator of θ0. Therefore,

using their theorem 3.3, we can directly obtain

√
n(θ̃ − θ0)

d−→ N
(

0, (U1U
T
1 )−1U1V1U

T
1 (U1U

T
1 )−1

)
,

where U1 =
∂Eθ0

[g(Z;θ)]

∂θT

∣∣∣
θ=θ0

= ∇Eθ0 [g(Z;θ0)] and V1 = Eθ0 [g(Z;θ0)g
T (Z;θ0)].

To find the expression of U1, consider

Eθ0 [g1(Z,θ1)] = Eθ0

[
W
(
I(Y < WTθ1)− τ

)]
= Eθ0

[
W
(
FY (WTθ1|X)− τ

)]

Eθ0 [g2(Z,θ2)] = vech(Σ)− vech(Σ0), Eθ0 [g3(Z,θ2)] = Eθ0(µ−X) = µ− µ0,

where µ0 and Σ0 are the true values of µ and Σ, respectively. Recall that g(Z;θ) =

(gT1 (Z;θ1), g
T
2 (Z;θ2), g

T
3 (Z;θ2))

T . Therefore,

U1 = ∇Eθ0 [g(Z;θ0)] =


Eθ0 [fY |X(ξ0(τ |X))WWT ] 0 0

0 Is 0

0 0 Ip

 , (A.5)

where ξ0(τ |X) = WTθ1,0 is the conditional quantile of Y |X under the true value θ1,0 of θ1,

and U1 is symmetric. By (C2), U1 also has a full rank. Hence the asymptotic distribution
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of θ̃ can be simplified to

√
n(θ̃ − θ0)

d−→ N
(

0,U−11 V1U
−1
1

)
.

Now we give the expression of V1 =
(
V1,ij

)
i,j=1,2,3

. Similarly, let θ2,0 denote the true

value of θ2. Then

V1,11 = Eθ0 [g1(Z;θ1,0)g
T
1 (Z;θ1,0)] = Eθ0

[(
I(Y < WTθ1,0)− τ

)2
WWT

]
= τ(1− τ)Eθ0(WWT )

V1,22 = Eθ0 [g2(Z;θ2,0)g
T
2 (Z;θ2,0)] = varθ0

{
vech[(X− µ0)(X− µ0)

T ]
}

V1,33 = Eθ0 [g3(Z;θ2,0)g
T
3 (Z;θ2,0)] = Eθ0 [(µ0 −X)(µ0 −X)T ] = varθ0(X)

V1,23 = Eθ0 [g2(Z;θ2,0)g
T
3 (Z;θ2,0)] = Eθ0

{
vech[(X− µ0)(X− µ0)

T ](µ0 −X)T
}
.

In addition, it is easy to check that V1,1j = Eθ0 [g1(Z;θ1,0)g
T
j (Z;θ2,0)] = 0 for j=2,3.

Correspondingly, we have

√
n(θ̃

∗ − θ∗0)
d−→ N

(
0,U−1VU−1

)
,

where

U =

Eθ0 [fY |X(ξ0(τ |X))WWT ] 0

0 Is

 and V =

V1,11 0

0 V1,22

 .

We thus complete the proof of Theorem 1.
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B Proof of Theorem 2

For notational simplicity, let Qn(θ) = hTn (θ)∆̂hn(θ) and Q(θ) = hT (θ)∆h(θ), where

hn(θ) is given by (3.3), ∆̂ =
{
n−1

∑n
i=1 g(Zi; θ̃)gT (Zi; θ̃)

}−1
, h(θ) = Eθ0 [g(Z,θ)], and

∆ = V −11 =
{

Eθ0 [g(Z;θ0)g
T (Z;θ0)]

}−1
. Let ln(γ) = hn(γ/

√
n+θ0) and l(γ) = h(γ/

√
n+

θ0). Thus, ln(0) = hn(θ0) and l(0) = h(θ0) = 0. Let Tn(γ) = lTn (γ)∆̂ln(γ) and

T (γ) = lT (γ)∆l(γ). In addition, let εn(γ) = [ln(γ) − ln(0) − l(γ)]/(1 + ||γ||), κn(γ) =

εTn (γ)∆̂εn(γ) + 2lTn (0)∆̂εn(γ), and ρn(γ) = n[Tn(γ)− κn(γ)− Tn(0)− D̂
T
γ/
√
n− T (γ)],

where D̂ = 2U1∆̂ln(0) with U1 given by (A.5).

The proof of Theorem 2 relies on the following Lemmas 2-4.

Lemma 2. Under the same conditions in Theorem 2, θ̂g
p−→ θ0.

Proof. Let F = {g(Z,θ),θ ∈ Θ}, where Θ is compact under (C3). It is easy to verify that

F is a VC-class. Thus, under the proposed conditions, F is Glivenko-Cantelli by Theorem

19.4 and Lemma 19.15 in Van der Vaart (1998). That is,

sup
θ∈Θ

||hn(θ)− h(θ)|| −→ 0, a.s.

As a result, Qn(θ) uniformly converges to Q(θ) in probability. Correspondingly, Qn(θ)

uniformly converges to Q(θ) in probability for any θ ∈ Θe, where Θe = {θ : θ ∈ Θ and θ =

ψ0(ζ
′

τ )}. As the support of ζ
′

τ is compact, Θe is compact. Moreover, since h(θ0) = 0 and

θ0 is the unique root, θ0 is the unique minimizer of Q(θ). In addition, by (C2), Q(θ) is

continuous. Therefore, by applying Theorem 2.1 in Newey and McFadden (1994), we have
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θ̂g
p−→ θ0.

Lemma 3. Under the same conditions in Theorem 2, for every sequence of positive numbers

δn = o(1),

sup
ϑ

|ρn(γ)|
||γ||(1 + ||γ||)

= op(1), (B.1)

where ϑ = {γ : ||γ||/
√
n ≤ δn}.

Proof. Based on the definition of εn(γ), we have

Tn(γ) = (1 + ||γ||)2εTn (γ)∆̂εn(γ) + lTn (0)∆̂ln(0) + lT (γ)∆̂l(γ) + 2(1 + ||γ||)εTn (γ)∆̂ln(0)

+ 2(1 + ||γ||)εTn (γ)∆̂l(γ) + 2lTn (0)∆̂l(γ)

and Tn(0) = lTn (0)∆̂ln(0). Consequently, it can be shown that |ρn(γ)|/[||γ||(1 + ||γ||)] =∑5
j=1Bj(γ), where

B1(γ) = n(||γ||+ 2)εTn (γ)∆̂εn(γ)/(1 + ||γ||), B2(γ) = 2n|εTn (γ)∆̂ln(0)|/(1 + ||γ||),

B3(γ) = 2n|εTn (γ)∆̂l(γ)|/||γ||, B4(γ) = n|2lTn (0)∆̂l(γ)− D̂
T
γ/
√
n|/[||γ||(1 + ||γ||)],

B5(γ) = n|lT (γ)(∆̂−∆)l(γ)|/[||γ||(1 + ||γ||)].

To prove Lemma 3, it suffices to show that supϑBj(γ) = op(1) for all j = 1, . . . , 5.

From Lemma 1, we know that supϑ ||εn(γ)|| = op(n
−1/2). Then under Condition (C2),

supϑB1(γ) ≤ supϑ n||εn(γ)||2||∆̂||(||γ|| + 2)/(1 + ||γ||) = n supϑ ||εn(γ)||2Op(1) = op(1),

and supϑB2(γ) ≤
√
n supϑ ||εn(γ)||Op(1) = op(1). By Taylor expansion, l(γ) = U1γ/

√
n+
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o(γ/
√
n). Thus, supϑB3(γ) ≤ 2

√
n supϑ ||εn(γ)||||∆̂||(||U1||||γ||+o(||γ||)/||γ|| ≤

√
n supϑ

||εn(γ)||Op(1) = op(1), and supϑB4(γ) = 2n supϑ |lTn (0)∆̂[l(γ) − U1γ/
√
n]|/[||γ||(1 +

||γ||)] ≤
√
n||ln(0)||||∆̂||op(1) = op(1). Finally, since

√
n||l(γ)|| ≤ ||γ||[||U1|| + o(1)],

supϑB5(γ) ≤ supϑ n||l(γ)||2||∆̂−∆||/[||γ||(1 + ||γ||)] ≤ supϑ ||∆̂−∆||Op(1) = op(1).

Note that Tn(γ) is minimized at γ̂g =
√
n(θ̂g − θ0) under enveloping.

Lemma 4. Under the same conditions in Theorem 2, ||γ̂g|| =
√
n||θ̂g − θ0|| = Op(1).

Proof. Let ϑ be the same defined as in Lemma 3. First, consider

sup
ϑ
|κn(γ)| ≤ Op(1) sup

ϑ
(||εn(γ)||2 + 2||εn(γ)||||ln(0)||) ≤ op(n

−1). (B.2)

Note that under the envelope setting, Tn(γ̂g) ≤ Tn(0) and by Lemma 2, γ̂g ∈ ϑ. Hence

Tn(γ̂g)− κn(γ) ≤ Tn(γ̂g) + op(n
−1) ≤ Tn(0) + op(n

−1). Correspondingly, we have

M = −n[Tn(γ̂g)− κn(γ)− Tn(0)− op(n−1)] = −ρn(γ̂g)−
√
nD̂

T
γ̂g − nT (γ̂g) + op(1) ≥ 0.

By Taylor expansion, T (γ̂g) = γ̂Tg Hγ̂g/(2n) + o(||γ̂g||2/n), where H = n ∂2T (γ)
∂γγT

∣∣∣
γ=0

=

∂2Q(θ)

∂θθT

∣∣∣
θ=θ0

= 2U1∆U1 = 2U1V
−1
1 U1. Since H is positive definite by (C2), there exists a

constant c > 0, such that with probability approaching one, T (γ̂g) ≥ c||γ̂g||2/n. Therefore,

by applying Lemma 3, we have M ≤ ||γ̂g||(1 + ||γ̂g||)op(1) + ||γ̂g||Op(1)− c||γ̂g||2 + op(1) =

[−c+ op(1)]||γ̂g||2 + ||γ̂g||Op(1) + op(1).
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As M ≥ 0 and −c+op(1) < 0 with probability approaching one, it follows that ||γ̂g||2−

2||γ̂g||Op(1) ≤ op(1). Hence [||γ̂g||−Op(1)]2 ≤ Op(1) and |||γ̂g||−Op(1)| ≤ Op(1), indicating

that ||γ̂g|| = Op(1).

To show Theorem 2, let Zn(γ) = n[Tn(γ)− Tn(0)]. Under the envelope setting, Zn(γ)

is minimized at γ̂g. Based on the results in Lemmas 3 and 4, and Taylor expansion, we see

that

Zn(γ) =
√
nD̂

T
γ + nT (γ) + op(1) =

√
nD̂

T
γ +

1

2
γTHγ + op(1)

d−→ NTγ +
1

2
γTHγ =: Z(γ), (B.3)

where N = N(0, 4U1V
−1
1 U1) because

√
nD̂ = 2

√
nU1∆̂ln(0). Therefore, by Lemma 4 and

the argmax theorem (Corollary 5.58 in Van der Vaart, 1998), we have γ̂g
d−→ γ̃, where

γ̃ = argmin
γ√
n
+θ0=ψ0(ζ

′
τ )

Z(γ) = argmin
γ√
n
+θ0=ψ0(ζ

′
τ )

1

2n
(γ + H−1N)TH(γ + H−1N). (B.4)

Since the parameter vector γ is overparameterized, we next apply Shapiro (1986) to

establish the asymptotic distribution of γ̃. We form the discrepancy function F (x, ξ) in

Shapiro (1986) as

F (x, ξ) =
1

2
(
γ√
n

+
H−1N√

n
)TH(

γ√
n

+
H−1N√

n
) (B.5)

where x and ξ in our context represent −H−1N/
√
n and γ/

√
n, respectively. It is easy
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to check that (B.5) satisfies Shapiro’s assumptions 1-5 and ∂2F
∂ξξT

= H = 2U1V
−1
1 U1. In

addition, −H−1N
d−→ N(0,U−11 V1U

−1
1 ). Let Ψ1 = ∂ψ1(ζ

′

τ )/∂ζ
′T

τ . Therefore, by applying

Proposition 4.1 of Shapiro (1986), we have γ̃
d−→ N(0,Λg), where Λg =

Ψ1(Ψ
T
1 HΨ1)

†ΨT
1 H · avar(−H−1N) ·HΨ1(Ψ

T
1 HΨ1)

†ΨT
1 = Ψ1(Ψ

T
1 U1V

−1
1 U1Ψ1)

†ΨT
1 .

Hence γ̂g =
√
n(θ̂g − θ0)

d−→ N(0,Λg).

Finally, recall that θ̂
∗
g is the envelope GMM estimator of θ∗ = (µτ ,β

T
τ , vech(ΣX)T )T

and is a sub vector of θ̂g. Since

Ψ1 =

Ψ 0

0 Ip

 , U1 =

U 0

0 Ip

 , and V1 =

 V A

AT V1,33

 ,

where A = (0,VT
1,23)

T , it can be verified that

√
n(θ̂

∗
g − θ∗0)

d−→ N
(

0, Ψ(ΨTUV−1UΨ)†ΨT
)
.

Note that Ψ = ∂ψ(ζτ )/∂ζ
T
τ . To give the expression of Ψ, we introduce the contraction

and expansion matrices that connect the ‘vec’ and ‘vech’ operators. For instance, for any

symmetric matrix A ∈ Rm×m, vech(A) = Cmvec(A) and vec(A) = Emvech(A), where

Cm ∈ Rm(m+1)/2×m2
and Em ∈ Rm2×m(m+1)/2 are the unique contraction and expansion
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matrices (Henderson and Searle, 1979). After some algebra, it can be shown that

Ψ =


1 0 0 0 0

0 Φτ ηTτ ⊗ Ip 0 0

0 0 Ψ33 Cp(Φτ ⊗Φτ )Euτ Cp(Φ0τ ⊗Φ0τ )Ep−uτ

 , (B.6)

where Ψ33 = 2Cp(ΦτΩτ ⊗ Ip −Φτ ⊗Φ0τΩ0τΦ
T
0τ ).

To show the asymptotic efficiency of θ̂
∗
g relative to θ̃

∗
, let Υ = U−1VU−1. Consider

avar(
√
nθ̃
∗
)− avar(

√
nθ̂
∗
g) = Υ−Ψ(ΨTΥ−1Ψ)†ΨT = Υ1/2

(
I−PΥ−1/2Ψ

)
Υ1/2

= Υ1/2QΥ−1/2ΨΥ1/2 ≥ 0,

where PΥ−1/2Ψ = Υ−1/2Ψ(ΨTΥ−1Ψ)†ΨTΥ−1/2 is the projection matrix onto the column

span of Υ−1/2Ψ, and QΥ−1/2Ψ is the orthogonal projection matrix. Both of them are

positive definite (or semidefinite). This completes the proof of Theorem 2.

Derivation of the asymptotic variance under i.i.d. errors

Under the i.i.d. error assumption, we have Eθ0 [fY |X(ξ0(τ |X))WWT ] = Eθ0 [f(ξ(τ))WWT ] =

f(ξ(τ))Eθ0(WWT ). When E(X) = 0, it follows that

avar(
√
nβ̃τ ) = τ(1−τ)[f(ξ(τ))Eθ0(XXT )]−1Eθ0(XXT )][f(ξ(τ))Eθ0(XXT )]−1 =

τ(1− τ)

f 2(ξ(τ))
Σ−1X .

Let J = UV−1U. Next we note that the asymptotic variance of θ̂
∗
g depends only on the
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column space of Ψ. We thus can replace Ψ with any matrix Ψ∗ that has the same column

space as Ψ. Following Cook, Li, and Chiaromonte (2010), we choose the most convenient

Ψ∗ = blockdiag
(
1,Ψ∗1

)
that can make Ψ∗

T

JΨ∗ block diagonal, where

Ψ∗1 =

Φτ ηTτ ⊗Φ0τ 0 0

0 Ψ∗33 Cp(Φτ ⊗Φτ )Euτ Cp(Φ0τ ⊗Φ0τ )Ep−uτ

 ≡ (Ψ∗1,1 Ψ∗1,2 Ψ∗1,3 Ψ∗1,4

)

and Ψ∗33 = 2Cp(ΦτΩτ ⊗Φ0τ −Φτ ⊗Φ0τΩ0τ ). With this Ψ∗, we can also construct a block

diagonal matrix Ψ∗∗ = blockdiag
(
1,Ψ∗∗1

)
, where

Ψ∗∗1 =



Iuτ ηTτ ⊗ΦT
τ 0 0

0 Iuτ ⊗ΦT
0τ 0 0

0 2Cuτ (Ωτ ⊗ΦT
τ ) Iuτ (uτ+1)/2 0

0 0 0 I(p−uτ )(p−uτ+1)/2,


such that Ψ = Ψ∗Ψ∗∗ and Ψ∗∗ has the full row rank. Accordingly, we can write J =

blockdiag
(f2(ξ(τ))
τ(1−τ) ,

f2(ξ(τ))
τ(1−τ) ΣX, [varθ0

{
vech[(X−µ0)(X−µ0)

T ]
)
}]−1 = blockdiag

(f2(ξ(τ))
τ(1−τ) , J1

)
.

When X is normal, the moment estimator of ΣX obtained from the estimating equation

(3.1) is asymptotically equivalent to the MLE of ΣX with the Fisher information FΣX
=

1
2
ET
p (Σ−1X ⊗ Σ−1X )Ep (Cook et al., 2013). Thus J1 = blockdiag

(
f2(ξ(τ))
τ(1−τ) ΣX,

1
2
ET
p (Σ−1X ⊗

Σ−1X )Ep

)
, where ΣX = ΦτΩτΦ

T
τ + Φ0τΩ0τΦ

T
0τ under enveloping. Then after matrix multi-

plication, we see that Ψ∗
T

1 J1Ψ
∗
1 and Ψ∗

T

JΨ∗ are block diagonal matrices, and Ψ∗1(Ψ
∗T
1 J1Ψ

∗
1)
†

Ψ∗
T

1 =
∑4

j=1 Ψ∗1,j(Ψ
∗T
1,jJ1Ψ

∗
1,j)
†Ψ∗

T

1,j. Therefore, avar(
√
nβ̂g,τ ) = Φτ (Ψ

∗T
1,1J1Ψ

∗
1,1)
†ΦT

τ +
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(ηTτ ⊗Φ0τ )(Ψ
∗T
1,2J1Ψ

∗
1,2)
†(ητ⊗ΦT

0τ ). After matrix multiplication and utilizing Corollary D.1

and (S4.8) in the supplement of Cook, Li, and Chiaromonte (2010) , we have Ψ∗
T

1,1J1Ψ
∗
1,1 =

f2(ξ(τ))
τ(1−τ) Ωτ and Ψ∗

T

1,2J1Ψ
∗
1,2 = f2(ξ(τ))

τ(1−τ) ητη
T
τ ⊗Ω0τ+

1
2
Ψ∗

T

33 ET
p (Σ−1X ⊗Σ−1X )EpΨ

∗
33 = f2(ξ(τ))

τ(1−τ) ητη
T
τ ⊗

Ω0τ + Ωτ ⊗Ω−10τ + Ω−1τ ⊗Ω0τ − 2Iuτ ⊗ Ip−uτ . This completes the proof.

C Proof of Theorem 3

Following the proof of Theorem 1, it can be similarly shown that

√
n(θ̃

∗ − θ∗0)
d−→ N

(
0,U−1pe VpeU

−1
pe

)
,

where

Upe =

Eθ0 [fY |X(ξ0(τ |X))WWT ] 0

0 Is1

 and Vpe =

V1,11 0

0 V1,22

 ,

where V1,11 = τ(1− τ)Eθ0 [WWT ] and V1,22 = varθ0{vech[(X1 − µX1,0)(X1 − µX1,0)
T ]}.

The rest of the proof is similar to the proof of Theorem 2 by first following the steps in

Lemmas 2-4 to show
√
n-consistency of θ̂

∗
pe. Then apply the argmax theorem and Shapiro’s

Proposition 4.1 to establish asymptotic normality and asymptotic efficiency. We thus omit

13



the details. The gradient matrix G is given by

G =



1 0 0 0 0 0

0 Ψτ ηTτ ⊗ Ip1 0 0 0

0 0 0 Ip2 0 0

0 0 G43 0 Cp1(Ψτ ⊗Ψτ )Edτ Cp1(Ψ0τ ⊗Ψ0τ )Ep1−dτ


,

where G43 = 2Cp1(ΨτΩτ ⊗ Ip1 −Ψτ ⊗Ψ0τΩ0τΨ
T
0τ ).

D Additional simulations

D.1 Effects of estimation uncertainty on efficiency

When the immaterial variation is substantial and the envelope dimension is large, the

EQR might still outperform the standard QR. To show this, we performed an additional

simulation study, where the data generating model is similar as that in Section 5 of the

manuscript but the envelope dimension is chosen to be much larger with u = 8 (close to the

full dimension p = 10). In addition, we set Φ =
(

I6 0
0 Γ

)
, where Γ was a 4 × 2 matrix with

the first 2 rows being (
√

2/2, 0) and the other 2 rows being (0,
√

2/2). The first six elements

of the vector η1 were 5 and the last two elements were 5
√

2, and η2 was a vector with the

first five elements being 0, the sixth element being 0.1 and the last two elements being

√
2/10. The matrix Ω was a diagonal matrix with diagonal elements being (10, 20, . . . , 80)

and Ω0 = I2. The other terms were kept the same as in Section 5. In this example, the

14



immaterial variation is relatively large as ||Ω−10 || � ||Ω−1||. The following figures and

table demonstrate the comparison results of the estimated standard deviations, MSEs and

squared biases between EQR and QR for τ = 0.5.
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Figure D.1: Comparison of the estimated standard deviations. The line — marks the
standard deviations of the EQR estimator with true u and the line – – marks the standard
deviations of the standard QR estimator. The line with “*” marks the EQR estimator with
u selected by RCV.

Table D.1: Comparison of the estimated standard deviations
n QR EQR(true u) EQR(selected u) ratio QR/EQR(selected u)

50 0.433 0.253 0.286 1.515
100 0.282 0.152 0.212 1.326
200 0.171 0.111 0.138 1.232
300 0.171 0.085 0.135 1.272
500 0.103 0.061 0.088 1.167
800 0.091 0.052 0.076 1.196

1000 0.069 0.051 0.055 1.239
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Figure D.2: Comparison of the MSEs. The line — marks the MSEs of the EQR estimator
with true u and the line – – marks the MSEs of the standard QR estimator. The line with
“*” marks the EQR estimator with u selected by RCV.
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Figure D.3: Comparison of the squared biases. The line — marks the squared biases of the
EQR estimator with true u and the line – – marks the squared biases of the standard QR
estimator. The line with “*” marks the EQR estimator with u selected by RCV.

We see from Figures D.1-D.3 and Table D.1 that the EQR shows smaller estimated

standard deviations and smaller MSEs than the standard QR under both the true and
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selected envelope dimensions, while it provides very similar estimation biases as QR. The

EQR outperforms QR in this case.

When the immaterial variation is relatively small while the envelope dimension is large,

the efficiency gains from enveloping might be inadequate to overcome the cost of uncer-

tainty in estimating the envelope subspace and parameters, resulting in relatively close

or worse performance of EQR compared to QR. The following simulation illustrates this

possibility. Under the setting of the last simulation, we now set η1 to be a vector with the

first six elements being 1 and the last two elements being
√

2. The matrix Ω was chosen

to be a diagonal matrix with diagonal elements (1, 2, . . . , 8) and Ω0 was 100I2. The other

parameters remain unchanged. In this case, the immaterial variation is relatively small as

||Ω−10 || � ||Ω−1||. The comparison results are summarized in Figures D.4–D.6 and Table

D.2 for τ = 0.5.
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Figure D.4: Comparison of the estimated standard deviations. The line — marks the
standard deviations of the EQR estimator with true u and the line – – marks the standard
deviations of the standard QR estimator. The line with “*” marks the EQR estimator with
u selected by RCV.
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Table D.2: Comparison of the estimated standard deviations
n QR EQR(true u) EQR(selected u) ratio QR/EQR(selected u)

50 0.475 0.474 0.480 0.990
100 0.284 0.304 0.314 0.905
200 0.202 0.201 0.215 0.939
300 0.163 0.161 0.188 0.866
500 0.128 0.132 0.133 0.962
800 0.105 0.108 0.109 0.959

1000 0.087 0.085 0.091 0.954

It can be seen that the EQR shows slightly larger estimated standard deviations and

MSEs than QR in this case, especially under the selected envelope dimensions, while the

estimation biases from EQR and QR are relatively close.
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Figure D.5: Comparison of the MSEs. The line — marks the MSEs of the EQR estimator
with true u and the line – – marks the MSEs of the standard QR estimator. The line with
“*” marks the EQR estimator with u selected by RCV.
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Figure D.6: Comparison of the squared biases. The line — marks the squared biases of the
EQR estimator with true u and the line – – marks the squared biases of the standard QR
estimator. The line with “*” marks the EQR estimator with u selected by RCV.

D.2 Performance under the violation of the envelope assumption

We report results of a simulation study that illustrates the performance of the EQR esti-

mator when the parameters do not have the envelope structure. We generated the data

from the following model

Yi = µ+ αTXi + (5 + γTXi)εi, for i = 1, . . . , n,

where µ = 5, ε followed the standard normal distribution with distribution function Fε,

the elements in α and γ were independent standard normal variates, and X followed a

multivariate normal distribution with mean 0 and covariance matrix ΣX. The covariance

matrix ΣX had the structure MDMT , where D was a diagonal matrix with diagonal
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elements 1, . . . , p and elements in M were independent standard normal variates. Under

this setting, µτ = µ + 5F−1ε (τ), βτ = α + γF−1ε (τ), and βτ and ΣX do not follow the

envelope structure in (2.5). We set p = 10, n = 50, and generated 200 replications. For

each replication, we computed the EQR estimator of βτ with uτ = 1, . . . , 10. Then the

estimation variance, bias and MSE were calculated for each EQR estimator. Note that

when uτ = 10, the EQR estimator reduces to the standard QR estimator. Results for a

randomly chosen element in βτ (τ = 0.5) are displayed in Table D.3.

Table D.3: Estimation variance, bias and MSE for envelope estimators with different uτ .
uτ 1 2 3 4 5 6 7 8 9 10

Est. Var. 0.07 0.15 0.19 0.30 0.37 0.37 0.36 0.36 0.41 0.40
Bias 0.60 0.47 0.34 0.24 0.11 0.09 0.09 0.07 0.09 0.05
MSE 0.42 0.38 0.30 0.35 0.38 0.38 0.37 0.37 0.42 0.40

We notice that when uτ increases, the bias decreases and the estimation variance in-

creases. The MSE reaches its minimum 0.30 when uτ = 3, which is smaller than the MSE

of the QR estimator 0.40. This indicates that when the envelope structure does not hold,

it is still worthwhile to compute the EQR estimator because it may have a smaller MSE.

D.3 Results on estimation bias for examples in Section 5

Figures D.7 and D.8 provide the comparison results on the squared estimation biases be-

tween EQR and QR estimators under the same settings as Figures 3–6 of the manuscript.

The estimation biases of the two methods are generally close except that QR has relatively

large bias when τ = 0.9 and the sample size is relatively small.
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Figure D.7: Comparison of the squared biases (τ = 0.5). The line — marks the squared
biases of the EQR estimator with true u and the line – – marks the squared biases of the
standard QR estimator. The line with “*” marks the EQR estimator with u selected by
RCV.
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Figure D.8: Comparison of the squared biases (τ = 0.9). The line — marks the squared
biases of the EQR estimator with true u and the line – – marks the squared biases of the
standard QR estimator. The line with “*” marks the EQR estimator with u selected by
RCV.
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D.4 Simulation for PEQR

We generated the data from the model

Yi = µ+ αTX1,i + βT2 X2,i + (5 + γTX1,i)εi, for i = 1, . . . , n,

where α = Ψ1η1, γ = Ψ1η2, and ε follows a standard normal distribution with distribution

function Fε. Here Ψ1 ∈ Rp1×d(d < p1) is a semi-orthogonal matrix. Hence µτ = µ +

5F−1ε (τ), β1,τ = Ψ1(η1 + η2F
−1
ε (τ)) = Ψ1ητ , β2,τ = β2, Ψτ = Ψ1 and dτ = d, for

0 < τ < 1. We set p1 = 8, p2 = 2, d = 2 and varied the sample size n from 50 to 1000.

We generated X1 from a multivariate normal distribution with mean 0 and covariance

matrix Ψ1Ω1Ψ
T
1 + Ψ0Ω0Ψ

T
0 , where Ψ0 was a completion of Ψ1, and Ω1 and Ω0 were

the corresponding coordinate matrices. We generated Ψ1 with the first p1/2 rows being

(−0.5, 0) and the remaining rows being (0,−0.5). The matrix Ω1 was a diagonal matrix

with diagonal elements 25 and 100, Ω0 was an identity matrix, η1 was (−10,−10)T , η2

was (0,−2/
√

80)T , and µ was 5. The elements in X2 were independent Bernoulli random

variables with the success probability 0.5, and β2,τ was (2, 2)T . For each sample size,

we generated 200 replications, and fit the standard QR model and the PEQR model to

each replication. The estimation standard deviation for each element in β1,τ and β2,τ was

calculated for both the standard QR estimator and the PEQR estimator. We also generated

200 repetitions from paired bootstrap, and computed the bootstrap standard deviations.

The results of two randomly chosen elements in β1,τ and β2,τ for τ = 0.5 are displayed

in Figure D.9 and Figure D.10. The efficiency gains for β1,τ are substantial. Across all
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elements in β1,τ , at sample size 1000, the PEQR estimator reduced the estimation standard

deviations by 45.1% to 55.9%. The efficiency gains for elements in β2,τ are not very obvious,

although we observe that the PEQR estimator is slightly more efficient than the standard

QR estimator in Figure D.10.
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Figure D.9: Comparison of the estimation standard error for an element in β1. Lines —
mark the PEQR estimator and lines – – mark the standard QR estimator. The lines with
“+” mark the bootstrap standard deviations for the corresponding estimators.

We have also examined the performance of RCV on the envelope dimension selection

under PEQR for τ = 0.5. Not tabulated here, RCV was stable across all sample sizes,

and the fraction that it selected the true dτ was 94.5% at sample size 50 and gradually

increased to 100% at sample size 1000. We repeated this simulation using the selected

dτ to incorporate the model selection variability, as we did in Section 5. Similar results

are observed as in Figures 3, 4, 5 and 6: some efficiency is lost compared to the PEQR

estimator with the true dτ , but the PEQR estimator with selected dτ is still more efficient

than the standard QR estimator. In addition, the MSE of the PEQR estimator with
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Figure D.10: Comparison of the estimation standard error for an element in β2. Lines —
mark the PEQR estimator and lines – – mark the standard QR estimator. The lines with
“+” mark the bootstrap standard deviations for the corresponding estimators.

selected dτ is much smaller than the standard QR estimator.

E More information on Nelder-Mead method

Nelder-Mead method or downhill simplex method (Nelder and Mead, 1965) is applied to

find the minima of the objective function. Specifically, suppose that the objective function

has k variables, the Nelder-Mead method begins with a set of k+ 1 test points arranged as

a simplex. It evaluates the objective function on these test points, and orders the values.

Based on the values, it finds the worst point as well as the centroid of the other k points.

The Nelder-Mead method then performs a series of transformations in order to find a new

test point to replace the worst test point, aiming to decrease the value of the objective

function at the test points. Most common transformations includes reflection (computes

the reflection point of the worst point with respect to the centroid), expansion (the same as
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reflection, but the point is two times as far to the centroid than the reflection point), and

contraction (the middle point between the worst point and the centroid). A candidate point

is accepted as a new test point if it is better than the worst point and satisfies some other

conditions. If none of the candidate points is accepted, we shrink the simplex towards the

best point in the previous step. This procedure is repeated until the volume of the simplex

is small enough (Singer and Singer, 1999).
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